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Abstract 

Over many years computer architecture researchers have sought ways of combining the effi-

ciency of RISC computers with the security potential of capability systems, in some cases in 

multi-million dollar projects. The paper shows how a model for protecting both small and 

large segments in a paged system, first presented in 1980, can easily and straightforwardly be 

adapted for use in a RISC environment (without the use of tagged memory) and thus achieve 

this aim. The design was originally implemented in the MONADS (CISC) systems in the late 

1970s. 

The crucial difference from current RISC systems is the way in which addresses are translat-

ed by the hardware. Relatively trivial changes to compilers would enable current applications 

to run unchanged, but the modified RISC hardware would also make possible the develop-

ment of secure capability systems, as the MONADS project has already demonstrated. 

The paper begins with a discussion of protection mechanisms in capability systems, then out-

lines the essential features of RISC systems and shows how these two aims can be combined 

in S-RISC (Secure RISC) systems. It then discusses various issues in more detail and con-

cludes with a discussion of related work. 

1 Introduction 

Early attempts to design highly secure computer architectures were basically of CISC design 

and could not compete in efficiency with that of RISC processors. Since then a combination 

of RISC design and ever improving chip miniaturization and technology has enabled comput-

ers to achieve amazing performance improvements, but as Hennessy and Patterson, who 

coined the name RISC, have observed: 

"Security and privacy are two of the most vexing challenges for information technology in 

2011. Electronic burglaries, often involving lists of credit card numbers, are announced regularly, 

and it's widely believed that many more go unreported. Hence, both researchers and practitioners 

are looking for new ways to make computing systems more secure. Although protecting infor-

mation is not limited to hardware, in our view real security and privacy will likely involve innova-

tion in computer architecture as well as in system software." [1, p. 105]. 

Hardware and architectural improvements cannot guarantee that the overall security of 

computer systems will be improved, because the final result depends not only on the mecha-

nisms, but also on strategies and policies and also on their error free implementation. Howev-

er, without a core of good basic mechanisms on which to build it is more difficult to devise 

good strategies which can be implemented efficiently, cheaply and correctly. 

This paper describes a mechanism for combining the efficiency of RISC systems with 

the security of capability systems. (Here the word "security" is used at the architectural level, 

not in terms of correctness proofs or of encryption/public key security.) 

2 Capability Based Operating Systems 

In the pre-RISC era the most promising security strategies at the architectural level were un-

doubtedly found in the early capability systems, e.g. [2, 3, 4, 5]. A capability, first proposed 

by Dennis and van Horn [6], is a data structure describing access rights which the presenting 

process can exercise over a defined object (e.g. for memory segments read and/or write and/or 

execute) and can be used to check the bounds of the object (thus preventing accesses outside 
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the segment). Most early capability system designers chose variable length segments of 

memory as the objects to be protected; these allow different processes to have separate capa-

bilities for the same segment, which could, if appropriate, have different access rights
1
. Indi-

vidual segments might be small or large. Hence a capability system which supports both is 

ideal, especially since capabilities themselves are normally relatively small objects. 

Because they contain sensitive information, capabilities themselves must be protected. 

The system must in some way guarantee both that existing capabilities cannot be modified in 

arbitrary ways and that new capabilities cannot be arbitrarily manufactured or forged by un-

privileged users.  Several capability protection mechanisms were proposed and used in early 

systems. At the time of their development the Internet did not exist. Hence a newer criterion 

for judging these must be their adaptability to the Internet environment, in particular to a sys-

tem in which capabilities for the same object can be distributed to users at different nodes. 

2.1 Protection in the Operating System Space 

An obvious solution is to protect capabilities in a similar way to that by which segment and 

page table entries are protected in conventional systems, i.e. by storing them in capability lists 

(C-Lists) in the operating system's private data space. In this case the creation and modifica-

tion of capabilities can only be carried out by the operating system, at the request of users (via 

calls which the operating system can check for validity). 

The main disadvantages of this solution are a performance overhead when the user ac-

cesses his capabilities and a lack of flexibility in the way they can be organized into lists. Fur-

thermore this solution cannot easily be scaled up for general use over the Internet. 

This approach is rather like having a bunch of keys which is compulsorily held by a ho-

tel porter who will open and close your room for you whenever you ask him or her, but you 

always have to go to him or her to lock/unlock your room. 

2.2 Password Protection 

A technique known as password capabilities, implemented in the Monash Capability System 

(not to be confused with the MONADS systems), allows capabilities to be stored in the user's 

address space while using conventional computer hardware [7]. Rather than holding a set of 

access rights the capability in this case contains a password, which is a large integer value 

(see Figure 1). 

 

This password, which in the Monash Capability System was 64 bits long, is a system generat-

ed random number. The idea is that the number must be large enough that it cannot easily be 

guessed or systematically generated. The capability is stored in user space and is not protected 

from being modified using normal instructions. (That is why it works using conventional 

hardware.) However, it can only be used as a capability in calls to the operating system, and at 

that point its validity is checked. 

The operating system has an internal table in which the object name, the password and 

the permitted access rights are stored. When it receives a request to carry out an operation the 

operating system checks the object name and password fields against entries in its table. If it 

finds a match, the capability is valid for the access rights stored in the table. If the requested 

                                                 
1
  This contrasts with conventional systems, which place the access rights in page tables or 

segment tables and thus determine that all users share the same access rights. 

Figure 1: A Password Capability 

Large Random Password Unique Object Identifier 
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operation conforms to these access rights the operation may proceed (see Figure 2). Different 

sets of access rights have different passwords. 

 
This solution has the advantage that capabilities may be stored flexibly in a user address 

space. But it implies that each use of a capability must be made via an operating system call 

and that there are additional tables in the operating system. This makes it difficult for example 

to store capabilities on an external storage device and use them later on a different computer. 

The Mungi system [8] used password capabilities in a local area network system in 

which all the nodes shared a common range of addresses, such that the top bits of 64-bit ad-

dresses determine which node was involved.  However, this technique cannot be scaled up to 

work in a general way on the Internet. 

Password capabilities are like having a piece of paper with a password on it, which a 

hotel porter checks before taking a key to open your room door. 

2.3 Protection by Tags 

Another approach which allows capabilities to be stored freely in the application address 

space and which avoids the problems associated with password protection is to use tag bits to 

identify which memory locations hold capabilities. This was the solution adopted in the IBM 

S/38 computer system [9, 10], which was a latecomer on the capability scene. The tagging 

solution involves having one or more additional bits associated with each word in the main 

memory. If this hidden tag bit is set to 0 the remainder of the word is a normal data or instruc-

tion word, but if it is set to 1 the rest of the word is part of a capability. Because a capability 

might take up several words of memory, the address at which it actually begins can be recog-

nized by its byte position, i.e. capabilities must start at fixed byte positions. The tag bit can 

only be set and unset when the system is in privileged mode. 

With this solution the CPU can check, as it executes instructions, whether these are be-

ing applied to capabilities or to normal data and instruction words. To create a new capability 

the operating system must be called to set the tag bits. Similarly, attempts to modify a capabil-

ity using normal instructions will be detected by the hardware. 

Thus tagged capability protection is more flexible and more efficient than the earlier so-

lutions, since protection tables in the operating system need not be consulted on every access, 

but it is achieved at the cost of an extra bit of memory for each word. Unfortunately this extra 

bit has to be copied to secondary memory whenever a program segment is discarded from the 

main memory to make room for another. Secondary memory blocks are usually organized 

into sizes which are powers of 2; this creates difficulties when words in memory have an extra 

tag bit. Hence it is unlikely that tagged capabilities will be universally accepted [11]. 

This solution is rather like having to use keys which are too big to fit into your pocket. 

Operating System Capability Table 

Unique Object Id Password Rights 

Password Capability 

875610492 

 

Figure 2: Validating a Password Capability 

6043119752 

 

6043119752 R, Ex 875610492 
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2.4 Protection by Partitioning Segments 

A fourth solution is the use of partitioned segments [5]. Here the idea is to allow normal data 

and capabilities to coexist in a single segment, but to segregate them into two parts of the 

segment. Normal data words are addressed by positive offsets from a base register, while ca-

pabilities are placed at negative offsets, below the address at which the base register is point-

ing. The instruction set of the computer is so organized that negative addresses either cause an 

exception into the operating system, which can then validate the action required in relation to 

the capability, or that special capability instructions which use only negative offsets can be 

supported at the architectural level (see Figure 3). The base register must be a protected regis-

ter which can only be modified by the system kernel. 

 

Partitioned segments simplify the use of linked data structures in the application address 

space, and they have none of the disadvantages of the other solutions. There are no operating 

system tables or hardware tags. In this case the keys fit conveniently into your pocket and you 

can put them away as a bunch in a convenient filing cabinet or pocket, wherever is conven-

ient. 

2.5 Protecting Capabilities via Capabilities 

Finally, there is another solution for protecting capabilities: use capabilities to protect other 

capabilities. This relies on the fact that another solution already exists, so it may seem to con-

tain a circular argument. But if more than one kind of capability exists, as was the case in the 

MONADS-PC system [12, 13], then this solution also makes sense. This is like being able to 

lock a box which contains your keys for safe keeping. 

3 RISC Based Systems 

RISC systems rely on the use of a "load and store" instruction set architecture, which was first 

used in computers such as the CDC 6600 [14] and the IBM 801 [15]. 

The paper does not aim to describe how capabilities can be integrated into a particular 

RISC instruction set architecture (such as RISC-V
2
) but instead outlines a general model 

based on the RISC principles as set out in Hennessy and Patterson [1] (p. C-4), who invented 

the name RISC. 

• Data operations are always applied to data in registers (32 or 64 bits per register). 

• Only load/store instructions transfer data between memory and registers. 

• Instructions have a uniform size with only a few instruction formats. 

A large number of registers (typically 32) is usually available. In practice there may be an 

                                                 
2
  https://riscv.org 

negative offsets 

(adjusted for system information) 

Partitioned Segment 
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offsets Base Register 

 

Data 

Data Length 

Count of Capabilities 

Capabilities 

Figure 3 Partitioned Segments 
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additional set of registers for floating point arithmetic. 

ALU Instructions 

As illustrated in Figure 4
3
, ALU instructions operate on the values held in two registers or in 

one register and an immediate value; the result is stored in a third register. 

 

Load and Store Instructions 

The address held in a base register is added to an offset held in an immediate field or in an 

index register to produce an effective address, which is then used as the load or store address 

for the operand in the operand register (Figure 5). 

 

Branch and Jump Instructions 

These are used to control the sequencing of instructions (either conditionally or uncondition-

ally). For conditional branches some RISC computers use condition codes, others use compar-

ison instructions. The differences are not relevant to this paper. The branch destination is 

achieved by adding an offset to the current value of the program counter register. 

4 Efficiently Combining Paging and Segmentation 

In contrast with most of the earlier capability systems, which tend to use segmented memory, 

RISC systems tend to rely for their efficiency on the use of paged virtual memory. The issue 

is then to find a way of integrating capability systems into a RISC paging architecture. 

The ideal situation would be to have a paged virtual memory with a mechanism for effi-

ciently protecting both small segments (e.g. which can hold capabilities and also small pro-

gram segments) and large segments (which also occur in programs). However, it is widely 

assumed that this is impossible. Eventually most computer architects, including RISC design-

ers, decided not to support small segments. Some systems, such as the Borroughs B6700 [16], 

chose pure segmentation and made no attempt at supporting conventional paging. Others, 

such as Multics [17, 18] and the ICL2900 [19], implemented segmentation schemes in which 

the segments were large and paged; attempting to use these for small segments would lead to 

severe internal fragmentation and paging overheads. But most architects, including the RISC 

                                                 
3
  The following diagrams are oversimplified; in this general model issues such as lengths 

of the individual instruction fields are left open. 
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Figure 4: Typical RISC ALU Instruction Formats 
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designers, chose to use pure paging. 

Fortunately the quest to design secure architectures based on the RISC approach was 

not entirely abandoned, as we shall see in section 14. But this research has been hindered by 

the belief in the impossibility of combining small segments with paging. 

In this section we show how fine grain protection can be attained in such a way that 

both small and large segments held in the same page can be separately protected while at the 

same time allowing segments to span multiple pages. 

The author solved this problem and presented the solution in a paper presented at the 

8th World Computer Congress, IFIP 1980 [20] in 1980. Soon after publishing the paper he 

concentrated mainly on programming language design rather than operating system design, 

although he and his former research students have published papers relating to the idea [21, 

22, 23, 24, 12, 25, 26]. In view of the central role which this solution plays in the following 

proposal to integrate RISC systems and capability systems a description of the key mecha-

nism now follows. 

We start with two part addresses in the form «segment number, offset». Such "effective 

program addresses" say nothing about page boundaries and nothing about how the offset is 

derived. These addresses provide the starting point. They can be translated by reference to a 

segment table (see Figure 6). 

 

But instead of regarding the entry in a segment table as containing either a main 

memory address or the address of a page table (as in conventional systems), we assume that it 

Segment Table 

AR length 

 

 

 

 

 

 

Segment Number Offset in segment 

Effective Program Address 

index into 

segment table 

 

added to 

segment start 

 

start 

 

 

 

Offset within segment 

Virtual Start Address 

Effective Virtual Address 

Virtual Page Number Offset in page 
Effective 

Virtual Address 

Address Translation 

Unit 

Page Frame Number 

Page Fault 

or 

Main Memory Address Offset in page 

Figure 6: Translating an Effective Program Address in the 

  Orthogonal Paging and Segmentation Model 
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contains a virtual address. This means that a distinction is being drawn between effective pro-

gram addresses and virtual addresses. 

The segment table holds a virtual address defining where a segment begins. To this is 

added the offset from the beginning of the segment, taken from the effective program address. 

This results in another address – this time the effective virtual address of the word to be ad-

dressed. That address must then be translated into a main memory address. Since the aim is to 

have a paged virtual memory, this translation can be achieved in one of the usual ways, by 

using either a conventional page table or an inverted page table, as is shown in Figure 6. 

The segment table can contain information about the logical properties of the segment 

(i.e. its length and its access rights), while the ATU can hold information useful for paging, 

such as a use bit and a change bit. 

To see what this means in terms of program layout, consider a simple program with 

three kinds of segments. Figure 7 shows how the segment table and the program both appear. 

From this it is clear that there is no difficulty in placing segments with different protection 

requirements adjacent to each other. It is also clear that a segment can span multiple pages 

and also that multiple segments can be placed in a single page, in any arbitrary combination. 

  
Furthermore, the problem of internal fragmentation has been restricted to the final page. 

Like the conventional paging model, the orthogonal model achieves the minimum possible 

 

Main Program 
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Subroutine 1 
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Constants 4 
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Figure 7: A Program Decomposed into Segments and Pages 
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fragmentation of a half page per program on average. This solution was successfully imple-

mented in the MONADS-PC system in the 1980s [23]; this was a capability system, but not a 

RISC system. 

The solution is an example of the principle of separation of concerns: the first concern is 

how segmentation can be organised; the second is how paging can be organised. We now 

consider how this orthogonal paging and segmentation model can be integrated into RISC 

systems. 

5 S-RISC: The Proposed Mechanism 

An important point about the orthogonal segmentation and paging model is that it does not 

define how the segment table is implemented. It only defines that entries should contain ac-

cess rights, a start address and a length field. In a RISC environment the obvious way to pro-

vide this information is in an additional set of registers, which we here call "address regis-

ters". These have the format shown in Figure 8. 

 
The start address is an address in the paged virtual memory, i.e. a virtual address in the 

sense of Figure 6. It need not coincide with the start of a page, and no further segmentation 

mechanism is needed at the hardware level, i.e. a segment table in the conventional sense 

need not exist at all. The length field defines the length of the permitted addressing range 

(typically a segment length). The address registers are used in load and store instructions, re-

placing the base registers shown in Figure 4. 

The execution of a load or store instruction involves not only calculating an effective 

virtual address (using the start address as a base address) but also checking that this is in the 

range of permitted addresses. The length field is compared with the offset field or index regis-

ter value in Figure 4. This comparison can be carried out in parallel with the generation of an 

effective address. Hence the speed of execution in the proposed model need not exceed that of 

a normal load or store instruction in a conventional RISC system. 

Similarly the access rights field can be checked in parallel with the calculation of the ef-

fective address if the operation type field of load/store operations is appropriately encoded. 

(Loads correspond to reads, stores to writes.) 

6 A Note on Indexing 

Some RISC systems support indexing in load/store instructions, others (e.g. MIPS) do not [1] 

(pp. K5-K6). In the latter case, the proposed scheme could create inefficiencies for accesses to 

data arrays and, more generally, to items within a segment. These could arise because the in-

struction format which they use (the second format in Figure 4) would require a kernel call 

(see below) for each access to an array element, etc. to change the address register. 

One solution is to add an indexing facility (either via a bank of explicitly addressable 

index registers or by using the general purpose registers for this purpose). In either case the 

required instruction format could take a form equivalent to the first format shown in Figure 4. 

Alternatively it would be possible to define a fixed mapping between index registers (or 

a subset of the general purpose registers) and the address registers, cf. the technique used by 

the CDC 6600 [14].  In this case the appropriate value would be set in the index register be-

fore a load/store operation. If this option were chosen the first format shown in Figure 4 

would not be needed, and using the second format would result in an operation which calcu-

lates an effective address by adding both an index value and an offset to the start address in an 

Figure 8: An Address Register 
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address register. 

7 Addressing Segments 

Because the proposed segmentation scheme does not presuppose a particular hardware-

defined table structure, the kernel can freely organise information about segments. We use the 

example of partitioned segments [5] (see section 2.4) to illustrate one possibility. The idea is 

that data and pointers (i.e. addresses of segments in an address space, used as capabilities) are 

stored in separate partitions of a single segment, which has a red-tape area defining the prop-

erties (e.g. lengths) of the two partitions (see Figure 9). A process can access segments via 

pointers, but only when the latter are loaded into address registers. The data partition of a 

segment can then be addressed using normal ALU instructions. Negative offsets cannot be 

used to gain direct access to the red tape area or to the pointers. 

 

The first segment in an address space is created via a kernel instruction which has an 

operand specifying a length field for the data partition, the number of required pointers and an 

address register number. This instruction creates a root node and returns a pointer to the new 

segment loaded into the specified address register. More segments can be created by invoking 

a further kernel instruction using an existing valid address register, specifying a pointer num-

ber in its red tape area and providing as further operands the required data length and the 

number of pointers required in the new segment. The kernel's segment manager must ensure 

that overlapping segments are avoided. 

Pointers can be followed by using a normal load/store instruction which uses a source 

address register number to specify a currently accessible segment and a pointer number for 

the destination segment. This instruction overwrites the current address register with the 

pointer value selected. The overwritten register can first be copied as a register-register opera-

tion if necessary. 

Segments can where appropriate be set to read-only (i.e. the data partition can only be 

read, not written) by means of a kernel instruction which sets the read-only bit in an operand 

address register to read-only. This remains set until a further kernel instruction unsets it in the 

address register. In this way an entire linked list of segments can be set to read-only without 

having to use a bit in the individual pointers. Notice that because read-only status is a proper-

ty of segment registers, the lists can be set to read-only for some threads/processes while re-

maining writeable for others. 

Significant aspects of this and similar mechanisms are that pointers 

Figure 9: Partitioned Segments with Pointers 
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• provide fine-grained protection (applying bounds checking); 

• can have segments set to read-only for some (but not necessarily all) processes; 

• need not be protected by tagged memory; 

• can be followed using normal (non-privileged) instructions; 

• are stored in a single word; 

• fit naturally with compiler needs to create and follow complex data structures. 

The proposed mechanism ensures that neither the red-tape nor the pointers of a segment 

can be directly accessed by the process, i.e. they are fully protected even though they are lo-

cated in the same virtual address space. This approach, using registers similar to those pro-

posed in this paper, was implemented in the experimental MONADS II [21] and MONADS-

PC [23] (CISC) systems
4
, which were designed and successfully implemented by the author's 

research team at Monash University, Australia in the late 1970s and early 1980s. 

8 Organising Page Tables 

The same technique can (but need not) also be used to store and protect the page table of a 

virtual address space (i.e. the mapping from virtual page numbers to secondary memory ad-

dresses) in the address space itself. (The page table cannot be accessed by unprivileged pro-

cesses, since it cannot be addressed by them. This is only possible in kernel mode.) Notice 

that page tables can have different formats, even for the same secondary memory device. 

Thus if the pages of a large address space are stored in sequence on a secondary device, then 

the page table can simply consist of a secondary memory start address and length, with the 

addresses of individual pages being easily calculated as an indexing operation. Both segments 

and pages were organised in this way in the MONADS systems. This makes a virtual address 

space totally independent of its environment, which is also important in the Internet. 

9 Instruction Execution 

The execution of instructions is similar to the execution of instructions in normal RISC sys-

tems, except that a dedicated address register can be used to ensure that the program counter 

remains within the bounds of the current code segment. However, the code address register 

does not need an access rights field, assuming that code can only be executed. The kernel sets 

up the code address register when a switch of code segment is required. 

Constant segments can be stored in a code virtual address space, addressable via a nor-

mal address register, with read-only access set. Immediate values which appear in instructions 

can of course be accessed directly in the instruction register (IR) as in normal RISC systems. 

10 Granularity and Flexibility 

The design outlined in this paper does not require restrictive hardware table structures for 

organising the virtual memory, nor does it define the granularity of segmentation for data or 

for code. Provided that the length field in an address register is not shorter than the length of a 

virtual address space then compilers and/or linkers can choose to implement very large seg-

ments (as in Multics [27]) or very small segments (as in the Burroughs B6700 [16]) or both 

(as in the MONADS-PC [23]). A code segment can address either an entire program or it can 

allow procedures to be individually protected; and data arrays can, but need not, be separately 

protected. 

As outlined, the S-RISC scheme supports fine grain granularity, i.e. using secure point-

ers. This scheme can easily be supplemented with a kernel supported mechanism for switch-

ing domains, as is briefly described in section 14.4. 

                                                 
4
  Not to be confused with the Monash Capability System [7]. 
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11 Controlling Access to I/O devices 

A good protection scheme involves not only controlling access to segments and higher level 

software objects, but also to input-out devices. In a system where devices are memory 

mapped, the kernel could use address registers which provide direct access to the protected 

memory used for this purpose. 

12 Compatibility with Existing RISC and non-RISC Systems 

Since the proposed scheme follows the same instruction structure as that of existing RISC 

systems it should be possible to modify existing compilers in a relative straightforward way to 

produce machine code which executes correctly in a system based on the proposed model. 

There appears to be no reason why user application code (written in a high level language) 

would need to be changed. 

13 Hardware Changes 

Hardware changes (other than those described above to combine the orthogonal memory 

model with RISC) are not necessary. For example, the need to protect pointers by the use of 

tagged memory, which is a requirement in most other attempts to reconcile security with the 

RISC model, is superfluous. Similarly, individual pointers can be stored in single words, as 

the example of managing pointers in section 5 shows, thus eliminating the need for fat point-

ers. 

14 Comparison with Other Work 

14.1 Segmentation and Paging in Earlier Systems 

Almost all earlier conventional systems which provide a hardware-based mechanism to access 

variable length segments (e.g. the Burroughs B6700 [16], Multics [27, 17, 18, 28, 29], the 

ICL2900 [30, 19] and the successors of the Intel 8086 [1] pp. B-51ff. have assumed that this 

should be integrated into the virtual memory mechanism. The result was quite complex sys-

tems, primarily because of the resulting relationship between segmentation and paging. The 

author's IFIP 80 paper [31] showed that the assumption behind this earlier work, briefly sum-

marised in section 4 of this paper, was faulted. 

14.2 Protection Schemes in Earlier Systems 

The initial need was to protect the operating system from application programs. This was 

achieved, for example, in the HP2100A [32] by means of a "fence" register, which partitioned 

the main memory into two parts. Later, with the advent of multiprogramming and the intro-

duction of virtual memory, some systems used base and limit registers to define the area ac-

cessible to a program. The GE-645/Multics system [27], followed by the ICL2900 [30, 19] 

and other systems, introduced a hierarchy of protected layers corresponding to a military-

based hierarchical security scheme. Such protection mechanisms, and all earlier protection 

mechanisms known to the author, are more complicated than the present proposal. In fact, as 

D.A. Abramson pointed out in his PhD thesis [22], pp.92-3, all such mechanisms can easily 

be implemented by different kernels which have available a mechanism similar to that pro-

posed in this paper, but none is so simple or flexible. 

14.3 Capabilities in Earlier Systems 

Although the paper has discussed how it can provide a flexible basis for developing capability 

systems, the proposed mechanism is not a capability mechanism. In fact it has almost none of 

the features associated with capability systems [33, 7, 34, 35, 36, 23, 37, 38, 39, 4], except 

that it provides a segment addressing mechanism. For example it does not use unique identifi-

ers, it only addresses segments (not higher level objects), it has no fixed relation to capability 

lists, no attempt is made to solve the problem of dangling references, it neither creates nor 
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solves the problems of garbage collection, nor has it direct relevance to capability revocation 

or object deletion. And finally, it can be used to build non-capability systems. 

Some capability systems (e.g. the Chicago Magic Number Machine [37]) support capa-

bility registers, but these serve as vehicles for supporting a purely segmented virtual memory 

scheme. The format of a Plessey System 250 capability [33], when it is stored in a capability 

register, consists of a base address, a limit, and an access rights field. In this sense it is similar 

to the mechanism outlined above. However the base address is a main memory address and a 

capability has a quite different format while stored in secondary memory. Although the CAP 

system [38, 36] used registers to hold capabilities, these were hidden from the user and were 

integrated into the virtual addressing mechanism. 

14.4 The MONADS-PC System 

The only capability systems which combined segmentation with paging using the orthogonal 

model were the MONADS systems [22, 21, 34, 40, 23, 12, 24]. The main difference between 

these systems and the present proposal is that they were CISC systems, whereas the aim of 

this paper is to show that the mechanism fits well into a RISC context. 

The MONADS website
5
 includes a description of the orthogonal paging and segmenta-

tion model and describes many other unconventional operating system ideas, including an 

early description of persistent virtual memory, an implementation of capabilities without the 

need for a central mapping table [34], distributed shared virtual memory, persistent protected 

processes, etc. Such features can easily (but need not) be supported in the S-RISC architec-

ture. 

In the MONADS-PC system, capabilities are used at two levels. The first level protects 

segments in a module (typically providing fine grain protection within a program or an infor-

mation-hiding file) while that module is executing; this uses the addressing mechanism de-

scribed in this paper. The second level uses "module capabilities" to control accesses between 

modules, with access rights that reflect the right to invoke specific entry points of an infor-

mation-hiding module in the persistent virtual memory. Such modules eliminate the need for a 

conventional file system and thus avoid many risks threatening conventional systems. 

14.5 Guarded Pointers and the M-Machine 

The M-Machine [41] is a development from MIT which is based on an idea called guarded 

pointers. These are pointers that contain not only a 54-bit pointer to a segment in the virtual 

memory but also a 4 bit access rights field and a 6 bit segment length. They are protected by 

tagged pointers. In effect such pointers eliminate the need for segment tables. However, seg-

ments must to be a power of two bytes long, and must be aligned on their length, because the 

length field of the pointer holds the base-2 logarithm of the segment length. Hence segment 

lengths can range from a single byte to the entire 2
54

 byte address space in power of two in-

crements. Furthermore modifying a guarded pointer (e.g. changing the access rights, or relo-

cating it in the virtual memory) involves scanning the entire virtual address space. 

The S-RISC proposal does not require such restrictions: segments can be of any length 

up to the size of an address space, modifying a pointer does not involve a scan of the entire 

virtual address space and tagging is not necessary. Furthermore S-RISC also shares the main 

advantage of bounded pointers: there is no requirement to store pointers in segment tables or 

capability lists (see section 7). 

14.6 Mondrian Memory Protection 

The Mondrian mechanism [42, 43] is based on the view, which we share, that it is important 

to provide protection within programs, not simply between them. However, the Mondrian 

                                                 
5
  www.monads-security.org 
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way of achieving this is to start with a conventional paging model and to superimpose on this 

a mechanism which uses a protection lookaside buffer (PLB) for managing permissions 

within a single multi-threaded address space. Each thread is associated with a protection 

domain and each protection domain within the address space can in effect define "segments" 

with different access rights, whereby these may overlap and may be defined on a word 

granularity. The Permissions Table is held in memory and is used to set up and manipulate the 

PLB. 

The basic S-RISC mechanism can in principle provide all these features in a much sim-

pler and more efficient way and with less overhead. Even overlapping segments can be sup-

ported, though we see no advantage in this. What it actually supports depends on a particular 

kernel design which is tailored for a particular purpose. 

14.7 Hardbound 

Hardbound [44] is motivated by the aim of adding a hardware-based bounds checking mecha-

nism to arrays in C programs. It achieves this by hardware-tagging fat pointers using a mech-

anism which can compress the fat pointers. The basic S-RISC mechanism can in principle 

achieve the Hardbound aims in a much simpler and more efficient way and with less over-

head, assuming that the C compiler is appropriately modified. 

14.8 The CHERI Capability Model 

As the title of [45] ("The CHERI Capability Model: Revisiting RISC in an Age of Risk") im-

plies, a specific aim of the CHERI project [46] is to provide a platform which combines the 

performance of RISC with the protection which capabilities can provide. It uses a tagged 

memory scheme to protect pointers, and employs capability registers and a coprocessor to 

manage these. 

A CHERI capability consists of a 32 or 64-bit address and a metadata section consisting 

of permission bits, an object type and bounds information of similar length, plus a protected 

tag bit. Thus in a 64-bit system a capability is of length 128 bits plus a hidden tag field [46, p. 

8]. In contrast the scheme described in this paper requires only 64 bits (for a 64-bit architec-

ture) for pointers and no hidden tags, since bound checking is achieved via the address regis-

ters. 

The CHERI paper [45] compares CHERI with conventional MMUs, Mondrian memory 

protection [42, 43], Hardbound [44], Intel's iMPX Memory Protection Extension
6
 and the M-

Machine [41] in the protection categories "unprivileged use", "fine-grained", "unforgeable", 

"access control", "pointer safety", "segment scalability", "domain scalability" and "incremen-

tal deployment" (see [45], section 2 for definitions and 6 for the comparisons) and concludes 

that CHERI is the only system/mechanism which is ticked off in every case. 

If we add three further categories ("simplicity", "flexibility" and "hardware implementa-

tion costs") then I suspect that only S-RISC would succeed in all categories
7
, since it needs 

neither tagging nor a coprocessor to manage capability registers. Nevertheless this compari-

                                                 
6
  According to the Wikipedia article https://en.wikipedia.org/wiki/Intel_MPX "Intel MPX 

claimed to enhance security to software by checking pointer references whose normal 

compile-time intentions are maliciously exploited at runtime due to buffer overflows. In 

practice, there have been too many flaws discovered in the design for it to be useful, and 

support has been deprecated or removed from most compilers and operating systems. 

Intel has listed MPX as removed in 2019..." 
7
  It might be argued that S-RISC is not unforgeable because it does not use tagging, but 

just as for tags there must be a privileged level of software which can set the privileges. 

In the case of S-RISC this can be kernel software, as described in section 7, which must 

of course be secure. 
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son is not really fair, since in some cases it compares actual implementations with a model. It 

must be added that CHERI, a multi-million dollar project at Cambridge University, has many 

other aspects that are not relevant to this paper. 

15 Conclusion 

The paper describes a simple segment protection mechanism which accords well with the 

RISC philosophy. It relies neither on standard virtual memory segmentation schemes nor on 

conventional paging schemes. 

The key features of the S-RISC proposal are its 

• independence of memory management issues, including particular page table structures; 

• protection at the segment level, which is independent of a particular segment table struc-

ture; 

• use of registers as the only pre-defined structure; 

• suitability for implementation in RISC systems. 

The proposed scheme alone does not provide a panacea for the security and privacy 

problems to which Hennessy and Patterson referred in the quotation at the beginning of this 

paper. It needs to be complemented by a kernel which provides a foundation for a secure op-

erating system, and then in turn good security strategies and policies built above such an op-

erating system. 
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