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Abstract 

Speedos (an acronym for Secure Persistent Execution Environment for Distributed Operating 
Systems) is an unconventional design for a very secure capability-based operating system, 
which supports an automatically persistent virtual memory. Timor (an acronym for Types, 
Implementations and more) is a programming language designed to support Speedos (and 
other) systems. 

The paper first introduces the concept of persistence and its background in computer science. 
It then describes the main features of the Speedos architecture and in particular its virtual 
memory mechanism, its process model, its protection mechanism and its technique for logging 
users in and out. This is followed by a short description of Timor, which is an unconventional 
object-oriented programming language designed inter alia to support the Speedos architec-
ture. 

1 Introduction: Background of Persistence in Computer Science 

Conventional programming languages usually provide features for manipulating temporary 
data structures which are generally straightforward and convenient for programmers to use. 
These include structures such as arrays, records and linked lists. However, these convenient 
programming constructs cannot normally be directly used for accessing persistent infor-
mation, which is held in the file system. This reflects the fact that information in the file sys-
tem cannot be directly addressed by user programs. Instead the programmer accesses the latter 
via a special file interface provided by the programming language, which is then transformed 
into the operating system's file access interface routines. 

1.1 Programming Languages 

There are several disadvantages in having one style of interface for file data and another 
for temporary data. First, the temporary data structures in a program are not stored in compat-
ible formats with the persistent data structures. Second, storing temporary data structures into 
conventional files is often not a straightforward task, not only because of the different for-
mats, but also because pointers consisting of addresses in the virtual memory cannot simply 
be copied into the file system and later reused, because the underlying main memory or virtu-
al memory addresses may be different at a later time. This problem is further complicated by 
the fact that files are commonly used concurrently by several application processes. 

 This theme was taken up in the early 1980s by M.P. Atkinson and his colleagues at the 
University of Glasgow together with R. Morrison and his group at the University of St. An-
drews. In order to avoid having two different approaches for programming temporary and 
persistent data, they developed a programming technique known as persistent programming, 
based on the use of orthogonal persistence [1]. They argued inter alia that the same data 
structuring mechanisms should be used to program temporary data structures in the computa-
tional memory and to program persistent data structures. To demonstrate this idea they devel-
oped the persistent programming language PS-Algol [2]1 and later a persistent programming 
language called Napier [3]. 

                                                 
1  see also https://en.wikipedia.org/wiki/PS-algol. 



The persistent programming groups set about demonstrating the feasibility of persistent 
programming by implementing "persistent object stores" for PS-Algol and Napier above con-
ventional hardware, using the basic facilities of conventional file systems. Such a software-
oriented approach, which inevitable has a high performance overhead because it had to be 
implemented in a conventional virtual memory environment, was forced upon them by a lack 
of appropriate hardware. 

1.2 Database Management 

The management of large bulk data files has become a specialized activity, known as 
database management, and this has resulted in the development of special database languages 
which have tended to use quite different data models from those underlying the design of pro-
gramming languages. Hence these too have quite different interfaces from the programming 
language data structures. While such database systems tend to provide much more powerful 
facilities than basic file systems they add yet another layer of complex software which adds to 
the inefficiency of data accesses. Thus although in the final analysis the application manipu-
lates its persistent data – like its temporary data structures – in the virtual memory, it may 
have to do this indirectly via database routines which themselves may call file system rou-
tines. 

1.3 Further Duplications 

The sharp division in most systems between a computational virtual memory and a file 
and/or database system gives rise to at least two further areas of duplication and unnecessary 
complication: synchronisation and protection. With regard to synchronisation, the CPU nor-
mally provides simple and efficient mechanisms, but above this the file system provides fur-
ther synchronisation mechanisms, and then on top of that there are often additional database 
mechanisms to achieve synchronisation. This is necessary because the CPU instructions can-
not act directly on synchronisation variables in the file or database system, since the latter 
cannot be directly addressed in the virtual memory. 

And perhaps most significantly from our current perspective, the conventional virtual 
memory organisation leads to a multiplicity of protection mechanisms. This is inevitable if 
data in the file and database systems cannot be directly addressed. This additional complexity 
is more likely to assist security breaches than to hinder them. 

What all of these points clearly indicate is that enormous benefits could be gained if it 
were possible to address both non-persistent (computational) and persistent (file and database 
system) data structures in the virtual memory in a uniform manner. How then can such a di-
rectly addressable file system be implemented? 

1.4 Architecture and Hardware 

1.4.1 Multics 

In the mid-1960s, when mainframe computer systems carried out their work in a batch pro-
cessing mode and personal computers had not yet been invented, computer architecture re-
searchers at MIT in Cambridge, Massachusetts, developed a significant research system 
called Multics [4, 5]. Its aim was to demonstrate ideas relevant for time-sharing, i.e. for com-
puter systems where individual users sit at terminals and interact directly with the (shared) 
central computer. 

Among the many revolutionary design ideas which appeared in Multics was an idea 
called "direct addressability" by Multics designers. What they aimed to achieve with this idea 
was to allow all the information in a system to be directly addressable in the virtual memory, 
including information held in the file system. The fundamental advantage which they saw was 
that it avoids much copying of information between the file system and the computational 
(virtual) memory. The lack of success of this idea – in my view the most significant of all the 



Multics ideas – in the last six decades is due not to a fault in the basic idea, but in the way it 
had to be implemented on the hardware available at that time. The Multics idea is discussed in 
chapter 12 of the book "Making Computers Secure" (volume 1) which can be downloaded on 
the Speedos website (https://www.speedos-security.org/). 

1.4.2 Monads 

In the late 1970s and early 1980s my team at Monash University in Melbourne, Australia 
tackled the problem of providing a uniform mechanism for managing the persistence problem 
in a radically different way. Whereas Multics accepted the existence of and need for a file 
system, Monads completely rejected this concept and chose to view all the memory which 
holds information as a very large virtual memory which can be directly addressed by pro-
grams. This implied that virtual addresses must be much larger than 32 bits, which was the 
standard at that time. Consequently my PhD students David Abramson and John Rosenberg 
designed and built a system known as the Monads-PC [6], which had 60 bit virtual addresses. 
This system proved the concept of a directly addressable large virtual memory which func-
tioned without an additional file system. Several Monads-PC computers were actually built 
and successfully used at several universities in Australia and in Germany for research and 
teaching purposes. The Monads website (https://www.monads-security.org/) contains exten-
sive diagrams, text and references which explain both the hardware and the software for the 
Monads-PC including the Persistent Virtual Memory concept, and also the idea of orthogonal 
paging and segmentation, which allows both paging and segments of any size (both smaller 
and larger than the single page size). 

1.4.3 Later Attempts to support Persistence 

Around the time that 64-bit computers were introduced there was a spate of attempts to take 
advantage of this situation, as is described in [7]. As often happens, at least two of these, both 
Australian, were overlooked in papers emanating from US researchers. The first of these was 
a paper co-authored by David Abramson and myself [8]. The second Australian paper, which 
first appeared as a report from the University of New South Wales [9], was quite interesting, 
in that it used 3 bits in virtual addresses to identify which of 8 computers in a local area net-
work the relevant data was to be found. However this illustrates the weakness of all the pro-
posals of that generation, i.e. it was not extendible for use over the internet. That is one of the 
issues which Speedos addresses. 

2 The Speedos Architecture 

Speedos2 is a design for a capability-based operating system [10] which inter alia automatical-
ly supports persistent programming via an unconventional virtual memory organisation and a 
rigorous use of the in-process design method. 

2.1 The Speedos Virtual Memory Organisation 

Persistence (the property via which data remains after the power has been turned off) is 
achieved at the operating system level in Speedos via its unconventional virtual memory or-
ganisation. Figure 1 shows how most conventional computers organise virtual memory. 

The Monads systems (see section 1.4.2 above), a forerunner of Speedos, successfully 
implemented a different and conceptually much simpler solution in the early 1980s, in the 
form of "Persistent Virtual Memory" (see Figure 2). 

                                                 
2  For an overview of the system architecture see https://www.speedos-security.org/. From 

this website various books and papers providing further information about Speedos can 
be downloaded free of charge. 



 

 
This solution, which eliminates entirely the idea of a separate file system, allows pro-

grams directly to address the entire file system via a single addressing mechanism. This 
mechanism solves many operating system problems (e.g. that of the Multics designers) and 
allows programmers to use the persistent programming paradigm proposed by Atkinson and 
Morrison [1].  

This view of virtual memory implies that virtual addresses must be very much larger 
than conventional virtual addresses. In the Speedos solution these are 256 bits long and pro-
vide a worldwide addressing mechanism, as is shown in Figure 3. 

 
A virtual address advises the Speedos system at which node in the internet the address 

was first assigned, the disk number within node defines the disc on which the addressed ob-
ject was initially created, the container (the physical file) describes where it was created and 
the address within container indicates the offset in container of the byte or word which is ad-
dressed. All of these are used as aids to finding a file and its contents. But these are not fixed 
in cement. To discover how Speedos virtual addresses are actually managed (including 
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movements between nodes, etc.) and how such long virtual addresses can be efficiently trans-
lated into main memory addresses, volume 2 of the book "Making Computers Secure" [10] 
should be consulted. This can be downloaded from the Speedos website at 
https://www.speedos-security.org/. 

2.2 Capability Based Protection 

Obviously the objects in Speedos cannot simply be arbitrarily addressed, and addresses 
cannot simply be manufactured as arbitrary 256 bit entities. Hence it is important to have a 
protection mechanism which prevents this. Protection in Speedos is based on a two-level ca-
pability mechanism. 

2.2.1 Segment Capabilities 

The first level, which functions at the level of the actual code execution, allows seg-
ments in the same module to be protected from each other. The mechanism ensures that a 
segment can only access other segments if it can access a protected pointer to them and even 
then the mechanism determines whether they can be accessed in read-only or read-write 
mode. How this functions is described in detail in the paper "S-RISC – Adding Security to 
RISC Systems", which can be downloaded from the Speedos website. The paper also de-
scribes an enhancement to RISC systems which would allow otherwise conventional RISC 
computers to support capability-based addressing. 

2.2.2 Module Capabilities 

More significantly from the viewpoint of this paper, there is a second level capability 
mechanism which ensures that modules in the virtual memory can only access other modules 
if they have been granted permission to do so. There are no conventional files and there is no 
conventional files system. Instead all modules in the virtual memory are based on the infor-
mation-hiding principle [11, 12, 13], as is illustrated in Figure 4. 

 
Not all information-hiding modules need to conform exactly to this scheme. For exam-

ple the persistent data structure(s) may be absent, with the result that programs can be defined 
which might have only a single entry point or might have multiple entry points, in which case 
a compendium of board games can be programmed, for example. 

Such modules are the only free-standing units in a system, i.e. the entire persistent 
memory is populated only by information-hiding modules. They communicate with each oth-
er via inter-module calls. 

In order to make a call from one module to another the calling module must present the 
kernel with a valid module capability (see Figure 5) which identifies both the module to be 
called and the number of the entry point which it wishes to call. The access rights consist pri-
marily of a bit list indicating which entry points can be called via this capability. If the kernel 
is satisfied with the module capability, it then makes an in-process call to the called module, 
on the calling user's process stack. Eventually, possibly following further inter-module calls 
and returns (also executed by the kernel), the called module will be reactivated at the instruc-
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Figure 4: A Simple Information Hiding Module – A FIFO Queue 



tion following the inter-module call. 

 

2.3 Semantic Files and Semantic Access Rights 

Conventional file systems often provide a simple procedural interface with routines for 
example to insert and delete a record for a particular file. In this sense they can be viewed as 
providing a very minimal support for the information hiding principle, which at least hides 
details such as the physical location of the file on disc but may also provide a basic structur-
ing and accessing mechanism (e.g. indexed sequential).  

This means that the entire semantics associated with the information in the file must be 
programmed in the programs which use the file. But this leads to the same disadvantages 
which led Parnas to propose the information hiding principle. Each program using the file – 
and in a banking system that will be a considerable number – e.g. a program for managers, 
one for tellers, one for accountants, one for calculating interest, etc. – must know the layout of 
an account record and the significance of its fields. So, changing something about the record 
layout will probably involve changing several programs. It also leads to duplicated software 
in the individual programs, where they have to provide the same or similar. 

The Speedos alternative allows a much more flexible approach to information hiding, 
with corresponding software engineering and protection benefits. Consider for example a 
bank accounts file in a conventional environment. The file system will provide operations that 
allow individual bank account records to be inserted, viewed, modified, deleted, etc. (see Fig-
ure 6). But conventional file systems take no account of the fact that the records are bank ac-
count records. From the viewpoint of the file system they could just as easily be car registra-
tion records, or club membership records, etc. 

 
In Speedos all of this can easily be avoided by providing a semantically appropriate interface 
to an information hiding file, e.g. a method for adding interest to an account, one to authorise 
an overdraft, etc. (see Figure 7). 
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Notice also that this arrangement allows the designer of a system to provide internal protec-
tion within a file, in that different agents can be given appropriate (but potentially different) 
access rights to the same file, as Figure 8 illustrates. 

 
On this basis different agents within an organisation (here a bank) can be given different 

module capabilities with access rights appropriate for their role in the organisation. For exam-
ple a Head Office Accountant might have a module capability as shown in Figure 9. 
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2.4 Qualifiers 

Qualifiers are a new and unusual kind of module. In addition to having normal methods 
a qualifier can have "bracket" methods. These can qualify the behaviour of a different object 
(the "target" object) with which the qualifier is associated. They may have automatically acti-
vated methods (called "call-in" methods) which "catch" a call to a method of the target in-
stance. They may also have "call-out" methods which are triggered by a call from a qualified 
object to some other object (the call-out object). Although they can be used to implement fea-
tures such as synchronisation and protection, qualifiers have no special role with respect to 
persistence and so are not further described here. They are explained in detail in volume 1 of 
the book "Making Computers Secure" and an implementation is described in volume 2 of the 
same book. These can both be downloaded from the Speedos website3. A description of quali-
fiers, with examples explaining how they can be used to protect and confine the information 
held in other modules, appears in [14], which can also be downloaded at the Speedos website. 

2.5 In-Process Design 

There are two basic models for decomposing an operating system into processes. The 
simplest involves having a separate process for carrying out each operating system activity. 
We refer to this kind of design as out-of-process, because operating system services are pro-
vided for an application out of the application's process, in a separate system process. The 
technique is sometimes called message-oriented, because the application process must pass its 
parameters as a message from one process to another. 

In the second model operating system services are provided in a process belonging to the ap-
plication. We refer to this kind of design as in-process. It is sometimes also called procedure-
oriented, because the operating system routine is implemented on the stack of the user re-
questing the operating system service as a procedure call. 

These two models are described in more detail in [15], where it is shown that the in-process 
model has many advantages and is therefore used in the Speedos design. The kernel achieves 
this by implementing in-process inter-module calls 

The rigorous application of the in-process model in Speedos also allows the virtual 
memory to be shared over the Internet [15] via remote inter-module calls. 

2.6 Persistent Processes and Secure Logging In 

Persistence based on our solution has further advantages. Because the entire content of 
the virtual memory is persistent, not only files and programs but also processes and their 
threads are persistent. This means that the current state of a process is also preserved automat-
ically when users log out. Thus when he wishes to log in again, he can in principle simply 
resume his work in the same state that he had left it. Consequently there is no reason for the 
system automatically to delete his process on logout and to start a new process for him when 
he logs in again. That is clearly more efficient and more convenient for users. 

But the idea of persistent processes brings a further advantage. It opens up the way for 
adding greater security to the login mechanism. If the final action which a user takes before 
logging out is to call a "logout" module (which he must do anyway to warn the process 

                                                 
3  see https://www.speedos-security.org/ 
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scheduler that his process should be temporarily deactivated) he can do this from a logout 
module of his own choice. Such a module (which is owned by the user, who can also deter-
mine what it does) can contain arbitrary checks devised by the user to check his own identity. 
This need not be a simple password, it can for example be a dynamic password, a cognitive 
password and/or whether the person attempting to log in has to conform to some required ac-
tions4. The kernel's part in the login and logout mechanism is trivial. In the case logging in of 
simply advises the process scheduler that the user is active. This then activates the user's pro-
cess in the latter's logout module, which then validates the user or, if the checks fail, informs 
the process scheduler to deactivate the process again. Notice also that there is no central file 
which can be hacked to obtain login information. 

That concludes our simplified description of those parts of the Speedos architecture 
which are relevant to the theme of persistence. Much more information can be obtained at 
https://www.speedos-security.org/, including a two volume book on Speedos which can be 
downloaded free of charge. 

3 Persistence in Timor 

Timor is an unconventional object-oriented programming language designed inter alia to sup-
port programs written for the Speedos architecture. A description of the language appears in 
the book "TIMOR-An Object- and Component Oriented Language" which can be downloaded 
free of charge at the Timor website5. The website also provides a list of published papers de-
scribing various aspects of Timor, which varies in the following ways from conventional ob-
ject-oriented programming languages. It 
• replaces OO classes with a type definition that can potentially have a number of dif-
ferent implementations, each with a single constructor which can have implementation-
oriented parameters that can differ in different implementations of the same type; 
• supports inheritance in the case of subtype hierarchies which derive from a common 
abstract ancestor, where the subtypes primarily vary the behaviour of their supertypes rather 
than add new methods (although new methods can also be added), e.g. as in the case of a col-
lection hierarchy; 
• adds the concept of views, which are incomplete types (with implementations), that 
can be usefully incorporated into different type definitions; 
• supports diamond inheritance, and multiple and repeated inheritance with separate 
types, using a technique known as parts inheritance; 
• replaces subclassing by a flexible new implementation technique based on re-use vari-
ables; 
• introduces a new kind of component, known as a qualifying type, which contains 
bracket methods that allow instance methods of other objects to be "qualified" in a modular 
way, e.g. to protect or synchronise them, thus supporting the separation of concerns; 
• provides uniform support for distribution and persistence in the form of persistent ob-
jects and persistent processes; 
• introduces an unusual way of handling makers (the Timor name for application-
oriented constructors), binary methods, and class (static) variables and methods, in a new kind 
of type, known as a co-type, which can be automatically adjusted covariantly to reflect a sub-
type hierarchy; 
• supports genericity in forms which reflect the unusual features of Timor, adding func-
tion parameters which allow programmers considerable flexibility, for example by allowing a 
programmer to redefine what is meant by such issues as equality. 

                                                 
4  Login Security checking is discussed in Making Computers Secure, volume 1, chapters 

4 and 15, and in volume 2, chapter 22 which can be downloaded from the Speedos 
Website https://www.speedos-security.org/ 

5  https://www.timor-programming.org/ 



3.1 Support for Collections of Objects 

Of particular significance for a persistent system is that Timor has strong support for collec-
tions of objects, since it must provide an alternative for conventional file systems and data-
base systems, which are usually primarily concerned with accessing large numbers of "rec-
ords". Timor fills this gap by supporting a library of collection types with various implemen-
tation possibilities, known as the Timor Collection Library (TCL). The library, which is based 
on the doctoral thesis of my former assistant Dr. Gisela Menger [16], has as its starting point 
an abstract type Collection, which defines the methods shared by all its subtypes. 

 

 
The TCL is based on two basic criteria. The first determines whether duplicate items are 

permitted, are ignored or whether a warning signal is raised when an attempt to insert a dupli-
cate is detected. The second concerns the ordering of items in the collection, i.e. whether there 
is no ordering, whether the user determines the ordering, or whether they are automatically 
sorted. This results in a type hierarchy with five abstract types and nine concrete types. The 
names of the 9 concrete types are shown in Figure 12. 

Figure 13 shows all 14 types, including the abstract types (which are shaded). This is de-
signed to allow a maximum of polymorphism. The items in a collection are defined generical-

Collection 
Type Name 

Duplication 
Criterion 

Ordering 
Criterion 

Bag Allow duplicates No ordering 

Set Ignore duplicates No ordering 

Table Signal duplicates No ordering 

List Allow duplicates User ordered 

OrderedSet Ignore duplicates User ordered 

OrderedTable Signal duplicates User ordered 

SortedList Allow duplicates Sorted 

SortedSet Ignore duplicates Sorted 

SortedTable Signal duplicates Sorted 

Figure 12 The concrete collection types 
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ly. 

In derived types the actions of the insert method are specified more precisely, depending on 
the node in question. Thus the insert method of the abstract type UserOrdered defines that 
insert appends the element at the end of the collection (and adds new methods for inserting at 
other positions) but without defining its duplication properties further. On the other hand the 
insert method of the concrete type Bag is defined without specifying ordering, but indicating 
that duplicates are accepted (with the effect that the duplicate exception DuplEx can be re-
moved from Bag's insert method). 

3.2 Implementations and Code Reuse 

Whereas in conventional OO programming languages the re-use of code is achieved via 
subclassing, which is based on inheritance, Timor separates code re-use entirely from inher-
itance. An implementation of a type is designated as the type name followed by a double co-
lon followed by an implementation name, e.g. Queue::ArrayImpl introduces an imple-
mentation of the type Queue. Each concrete type must have at least one implementation, 
called <typename>::Impl, which in appropriate cases serves as a default. However, this 
must not necessarily have been explicitly coded. For example, the basic types can have an 
implicit implementation. Similarly the compiler can automatically provide implementations 
for "abstract variables"6 and "records"7. 

To support code re-use in Timor a new concept, called re-use variables, is introduced. 
Like other concrete variables, such variables are included in the state sections of implementa-
tions, but unlike most other variables which typically appear in a state section, they may be 
declared either as types or as implementations. They may not be declared as local variables in 
individual methods. 

Re-use variables are like normal variables in that they form part of the state of the im-
plementation in which they are declared. They are recognisable because their declarations 
begin with a hat symbol (^), e.g. 
^Queue myQueue = Queue::ListImpl(); /* Here the re-use 
    variable myQueue is declared as a type variable and 
    a list implementation constructor initialises it */ 

 or 
^Queue::ArrayImpl myQueueImpl = Queue::ArrayImpl(100); 
 /* Here the re-use variable is declared as an implementation 
    variable and is initialised by an array implementation 
    constructor */ 

or in the case of a typeless implementation simply 
^::usefulCode 

In all cases the programmer of the implementation in which the declarations are embedded 
has access to their interface methods, but in the case of an implementation variable being de-
clared, the programmer can also access its internal state variables and its private instance 
methods. (If a re-use variable is declared via a type declaration, a maintenance programmer 

                                                 
6  Timor types strictly follow the information-hiding principle by not permitting "raw" 

data declarations (i.e. fields) to appear in interface definitions. Only methods are permit-
ted. However, to simplify programming, Timor allows some methods to be defined in a 
type interface as if they were variables. But in reality the compiler treats each such vari-
able declaration as a pair of methods, often known as "setters" and "getters". 

7  Often for programming in the small, a type definition may consist entirely of abstract 
variables; this is often called a "record". In this case the compiler produces a standard 
implementation of the entire type with the implementation name <typename>::Impl. If 
abstract variables are not explicitly initialised default methods are provided automatical-
ly. 



can immediately recognise that any implementation of the type can be used.) 

A re-use variable may even be another implementation of the type being implemented. 
On the other hand the type of a re-use variable does not necessarily have any formal relation-
ship with the type being implemented, except that some (or all) of the interface methods may 
have the same definition. 

The important difference between a re-use variable and a normal variable is that the 
compiler compares the definitions of its interface methods with those of the type being im-
plemented. If some of these have matching signatures, it uses the methods of the re-use varia-
ble to implement them, unless the programmer has also declared the same method explicitly 
in the instance section. In the latter case the explicit method in effect overrides that provided 
by the re-use variable. Interface methods of a re-use variable which do not match the type 
definition are ignored. However they can be invoked in the implementation by programmers. 

Re-use variables can greatly simplify implementations of the TCL. The first type to be 
implemented is List, and the code of this implementation is declared as a re-use variable in 
standard implementations of all the other concrete types, with remarkably few modifications. 
This is illustrated in more detail in chapter 13 of the book "TIMOR-An Object- and Compo-
nent Oriented Language", which provides an outline of both the type definitions and imple-
mentations of the TCL methods. This can be downloaded from either the Speedos website8 or 
the Timor website9. 

3.3 Generic Types and Implementations 

The TCL would not be very useful without being able to define the elements in a collection 
generically. Timor allows the elements in a collection to be defined generically but these can 
then be instantiated as actual collection types, e.g. as a set of the type Person, written 
Set<Person>. The identifiers of generic types are distinguished from other identifiers in 
that the first two characters must be capital letters and all further letters must also be capitals, 
though other symbols are permitted. The definition of a set of generically defined elements 
might be Set<ELEM>. 

Timor supports genericity in the sense that a generic definition provides a pattern for a 
number of types or their implementations. Such patterns are called templates. In order to pro-
duce actual types and implementations, a template must be actualised. A template itself plays 
no role at run-time, in contrast with the entities actualised from it. 

A template consists of a template header and a template body. It has a template identifi-
er and it may use both normal and generic identifiers in its definition. The template identifier 
is not a generic identifier; it must be unique in the same sense that type and implementation 
identifiers are unique. 

A template header consists of the keyword template followed by a set of template 
parameters bracketed by the bracketing pair < and >. A template body is a normal type or im-
plementation definition which includes the template identifier and may contain generic identi-
fiers. 

Here is an example of a template for producing types, known as a type template: 
template <ELEM> 

// ELEM is a generic identifier for a type parameter 

abstract type Collection { 

/* Collection is the template type identifier. This example 

   is a shortened version of the abstract supertype of  

   collections in the Timor Collection Library (TCL) */ 

                                                 
8  https://www.speedos-security.org/ 
9  https://www.timor-programming.org/ 



instance: 

enq10 Int size();  // returns current number of elements 

op void clear(); // removes all elements in this collection 

enq Boolean contains(ELEM e) throws NullEx; 

// returns true if e is an element in this collection 

op void insert(ELEM e) throws DuplEx, NullEx; 

/* a general method to insert elements; a DuplEx exception or 

  a NullEx exception may be thrown by appropriate subtypes */ 

op void remove(ELEM e) throws NullEx, NotFoundEx; 

/* removes e (at most once) if this is contained in the 

   collection */ 

} 

In this example the template identifier is Collection and the single template parame-
ter is <ELEM>, where ELEM is a generic identifier and type indicates what kind of template it 
is. The keyword abstract indicates that in this case the type defined in the following tem-
plate is an abstract type. The template body consists of the remaining lines of the example. 

Like normal Timor types, each type template can have more than one implementation. 
These are defined in implementation templates, which also consist formally of a template 
header followed by a template body. The identifier of an implementation template is the name 
of the implementation. Here is an example: 

template <ELEM> 

impl List::Impl{  /* List::Impl is the template id; it is followed by 
the code of the generic implementation */ 

} 

However, as the template header of an implementation cannot differ from that of its ge-
neric type, this can be abbreviated simply to the keyword template, as follows: 

template impl List::Impl{ 

... 

// code of the implementation 

} 

Actualising a generic template consists of substituting an actual type name for each generic 
parameter which appears in the template header. A variable of an actual type can be declared 
as follows. 
List<Person*> personList; 
// a variable for a List of Person references 

Instances of generic types are initialised by invoking a constructor of one of the implementa-
tions of the type. Here is an example showing how a constructor for a List<Person*> 
might be called: 
List<Person*>::Impl(); 

Further information about templates, including how they can be derived from other templates, 
can be obtained from the book "TIMOR-An Object- and Component Oriented Language". 

We have now shown how the Speedos persistent memory can be populated with capa-
bility protected information-hiding file modules which correspond to, and in effect also re-
place the need for, conventional files systems. Depending on the implementation selected 
these can produce similar results say to conventional sequential files, to indexed sequential 

                                                 
10  enq and op are keywords which introduce instance methods. These are important for 

synchronisation purpose. An enquiry (enq) may not modify the state data, an operation 
(op) can change the state data. 



files, to random access to B-tree files, etc. but also to multi-indexed files, etc. Furthermore, 
the maximum file size of 242 bytes (or words, depending on the implementation, see Making 
Computers Secure vol. 2 chapter 23) makes Speedos/Timor suitable for managing big data. 
Finally both new type definitions and new implements can be added to the TCL. 

3.4 Protecting Information in the Persistent Memory 

One of the key features of Speedos is to provide secure mechanisms for its users. These in-
clude capability based protection (see section 1.3 above) and qualifiers (see section 1.3 
above), which can qualify or modify the behaviour of the instances of other types. 

3.4.1 Managing Speedos Access Rights 

For this purpose Timor introduces a mechanism called restrictors, which list the names of 
methods of a module that can be called when the (information-hiding) file is accessed via the 
variable in question. The method list is contained in the brackets [: and :], e.g. 

TextFile[:insert, remove:]* tf; 

For more details see chapter 15 of the book TIMOR-An Object- and Component Oriented 
Language. 

3.4.2 Qualifiers 

These are types which can modify the behaviour of other types (see section 1.5 above). How 
they achieve this is illustrated diagrammatically on both the Timor website 

(https://www.timor-programming.org/qualifier-based-protection.html) 

and on the Speedos website 

(https://www.speedos-security.org/qualifier-based-protection.html). 

Qualifying types are normal types which also have bracket methods. These are methods 
which can "catch" calls from one module (the client object) to another module (the target ob-
ject) and can access and modify the parameters being passed between them. They can, for 
example, invalidate a capability being from the client object to the target. They can also ac-
cess their own state data and thus for example examine an access control list to determine 
whether the call is permitted, and if not the can block the call, or make an entry in a log mod-
ule. 

As just described these are call-in brackets but qualifier modules can also contain call-
out brackets which can examine and modify the parameters being passed out of a module, and 
can from their own state data or via calls to other modules determine whether the call-out may 
proceed. Such bracket methods can neutralise attempts by hackers to obtain information to 
which they are not entitled. How such qualifiers function is described in chapter 13 section 19 
of Making Computers Secure volume 1 and how they can be implemented is described in 
chapter 24 of Making Computers Secure volume 2. 

3.5 Further Timor Features 

Timor has a number of other unusual features which are described in the book "TIMOR-
An Object- and Component Oriented Language" which can be downloaded both from the 
Speedos website (https://www.speedos-security.org/) and from the Timor website 
(https://www.timor-programming.org/). 

4 Conclusion 

As Atkinson and Morrison [1] have convincingly demonstrated, the concept of persistence is 
significant in principle because it greatly simplifies programming, but without adequate 
hardware support it is difficult to implement. The Monads-PC system [17] was the first (and 
only) system which has effectively implemented such a hardware system in practice. Howev-
er, the size of its virtual addresses, although revolutionary in the 1980s, has proved to be far 



too small for potential use over the Internet. Nevertheless the basic concept underlying the 
Monads-PC system was sound and Speedos, a successor system, has now been proposed and 
designed using the same basic concept (see the Speedos website https://www.speedos-
security.org/). Speedos uses 256-bit addresses which are unique over all Speedos nodes on the 
internet, and are structured in such a way that such addresses provide clues to locating the 
objects and processes to which they refer. Speedos also has a technique which allows such 
long virtual addresses to be translated into main memory paged addresses as efficiently as 
normal pages addresses in RISC systems11. Currently no actual capability hardware exists, but 
Keedy has described elsewhere how existing RISC system hardware designs [18] could be 
easily adapted to function as capability systems, known as S-RISC, while still supporting pro-
grams previously developed as conventional RISC programs (after a recompilation). It has 
become impossible (as a result of the miniaturisation of chips) for normal software research-
ers to build complete hardware systems, so we must rely on Microsoft or Apple or Intel, etc. 
to build the hardware required to implement an S-RISC design. This would at last enable 
software designers to build a really secure system. The costs to industry12 and to the war ef-
fort for Ukraine and Israel of not having really secure systems are immense. Solutions for the 
difficult problems in building a Speedos operating system are described in volume 2 of "Mak-
ing Computers Secure" [10]. 

A different issue arises at the software level. In a genuinely persistent environment there 
is no place for a conventional file system! The Speedos design envisages that the virtual 
memory is populated by persistent information-hiding modules. This encourages good soft-
ware design practice, but raises the question of what happens as a replacement for a file sys-
tem. The answer given in this paper is twofold. 

First, there is the fact that a persistent information-hiding module, as we envisage it, can 
be organised to implement semantic routines in information-hiding modules. These can reflect 
the various functions which users want/need in order to carry out their work. They can be pro-
tected by capabilities with separate access rights which are relevant to their different roles in 
an organisation. 

Second, the programming of such modules can be carried out using the Timor pro-
gramming language. This is a flexible way of organising data structures which opens up many 
possibilities for implementing the data. In particular the Timor Collection Library encourages 
a maximum of polymorphism while at the same time implementations of these collection 
types can be defined to provide the equivalents of conventional access methods, such as se-
quential access, indexed sequential access, random access, B-trees, multi-level indexing or 
any other access method, e.g. for managing big data. 

Funding: This research did not receive any specific grant from funding agencies in the 
public, commercial, or not-for-profit sectors. 
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