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 Preface 

 

Clarification: We first clarify what is meant in this book by computer security. 

When used in the context of computer systems, and in particular computer operat-

ing systems, the word "security" can have (at least) three quite different meanings. 

It can mean that the operating system code has been proven "correct", in the quasi 

mathematical sense that a specification exists and that the code of the operating 

system has been proven to conform to the specification. This is the sense in which 

the word "secure" is sometimes used, for example, in association with the claim 

that Sel4 (https://sel4.systems/) is the "world's most highly assured OS kernel". 

This is not the meaning of "secure" when we describe SPEEDOS as secure. 

Similarly the reliance on encryption techniques to guarantee security is not the 

sense in which the word security is used here, although SPEEDOS actually uses 

such techniques for transferring information over the Internet and for accessing 

discs. 

In this book and in other documents on SPEEDOS the word security is used in the 

architectural sense, i.e. with respect to the hardware instruction set design and the 

operating system design (especially but not exclusively the design of the kernel). 

As will become evident, the SPEEDOS architecture is radically different from that 

of conventional systems. 

 

This book records the main results of an Odyssey which has lasted for more 

than fifty years of my life, beginning with my work in the design team of the 

VME operating system for the ICL 2900 Series of computers in Kidsgrove, Eng-

land. This was followed by my founding the MONADS operating system group 

at Monash University in Melbourne Australia, with follow up work on MON-

ADS in the groups which I later led at the University of Darmstadt in Germany, 

the University of Newcastle, N.S.W., Australia and the University of Bremen in 

Germany. My final professional move was to the University of Ulm in Germa-

ny, where I founded the SPEEDOS project and the Timor project
1
 in the De-

partment of Computer Structures. Since my retirement I have continued to de-

velop the SPEEDOS ideas, considerably extending and improving on the origi-

nal version and working out how to implement some of the wilder concepts, 

such as the world-wide unique virtual memory and addressing incorporated into 

SPEEDOS. 

                                           
1
 Timor is an object-oriented and component-oriented programming language designed to 

accompany SPEEDOS, see the Timor website https://www.timor-programming.org/ 
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Whereas my team at Monash actually built several prototypes for the 

MONADS-PC system which were then used later in Newcastle, Bremen and 

Ulm, there is no prototype implementation of SPEEDOS, partly due to a lack of 

funding. Nevertheless I have formulated a plan which I believe will convince 

computer manufacturers to make a small modification to their RISC computer 

designs which will both (a) enable SPEEDOS systems to be built and (b) at the 

same time allow existing RISC applications to execute without modification ex-

cept a re-compilation. This hardware modification is particularly significant 

since it allows capability systems (such as SPEEDOS) to be built which not only 

improve the way that access rights can be formulated and controlled but also can 

provide a solution for the confinement problem, thus making computers far 

more secure than conventional systems. This modification is described in detail 

in [1], which can be downloaded from the SPEEDOS website
2
. 

It need hardly be said that current systems are riddled with security loop-

holes and that attempts to close these are usually only partially successful. This 

is a nuisance for normal users (to say the least), but it is far more serious in some 

areas, especially national security, where espionage and cyber warfare could at 

any time lead to a total disaster, and in hospital systems, in electricity supply 

systems and similar public utilities which are vulnerable to attack. For this rea-

son I would recommend that the first SPEEDOS systems are built with such ap-

plications in mind. 

The book is in two volumes. The first volume is an introductory walk-

through of most of the fundamental technical ideas that form the basis upon 

which the SPEEDOS design is built. Some of the ideas are well known and a 

few are less well known. What makes them interesting is that almost none of the 

best of them are to be found in the major operating systems in current use. I ex-

plain a concept, e.g. virtual memory, which is in use but where several decisions 

are possible. I explain why one choice is better for security than the others, and 

yet almost invariably a worse alternative has been chosen for implementation in 

current systems. And it also turns out, almost without exception, that the good 

choice for security is the most efficient solution! 

For this reason volume 1 can have a dual purpose. It serves first as my ex-

planation why I chose particular ideas to form the basis for SPEEDOS. In this 

sense it serves as an important introduction to SPEEDOS. But second, it can 

provide additional material for a first computer science course in computer ar-

chitecture and operating system design. In fact it is to a considerable extent 

based on undergraduate courses which I have given in the past. 

                                           
2
  https://www.speedos-security.org/ 
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The tenor of the second volume is quite different. Relying on the infor-

mation in the first volume, it provides a technical introduction to the SPEEDOS 

kernel and an operating system built on the kernel, explaining in some detail 

how a real SPEEDOS system can be designed and built. The second volume is 

suitable for graduate courses in the same area, and will certainly give good stu-

dents ideas for writing their own PhD theses in this area. 

At the outset I would like to make clear that the emphasis in the book is 

largely on the design of computers and their basic software. There are some are-

as, in particular those concerned with computer graphics and with the function-

ality of the Internet, where my expertise is limited to that gained as a user of 

such systems. Although I have attempted to show the relationship between these 

fields and SPEEDOS in the second volume, the main emphasis in the book is 

concerned with the design of the computers themselves and on the basic struc-

ture of the operating systems which control them. I believe that this is the best 

basis on which to improve Internet security. 

Volume 1 can be read independently of volume 2, but the reverse is not the 

case, even for computer scientists and programmers. 

In order to simplify cross references between the volumes, the chapters for 

both volumes are numbered as a single sequence, but each volume uses separate 

page numbers. 

Readers who already have experience in operating systems and in computer 

architecture will probably be familiar with Parts 1 and 2 in volume 1. I suggest 

that such readers can skim through these two parts, but Parts 3 and beyond con-

tain much new material which is essential for an understanding of the SPEEDOS 

ideas. Among the highlights of these chapters I draw special attention to chapter 

13, which explains how the confinement problem can be solved. 

Finally, I should mention that this work would never have existed except 

for a piece of advice given to me by the late Professor Chris Wallace, former 

Head of the Department of Computer Science at Monash University. When I 

first arrived at Monash I mentioned to him that it would be nice for me to do 

some research in natural language systems. But he wisely said that it would be 

sad for me to throw away the experience I had gained at ICL. He was right! 

I hope that someday a SPEEDOS system will be built, and I would very 

much like to lead a project to do so, but that depend whether I will be successful 

in convincing computer manufacturers to modify the designs of their RISC sys-

tems. Meanwhile, I hope that you will enjoy reading both volumes. 

 Leslie Keedy 

 BREMEN 2023 
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Chapter 17 

A Modular Kernel Design 

 

Around the turn of the millennium I decided that it would be worthwhile to clar-

ify how we might design a successor for the Monads systems. In principle Mon-

ads had solved one of the key security problems, viz. how to control access 

rights such that Lampson's matrix [2] could be fully implemented, allowing in-

dividual users to determine for each of their files (individually in a finely 

grained manner) what access rights could be granted to other users. But I was 

concerned that a further serious security problem, known as the confinement 

problem, remained unsolved (see volume 1 chapter 3 section 1). I had already 

found a starting point for such a solution at the programming language level in a 

paper published in 1997 [3], so the time seemed ripe to initiate a new project 

under the name SPEEDOS
3
 together with my Ph.D. student Klaus Espenlaub. 

The first task was to determine how to structure a kernel for SPEEDOS. 

As Espenlaub points out in his thesis [4]
4
, security kernels in the past have 

not been very successful, largely for two reasons. First, they have usually sup-

ported the out-of-process model for their clients. Second, they have been im-

plemented monolithically. We now look at these issues in turn. 

1 Kernel Support for In-Process Design at the Application Level 

We need say little about this first point, because the in-process model has al-

ready been described in detail in volume 1 and was shown to be superior to the 

out-of-process model from various viewpoints, including security and charging
5
 

[4]. The SPEEDOS kernel and thread scheduler therefore provide a rigorously 

                                           
3
  SPEEDOS is an acronym for 'Secure Persistent Execution Environment for Distributed 

Operating Systems'. 
4
  Espenlaub's thesis can be downloaded at http://vts.uni-ulm.de/doc.asp?id=5333); it de-

scribes our first attempt at designing a SPEEDOS kernel. Many of the ideas reappear, 

often in a modified form, in this and the following chapters, but some significant ideas 

have radically changed. 
5
  See chapters 8 and 15 in volume 1. 
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in-process model for the user threads which it supports. 

Espenlaub also proposed an early kernel design which itself was in-process. This 

was partly accepted (see below), but some of Espenlaub's idea proved to be ex-

tremely difficult to implement, as was will be explained in chapters 20 to 22. 

Consequently there remains a central core of kernel activities which might be 

regarded as out-of-process, though their design by no means follows the stand-

ard out-of-process model. The SPEEDOS kernel in fact adopts the basic idea 

developed for the MONADS systems, as originally developed by John Rosen-

berg [5], which proved to be very efficient to implement, as will be shown in 

chapter 22. These are handled in a structured manner via separate kernel pro-

cesses.  

2 Modularity via Co-Modules 

In order to avoid the need for a monolithic kernel, a strategy has been adopted 

whereby some activities usually considered to be kernel activities have been 

outsourced to individual user-level modules which are trusted by the kernel, thus 

allowing these functions to be handled in-process. 

The SPEEDOS kernel adopts a policy with respect to modularity which differs 

quite substantially from those found in other kernels. The only static modular 

structure which the kernel provides for its users is based on information-hiding 

(as was described in volume 1 chapter 14). 

In order to provide greater flexibility, and in order to keep the basic kernel 

code as small as possible, the core code of SPEEDOS concentrates on executing 

only the most essential security code. Ancillary functions associated with partic-

ular applications, including the organisation of the persistent data structures 

which are needed to carry out security-related functions, are delegated to co-

modules. These are placed in the same container as that which holds the infor-

mation-hiding application module for which they are needed (see Figure 17.1). 

The organisation of co-modules is described in detail in chapter 19. 

 
Figure 17.1: Data of the Co-modules in a Container 

Data for Co-module 1 

Data for Co-module 2 

Data for Co-module 3 

 

Data for Co-module n 
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This organisation has a number of advantages. First it permits the kernel's 

most essential functions which are executed with special privileges (e.g. the 

right to load segment registers) to be implemented in the core kernel. These can 

be separated from other security activities which do not (and should not) need 

such privileges. This contrasts with many operating system designs, in which far 

too much code is executed in privileged mode, thus increasing the risk of misuse 

and therefore potentially opening up security loopholes. 

Second, it supports the idea, first formulated as a design principle for the 

Hydra capability system [6], of separating mechanism and policy. The core code 

of the SPEEDOS kernel provides the security mechanisms (which remain fixed), 

while its co-modules support policy decisions reflected in the persistent data 

structures which the core kernel uses. These can be varied by those users re-

sponsible for security policy. 

Third, it means that large sections of security relevant code (which do not 

have special kernel privileges) can be protected using the basic SPEEDOS secu-

rity mechanisms (e.g. module capabilities, inter-module calls). To achieve this, 

kernel co-modules (but not the core kernel) are subject to the rules of normal 

modules, which were outlined in volume 1 Chapter 14. 

Fourth, as a result of the kernel's use of persistent information stored in co-

modules, the core kernel code does not need to create persistent data structures. 

Any information which it generates while carrying out its duties is temporary. In 

the case of a kernel failure a restart can therefore be achieved much more easily. 

Fifth, although the core kernel code cannot be qualified by bracket rou-

tines
6
, its co-modules can. This means that further measures can be taken to pro-

tect them, as will be discussed in chapter 24. 

Finally, this design technique avoids the need for a large monolithic kernel. 

3 Kernel Use of Co-Modules 

Espenlaub proposed that the kernel should access the information held in its co-

modules in two different ways. His preferred way (because it conforms better to 

the information hiding principle) is to invoke predefined routines of its security-

related co-modules in order to take advantage of their functionality. For this 

purpose it does not store capabilities in its own (non-persistent) memory, but 

obtains the information needed to make such calls from information which is 

directly accessible when needed. He referred to such calls as forced method calls 

[4, p. 156]; their return values are inspected and acted upon by the kernel. How-

ever, he did not describe how such calls could be implemented, and it has be-

come clear that such forced calls are difficult and inefficient to implement. The 

                                           
6
  see Volume 1 Chapter 13. 
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author therefore reached the conclusion that, despite their aesthetic appeal, a 

much simpler and more flexible mechanism should be provided to handle the 

kernel's need to execute modules at the user level. I have called this mechanism 

"surrogate threads", which are described in more detail in chapter 22. 

There are some circumstances in which it is desirable, or even necessary, 

for the kernel directly to access the pre-defined persistent data structures of its 

co-modules. This allows the co-modules which set up the data structures to base 

the information in these data structures on policy decisions made outside the 

core kernel code, though the data structures themselves have a predefined for-

mat. 

It can be argued that direct access to data is a violation of the information 

hiding principle. However, it is important in this context to remember that this is 

the mechanism via which the information hiding principle is established for all 

other modules in the system. The kernel's core code is not a module. 

4 Composite Modules 

In accordance with the description in Volume 1 Chapter 14, a module is imple-

mented using two containers, a data container (for its persistent data) and a code 

container (for its code). This concept is now extended to encompass the idea of 

composite modules, i.e. units which consist of a number of co-modules stored in 

a single container. In fact all modules in SPEEDOS are composite modules. Alt-

hough the co-modules often provide ancillary security functions to assist the 

kernel, they usually perform tasks which are closely associated with a particular 

application module. Their persistent data is stored in the same container as that 

used for the data of the application module (which is itself considered to be a co-

module). In other words, what we have so far called a module is in fact a cluster 

of related information hiding modules with their persistent data stored in a single 

container, which is owned by the user who created the application module. 

However the code of these co-modules can be distributed over different code 

containers, which provide the algorithms relevant to the purpose of the specific 

co-module. An important reason for this arrangement is to allow co-modules to 

provide functionality (often security sensitive functionality) associated with spe-

cific application modules. 

Since individual kernel co-modules have all the properties previously de-

scribed in connection with normal modules they are accessed via their own sepa-

rate module capabilities. In volume 1 chapter 14 the impression was given that a 

container holds only one module and that the unique identifier in a module ca-

pability is the unique module container number. It now becomes necessary to 

distinguish between the persistent data of different co-modules within a single 

container. Hence the unique identifier in a module capability is in fact defined as 
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a unique container number and a small index number. The kernel uses this to 

select the required co-module (see Figure 17.2). 

The indices of those co-modules which the kernel needs to use are fixed, 

thus enabling the latter to access them without having to possess a capability for 

them. Additional user modules have higher indices which are determined dy-

namically. 

 

A subfield in the status bits, hereafter called the type field, is set to "data" in 

capabilities which provide access to co-modules. The rights fields are described 

in more detail in Chapter 26. 

5 Functions Delegated to Co-Modules 

In this section a few (but not necessarily all) examples of security-sensitive co-

modules are briefly described. 

5.1 Co-Module Management 

The creation and management of co-modules in a container is clearly a sensitive 

activity. As we shall see shortly, different policies can be associated with differ-

ent containers. The management activity is itself carried out in a co-module, the 

Co-Module Manager
7
. This maintains a central table of co-modules (including 

the main application module) for the container in which it resides, known as the 

Co-Module Table (CMT). For each co-module this has an entry which contains 

information such as a pointer to the persistent state data of the module, a capa-

bility for the code module which is bound to the co-module and a module capa-

bility for the list of qualifiers which bracket the co-module, as well as some sta-

tus information. This information enables the kernel to execute inter-module 

calls to co-modules. 

5.2 Segment Management 

The creation and further management of individual segments in a container is a 

very sensitive activity, because it is necessary, for example to guarantee that dif-

ferent segments do not overlap in the container memory space. In each container 

                                           
7
  The names of specific individual modules are capitalised for clarity. 

Figure 17.2: The Basic Structure of a File Capability 
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there is a Segment Manager. Segment Managers associated with different con-

tainers can, at least in part, be programmed differently. They create and delete 

segments in the container for its other co-modules and may be responsible for 

garbage collection in the container. 

5.3 Virtual Page Table Management 

The mapping from virtual page numbers to disc addresses for the pages of a con-

tainer is held in a co-module of the same container, and the code for this deter-

mines how the table is organised. The core kernel accesses data prepared by the 

Virtual Page Table Manager co-module to obtain the information which it 

needs, for example, for managing the TLB. Different containers can have differ-

ent page table structures and paging strategies. 

5.4 Qualifier List Management 

The SPEEDOS kernel supports the use of qualifiers with bracket routines (cf. 

volume 1 chapter 13), but delegates the management of the qualifier lists, etc. to 

a co-module associated with the qualified co-module, the Qualifier List Manag-

er. Each co-module in a composite module can be separately qualified and can 

have multiple qualifiers associated with it. 

5.5 Debugging Modules 

Debugging is the activity of finding and correcting errors in programs. For this 

purpose a Debugger co-module needs access to the data structures which the 

program has created and used in an attempt to establish the cause of an error. 

For this purpose it needs to have white-box access to a module. 

The information hiding principle is sometimes described as a black-box 

model, because the clients of such a module are unable to see how the module 

works. This is normally one of the strengths of the information hiding principle, 

but there are some tasks, especially system tasks such as debugging, which re-

quire special code to access the internal structure of a module. Allowing this to 

happen is called white-box functionality. We shall see shortly how this can be 

organised for some co-modules. 

6 The Kernel User Interface 

The interface presented to the users by the core kernel is relatively simple, and is 

best regarded as an extension of the hardware instruction set. No special privi-

lege is required to call some kernel instructions, but the kernel carries out checks 

in order to establish whether the user request can be validly carried out. 

There are some cases (e.g. the Segment Manager) where the kernel needs to 

be sure that certain of its instructions are being called only by its own security-
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sensitive co-modules, and for this purpose special kernel capabilities (with type 

field set to "kernel" and access rights showing which kernel instructions are 

permitted by the holder) must be presented as operands. For such instructions 

any module can attempt to execute the instruction, but if an appropriate kernel 

capability is not provided as an operand the instruction generates an interrupt. 

Examples of this will become evident in later chapters. 

Since the operands of kernel instructions must be separated from the pa-

rameters for inter-module calls, the user sets up a segment containing the oper-

ands for a kernel instruction addressable via segment register 15 before execut-

ing the instruction. The kernel then uses segment register 15 while carrying out 

the instruction. The segment itself is a normal segment which can hold capabili-

ties (e.g. kernel capabilities, pointers and data) in which the kernel can also re-

turn results on completion of the instruction. 

7 Kernel Modules and Processes
8
 

Not all modules associated with the kernel can be directly identified with partic-

ular application modules, e.g. device drivers, spooler modules, resource alloca-

tion modules, the thread scheduler. These modules are stored in containers 

which are typically owned by the system manager. Like application modules, 

they are implemented as composite modules with their own co-modules, and 

they can be invoked in-process by user level threads. 

Similarly some activities not associated with particular applications may 

need to be executed in separate threads not belonging to a particular application. 

Kernel processes are discussed in more detail in chapters 20 to 22. 

8 Cut, Copy and Paste 

Many operating systems provide a very useful clipboard
9
 to support a general 

cut, copy and paste facility
10

. When used to transfer information from one mod-

ule to another, this provides users with a potential way to avoid privacy checks. 

Consequently the SPEEDOS kernel does not provide such a mechanism. How-

ever, individual applications can easily support such a facility for use within the 

program, and where appropriate a buffer can be organised in a sharable file to 

allow users who have a capability for the file to use this as a clipboard. 

                                           
8
  To distinguish activity in the core kernel from user activities, we use the term process 

for each kernel activity (see chapter 20) while the term thread is used in the case of user 

level activity outside the kernel. However the term process is also used in SPEEDOS to 

signify a collection of threads designed to co-operate with each other, see chapter 20. 
9
  see https://en.wikipedia.org/wiki/Clipboard_(computing) 

10
  see https://en.wikipedia.org/wiki/Cut,_copy,_and_paste#Origins 
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9 Conclusion 

SPEEDOS has introduced a significant new kernel structuring principle, the use 

of co-modules in a composite module [4], chapter 5. Notice that this is unrelated 

to the hierarchical operating system structuring techniques described in volume 

1 chapter 9. The flexibility of this technique will become more evident in the 

following chapters, which discuss various aspects of the kernel design. 

It can be argued that as a consequence of this technique, the core kernel 

does not manage all the security features of a system directly and therefore, 

strictly speaking, that it cannot be considered as a security kernel. However, the 

classification as a security kernel or not is not as such important. It is important 

however that through this structure a minimum amount of code is actually exe-

cuted in privileged mode, reducing the risks of misuse, and on the other hand 

that security-sensitive co-modules can support different policies. 
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 Chapter 18 

Module Variants 

and their Invocation 

 

In previous chapters the impression was given that all modules
11

 have a uniform 

structure and are invoked in an identical way. However, there are good reasons 

for introducing variations, while keeping the information-hiding principle intact. 

This chapter introduces some additional details regarding the organisation and 

invocation of modules. In order to do this it is necessary to have a basic under-

standing of the kinds of data which are associated with a module, both statically 

and dynamically. 

1 Kinds of Data Associated with a Module 

1.1 Inter-Module Linkage Data and Parameters 

These data items are dynamically created and deleted on a (kernel) thread stack 

in a process container by the kernel as part of the inter-module call/return mech-

anism, which was introduced in chapters 14 and 15, as well as similar call 

mechanisms which are described later in the chapter. 

1.2 Persistent Data 

The lifetime of persistent data is independent of the threads which use it. It 

comes into existence as a result of a request to create an information–hiding file, 

and it ceases to exist when this is explicitly deleted
12

 or can be garbage collect-

ed. It is held as a heap in a file container. 

                                           
11

  In principle all modules are co-modules, as was described in the previous chapter. How-

ever, where nothing is to be gained from emphasizing the significance of co-modules 

we frequently revert to the simpler and more conventional word "module". 
12

  Prof. Roger Needham [27] argued that in a capability-based system an object should 

persist until capabilities for it no longer exist, but that view is unrealistic in a system 

where capabilities can be distributed worldwide. 
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1.3 Temporary Data 

For subroutine and similar calls within a module the kernel thread stack is not 

used. This decision, which differs from Espenlaub's design [4, pp. 167-8 and 

182] and most in-process systems, was necessary partly because of the problem 

of creating persistent segments by linking a temporary segment into a persistent 

structure (which is the way compilers typically create the code for this purpose) 

and partly because of garbage collection issues. This approach also gives com-

pilers freedom to implement languages with varying scoping strategies and at 

the same time it simplifies the kernel. 

A semantic routine, when activated in a module, calls the Segment Manag-

er co-module in its own container to set up a separate root segment for its tem-

porary data (i.e. the data which the thread creates for this call and which is de-

leted when the thread exits from the routine). This can be used to build an inter-

nal subroutine call stack, a temporary heap and/or for any other purpose for 

which it might need temporary data. When the semantic routine exits, this tem-

porary data is deleted (either explicitly by the routine calling the Segment Man-

ager or implicitly via a garbage collector). 

In the case of a call to a file module the temporary data is stored in the 

same heap as the file's persistent data. In the case of a call to a program module 

(i.e. a module without persistent data) a single heap is used by all threads for this 

purpose. This is permanently associated with the program at the current node. 

1.4 Retained Data 

This is data which allows a thread to retain information relating to a sequence of 

calls between an open call and a close call (see below). This data might be use-

ful for example to keep a note of the next record to be read, thus allowing a file 

to have a (very useful) semantic routine get_next, etc. This is stored in the 

heap associated with the called module, i.e. alongside the file data. 

----- 

In summary, all forms of data for a file module (persistent data shared by all 

threads using the file, retained data for those threads which require non-

persistent information to be retained between their inter-module calls, and tem-

porary data for all the calls on semantic routines of the file) are held in the con-

tainer for the file module. The associated code module should contain instruc-

tions which synchronise access to the persistent data. Since retained data seg-

ments are separately rooted for each thread, and temporary data segments have 

no saved root (except the segment register via which they are addressed) differ-

ent threads cannot interfere with each other's retained or temporary data seg-

ments, although they are held in the same container. 
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The data for a program module (temporary data for all the calls on semantic 

routines of the program) are held in the single container associated with the pro-

gram module, for all the routines which are (possibly concurrently) active within 

it. Protection between the segments of different threads is guaranteed in that 

they cannot load segment registers to address the segments of other threads. 

2 Kinds of Module 

The above overview of kinds of data supported by SPEEDOS allows us now to 

consider how these data kinds can be combined to produce various different pat-

terns for SPEEDOS information hiding modules. Figure 18.1 shows and names 

the various combinations. 

 

All these module variants need temporary data in which the code can carry out 

its calculations. 

2.1 File 

The semantic routines of a file which does not require retained data can only be 

invoked using inter-module calls. Each call is completely independent of other 

calls (except that access to the persistent data may need to be synchronised). 

This form would be useful, for example, to access routines from a library of 

mathematical functions which look up their results in a table (such as a table of 

trigonometrical functions of the type which students might use in schools). 

2.2 Openable File 

This corresponds, for example, to conventional commercial data processing file, 

where a user may need to make a series of calls in sequence. For example a pay-

roll file may be called multiple times in order for the payroll clerk (either human 

or another module) to calculate the weekly or monthly pay of employees. 

2.3 Program 

This serves a function similar to the file, except that it needs no persistent data. 

For example it may have semantic routines for calculating trigonometrical func-

tions. 

Figure 18.1: Kinds of Data 
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3 Types and Implementations 

In programming languages such as Timor [7] a distinction is drawn between a 

type, which has a defined behaviour with respect to its users, and individual im-

plementations of the type, which may use different techniques to implement this 

behaviour (see for example [8]). If two or more implementations can achieve the 

same behaviour, then from the user's viewpoint they are equivalent (except for 

performance). 

In the examples of a trigonometrical library above, the same behaviour 

(from the user's viewpoint) might be achieved by a file module and by a pro-

gram module, provided that they also offer the same set of semantic routines. In 

other words they might be considered to be modules of the same type (in the 

sense of programming language types). However, SPEEDOS (and other operat-

ing systems) do not offer a type concept, but merely implementations. The type 

issue is considered to be a matter purely for the programming language level, 

not the operating system level. Nevertheless one small concession will be made 

below to respect this concept (see section 5.2). 

4 Implementing Programs 

Given the protection provided by the SPEEDOS segmentation scheme, there is 

no problem in storing the temporary data of multiple programs in a single con-

tainer associated with the code module of the program, which serves as a shared 

heap. This has the advantage that instead of creating a new container each time a 

thread activates a program a new container must be created only once, when the 

program is created. But more importantly it unifies the mechanisms for files and 

programs. 

 

A module capability for a program identifies the shared program heap, not the 

code module, while the latter is reached from a code capability stored in the 

program heap, as is illustrated in Figure 18.2. A comparison with Figure 14.8 (in 

volume 1) confirms that programs and files can be handled uniformly, also with 

respect to inter-module calls. 

Figure 18.2: Calling a Program Module 
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5 Creating the Different Kinds of Data 

The precondition for creating the various kinds of data is that a heap container 

(i.e. a container in which all the various kinds of data except inter-module link-

age and inter-module call and return parameters can be stored) exists which con-

tains a capability for the associated code module. How this precondition is ful-

filled will be described in later chapters in connection with the management of 

containers and the management of co-modules. 

5.1 Creating Temporary Data 

Whenever a thread becomes active in a semantic routine it needs a root segment 

for temporary data. For this purpose it calls the Segment Manager co-module to 

create a new segment and makes this addressable (by convention) via segment 

register 4. When the thread exits from the semantic routine the temporary data 

which it has created can be deleted. 

5.2 Creating Persistent (File) Data 

In order to create a root segment for persistent data a thread must make an inter-

module call to a constructor routine of the module in question. This is always 

the semantic routine numbered 0. Its function is to initialise the persistent data of 

the file module. 

The constructor routine calls the Segment Manager to request the creation 

of a segment and calls the Co-Module Manager to enter the address of this root 

segment in its co-module table (see chapter 19). It can then initialise this and 

create further segments linked to it. 

When the file module is subsequently called by another module, the kernel 

automatically loads the address of this root segment into Segment Register 5. 

However, this segment register can be reloaded with other values by the mod-

ule's code; Segment Register 5 can be reinitialised to address the persistent root 

segment using the kernel instruction reload_persistent_root, which has no 

parameters. 

In modules without file data (i.e. program modules) there is no semantic 

routine 0 and module capabilities for program modules have the access right 0 

set to 0 (corresponding to no access for a semantic routine 0, i.e. the call is inva-

lid). When a program module is invoked, Segment Register 5 is invalidated, but 

can be used by the program. 

If for a program module an attempt is made to call routine 0, the kernel will 

simply ignore the instruction and return to the next instruction of the caller. This 

allows different implementations of a type to function correctly regardless 

whether they use persistent data or not (see section 3 above). 
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5.3 Creating and Deleting Retained Data 

Before a root segment for retained data can be created a thread must make an 

inter-module call to an open routine of the module in question. This is always 

semantic routine 1
13

. For openable modules other semantic routines (apart from 

a constructor) cannot be called until the module has been opened. 

The open routine should call the Segment Manager's create retained rou-

tine, providing it with specifications for the retained root segment. The Segment 

Manager checks
14

 that the module is an openable module and that this call is 

from an open routine. It then returns to the caller a pointer for the new retained 

segment and an identifier (the time of creation of the segment in milliseconds). 

After the open routine has initialised the retained segment (by convention ad-

dressed via Segment Register 6) it returns the identifier to its caller. 

Once an openable module has been opened, further semantic routines can 

access the retained segment by calling the Segment Manager's get retained rou-

tine, providing the identifier of the retained segment. If the identifier is valid the 

Segment Manager returns a pointer to the retained segment. By convention the 

module loads this into Segment Register 6. 

When a thread wishes to close a module it calls semantic routine 2 (the 

close routine), which deletes the retained segment and prevents further invoca-

tions of the module via the retained segment identified in the close call. 

In modules without retained data (i.e. modules which cannot be opened) 

there are no semantic routines numbered 1 and 2, and module capabilities for 

program modules have the access rights 1 and 2 (corresponding to semantic rou-

tine 1 and 2) set to 0. Thus if for a non-openable module an attempt is made to 

call routine 1 or routine 2, the instruction will be ignored by the kernel. 

6 Library Modules 

One structural issue which has been difficult to manage elegantly in most oper-

ating systems is that of library routines/modules. In this context a library module 

is defined as a body of code (usually with multiple entry points) which performs 

useful related tasks for an application, e.g. 

– a set of mathematical functions, 

– a set of routines for manipulating strings, 

– a library of routines for organising items within a program into collections 

such as automatically ordered lists (e.g. alphabetically), unordered lists, us-

                                           
13

  From the SPEEDOS viewpoint symbolic names such as "open" and "close" are not im-

portant. 
14

  To do this it calls the Co-Module Manager, which checks the status word associated 

with the module (see chapter 19). 
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er ordered lists, sets (without duplicates), 

– separately compiled user defined classes for use in different object-oriented 

programs, 

– routines for synchronising access to data, 

– a graphics library which draws and colours shapes, etc. 

Some library routines, for example mathematical function libraries, can in fact 

be handled within the framework already discussed. The real difficulty occurs 

when a library routine is intended to perform tasks on the existing data of their 

client module. These are the kinds of library modules which are of interest in 

this section. 

6.1 Libraries in Hierarchical Systems 

One reason why library modules have caused problems is that they can be used 

by many programs which have different protection requirements. This leads to 

problems for example in connection with the hierarchical (ring) model for pro-

tection described briefly in Volume 1 Chapter 9. In order to conform to the hier-

archical calling rules – all calls should normally be inwards, i.e. to a lower level 

in the hierarchical structure – library routines might appear to belong to the in-

nermost layer. But that is the kernel layer where highest privilege applies; it is 

obviously not a good idea from the viewpoint of protection (or of flexibility) to 

place library routines there. Thus in hierarchical protection systems quite com-

plicated rules were introduced to avoid this situation. 

6.2 Library Routines as Information Hiding Modules 

Libraries can normally easily be defined as independent information hiding 

modules but for many library modules (e.g. string libraries, collection libraries, 

independently developed OO libraries) that would create a problem, because it 

would prevent them from directly manipulating the data structures of their call-

ing module. If they were invoked as normal SPEEDOS inter-module calls, 

which may not pass pointers as parameters, this would imply that the data which 

the library routines manipulate would have to be passed to them as values and 

then copied back to the application as return values. This would lead to much 

inefficient copying.
15

 

                                           
15

  At this point we note that some library modules can have a dual role in a persistent sys-

tem such as SPEEDOS. For example typical collection modules such as lists, sets, bags, 

etc. can be useful for organising data within a SPEEDOS module (and thus correspond 

to typical collection modules within an application module). But in a persistent system 

they can also be used as independent information-hiding modules corresponding to files 

in the file systems of conventional non-persistent systems. 
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6.3 Library Calls: Espenlaub's Solution 

To solve this problem Espenlaub defined a library call (LC) instruction in his 

design for a SPEEDOS kernel. This allows a routine of a library module to re-

ceive a pointer as a parameter (in practice a segment register referring to a seg-

ment in the application module). Otherwise he described the library module as a 

normal module (which might for example have its own persistent data). This 

could theoretically introduce the risk that the pointer passed by the client module 

to the library module be stored in the latter's own persistent data. However, in 

practice this cannot occur, because the pointer parameter is defined to be passed 

simply as a valid segment register, which can only be stored in the container 

which it addresses. 

Nevertheless Espenlaub's solution envisages that such a module can ma-

nipulate persistent data of two different modules in two different file containers, 

which raises protection issues that are not easy to anticipate and to solve. Fur-

thermore the consequence would be that at the programming language and com-

pilation level library modules would have to be treated differently from normal 

modules. (For example, in object-oriented libraries some segment of the calling 

module's data should be treated as the root segment of the library module, not as 

a parameter.) For such reasons we now define a safer alternative for SPEEDOS. 

6.4 The New SPEEDOS Solution: Library Calls 

It therefore appears to be more appropriate to view library code which is de-

signed to operate within an application module simply as an extension of the 

application's code, and the library call as a simplified call which leaves the cur-

rent data container active, but which switches the code to the appropriate entry 

point in the library module, based on a code capability (not to be confused with 

a program capability) provided as the main parameter. 

We consider first the case of "library file" modules. These modules create 

new data structures for their client modules and view this as their persistent data 

(e.g. a collection library). From the viewpoint of the library module they need a 

constructor. Instead of an inter-module call (IMC) being used for this purpose 

the host module calls a library file constructor (semantic routine 0) using a new 

kernel library call (LC) instruction. The operands of this instruction are a code 

module capability for the library module, an entry point number and an optional 

root segment address (which is initially a null pointer). Like a normal file con-

structor this creates a root segment for what it regards as its persistent data. But 

instead of calling the Co-Module Manager to set up a pointer for this root seg-

ment in a CMT entry (see chapter 17 section 5.1), it returns the pointer to the 

constructor's caller. The reasons for this are that such a library module has no 

CMT entry, and more significantly, it has actually constructed an abstract data 
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structure for its caller (in the same container) and the calling module can then 

root this into its own (persistent, retained or temporary) data structures (which 

might for example include several collections). 

Thereafter further calls from the host module to the individual semantic 

routines (in Timor parlance, to the methods) of the library instance are also 

made by invoking the kernel's LC instruction, passing to it the appropriate code 

module capability, an entry point number and a pointer to the  root segment li-

brary module instance's root module
16

. 

If the library module requires retained data, its host module must first use a 

kernel library call instruction (LC) to invoke the open routine (semantic routine 

1) of the library module in question. For openable library modules other seman-

tic routines (apart from a constructor) cannot be called until the module has been 

opened. 

The open routine calls the Segment Manager's create retained routine (as 

for normal modules), providing it with specifications for the retained root seg-

ment. The Segment Manager returns to the caller a pointer for the new retained 

segment and an identifier (e.g. the time of creation of the segment in millisec-

onds). The open routine returns this to its client module which can store it in one 

of its own data structures for use in subsequent calls to the library module. 

Once an openable library module is open, further semantic routines gain 

access to the retained segment by calling the Segment Manager's get retained 

routine, providing the identifier of the retained segment. If the identifier is valid 

the Segment Manager returns a pointer to the retained segment. 

6.5 Evaluation 

One aim of the design of library modules is to allow them to be programmed 

and compiled (almost) like normal modules. With this approach to libraries, the 

software for these can be written by programmers (e.g. in Timor) exactly like 

normal modules. They have to be compiled slightly differently, but provided 

that the compiler knows it is compiling a library module, it can easily hide these 

differences from the programmer. 

One basic difference is that instead of finding the required code capability
17

 

in the CMT, the kernel receives it as part of the LC instruction. Such capabilities 

                                           
16

  In chapter 22 a special feature will be described allowing library methods also to be 

invoked via the kernel. 
17

  The evaluation of the code capability is via a Code Table (to be described in Chapter 

19). Since this holds a qualifier list, the code of library routines can be bracketed sepa-

rately. Since the data produced/manipulated by a library module is considered to be part 

of the client module, its methods can be bracketed using the qualifier list in the CMT 

(see chapter 19). 
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can be provided to the host module as parameters (either to its constructor or 

even individually with each independent library call or sequence of library file 

calls). This makes the use of libraries very flexible. 

In contrast with inter-module calls, library calls can pass pointers to addi-

tional segments, thus enabling the library module to address several of its seg-

ments (e.g. if its function is to merge two lists into a third). These may also be 

set to "read-only". 

7 Cooperating Co-Modules 

While the information hiding principle is basically a very sound concept, there 

are some circumstances in which a limited amount of sharing of data between 

separate modules may be justified at the application level. For example, a central 

organisation (e.g. the headquarters of a company), with a central database of in-

formation, might have subsidiary organisations (e.g. franchisees, local branches) 

which have a legitimate need to share some (but not necessarily all) of the cen-

tral information. Each sub-organisation may also have its own additional infor-

mation in a further database, to which the central organisation may need (partial) 

access. In such a situation a strict adherence to the information hiding principle 

would result in an extremely inefficient design, with considerable copying of 

data (and the creation of duplicate copies which risk becoming out of step with 

each other). 

7.1 Application Co-Modules 

To facilitate such environments SPEEDOS allows related application modules 

to be implemented as co-modules in the same container. In this situation the in-

dividual co-modules can have separate databases and separate semantic routines 

with separate capabilities, thus providing them with individual control over their 

data and access rights. At the same time, by allowing them to make calls to each 

other which relax the normal calling rule forbidding the passing of pointers, they 

can share access to selected parts of each other's databases in a controlled way. 

For this purpose a further call instruction, a co-module call (CMC) is supported 

by SPEEDOS. This is like an IMC, except that pointers may be passed as pa-

rameters. The kernel checks that such calls only take place between co-modules 

in the same container. Because they are in the same container there is no formal 

problem with passing segments as parameters. 

7.2 Passing Segments as Parameters 

The following rules are used to ensure that segment pointers, passed as parame-

ters via LCs and CMCs, are not misused. 

a) The entry points of a module which expect to receive segment pointers as 



Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 20 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

parameters are marked as such in the entry point list of the code of the 

module. The destination of the call must be either library code or a co-

module in the same container. Other entry points may not accept pointer 

calls. 

b) A pointer can only be stored in the container which holds the referenced 

segment. 

c) A bit in a pointer indicates whether it can be loaded into a segment register 

in "read-write" or "read-only" mode. The latter indicates that the contents of 

the addressed segment can be read but not modified
18

. 

d) The bit in a pointer which indicates whether it is "read only" must always 

be stored when the pointer is copied. This bit is also copied to segment reg-

isters, indicating that the content of the addressed segment may not be mod-

ified. 

The interface routines of co-modules which can pass pointers can be qualified 

with bracket routines. 

7.3 Kernel Co-Modules 

Co-module calls (CMCs) can of course also facilitate calls from application 

modules to kernel co-modules in the same container (e.g. when an application 

wishes to create a new segment or delete a segment it can use a CMC to call the 

Segment Manager for this purpose. Similarly one kernel co-module (e.g. the 

Segment Manager) may also need to call another kernel co-module (e.g. the Vir-

tual Page Manager) in the same container and uses a CMC to achieve this. 

7.4 Co-Module Calls, Library Calls and White Box Functionality 

Finally, neither of these kinds of call provides normal white box functionality, 

i.e. access to the entire data of a module is not permitted, unless the pointer 

passed is the root segment of the caller. Otherwise white box functionality is 

only achieved by an inter-module call to a module which the Co-Module Man-

ager has organised to share a root pointer with another module. How it does this 

will become clear in the next chapter. 

8 Free Capabilities 

There are two further situations in which the strict use of information hiding can 

lead to inefficiencies. 

8.1 N-ary Operations on Files 

The word n-ary is built on the pattern of words such as unary (for one), binary 

                                           
18

  Module capabilities in the addressed segment can be copied, unless the generic access 

rights in the module capability itself prevent this. 
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(for two), etc.; it means "for n", where n is a number whose value is not fixed. 

The n-ary problem arises when a method wants to manipulate two or more simi-

lar objects together. For very small objects (e.g. integers) most operations are n-

ary and they are built into the computer's basic instruction set. For example the 

addition operation takes two objects and produces a third object as a result. At 

the segment level, library modules which provide n-ary services (e.g. for merg-

ing or comparing two segments in the same container) solve the problem. 

Most file operations are not n-ary, because their semantic routines normally 

involve accesses to a single file; consequently the information hiding principle is 

normally unproblematic and, as we have seen, brings many security and soft-

ware engineering benefits. But it is nevertheless inconvenient in cases such as 

that of a routine which merges two files or compares their contents. This can 

theoretically be achieved in an information-hiding framework by using a routine 

of a third module, which reads from and/or writes to them individually, using 

their semantic routines. However, such an approach can be very inefficient be-

cause of the overhead of the many inter-module calls required. If all the objects 

concerned were created by the same code module, this restriction is not even 

necessary to preserve the information hiding principle! Furthermore, it is virtual-

ly impossible in situations where the content of a file is long and is not easily 

decomposed into small segments, as is the case for example with video files. 

The passing of capabilities for such files as parameters is not a problem – a 

parameter segment for an inter-module call can always contain module capabili-

ties. The issue is how the content of the corresponding files can be addressed. 

All that is needed in the module carrying out the n-ary operation is access to the 

root segment of each of the parameter files' root segments. For this purpose the 

kernel provides an instruction load_free_cap which takes as parameters the 

file capability passed and the number of the segment register which the n-ary 

routine chooses to use to address the file's segments. 

We refer to capabilities which can be passed in this way as "free capabili-

ties". These must have the metaright "permit free capability" set (see chapter 

26). Their use can be further restricted to "read only" as defined in a further sta-

tus bit in the capability. Using this feature an n-ary routine to merge two files 

into a third can for example be implemented by passing two read only parame-

ters to a further module which creates a new file. 

It is tempting to suggest that the kernel should also check that the code file 

of the parameter file is the same as that of the called module. But that would rule 

out a solution for the next problem. 
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8.2 File Conversion 

Suppose that some file type can be implemented in two quite different ways. For 

example bank accounts files might be implemented using a B-tree technique or 

an indexed sequential (IS) technique, and a banking company might from time 

to time convert particular files from one implementation into another, e.g. be-

cause one of the techniques provides faster access or uses less space. Similarly 

video files can have different internal formats and conversion between these is 

quite common. After such a conversion users of a converted file could continue 

to use it as if nothing had happened, assuming that both implementations sup-

port the same type definition
19

. In that sense the possibility of making such con-

versions could be said to encourage the information hiding principle. 

To implement this, a conversion module might for example take one mod-

ule capability in read-only mode as the source of the conversion and create a 

second, in the new format, as the new file. 

Such examples make it tempting to introduce the idea of file types
20

 at the 

kernel level, and to allow only files of the same type to be attached to other files. 

But not only would that be extremely complicated (e.g. because of inheritance), 

it would also exclude more general conversions. For example it would virtually 

rule out in practice an efficient form of conversion from normal text to com-

pressed text or encrypted text, etc. Consequently it is better not to enforce any 

information hiding rules in the matter of passing files as parameters to modules. 

8.3 Precautionary Measures with Free Capabilities 

To ensure that this feature is not misused (for example by a user with a restricted 

set of access rights for a file) the instruction which the kernel provides to make a 

free parameter capability for a file checks that the capability from which the free 

capability is copied, is an owner capability, thus ensuring that only the owner of 

a file can make free capabilities, marking them as such in the free capability's 

metarights field. 

Input parameters can only be loaded into segment registers in read-only 

mode, and the segment register is marked as non-storable, thus guaranteeing that 

confinement measures cannot be avoided by using free capabilities. One impli-

cation of this is that if files are to be merged or converted, the module carrying 

this out must be the output module (or must call a further module to carry out 

the output operations). 

There is one final security risk to be avoided: this facility should not be al-

                                           
19

  In a later chapter we discuss how they might obtain a capability for the new version. 
20

  A file type here means a file module interface which can be implemented in different 

ways but provides the same functionality. 
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lowed to circumvent bracket routines associated with a module. This is dis-

cussed in Chapter 24 section 5. 

9 Call Back Calls 

There are situations in which a normal module may have a need to call its call-

ing module back. This can happen at two levels, at the inter-module level and at 

the library level. These require different but similar SPEEDOS kernel instruc-

tions. 

9.1 Inter-Module Call Back Calls 

The SPEEDOS kernel supports a 'call back call' (CBC) instruction. This acti-

vates a call back routine in the application module by nominating an entry point 

number in a special call back entrypoint list. In contrast with normal inter-

module calls, the caller does not provide a capability for the call back call; in-

stead the kernel discovers the details of the CBC destination by examining 

which module called the currently active module and activates the nominated 

call back routine. When the call back routine terminates it returns back to its 

caller, which resumes execution at the instruction following the CBC instruc-

tion. There is no limit on the number of call back calls a module can make. 

9.2 Library Call Back Calls 

For this case the kernel provides a 'library call back' (LCB) instruction which 

discovers the destination routine by examining which internal module invoked 

the original library call (LC), see section 6.4. 

10 Conclusion 

This and the previous chapter have provided a basis for the kernel's structure and 

some of the kernel's most significant security functions. With this as background 

information we are now in a position to delve more deeply into the functionality 

of key kernel co-modules and how they interface with the kernel. 
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Chapter 19 

Containers and their Contents 

 

Containers play a central role in SPEEDOS. They serve as discrete address 

spaces for the persistent distributed virtual memory. They hold persistent data 

which might be used, for example, as databases for user applications. They can 

be used to hold executable code. Hence they serve a similar role in SPEEDOS to 

that of files in conventional systems. However, that is only part of the story. 

They can also hold information (persistently) about user processes and their 

threads, which in conventional systems is a function of the (non-persistent) vir-

tual memory. 

This chapter describes how containers are organised and provides an over-

view of their functionality, beginning with the way they are identified. 

1 Container Identifiers 

Section 2 of volume 1 chapter 16 described the SPEEDOS technique for sup-

porting world-wide unique virtual addressing. Logically a world-wide unique 

virtual address consists of a unique container identifier concatenated with a 

within-container offset. The unique container number is expressed as three con-

tiguous entities, as is shown in Figure 19.1 (which is a repeat of Figure 16.2). 

The actual sizes and further subdivisions of these fields are discussed in chapter 

23 and Appendix 1. 

 

Concatenating this identifier with a within container address results in a world-

wide unique virtual memory address which is far too large to allow an ATU to 

be built cost-effectively. To avoid this we suggested in volume 1 chapter 16 

(section 3.3) the use of 3 bit SCIDs (short container identifiers). 

SPEEDOS Node Number Disc # in Node Container # in Disc 

Figure 19.1: A SPEEDOS Container Identifier 
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2 Container Red Tape 

The Container Manager at each node is a security-sensitive co-module which 

performs node-wide functions and is therefore itself located in a container which 

is not associated with a particular application co-module. It is responsible for 

providing the functionality necessary to create other containers, as will be dis-

cussed in section 12 below. 

When a new container is created several unique identifiers are stored in 

fixed locations within it which are known to the core kernel. These uniquely 

identify: 

a) the user who created the container, 

b) the container itself,  

c) the thread which created the container, 

d) the code module via which the container was created,  

e) the co-module via which the container was created, 

f) the user who currently owns the container, 

g) the date and time of creation, and 

h) its activity status (e.g. the count of currently open co-modules in the con-

tainer). 

 

This information is set up in page 0 of the container by the kernel's new_

container instruction. 

When a new container is created, the semantic routine responsible for this 

returns a container capability, which entitles its possessors to load co-modules 

into the container (see Figure 19.3). The index field is set to -1. 

Figure 19.2: Identification Fields of a Container 

Container number identifying creator 

Container number of this container 

Rest of container contents 

Creating thread number 

Creating code module number 

Creating co-module number 

Container number of current owner 

 
Date and Time of Creation 

Activity status 
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3 Using Containers for Multiple Purposes 

There are two senses in which containers are used for multiple purposes. First, 

as was described in the volume 1 chapter 18, a container can hold several co-

modules; the kernel relies on some of these to carry out its privileged activities. 

Second, as foreshadowed above, containers can be used for three different pri-

mary purposes: as repositories for persistent data (henceforth called data files
21

), 

for code (code files) and for processes (process files). In fact, all modules are 

initially created and start their life as data files. The type field in a capability de-

termines how the container should be viewed when accessed via that capability. 

Notice that when the type field is set to 'container' the rights fields indicate what 

actions are possible when the container is being viewed as an entire container 

(e.g. whether the entire container can be copied, etc.) The Container Manager is 

not a component of every container, unlike the co-modules about to be dis-

cussed. 

4 Segment Management 

Each container must have a Segment Manager co-module, and each Segment 

Manager must provide certain standard routines. These are provided as part of 

the SPEEDOS system, but this module can be extended in different ways (e.g. 

using the Timor inheritance and code re-use techniques) allowing different con-

tainers to manage segments differently, e.g. with respect to garbage collection. 

When a new container is created the Segment Manager, like the Co-Module 

Manager, is pre-installed in the Co-Module Table (see section 7). An important 

part of the segment manager's work is to ensure that the segments in a container 

do not overlap. 

All modules in the container may need to create temporary segments and 

can access the appropriate Segment Manager routines using CMC calls (thus 

allowing pointers to be passed as parameters), provided that they can obtain a 

capability for the container's Segment Manager. Only the operations of file 

                                           
21

  In this sense each co-module is a data file consisting of a persistent data structure point-

ing to a code file containing its associated semantic routines. 

Figure 19.3: The Basic Structure of a Container Capability 

Type = 

container 

Unique 

Container # 

Status 

Bits 

Index 

# 

Semantic 

Rights 

Environmental 

Rights 

Meta- 

rights 

Confinement 

Rights 



Chapter 19 CONTAINERS AND THEIR CONTENTS 27 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

modules need to create file segments and to re-link temporary segments into ex-

isting persistent segments. 

4.1 Segment Structure 

SPEEDOS segmentation is based on the idea of partitioned segments, which was 

first proposed by Anita Jones [9]. Because SPEEDOS has two kinds of capabili-

ties (i.e. segment pointers and module capabilities) the original structure pro-

posed by Jones (see Figure 10.7) has been modified to that shown in Figure 

19.4. 

 

They have four basic areas: a data area, a red tape area, a segment pointer list 

and a module capability list. The content of a segment can only be accessed via 

a segment register. 

The user can address the data area directly using normal (non-privileged) 

CPU instructions, which contain (non-negative) offsets from the base address in 

the segment register. Because the segment register contains a length field the 

hardware can ensure that the user cannot address information outside the data 

area without causing an address violation interrupt. 

Below the data area is a "red tape" area which can only be accessed by the 

kernel. Attempts by users to access this area via negative offsets cause an ad-

dress violation interrupt. The red tape consists of a length field for the data area, 

a count of pointers, a count of capabilities and unique (within container) seg-

ment identifier. The red tape area can only be addressed by the kernel. Segment 

pointers and module capabilities can only be addressed indirectly via (separate 

subsets of) kernel instructions, using non-negative integers as offsets. The first 

negative offsets into pointer list 

(adjusted for red tape) 

Partitioned Segment 
positive 

offsets Segment Register 
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Capability List 

Figure 19.4: SPEEDOS Partitioned Segments 
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pointer is numbered 0, the second is 1, etc. Module capabilities are also ad-

dressed in the same way, i.e. capability 0 is the first, capability 1 is the second, 

etc. 

A pointer is a single word offset in the current container, which refers to 

the red tape area of a different segment in the same container. There is no way 

that pointers can refer to addresses in other containers. Pointers cannot be direct-

ly accessed by applications; they can only be manipulated via kernel instruc-

tions. One of the pointer instructions allows a segment register to be loaded from 

a pointer. In this case the kernel loads the address of the referenced segment into 

the specified segment register, using the current segment register's details to 

complete the address. It then follows the pointer to locate the addressed seg-

ment, and uses the information in the referenced segment's red tape to load the 

length field into the segment register. If the current segment register access 

rights are set to read-only, it copies this also into the referenced segment regis-

ter. The user also has the option to set the referenced segment register to read 

only, regardless of the setting in the current segment register. If access is set to 

read only then the user can only read the information in the data part of the seg-

ment. 

Since several pointers can be associated with a segment, the mechanism al-

lows arbitrary linked lists, tree structures, etc. to be created. Alternatively a 

compiler can choose to store all the necessary persistent information in a single 

segment and manage this itself. 

Module capabilities are always stored in the protected area of segments. All 

the instructions which use them are kernel instructions which have operands that 

specify a segment register and module capability number. A capability can be 

copied into the data area of a segment, but only if the corresponding metaright 

(permit read) in the capability permits this. Such a copy cannot be used as a 

capability. 

5 Distributing Standard Capabilities 

There are at least five cases in which a module executing in a particular thread 

may legitimately need a capability for the thread itself or for another module, 

where the normal distribution methods for capabilities would lead to clumsy, 

complicated and inefficient solutions. These are capabilities for the 

• Segment Manager associated with the container of the current module, in 

order to create and delete segments in that module's container, on behalf of 

the module; 

• current thread, i.e. the thread which is currently executing, needed by some 

modules for synchronisation purposes; 
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• Thread Manager for the current thread, to allow sub-threads to be created 

by an application module; 

• standard input and output modules (if any) currently associated with the 

thread, to allow appropriate modules to communicate with the user, e.g. 

current keyboard and screen devices; 

• Print Request Manager, i.e. the module which accepts print requests from 

other modules executing in a thread (see chapter 33). 

These are stored at the base of each user thread stack in an area known as the 

capability accessibility area and are set up by the Thread Manager when it cre-

ates a thread. 

The kernel provides instructions which allow the code of an executing 

module to obtain them. However, simply to make capabilities for the Thread 

Manager, the current thread (i.e. its thread capability) and/or the standard input 

and output modules available for all modules executing in a thread would poten-

tially be very dangerous from a security point of view. To ensure that only the 

modules which really need these capabilities are provided with them, the kernel 

provides a mechanism which allows it to check whether the request made by a 

module should be honoured. This mechanism is described in Chapter 26. 

The kernel provides two different capabilities for the Segment Manager 

with different access rights. These permit the possessor of the capability to cre-

ate either 

– persistent segments for operations of file modules
22

 and to link temporary 

segments to persistent segments, or 

– temporary and retained segments for enquiries and to link them to other 

temporary and retained segments. 

Since the kernel can recognise whether a request comes from an operation or an 

enquiry, the appropriate capability can be issued without reference to any con-

finement permissions. For this purpose constructors are regarded as operations 

while open routines are regarded as enquiries. 

6 Virtual Page Table Manager 

Each container has a Virtual Page Table Manager, which is responsible for 

translating virtual addresses into disc addresses. It is one of the first co-modules 

to be loaded into a container, and its mode of activity can vary from container to 

container, depending on the planned content to be located in the container. Its 

role is described in more detail in chapter 23.  

                                           
22

  Operations in Timor and SPEEDOS are semantic routines which can create and/or mod-

ify persistent information. Enquiries can only read persistent information. 
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7 Data Files, the Co-Module Manager and the Co-Module Table 

As we saw in chapter 18, access to co-modules, when they are viewed as data 

files, is achieved via a file capability which is passed as an operand to a kernel 

call instruction (see Figure 19.5). The kernel interprets this capability via the 

Co-Module Table (CMT), which is set up and managed by a Co-Module Man-

ager in each container. 

 

The structure of the CMT is fixed because it is one of the data structures 

accessed directly by the kernel
23

. The Co-Module Table is an array (i.e. a direct-

ly indexed list) of entries, one for each co-module in the container. Figure 19.6 

illustrates the basic format of the table. Each entry is logically structured as a 

segment. 

 

Since each data file is one of several co-modules in a container the contain-

er number part of the capability is modified by an 8-bit index value to designate 

which co-module in the container is intended. 

The Co-Module Manager itself occupies the first entry in the CMT. The 

kernel can locate the CMT from a pointer (at a fixed position) in the red tape of 

the container. 

The state data pointer contains the start address of the root segment of the 

persistent data of the co-module. (In the case of a program module this is a 

pointer to the single heap permanently associated with the program, see chapter 

18, section 1.3.) When a constructor creates a root segment (using the Segment 

Manager's create_persistent_root routine) the Segment Manager advises the Co-

Module Manager, which sets up the pointer in the CMT. 

                                           
23

  This is necessary because inter-module calls are interpreted via the table. 
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Figure 19.6: The Co-Module Table (CMT) 
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White-box sharing of an application's data structures (e.g. for use by a de-

bugger) can be achieved by setting the sharing co-module's State Data Segment 

Pointer to the same value as that of the application co-module. However, this 

can only occur when the application is not active. Special permission is required 

for a co-module which needs white-box functionality. 

The code module modcap entry is used by the kernel to locate the code con-

tainer of the module on file, program and cooperating co-module calls. (For li-

brary calls a code module is passed as a parameter to the library call.) Code 

modules are described in more detail section 9. 

The qualifier list modcap provides the kernel with access to a further co-

module which provides a list of the qualifiers for this co-module (cf. volume 1 

chapter 13). Its routines are called by the kernel to control the sequencing of 

bracket routines associated with the module (see chapter 24). 

The free cap QL modcap provides the kernel with access to a further quali-

fier list module which is used to bracket the module when it is being accessed 

via a free capability (cf. section 13.3 below). 

The call-back QL modcap indicates the qualifier list module which is used 

to bracket call-back calls (see chapter 28). 

The template modcap is explained in chapter 32 section 2.2. 

Each co-module in a composite module can be separately qualified and can 

have multiple qualifiers associated with it. The kernel can locate the qualifier list 

for a co-module from the module capability in the CMT. 

Each co-module in a container has a status word in the CMT indicating 

whether it requires a constructor call to initialise persistent data, whether it re-

quires open and close calls (which can create and delete retained data), and fur-

ther information about the status and current activity of the module. 

There is also an open status for the entire container (not illustrated above), 

which is maintained by the kernel. This is not associated with a particular 

open/close call, but provides the kernel and its co-modules with the global sta-

tus, e.g. whether a co-module is open at all and if so how many threads are ac-

tive in the module as readers or writers. This is relevant, for example, to deter-

mine whether an external disc can be safely removed from the node to which it 

is currently attached. 

8 Creating File and Program Modules 

In order to create a (co-)module, an entry must be made in the co-module table 

of the container in which the module will be placed. The functionality for doing 

this is provided by the Co-Module Manager's semantic routine create_module, 
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It has four parameters: 

– a code capability for the code file to be associated with the data file or pro-

gram, which it places in the new entry; 

– a file capability for a qualifier list (may be null); 

– a boolean value indicating whether the new module is a program module 

(i.e. without persistent data) or a file module; 

– a boolean value indicating whether the new module is openable. 

The "pointer to root data" field in the CMT entry is set to null
24

. The Co-Module 

Manager routine then organises the manufacture of a file or program capability, 

which inter alia holds the container number, the file index used for the new ta-

ble entry and access rights copied from the code capability; all rights and per-

missions
25

 and the owner bit are set. The routine checks that the access rights for 

semantic routines 0 (constructor), 1 and 2 (open and close routines) are correctly 

set then returns this capability to the caller. 

9 Organising Code Files 

Code files (as in conventional systems) start life as data files – usually created as 

the output of compilers and/or linkers. They organise the code in normal seg-

ments, i.e. with data, pointer and capability partitions. 

The code itself is stored in the data partitions, which can also be used to 

hold constant data segments. 

The pointer partitions can be used to link code segments together (e.g. for 

different subroutines) and provide access to constant segments. Thus the com-

piler can organise the code such that individual code and constant segments are 

separately protected (e.g. with separate bounds checks). 

The capability partitions can hold module capabilities, which can for ex-

ample provide the code with access to library and other ancillary modules (e.g. a 

spelling checker module for editor code). The capability partitions of security-

sensitive kernel co-modules can also be used to hold kernel capabilities which 

provide them with special privileges. 

In SPEEDOS a data file can be converted into a code file by calls on the 

semantic routines of a Code Manager co-module, which must reside in the same 

container as the code of the new code file. Thus possession of a capability for a 

Code Manager is a prerequisite for creating code files. System administrators 

can therefore use the distribution of Code Manager capabilities to control the 

                                           
24

  For a file module the persistent root is subsequently set up in the CMT when the Seg-

ment Manager's create_persistent_root routine is invoked, see section 7. 
25

  The permissions are described in Chapter 26. 
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right to introduce executable code into a system. When the Code Manager has 

completed a conversion operation it returns a code capability to the caller, as 

illustrated in Figure 19.7. 

 

A code capability has the same structure as a data capability except that (a) 

the index field is used to select one of several potential code files held in the 

same container and (b) the type field in the capability is set to "code". 

The primary purpose of a Code Manager is to organise a Code Table in the 

container in which it resides. Since the core kernel relies on the correctness of 

this table, the Code Manager, like the Co-Module Manager, plays a central role 

in maintaining the integrity and the security of a system. (In order to establish its 

right to create the Code Table, the Code Manager must present a kernel capabil-

ity with the appropriate access rights.) 

As in the case of a Co-Module Manager, there is only one Code Manager in 

a container. This has a separate entry for each code file module. The structure of 

a Code Table, which differs substantially from that described by Espenlaub, is 

illustrated in Figure 19.8. 

 

Each entry contains 

– a pointer to the code module's external entry point list (i.e. the entry points 

used by the kernel to locate the appropriate semantic routines of the code 

file on inter-module calls); 

– a pointer to an entry point list for the module's own bracket routines (if the 

code is for a qualifier module), to be discussed in Chapter 23; 

– a pointer to an entry point list for internal calls (see below);  

– a module capability for the list of qualifiers currently associated with the 
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semantic routines of the module, to be discussed in Chapter 24. 

Each entry in the Code Table provides information about one code file in a con-

tainer. 

9.1 Entry Point Lists 

An entry point list pointer in a Code Table entry refers to a segment which de-

scribes the information needed by the kernel to activate the various entry points 

(semantic routines, bracket routines and internal calls) of the code. An Entry 

Point List (EPL) consists of a single segment containing in its pointer partition 

an array of pointers to segments in the container holding executable code, and in 

the data partition an array of integers which serve as offsets into the correspond-

ing code segment pointer, each indicating the start address within the code seg-

ment for that routine
26

 (see Figure 19.9). 

 

For each entry point there is a status bit indicating whether the entry point's rou-

tine is an enquiry or an operation. When an enquiry is activated the segment reg-

ister which addresses the module's root data node is set to read-only access. For 

an operation it is set to read-write access. A further status bit indicates whether 

the routine can receive pointers as parameters. 

Since some or all of the code segment pointers can point to the same seg-

ment, it is possible, for example, for a compiler to compile the code of all the 

routines into a single segment, or to have a separate segment for each routine. 

EPLs are created by the compiler/linker as part of normal compilation, but the 

Code Table is created by the Code Manager. 

Within the same code container the structure allows different code modules 

to share code. This can be used for example to create a new code file which cor-

rects errors in some segments of an earlier version, or to allow code re-use, e.g. 

between a queue module and a double ended queue module. For further ad-

vantages of this organisation of code modules see Espenlaub [4] chapter 7.3. 

Based on the information in the appropriate EPL the kernel loads the in-

                                           
26

  In accordance with the RISC philosophy the SPEEDOS EPLs, in contrast with those 

used in the MONADS-PC, do not hold information about the parameters. Parameter 

checking is left to software. 
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formation from the appropriate code segment into the Code Segment Register. 

(This is a dedicated segment register which always refers to the currently active 

code segment.) The corresponding Start Address is loaded into the Program 

Counter register PC, which serves as an index into the code segment and is au-

tomatically incremented to the next instruction on the execution of normal in-

structions and modified on jump instructions. The hardware always checks that 

the PC remains within the bounds of the segment. 

9.2 Inter Module Calls, Co-Module Calls and Library Calls 

When an IMC or CMC instruction is executed, the kernel uses the appropriate 

entry in the Co-Module Table to locate the relevant code capability associated 

with the data or program file (see Figure 19.6). For LC instructions the capabil-

ity is passed as a parameter to the kernel. With this capability the kernel can use 

(a) the container number in the code capability to locate the container holding 

the code and (b) the index field to locate the appropriate Code Table. The ap-

propriate semantic routine is found by indexing into the code module's external 

entry point list. A more complete description of these and the following calls 

appears in Chapter 20. 

9.3 Bracket Entry Point Lists 

The second entry in a Code Table points to a further entry point list with the 

same format. This contains information about the code module's own bracket 

methods. These are not directly activated by inter-module and similar calls; the 

kernel activates them in the course of a call to another module, when it detects in 

the latter's Co-Module Table or Code Table that there is a module capability for 

a Qualifier List. The activation of bracket routines is described in more detail in 

Chapter 24. 

9.4 Internal Entry Point Lists 

An internal call (IC)
27

 pushes the current value of the Code Segment Register 

and the Program Counter to the top of the current kernel thread stack and loads 

the details of the new code segment into these registers. The destination of the 

call is specified as an entry point number into a second entry point list, called the 

Internal EPL or IEPL. The IC instruction has an integer operand which serves as 

an index into the IEPL. 

The kernel provides no support for passing parameters or return values, nor 

does it provide support for any particular high level programming language 

scope rules. These issues are best left to the compilers of the various languages. 

                                           
27

  This is not described in Espenlaub's thesis. 



Chapter 19 CONTAINERS AND THEIR CONTENTS 36 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

Note: Internal calls are only needed when a subroutine is located in a dif-

ferent code segment from the calling subroutine. The compiler can completely 

take care of internal calls within the same segment, provided that it has condi-

tional and unconditional jump instructions and a jump subroutine instruction, all 

of which use within container offsets for code addresses. 

9.5 Subthread Entry Point Lists 

Creating a new subthread (see chapter 20 section 8.2, chapter 31 section 2.5) 

requires that the kernel has access to a Subthread Entry Point List. This has the 

same structure as other EPLs, see Figure 19.8. How this is used is explained in 

chapter 31 section 2.5. Subthreads have no explicit parameters. Like other rou-

tines they can be given read-only or read-write access to the state data of a mod-

ule. They can make calls (e.g. inter-module calls, internal calls). They are brack-

eted in the same way as the module in which they are activated. 

9.6 Return Instructions 

The same return instruction is used for all calls except for bracket routines; the 

latter are activated by the kernel, and must use a bracket_return instruction). 

These reload the stored values from the corresponding call. They can behave 

differently (see chapter 31 section 2.7), depending on the corresponding call and 

on whether they reach a backstop, i.e. a special marker on the thread stack which 

indicates the logical stack bottom. 

10 Organising Process Files 

Like code files, user process files start life as data files, which in this case con-

tain a Thread Manager co-module. The latter creates a Thread Table (analogous 

to a Co-Module Table and a Code Table) with one entry for each thread within a 

process container. When a new thread is created (by invoking a further semantic 

routine of the Thread Manager) it returns a thread capability (Figure 19.10) to 

the caller. 

 

The semantic methods permitted in a thread capability can be used to con-

trol the thread (e.g. to suspend it or activate it). These differ from data capabili-

ties and code capabilities in that the index number is used as an index into the 
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Thread Table (i.e. it is a thread number) and the type field indicates that the ca-

pability is a thread capability. 

The thread table itself is simply a segment containing an array of pointers 

(one per thread of the process), which the kernel accesses to locate further in-

formation about each thread. This includes a linkage stack for the thread and the 

contents of all the CPU registers used by the thread, as well as some pseudo-

registers which will be explained in later sections. The register values and other 

status information are stored when a further kernel co-module decides that a 

thread should no longer actively execute on a CPU, and are re-loaded when it 

decides to schedule the thread. 

The linkage stack contains the linkage information which is extended when 

the thread executes a kernel call instruction and is contracted when the thread 

exits from the currently active module. The parameters and return values of in-

ter-module calls are passed via an input segment and an output segment on the 

thread stack. The kernel ensures that pointers cannot be passed. The passing of 

parameters is described in more detail in Chapter 20. 

11 Multiple types in a Single Container 

The above discussion perhaps leaves the reader with the impression that file 

containers, code containers and thread containers (after the last two have been 

established in a data container) are quite separate container types, the functional-

ity of which does not overlap. This is how the SPEEDOS operating system nor-

mally uses these containers. But such usage need not have this exclusive charac-

ter in all operating systems which run under the SPEEDOS kernel. For example 

in an operating system which uses the out-of-process model (see volume 1 chap-

ter 8) it is conceivable that a single container might hold the data and the code of 

a module and at the same time one or more threads which are dedicated to exe-

cuting this module. Thus the coexistence of a Co-Module Table, a Code Table 

and a Thread Table within a single container is possible. Even in a SPEEDOS 

operating system environment it might, for example, be sensible to place the da-

ta and the code of a singleton module (a module where the code has only a sin-

gle instance of the data) in a single container. 

12 Creating a New Container 

A new container is created at the request of a user with a capability for the Con-

tainer Manager which includes the appropriate access right. One of its functions 

is to allocate a world-wide unique identifier for the new container. 

In the course of creating a usable container a number of security sensitive 

co-modules (e.g. instances of the Co-Module Manager, the Segment Manager 

and the Virtual Page Table Manager) must be installed and instantiated. 
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12.1 Preparing the Security-Sensitive Co-Modules 

Such modules typically consist of (a) a core part, which provides mechanisms 

that are vital for the kernel's correct functioning, and (b) a more flexible support 

part which can be tailored to suit the needs of particular environments and user 

requirements. 

To maintain this flexibility without risking the danger that sensitive mecha-

nisms are implemented either maliciously or erroneously by individual pro-

grammers, the core kernel distribution includes a rudimentary set of pre-

prepared modules which can be extended in different ways at different nodes 

using the Timor type derivation and code re-use techniques. For this reason, 

most of what follows can be viewed as examples of how these co-modules 

might be extended, rather than as a definitive version of a SPEEDOS operating 

system. 

12.2 Protecting the Code Capabilities for Security-Sensitive Modules 

Because the code capabilities which are needed to construct these modules are 

themselves very sensitive, they should not be made generally available. A tech-

nique for restricting their circulation to the modules which need them is to store 

them in the constant segments of the modules which use them (e.g. a capability 

for the Co-Module Manager in the constant segments of the Container Man-

ager's code). Hence when the Container Manager is called to create a new con-

tainer, it already has a code capability for a Co-Module Manager, which it can 

use to construct an instance of the latter for the container. Similarly the Co-

Module Manager already has at hand capabilities allowing it to create a Segment 

Manager and a Virtual Page Table Manager for a new container. 

12.3 Constructing the Initial Data 

Some of the kernel co-modules constructed in the course of creating a new con-

tainer need to have a persistent data root in page 0 of the new container, in some 

cases at specific addresses known to the kernel. To allow them to set up their 

persistent roots, their constructors (invoked by calling routine 0 via the respec-

tive code capability) need direct access to page 0 of the new container. For this 

reason a special kernel instruction
28

 (load_page0) requests the kernel to load 

segment register 5 (used normally to address the persistent root segment of a 

module
29

) such that it has read-write access to the new container's first page
30

. 

                                           
28

  This is one of several new kernel instructions, not mentioned and in some cases not en-

visaged by Espenlaub. 
29

  see Chapter 18. 
30

  It will become clear in chapter 23 how the first page of a container is physically allocat-

ed space on disc. 
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To ensure that this instruction cannot be misused by other modules, a kernel ca-

pability must be presented as an operand. This also is stored in the constant data 

of the respective code module. The remaining operands are passed in the general 

purpose registers. (At this stage in the construction procedure the module has no 

persistent data except in these constant segments.) 

12.4 The Container Manager newContainer Routine 

Like other sensitive routines, an interface routine of the Container Manager 

which creates a new container can only be called by modules which have a Con-

tainer Manager capability in which the appropriate semantic right is set. The 

caller passes to the container creation routine 

– an integer parameter, which is passed on to the constructor for the Co-

Module Manager, defining the maximum number of co-modules to be cre-

ated in the container (to determine the length of the Co-Module Table), and 

– a file capability for a Disc Directory Manager, which determines the disc on 

which the new container is to be placed. If a null parameter is passed this 

may imply placement on a standard disc (e.g. the node's main system disc). 

The container creation routine returns two capabilities to its caller: 

– an owner capability for the container and 

– a file capability with appropriately reduced rights for its Co-Module Man-

ager. 

The kernel's role in this activity is described in chapter 23 section 6. 

12.5 The Disc Directory Manager 

The capability for the Disc Directory Manager provides evidence that the caller 

can create a container on the appropriate disc. The container creation routine 

uses the capability to call the Disc Directory Manager's container creation rou-

tine, which allocates a new container number (within disc), enters the new con-

tainer into its disc directory and allocates to the container a single page on disc 

which becomes its virtual page 0. This suffices to allow the Co-Module Manag-

er to create a Co-module Table (CMT). If at a later stage page 0 is not in the 

main memory, the Disc Directory Manager resolves this page fault without ref-

erence to the Virtual Page Table Manager for the container. Hence the following 

steps can be carried out without requiring the intervention of the VPT Manager. 

12.6 Installing the Co-Module Manager 

The main function of the Co-Module Manager is to create and manage the CMT 

of the container. When the Container Manager calls the Co-Module Manager's 

constructor, this initialises the CMT for the container; the latter has a fixed posi-
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tion in page 0, which is known to and used by the kernel. 

When the Container Manager's create routine (still executing in the new 

owner's thread) invokes routine 0 (the constructor) of the Co-Module Manager 

code capability, the latter gains access to page 0 of the new container, as de-

scribed above. At this stage there is no physical memory behind virtual page 0. 

Hence the first attempt to access page 0 will cause a page fault interrupt, which 

can be handled by the Disc Directory Manager module without reference to a 

(still non-existent) Virtual Page Table Manager. 

Thereafter the Co-Module Manager can access the page to create and set up 

the Co-Module Table (CMT). It creates a reference to its own file data (entirely 

contained in page 0) in the first entry (i.e. entry 0), such that the "Pointer to State 

Data Segment" field actually points to its own root segment31. 

It places a copy of its own code module capability in the appropriate field 

in the CMT of entry 0 (the "Modcap for Code Module" field). It can obtain this 

in a parameter to its constructor, since the Container Manager already has this 

capability. The semantic right to call routine 0 is removed from this capability, 

since the constructor should not be called a second time. Thereafter it is possible 

for other modules to call the Co-Module Manager instance for the new contain-

er, provided that they have a capability allowing this. 

12.7 Installing the Remaining Security Sensitive Modules 

At this point normal calls to the Co-Module Manager can take over the task of 

initialising the new container. At least the following additional security-sensitive 

modules need to be installed: 

– a Segment Manager, and 

– a Virtual Page Table Manager. 

Further co-modules which may need to be created include a debugger module, a 

Code Manager, a Thread Manager and a Thread Control Manager, depending on 

the purpose of the container. 

As these are all security-sensitive co-modules related to kernel activity, 

they must also be pre-approved modules. In order to install the required mod-

ules, a new container owner can make a selection from a pre-existing list of code 

capabilities (held in the Co-Module Manager's constant segments), using the 

createSecureMod routine. This returns a capability for the newly created mod-

ule, which is typically not the owner capability, but a capability with reduced 

rights corresponding to the actions which normal users can invoke. The owner 

                                           
31

  Espenlaub assumes that the CMT is the root segment, but this is not actually necessary, 

provided that the CMT is located where the kernel expects to find it. 
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capability is either retained by the Co-Module Manager or deposited in a special 

directory holding owner capabilities for all the security-sensitive modules asso-

ciated with the container). 

A modType parameter indicates which type of secure module is to be creat-

ed (e.g. Segment Manager, Virtual Page Table Manager, debugger, etc.), and a 

selector parameter indicates which of the available alternatives for this type of 

module is to be installed. 

For each relevant new co-module, the Co-Module Manager activates rou-

tine 0 (the constructor) of the corresponding secure code module, which in ap-

propriate cases executes the kernel's load_page0 instruction to gain access to 

page 0 of the container, using a similar pattern to that described above. 

12.8 Creating Normal Modules 

It is the Co-Module Manager's responsibility to ensure that the security sensitive 

modules required in the container are installed before its owner can create nor-

mal co-modules in the container. 

In this case a modType parameter indicates whether the new module is a 

normal file module, a cooperating co-module or a library module which requires 

a persistent root. 

Converting a normal data file into a code module is not an activity of the 

Co-Module Manager but of a separate Code Manager module (which must have 

been installed as a security sensitive co-module before the compiled data file can 

be converted into a code module). 

13 Copying Containers 

The copying of containers in SPEEDOS is a more complex issue than at first 

meets the eye. There are two reasons for this. 

i) A SPEEDOS container does not simply hold data or code, but it also in-

cludes security-sensitive co-modules which cannot simply be copied. An obvi-

ous example is the Virtual Page Table Manager, which holds disc addresses rel-

evant only to the current container. For this reason there are always two phases 

in copying a container. The first is to create a new file (for the copy), as de-

scribed above in section 12. The second is to copy the required user information 

into this container. Relevant security related co-module information, in particu-

lar the Virtual Page Table Manager information, must be created anew for the 

copied module. 

ii) The second reason for the complexity is that different operations must be 

provided for different purposes. For example a user's aim might be 

– to make a temporary backup of changes as they are being made (e.g. when 
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editing files), such that the file retains the same identifier, i.e. can continue 

to be accessed by the same capability). 

– to make a copy which the owner, or some other user, can use independently 

of the original. 

– to archive the container for use as a backup in case of failure in the original. 

– to distribute software to purchasers. 

– to replicate the container for use in parallel on different nodes at geograph-

ically distant locations (e.g. to reduce internet traffic). 

– to replicate the container for immediate use on a backup machine when the 

main machine encounters a problem requiring it to close down. 

Such different purposes can lead to copy operations acting differently, especially 

with respect to the handling of capabilities embedded in the container to be cop-

ied. Not all such copy operations need to be provided on every SPEEDOS sys-

tem or for every container on the same system. The first three aims are likely to 

be needed on a regular basis for many containers on many systems and imple-

mentations of these are therefore now briefly discussed. Before doing so we dis-

cuss some fundamental issues relating to the copying of containers. Discussion 

of other aims, e.g. which involve the use of a network of computers, is post-

poned to later chapters. 

13.1 Fundamental Copying Issues in a SPEEDOS Environment 

In some systems copying is problematic because of the pointers which may be 

contained in a file. Some of the problems which these raise in other systems 

were discussed in volume 1 chapter 9. 

In SPEEDOS there are two kinds of pointers 

• internal pointers between the segments in a container, and 

• capabilities (i.e. external pointers between different files). 

Internal pointers in SPEEDOS would not be a problem if an entire container 

were to be copied page by page. The reason for this is that "short" pointers (i.e. 

within container addresses) used to provide the cross-references between the 

different segments in a container are relative pointers within the container. 

However, the indiscriminate copying of capabilities can create protection 

problems. Capabilities are discussed in more detail in chapter 26 but at this stage 

it is essential to know that 

a) only one owner capability can exist for each container and for each module 

within a container; 

b) other capabilities can include restrictions which do not allow the capability 
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to be copied. 

To assist in controlling such situations, the Segment Manager provides a seman-

tic routine which indicates how many owner capabilities exist in the user module 

segments of a container and how many other restricted capabilities exist. It also 

provides a semantic routine which locates them. 

13.2 Temporary Backup of a Container (e.g. while Editing a File) 

In conventional systems it is normal practice for text editors and similar pro-

grams to create a second copy of a file or to record changes, thus allowing the 

user the option to restore the original file content if he so decides when bringing 

his editing session to completion. Such programs often also have a facility 

which allows the programmer to return to the last state of the file recorded in the 

file system. 

This raises two issues for SPEEDOS systems. First, because the virtual 

memory is persistent and no separate file system is provided, everything is au-

tomatically "saved" by the virtual memory system. Second, if the file is simply 

copied it will have a new identity and consequently capabilities for the file held 

by other users would be implicitly revoked. There are several ways to handle 

these issues. Here is just one of them. 

When the editor is activated, it copies the file's segments and thereafter 

makes the user's modifications to this copy. But the copying of the existing file 

does not entail creating a new file. Instead both "files" are held together in the 

same co-module. This is achieved by the editor, when first creating the file, by 

attaching to the root node two new segments. The first of these is then actually 

used as if it were the root node. Then when the file has to be edited, it first 

makes a fully copy of the existing file to the second node and edits this version. 

The user can subsequently use an editor-supplied "save" command, which 

causes the editor to write the second "root" to the main "root", leaving the file in 

the edited state. Whether it deletes the earlier version of the file or simply leaves 

it as a backup, thus allowing the user to revert to the unedited version if he 

wishes, is a decision for the editor design. 

This solution also suggests how previous versions can be maintained. The 

persistent secondary root simply needs to maintain a series of pointers allowing 

access to previous versions of the file. At the start of an editing session the edi-

tor can then allow the user to select which version he wishes to open. 

The approach described above has the advantage that a single file container 

is used throughout, and no new capabilities need be created and distributed. 

No attempt has been made to optimise this solution, since this lies within 

the realms of normal application programming, and no additional system func-
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tionality is required. 

13.3 "Simple" File-to-File Copying 

There are two fundamentally different ways of approaching the task of copying 

a container or an individual file (which is addressed via a new capability). The 

simplest (but not necessarily the most efficient) way is to create a new container 

and then use a loop, which continuously reads a record (or other logical unit) 

from the file to be copied (via its semantic routines) and writes this to the new 

container which it has created, until the file has been completely copied. This 

requires no special precautions in the very simple case and all the usual safe-

guards for protecting files apply. 

But what is the "simple case"? The following conditions must apply: 

i) The file to be copied either (a) contains no pointers, or (b) where internal 

pointers are used these should be hidden via semantic routines. 

ii) The copying program must either contain no owner capabilities or non-

copyable capabilities or the program must know how these are to be hand-

led. 

Condition i)(a) will only be fulfilled in the simplest of cases (e.g.  a small 

unstructured file, or one where the internal structure does not use pointers). 

However, there are many cases where condition i)(b) can be fulfilled (e.g. where 

the file is a sequential file with a semantic routine "get next" (and a correspond-

ing "put next"), whereby internally the records may (or may not) be linked by 

pointers. 

Condition ii) will often be met. The best way of course will be for the user 

to avoid such problems entirely by ensuring that all capabilities in the file are 

copyable
32

. While this is a secure way of copying files, it is not the most effi-

cient, and it will not easily work for all kinds of file. For example long video 

files cannot usually be broken down into "records", and although they will rarely 

contain capabilities, using this method involves copying the file three times, i.e. 

once into the parameters for the copy routine, once from its input parameters to 

its output parameters and once into the final file! Clearly an alternative tech-

nique is needed. 

13.4 Page by Page Copying 

Such an operation cannot be trusted to unprivileged user level software since it 

implies direct access to the page tables of the container. This requires that the 

                                           
32

  In a later part of the book, in a discussion of user-level activities, it will be suggested 

that users should in any case organise their capabilities in such a way that normal copy-

ing of most files will avoid these capability issues. 
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Virtual Page Manager's pages (including the page tables) can be distinguished 

from the rest of the container's content, and will also be dependent on the capa-

bilities contained in the container; this implies that the Segment Manager must 

also be involved in the operation. For these reasons such a copy operation is a 

privileged operation, and must be provided by the system. Hence the Container 

Manager provides an operation, which gives the user a choice of actions to be 

taken with respect to "problematic" capabilities in the container. This method is 

explained in more detail in chapter 23 section 7. 

13.5 N-ary Copying of a Container 

N-ary operations are operations involving two or more files, often of the same 

type (see chapter 18 section 9). In SPEEDOS these are handled as operations in 

which files passed as capability parameters can be accessed via their root seg-

ment. The capability for an n-ary parameter, known as a free capability, must 

have a special access right set which allows this (see chapter 26). Further re-

strictions are that n-ary parameters allow only read access to the file data and 

that a module may not be used concurrently as a free capability and via a normal 

inter-module call, unless the inter-module call claims read access only to the 

file. For this purpose the status word in the Co-Module table (see Figure 19.6 

above) holds a count of readers. 

This copying method allows users to avoid the rule which forbids the pass-

ing of pointers between modules, but the rules regarding owner capabilities and 

non-copyable capabilities are strictly followed. This method is suitable, for ex-

ample, for copying video files (and thereby sidesteps the need to copy such a file 

three times). But it is not reserved for video files; it can be used also for other 

files, e.g. those with complex internal segment structures, but also for simple 

files. 

The actual copy procedure requires that a new file first be created as de-

scribed in section 12 then when this is activated it calls the kernel instruction 

load_free_cap (see chapter 18 section 8) in order to gain access to the data of 

the file to be copied. If it contains "forbidden" capabilities then the operation 

will fail unless the copy operation (which must be a semantic routine of the file 

type being copied) knows how to deal with them. 

13.6 Archival Backup 

The issues involved here include recovery of an entire system after failure, 

which is a quite complex issue that cannot be considered without also consider-

ing other issues such as system start-up. A discussion of system backups is 

therefore postponed to a later chapter. 
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13.7 Other "Copying" Requirements 

The remaining themes mentioned above (distribution of software to purchasers, 

replicating containers for use in parallel on different nodes at geographically dis-

tant locations and replicating a container for immediate use on a backup ma-

chine) are also advanced issues which cannot be dealt with at this point. 

14 Converting Modules to a Different Format 

The conversion of user data from one format to another can of course be under-

taken internally, provided that the related code manager is also designed to cope 

with the new format, but the more challenging issue arises when the result of a 

conversion is to be accompanied by a change in the code manager. 

In such cases the actual conversion operation requires a code manager 

which understands both the old and the new formats for the data. The best way 

to achieve this is to create an empty container for the new format and pass to its 

conversion routine a free capability for the file to be converted. Alternatively if 

the new module is to be placed in the same container as the old module, the file 

root for the old module could be passed as a parameter to a CMC call (see chap-

ter 17 section 7), assuming that the code module also supports this facility. 

15 Deleting Containers 

The container manager provides a basic deletion interface routine which deletes 

an entire container. Its first parameter is a capability for the container to be de-

leted, which must include the generic right delete. This routine only deletes the 

container if the latter has no active co-modules. 

A further parameter to the container manager's delete routine indicates 

whether deletion is to proceed if it contains owner capabilities. This is signifi-

cant because if an owner capability is deleted, the basic SPEEDOS system pro-

vides no further way of controlling the container (including deleting it). Howev-

er, individual systems could add a further routine in the container manager 

which manufactures and returns a new owner capability to replace those in the 

deleted module, returning this to the caller. In this case it is important that the 

extension (a) checks that the container still exists, (b) checks that the owner of 

the calling thread is in fact the owner of the container, (c) notes in the appropri-

ate containers details indicating when the new capability was created and (d) 

provides a further interface routine providing the owner of the container with 

access to this information, to ensure that the interface has not been misused. 

If a user attempts to use a capability for a deleted container or any item in 

it, this results in an error (signalled as a result of a failure to resolve container 

identifier in the capability). 
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Since the main purpose of a container is to hold a single application module 

and its related co-modules the system does not provide a mechanism for deleting 

a single module within a container. However, such a service could be added by 

extending the co-module manager and related modules. 

16 Renaming Containers and Modules 

One simple but drastic way of revoking capabilities is to have them renamed 

(i.e. provide them with a new virtual memory identifier). This automatically 

makes capabilities containing the old identifier unusable. From the viewpoint of 

a user owning such capabilities, it is as if the container or modules within it had 

been deleted. 

To rename a container basically involves the Container Manager in invok-

ing the disc manager of the disc on which the container resides, in conjunction 

with the Virtual Page Manager of the container concerned to allocate a new 

"Container # in Disc", then returning a new owner capability to the caller. As in 

the case of deleting a container, the activity can only be carried out if the con-

tainer is inactive. No facility is provided to rename individual modules. 

Notice that renaming, although it involves issuing a new container number, 

does not mean that the entire data must be moved. Instead it can be implemented 

by indirection, i.e. the disc directory entry for the new container number can be 

made to refer to the existing container and the disc directory entry for the old 

container number can be invalidated. 

17 Changing the Ownership of a Container 

One of the identification fields of a container (see Figure 19.2 'Container num-

ber of current owner') identifies the current owner of the container. The Con-

tainer Manager provides a semantic routine change_owner, which normally al-

lows the field to be changed. The instruction can only be carried out under the 

following circumstances. 

a) The caller of the routine is the current owner. 

b) The new owner is verified to exist. 

If these checks are positive the container manager replaces the old entry with 

that of the new owner name in the appropriate identification field. The 

change_owner routine has two parameters, a capability for the container and a 

capability for the original container of the new owner, used to create him as a 

new user. The capabilities must contain a valid change_owner metaright. There 

is a protected kernel instruction which the container manager can use to effect 

the change. 
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Chapter 20 

Managing User Processes 

 

The management of processes and the scheduling of their threads (the active 

components of computer systems), are key aspects of a security kernel. The gen-

eral principles governing these activities, including basic scheduling algorithms 

and synchronisation techniques, were discussed in volume 1 chapter 8, while 

chapter 15 outlined the role played by processes in the general model on which 

the SPEEDOS design is based. In this chapter we consider in more detail how 

the SPEEDOS kernel manages user processes and organises the calls which a 

thread makes as it moves from one module to another. Chapter 21 discusses how 

the activity of synchronising using threads is organised; in chapter 22 the sched-

uling of user and kernel threads is described. 

1 Processes and Threads 

Parallel computation (sometimes known as multiprogramming, multitasking or 

multithreading) is a feature of almost all modern computer systems. One of its 

aims is to ensure that the CPU is used to best advantage in parallel with the 

much slower disc and other input/output devices. For example if a thread
33

 is 

executing on a CPU and this initiates a disc access (either explicitly to the file 

system in conventional systems or implicitly as a result of a page fault in 

SPEEDOS or in conventional systems), rather than let the CPU lie idle until the 

disc access has completed (which could result in the loss of millions of CPU in-

struction executions), another thread is selected to use the CPU. The decision 

about which SPEEDOS thread will run next is the job of the User Thread 

Scheduler, the role of which is discussed in chapter 22. The important thing 

about parallel computation is that it is a technique which attempts to optimise 

the use of the computer's hardware resources (CPU, discs, I/O devices). 

                                           
33

  A thread was often called a process in earlier literature and research papers on operating 

system design (including the MONADS system). 
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A user process in SPEEDOS can be decomposed into multiple threads. The 

intention is to allow such optimisation to take place within what the user sees as 

a single computation. However the way this might happen is not determined by 

the system; the user decomposes his task into multiple threads as is most con-

venient for him. This is not unusual in modern operating systems, but the way it 

is organised in SPEEDOS is somewhat unconventional. 

In the operating system literature a thread is usually considered to be a 

lightweight process because parts of its process state are shared with other 

threads of the same application, thus allowing scheduling switches between 

threads of the same application to be optimised. This is not how threads in 

SPEEDOS are defined. While they may indeed cooperate to achieve a single 

application aim, in the SPEEDOS architecture they are not restricted to being 

executed in a single module but can invoke other modules independently of each 

other, as part of the in-process model. 

2 Process Containers and Co-Modules 

A process, like other major entities in SPEEDOS, is created in a container, 

which already holds a Co-Module Manager, a Segment Manager and a Virtual 

Page Table Manager co-module. What makes the container into a process con-

tainer is that two further co-modules, a Thread Manager and a Thread Control 

Manager
34

, are also loaded into it. The purpose of the Thread Manager is to cre-

ate and manage one or more threads comprising the process; the Thread Control 

Manager is responsible for organising their dynamic execution, in association 

with the User Thread Scheduler. 

There is no defined limit on the number of process containers which may 

be owned by a single user. But since each container always has a single owner, 

all the threads of a particular process belong to the same user. A process con-

tainer can have up to 255 threads (and subthreads), which are distinguished in 

thread capabilities by their index number (see Figure 19.10). 

3 Thread States 

At any point in its execution a thread has a state, which progresses with each 

instruction that it executes. From the viewpoint of the User Thread Scheduler, 

the state of a particular thread is defined primarily in terms of the values in its 

CPU registers (e.g. the general purpose and the segment registers) and in its ker-

nel's pseudo-registers (e.g. its container registers) while it is executing. 

When the User Thread Scheduler decides that a thread should no longer ex-

                                           
34

  These modules, which appear in process containers, should not be confused with the 

User Thread Scheduler mentioned earlier. 
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ecute on the CPU, the state of its CPU registers and pseudo-registers must be 

saved for restoration when it later continues, and the state of the newly selected 

thread must be loaded into the CPU registers from the memory locations where 

they were saved. This is part of the activity of thread scheduling, which is dis-

cussed in more detail in the chapter 22. 

4 The Thread Manager Co-Module 

A Thread Manager co-module is created in a new process container as a result of 

some other thread invoking the constructor of the Co-Module Manager in the 

new container
35

. When the constructor of the Thread Manager is invoked, this 

creates a Thread Table (Figure 20.1), which is managed by the Thread Manager 

and is used by the core kernel, which has a pointer to the thread table in page 0 

of the container. 

 

A Thread Table consists of an array of pointers to the information describing 

each individual thread of the process
36

. The segment referenced by a thread table 

pointer, called a Thread Stack, holds the current state of the corresponding 

thread (its current register values when it is inactive, the addressing environment 

of the current module in which it is/was active) and its inter-module linkage 

(Figure 20.2). The thread number in a thread capability (see Figure 19.7) serves 

as an index into the Thread Table. 

                                           
35

  When a Co-Module Manager creates a Thread Manager instance it prepares a thread 

capability for the latter which confers the rights to create and delete subthreads (and, as 

we shall shortly see, to make limited calls to the Thread Control Manager). It passes the 

thread capability to the kernel and the latter places it in the red-tape area of the contain-

er, whence modules with the appropriate permissions set can obtain a copy (see chapter 

19 section 5). 
36

  In reality it is a segment containing a pointer for each thread stack in the pointer section 

and an indication of which threads exist in the data section. 
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The Thread Manager offers, inter alia, an interface routine createThread, 

which expects as parameters a capability for a start module, an integer defining 

the semantic routine to be called, a string defining a name by which the thread is 

to be known and a capability which defines its root module. It creates a kernel 

stack for the thread, placing a 'thread backstop' at the bottom of the stack and 

prepares it to make its first inter-module call (including a parameter segment 

which provides access to the root module). 

This routine invokes the Thread Control Manager to advise the existence of 

the thread and to activate it before it calls the User Thread Scheduler, which 

then calls the kernel (see section 8.2). 

4.1 Thread Stacks 

Each thread stack is a single segment and the information in it is held in the data 

section of the segment. Although this holds much security-sensitive data which 

would normally be held in separate segments (e.g. each linkage section could in 

principle be a separate segment, with pointers to parameter segments, etc.), this 

would be quite inefficient for the kernel to manage, and so it is simply treated as 

data by the kernel. This is not a security risk, since only the kernel can address 

information on a thread stack
37

. 

The kernel maintains two private registers for each thread stack: a Top of 

Stack Pointer and Current Local Base Pointer. The rest of the thread stack con-

sists of linkage information and parameters relevant to the kernel's role in sup-

porting inter-module and similar calls. 

Chapter 31 describes in more detail how users and their processes, threads 

and subthreads are created. 

                                           
37

  As we shall see in section 6, the kernel provides user threads with access to parameters 

for inter-module and similar privileged calls via segment registers, which are held on 

the thread stack. 

Figure 20.2: A Thread Stack 
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5 Application Level Multithreading 

Normally a user creates one or more main threads in a process container and 

provides them with a capability or capabilities via which they can make inter-

module calls to application modules
38

. It is usually the application module's code 

(not necessarily the initial module of a thread) which decides how the computa-

tion should be further decomposed into parallel subthreads (more equivalent to 

threads in conventional systems), as often only the programmer of a module 

knows how to decompose a particular computation into subtasks. 

Espenlaub's thesis does not discuss how a module can create parallel sub-

threads dynamically from within the code of the module itself. In order to do 

that, a semantic routine of the Thread Manager for the active thread must be 

called, and this requires a module capability for the appropriate Thread Manag-

er. The difficulty is that threads of different processes which call the module 

each have a different Thread Manager instance, so that different capabilities are 

potentially required for different threads. 

To make such capabilities accessible to application modules, the Co-

Module Manager, as part of its Thread Manager creation activity, passes a capa-

bility for this to the kernel, which places it at the base of the container holding 

the process's Thread Manager. This can be made available to application mod-

ules as described in chapter 19 section 5, using the kernel instruction 

get_subthread_cap , which returns a capability for the Thread Manager to the 

requesting module, in which only the semantic right create_subthread is set, 

provided that the corresponding permission is set in the Thread Security Regis-

ter (see chapter 26). 

To create a subthread the application module can then invoke the Thread 

Manager's interface routine createSubthread. This routine expects as a pa-

rameter the number of an entry point in the Subthread Entry Point list (see chap-

ter 19 section 9.5) for the currently active module. The Thread Manager then 

creates a thread stack for the new subthread, places a 'subthread' backstop on the 

stack and sets up a thread state for the subthread. It then calls the Thread Control 

Manager, which in turn calls the User Thread Scheduler to schedule the sub-

thread. 

Subthreads, like main threads, can have local call stacks, make inter-

module calls, etc. If subthreads create further subthreads the rules above are ap-

plied as if the creating subthread were the main thread. Otherwise no special re-

lationships are defined between main threads and subthreads, thus allowing dif-

ferent compilers to adopt different strategies. Any special rules concerning sub-

                                           
38

  This will be more fully described in chapter 31. 
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threads (e.g. that the thread which creates a subthread must be informed when a 

subthread is deleted, or that subthreads must be automatically deleted if their 

creating thread is deleted), are the responsibility of the application module. Ex-

tensions to the Thread Control Manager might be added in Timor to assist in 

this. 

Creating threads and subthreads is described in more detail in chapter 31 

section 2. 

6 Parameter Passing Strategy 

The RISC movement developed various strategies regarding the passing of pa-

rameters on procedure calls. However these strategies were concerned with the 

optimisation of procedure calls within a single program and were therefore not 

motivated by security concerns, unlike the SPEEDOS protected calls. Further-

more the RISC movement did not base protection on segment registers. Conse-

quently the RISC techniques do not provide an adequate model which can simp-

ly be adopted for SPEEDOS calls. 

6.1 Espenlaub's Attempt to Adapt a RISC Strategy 

In Section 6.6.2 of his thesis Espenlaub defines a strategy for parameter passing 

and register management for inter-module calls in SPEEDOS based as far as 

possible on RISC ideas. This allows general purpose registers to be used for 

passing normal data values, and in theory for segments to be passed via segment 

registers, and for module capabilities to be passed via "module capability regis-

ters". However, the uncontrolled passing of valid segment registers (which in 

Espenlaub's design have full 256-bit virtual addresses) presents a potential threat 

to the strategy of ensuring that pointers do not escape from a module (as this 

would make garbage collection – and synchronisation of data accesses – impos-

sible). Espenlaub goes on to say that "it is explicitly permitted by the SPEEDOS 

kernel design to omit the module capability registers completely and reference 

module capabilities with memory operands" [4, p. 167].  In the new SPEEDOS 

design module capability registers are not supported, as this would add consid-

erable cost to a hardware design without offering commensurate benefits. 

Espenlaub continues that "since the number of registers is in some cases 

not sufficient to pass the parameters and/or return values, it is also possible to 

pass exactly one segment register to the called module and/or to the calling 

module". In the new SPEEDOS strategy (which for example includes the deci-

sion to use addresses with SCIDs rather than full 256 bit virtual addresses) a var-

iant of this becomes the rule rather than an option for inter-module and other 

kernel organised calls. Furthermore, the segments addressed are held on the 

thread stack, as will be described below. Consequently the difficulties men-
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tioned above no longer exist. Furthermore this approach solves a potential prob-

lem which Espenlaub does not discuss, viz. that under certain circumstances – to 

be discussed in chapter 26 – bracket routines (which were introduced in chapter 

13) may need to examine parameters
39

. If these can be passed in arbitrary regis-

ters it would be impossible to implement bracket routines. 

6.2 The New SPEEDOS Strategy 

There is only one way of passing all parameters for an IMC and other secure call 

instructions, i.e. via a stack-based "parameter segment", addressed by a dedicat-

ed segment register controlled by the kernel. (A thread's call stack, it will be re-

called, is organised entirely by the kernel as a single segment, but the kernel cre-

ates for applications the impression that the parameters are passed in a separate 

segment accessed via a segment register.) 

The access rights in the segment register for the input parameters are set to 

"read only" access by the kernel as part of the IMC instruction, because return 

parameters are passed in a separate segment, which is accessible to the caller via 

a further segment register after the return. 

This strategy applies only to the kernel call instructions, and does not pre-

vent compilers from using a RISC strategy for parameter passing between the 

internal procedure calls of a module. 

6.2.1 Parameter Segment Registers 

Four segment registers are used for the passing of parameters and cannot be 

used for any other purpose. They can only be set and invalidated by the kernel. 

Their uses are shown in Figure 20.3. 

 

The following kernel instruction creates two "segments" at the top of the 

thread stack (with the return segment above the input segment
40

). 

create_imc_params (int in_data_length, int in_modcap_count, 

         int return_data_length, int return_modcap_count) 

                                           
39

  On the other hand Espenlaub discusses the need to protect access to parameter lists from 

unauthorised bracket routines, which could be a threat to security (see Espenlaub sec-

tion 4.3.2). This issue is discussed in chapter 24. 
40

  The reason for this will become clear in chapter 24. 

Figure 20.3: Dedicated Parameter Segment Registers 
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It is executed by a calling module in preparation for making an inter-module (or 

similar) call. The in_data and in_modcap items describe those parameters 

which a caller wishes to pass to the called module, while the return_data and 

return_modcap parameters define those which it expects to receive on the re-

turn. 

The instruction is implemented directly by the kernel without reference to a 

Segment Manager. The kernel creates both segments on the current thread stack 

(with the return segment below the input segment) and initially loads Segment 

Register 2 to access the segment intended for the module to be called, with 

"read-write" access rights. The instruction invalidates Segment Register 3, but as 

part of the return instruction the latter is set to address the return segment (with 

"read-only" access). On return to the module Segment Register 2 is invalidated 

by the kernel. 

If parameter segments already exist when this instruction is executed, these 

are deleted and a new pair of segments is created at the top of the kernel's thread 

stack. 

When a calling module has set up its parameters it can execute the kernel's 

inter-module call instruction. The called module can read its parameters via 

Segment Register 0 (which the kernel sets to read-only mode) and can prepare 

its return values via Segment Register 1 (which the kernel sets to read-write 

mode). 

Segment Registers 0 to 3 cannot be stored into the pointer partition of other 

segments, nor can they be copied into other segment registers. This check is car-

ried out in the kernel store_pointer instruction, since the segment registers 

used to hold parameters have the "can be stored" access right unset. 

6.2.2 Restrictions on Parameters for Inter-Module Calls and Returns 

It has already been emphasized several times that pointer parameters may not be 

passed on inter-module calls and returns. But that is not the only restriction. 

More complex parameters (e.g. objects of user defined types in object oriented 

languages) should not be passed (also not by value), as this contravenes the in-

formation hiding principle. Although this cannot be fully controlled (e.g. if the 

programmer reverts to the use of integers as pointers) such parameters (between 

modules) are unnecessary since they are better handled by using library routines 

(see chapter 18 section 6.4). 

Conventional programming languages are usually designed in such a way 

that they support only one return value. This restriction does not exist in the 

SPEEDOS architecture. 

In general the standard types supported by higher level programming lan-
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guages have a fixed length, the only common exception being character strings. 

When these are passed as parameters to another module, the caller generally 

knows the length and may need to indicate this (if the instruction set does not 

take care of this situation) in the data partition of the input parameters. Similarly 

programming languages must take care of the character strings for return param-

eters. In this case the caller determines the size of return parameters and may 

have to make allowance for a string of maximum length to be returned. 

6.3 Library Calls and Co-Module Calls 

The question arises whether parameters passed to library routines should be 

handled in a similar manner to those of inter-module calls. One difference is that 

there is no obvious problem in passing segments as parameters since these are 

held in the same container for client and library routine. This might suggest that 

the compiler should handle the parameters internally. A similar argument might 

be used for co-module calls. 

However, in both cases the code is switched to a new code module, which 

might define that a qualifier list (i.e. bracket routines) be used in association 

with the code execution
41

. Qualifiers in this list may need to examine the param-

eters (especially the outgoing parameters) or might even totally prevent outgoing 

calls for security reasons. To make this possible the parameters must be availa-

ble to the kernel. Consequently a modified form of the inter-module parameter 

passing technique is applied, the only difference being that segment pointers 

may also be passed as parameters. The corresponding kernel instruction is as 

follows: 

create_pc_params (int in_data_length, int in_pointer_count, 

    int in_modcap_count, int return_data_length, 

    int return_pointer_count, int return_modcap_count) 

(The abbreviation pc in the name refers to a pointer call, i.e. a library call or a 

co-module call.) When it receives a request to create parameters the kernel notes 

which kind of call to expect and raises an error if create_pc_params is fol-

lowed by an inter-module call or if create_imc_params is followed by a point-

er call. 

7 Storing/Restoring Registers on Calls 

Decisions regarding the conventions for storing and loading registers as part of 

the execution of procedure calls can dramatically affect the efficiency of sys-

tems. But in this respect some RISC strategies which were developed regarding 

the saving of registers (e.g. the SPARC register window mechanism [10, pp. 2-3 

                                           
41

 Qualifiers, their lists and their bracket routines were introduced in chapter 13 and are 

discussed in detail in chapter 24. 
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– 2-6]) cannot economically be applied directly to the storing of registers for the 

security-sensitive SPEEDOS calls. The strategy which can be used, at least in 

part, is that the system should not save registers on calls, since the compil-

er/application has a better knowledge of the registers which it needs after a re-

turn and therefore the number to be stored can be minimised if this is the com-

piler's responsibility. The following rules apply mutatis mutandis to all kinds of 

kernel calls. 

7.1 Segment Registers 

The most costly registers to store in SPEEDOS are the segment registers, which 

because of their protection function are considerably larger than the general pur-

pose registers used for addressing in normal RISC architectures. It is therefore 

appropriate to adopt an efficient strategy, but one which does not endanger the 

security of the system and its applications. 

The simplest strategy would be to require the calling module to store its 

own segment registers before initiating the call; in this case at least one segment 

register would have to be loaded by the kernel on the return to enable it to ad-

dress the location at which they were stored. However this strategy creates a 

problem, because it would require the application thread to be able to store pa-

rameter segment registers and those loaded from free capabilities, which the ap-

plication thread is normally not allowed to store, since they address data in con-

tainers other than that of the current data container. 

The strategy suggested by Espenlaub [4, p. 168 paragraph 1] is that the 

kernel stores all the segment registers (except one) in the linkage. This works 

correctly, but is inefficient if at the point of the call (or after the return) the ap-

plication thread does not use all the registers. 

The following convention is therefore used. 

a) The kernel, which is the only software that can load and invalidate segment 

registers, maintains a bit list indicating which segment registers are current-

ly valid. 

b) When the kernel executes a call it saves in the linkage the currently valid 

registers, and it also saves the valid bit list. 

c) When the thread executes a return back to the caller, it restores those seg-

ment registers, invalidating the rest. 

Notice that when the kernel stores segment registers, it stores their entire con-

tents, i.e. it does not use its store_pointer code, because this in effect stores a 

register as a single word pointer and uses the red tape at the pointer destination 

to recover the remaining information. 

When the kernel reloads the segment registers after a return, it must ensure 
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that each referenced segment still exists; otherwise malicious hackers could use 

this as a security loophole. The reason why a segment might no longer exist is 

that another thread may be (or may have been) active in the calling module and 

have deleted the segment (either deliberately or as a result of erroneous syn-

chronisation operations). To prevent this potential security loophole the Segment 

Manager provides a unique identifier for each segment which it creates in a con-

tainer in a protected area not accessible to applications. When the kernel stores a 

segment register it notes this identifier in the linkage, and on reloading it checks 

that the segment register actually addresses a segment correctly and that this has 

the correct identifier. 

7.2 General Purpose Registers 

The compiler knows better than the kernel which general purpose register values 

should be saved on kernel supported calls, and is responsible for saving and re-

loading them. 

The question arises whether the kernel should also invalidate these regis-

ters, which would be an unusual step. However, if security is taken very serious-

ly, this is necessary, not least because they could otherwise be used for secretly 

passing information to the called module, i.e. they offer an easy to use covert 

channel for passing a substantial amount of information to the module which 

they are calling and conversely back to their caller on a return (see chapter 3). 

The only way to avoid this is by also invalidating the general purpose registers. 

But thereby lies a further problem: usually general purpose registers do not 

have a valid bit. There are two possible solutions for this. 

i) A bit list could be implemented in hardware, whereby each bit represents a 

general purpose register by position. It would be a fast operation for the 

kernel simply to unset all the bits as part of a call. (A bit list held only by 

the kernel is not feasible, since the kernel is not aware of individual loads 

and stores on general purpose registers.) 

 However, each time a general purpose register is then loaded, the hardware 

would have to set the corresponding bit, and each time it is read, the hard-

ware would have to check whether the bit is set (and if not raise an inter-

rupt). 

ii) Alternatively, a perhaps less efficient solution, but one which is simpler to 

implement, is for the kernel to write a standard value to each such register 

on inter-module calls and returns (e.g. by zeroing each register). 

The decision between these depends on the hardware design. Notice that this is 

not necessary for library calls since a library module can only get information 

out of a module via an inter-module call or a co-module call. 
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7.3 Floating Point Registers 

If the system has additional register for floating point arithmetic, these can be 

managed like the general purpose registers. In general we have ignored the ex-

istence of floating point registers, since these can be viewed simply as optional  

extra hardware for improving speed, which may affect performance but not the 

security of a system. 

7.4 Code Registers 

The code segment register (which addresses a code segment) and the program 

counter (which is an offset in the code segment) must in any case be stored by 

the kernel to allow the code of the calling module to be resumed on the return. 

8 Kernel Call Instructions 

Having established the general conventions and rules associated with inter-

module and related calls, we can now describe the actual calls and returns in 

more detail. 

8.1 Inter-Module Calls 

Before a module calls another module, it will typically prepare for the call by 

calling the kernel's create_imc_params instruction (see section 6.2.1) and then 

using SR2 to prepare the parameters for the call. It might also invalidate those 

currently valid segment registers which it does not need after the call, to make 

the return from the IMC faster. The instruction also provides space for return 

parameters, which the kernel makes addressable by SR3, which is then invali-

dated. (It is made valid in read-only mode by the inter-module return instruction 

exiting back to the module.) 

It then passes three operands to the kernel's IMC instruction: 

a) the module capability for the module to be called; 

b) an integer indicating the entry point number of the routine to be called; 

c) a boolean parameter indicating whether the caller is requesting read-only or 

read-write access to the module's file data (used for synchronising with free 

capability use of the file). 

After storing the linkage segment on the stack, these parameters are stored on 

the stack in an IMC stack record, which allows the further progress of the thread 

to be recorded. For a simple call this is useful for debugging and for recording 

whether the page 0s for the data and code containers have already been locked 

down (see chapter 23 section 4.4), but in more complicated cases (e.g. in IMCs 
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involving brackets or remote calls
42

) it plays a more significant role. 

When the IMC has been executed, the called module initially needs access 

to the following segments: 

i) the root data segment of its own persistent data (in its own co-module data 

container). The kernel finds and locates this from the Co-Module Table and 

makes it accessible to the called module via SR5. 

ii) the incoming parameter segment, as discussed above. The kernel makes this 

accessible to the called module in SR0 and sets the content to read only ac-

cess (see above). 

iii) the segment via which it can return parameters to its caller, which is made 

addressable in SR1 in read-write mode. 

All the general purpose registers and the segment registers 2 and higher (except 

5) are invalidated by the kernel, thus ensuring that access to the data segments of 

the caller are not possible. 

If a caller requests read-only access the access rights field in segment regis-

ter 5 is set to read only. Hence all further segment registers loaded to access a 

file segment are also set to read-only. 

A module capability needed for gaining access to free capability parameters 

(see chapter 17) can be passed as an input parameter in the module capability 

partition of the caller's input parameters. However, the kernel does not automati-

cally load a segment register for this. Instead, it provides an instruction 

load_file_root, which takes as parameters the file capability passed and the 

number of the segment register which the n-ary routine chooses to use to address 

the file's segments. The segment register is always set to read-only access. If the 

module capability does not have free capability access then the instruction gen-

erates a security error. 

8.2 New Thread Calls 

Starting a new (first level) thread is a little tricky, because in the design pro-

posed a new thread should start executing in a new module, but there is no mod-

ule which can make a normal inter-module call to the first module! To avoid 

complicated solutions at the operating system level, we simply introduce a 

new_thread kernel instruction. This is a privileged instruction which can only 

be called via a protected kernel capability. Its only additional parameter is a 

thread capability for the new thread, thus allowing the kernel to locate the new 

thread's pre-prepared stack
43

. It carries out the minimal necessary to activate a 

                                           
42

  For bracket routine implementations see chapter 24, for remote IMCs see chapter 27. 
43

  Setting up a new thread is an operating system activity, see chapter 31 section 2.3. 
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new thread. It presupposes (and checks) that a thread stack already exists which 

has been pre-prepared to make an inter-module call (including parameters for 

the call). It checks that a 'thread' backstop marker has been placed at the base of 

the stack (to stop it attempting to return back below the beginning of the stack). 

When all the checks have been satisfactorily completed it activates the thread in 

its first module, after invalidating the segment registers except the input parame-

ter register. 

A similar problem arises with the creation of subthreads, but since these are 

activated dynamically in the module which needs them, the mechanism is differ-

ent. A subthread is activated in a routine of the active module via the kernel call 

new_subthread in a routine of the module's Subthread Entry Point List (see 

chapter 19 section 9.5). The parameters for the kernel instruction are an entry 

point number in the module's Subthread EPL, the unique module number of the 

module in which the subthread is to be activated and a thread capability for the 

new subthread. As in the new_thread case the stack has been pre-prepared and 

all segment registers except the input parameter segment register and in this case 

the host module's value for segment register 5 are invalidated. The kernel checks 

that a 'subthread' backstop marker has been placed at the base of the stack (to 

stop it attempting to return back below the beginning of the stack). 

8.3 Library Calls 

To call a library module, the client module executes the kernel's create_pc_

params instruction (see section 6.3) and then uses SR2 to prepare the parameters 

for the call. It might also invalidate those currently valid segment registers 

which it does not need after the call, to make the LC faster. The instruction also 

provides space for return parameters, which the kernel sets to be addressable by 

SR3, which is then invalidated. (It is made valid in read-only mode by the inter-

module return instruction exiting back to the module.) 

It then passes the following operands to the kernel's LC instruction: 

a) the code capability for the module to be called; 

b) an integer indicating the entry point number of the routine to be called; 

c) the number of the caller's segment register currently addressing what is to 

become the library routine's root segment, addressable via Segment Regis-

ter 5. A value of zero indicates that no root segment is being passed. 

NOTE: if the caller wishes to restrict the library routine to read only access to its 

data, it sets the segment register which it passes (see (c) above) to read only. 

Library routines are not separately bracketed (since they can only call other li-

brary routines and the segment manager) and they cannot be invoked as a re-

mote call. Nevertheless a record of their operands (an LC record) is stored on 
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the stack since this can be useful for debugging. 

When an LC instruction is executed, the called module initially needs ac-

cess to the following segments: 

i) the incoming parameter segment. The kernel makes this accessible to the 

called module in SR0 and sets the content to read only access (see above). 

ii) the segment via which it can return parameters to its caller, which is made 

addressable in SR1 in read-write mode. 

The general purpose registers are left untouched. (The caller can zero these if he 

chooses, and store the values which he will need on the return in a segment not 

reachable by the library routine.) The segment registers 2 and higher (except 5) 

are invalidated by the kernel, thus ensuring that access to the data segments of 

the caller are not possible, except via the pointers passed in the input parameter. 

Free capability parameters cannot be passed as input parameters for a li-

brary call. If for example the intention is to carry out n-ary operations on the in-

ternal data of the caller, references to the n-ary data can be passed as pointers in 

the input parameters. 

8.4 Co-Module Calls 

Before a module calls another co-module in the same container, it will typically 

prepare for the call by calling the kernel's create_pc_params instruction and 

then using SR2 to prepare the parameters for the call. It might also invalidate 

those currently valid segment registers which it does not need after the call, to 

make the CMC faster. The instruction also provides space for return parameters, 

which the kernel sets to be addressable by SR3, which is then invalidated. (It is 

made valid in read-only mode by the inter-module return instruction exiting 

back to the module.) 

It then passes three operands to the kernel's CMC instruction: 

a) a module capability for the module to be called; 

b) an integer indicating the entry point number of the routine to be called: 

c) a boolean parameter indicating whether the caller is requesting read-only or 

read-write access to the module's file data (used for synchronising with free 

capability use of the file). 

These parameters are stored on the thread stack in a CMC record, which allows 

the further progress of the thread to be recorded. For a simple call this is useful 

for debugging, but in more complicated cases, e.g. in CMCs involving brackets 

(see chapter 24) or remote calls (see chapter 27), it plays a more significant role. 

When a CMC is made, the called module initially needs access to the fol-

lowing segments: 
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i) the root data segment of its own persistent data as indicated in the module's 

Co-Module Table entry, i.e. it does not automatically share access to the 

caller's root persistent data but has its own persistent root in the same con-

tainer. The kernel makes the called co-module's root segment accessible via 

SR5. 

ii) the incoming  parameter segment. The kernel makes this accessible to the 

called module in SR0 and sets the content to read only access. This can in-

clude short pointer parameters (i.e. offsets within the container) which can 

be set to read only if appropriate. Notice that the persistent root segment of 

the caller can (but need not) be passed as a pointer parameter in appropriate 

cases. 

iii) the segment via which it can return parameters to its caller, which is made 

addressable in SR1 in read-write mode. 

All the general purpose registers and the segment registers 2 and higher (except 

4) are invalidated by the kernel, thus ensuring that access to the data segments of 

the caller are not possible except via the pointers which it receives as input. 

Free capability parameters cannot be passed as input parameters to a CMC. 

If for example it carries out n-ary operations on the internal data of the caller, 

these can be passed as pointers in the input parameters. 

There is no defined hierarchy between cooperating co-modules. Each can 

call the other in so far as it has a module capability which allows this. 

8.5 Inter-Module Call-Back Calls 

These are special calls (CBC) which allow a module to call back the module 

which invoked it. Since the rules for passing parameters in a call-back are the 

same as those for an inter-module call the caller will typically prepare for the 

call by calling the kernel's create_imc_params instruction (see section 6.2.1) 

and then using SR2 to prepare the parameters for the call. It might also invali-

date those currently valid segment registers which it does not need after the call, 

to make the return from the CBC faster. The instruction also provides space for 

return parameters, which the kernel makes addressable by SR3, which is then 

invalidated. (It is made valid in read-only mode by the inter-module return in-

struction exiting back to the module.) 

Call back calls use a separate "call back entrypoint list" to locate the desti-

nation routine in the call back module. Two operands are passed to the kernel's 

CBC instruction: 

a) an integer indicating the entry point number in the call back entrypoint list 

of the call back routine to be called; 

b) a boolean parameter indicating whether the caller is requesting read-only or 
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read-write access to the module's file data. 

The kernel establishes the destination module of a CBC by examining the link-

age stack of the currently active thread to determine which module called it. The 

relationship between a call-back module and the application module which ini-

tially called it (via an IMC) is illustrated in Figure 20.4. 

 

A CBC can only be executed if the 'permit callbacks' right is set in the 

Thread Control Register (see chapter 26 section 4.1). If this permission is not 

set, the kernel raises a synchronous interrupt. 

After storing an appropriate linkage segment on the stack, the parameters 

are stored on the stack in an IMC stack record, which allows the further progress 

of the thread to be recorded. For a simple call this is useful for debugging and 

for recording whether the page 0s for the data and code containers have already 

been locked down (see chapter 23 section 4.4), but in more complicated cases 

(e.g. in CBCs involving brackets or remote calls
44

) it plays a more significant 

role. 

When the CBC has been executed, the call back routine initially needs ac-

cess to the following segments: 

i) the root data segment of its own persistent data (in its own co-module data 

container). The kernel finds and locates this from the Co-Module Table and 

makes it accessible to the called module via SR5. 

ii) the incoming parameter segment, accessible in SR0 which is set to read on-

ly access. 

iii) the segment via which it can return parameters to the caller of the CBC, 

addressable in SR1 in read-write mode. 

All the general purpose registers and the segment registers 2 and higher (except 

                                           
44

  For bracket routine implementations see chapter 24, for remote IMCs see chapter 28. 
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5) are invalidated by the kernel, thus ensuring that access to the data segments of 

the caller are not possible. 

If a caller requests read-only access the access rights field in segment regis-

ter 5 is set to read only. Hence all further segment registers loaded to access a 

file segment are also set to read-only. 

8.6 Inter-Module and Other Returns 

To prepare for a return from IMCs and other calls, the return parameters are 

passed back via SR1. There is only one return instruction (which has no oper-

ands); this returns from the highest call currently on the kernel's thread stack. 

However there is a separate return instruction for bracket routines (see chapter 

24.) 

On a return a calling module has access to all its previously valid segment 

registers, except Segment Register 2, which is invalidated. The kernel sets SR3 

(the segment register addressing the return parameters from the caller) to read-

only access, and deletes the previously called module's input segment, which is 

no longer needed). 

9 Linkage Information Stored on an IMC 

The first item in the Inter-Module Call Linkage Segment (see Figure 20.5) is 

information about the linkage itself, e.g. what kind of call was made. 

 

The kernel's pseudo-registers which are stored in the linkage segment in-

clude the Container Registers
45

 (except the Container Register for SCID 000 – 

which identifies the current process container), and further pseudo registers to be 

described in chapter 26. 

Likewise the current Code Segment Register and the Program Counter are 

stored, to enable thread execution to return to the next instruction after the IMC 

                                           
45

  Container Registers were briefly described in volume 1 chapter 16, section 3.3 and are 

more fully discussed in chapter 23. 
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Figure 20.5: An IMC Linkage Segment 
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when the called module returns. The parameter segment registers and the valid 

segment registers are stored in the linkage segment because these cannot be 

stored by the application. 

Figure 20.6 shows a kernel thread stack with two modules, where Module 

A has called Module B and the latter is preparing to call a further module C. 

When Module C is called, a further linkage segment is created above its input 

parameters. When it returns, this linkage and the input parameters for module C 

are deleted, leaving its return parameters at the stack top. The kernel's own Top 

of Stack Pointer and Current Local Base Pointer are modified accordingly. 

 

9.1 Calling Programs 

As described in chapter 18, the only difference between a program module and a 

file module is that the former does not have persistent data, but nevertheless has 

an associated container in which temporary segments can be created. Hence the 

only difference in the IMC is that no persistent root segment exists. The kernel 

therefore invalidates Segment Register 5 on a call. However the module can use 

this for other purposes. 

9.2 Library Calls and Co-Module Calls 

Because library calls and co-module calls (which together are called pointer 

calls) can pass pointers as parameters, the caller must first prepare for the call by 
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invoking the kernel instruction create_pc_params to create its parameter seg-

ments (see section 6.3). 

As with an IMC, the parameters of a pointer call are made addressable to 

the called module via Segment Register 0. The pointers passed as parameters 

can be set by the caller to read-only or read-write, and when they are loaded the 

appropriate access right is set in the corresponding segment register. On execu-

tion of a LC or CMC the parameter segment registers are placed on the kernel's 

call-stack as in the case of an IMC.  

Pointer calls are similar to IMCs in the sense that the called module may 

receive a single root data segment which is set up in Segment Register 5 for the 

called module. In the case of a CMC the called module its normal root segment 

is loaded. In the case of an LC the root segment may be provided by its caller 

and is loaded by the kernel into Segment Register 5, allowing compilers to treat 

library modules exactly like other modules. (To allow the kernel to set this up 

the LC includes an integer parameter which indicates the caller's segment regis-

ter currently addressing what is to become the library routine's root segment. 

The kernel copies its content to Segment Register 5 for the caller, if it is valid. If 

not it sets up Segment Register 5 as invalid.) 

As in the case of the inter-module call the kernel saves the valid segment 

registers in the linkage and invalidates the remaining segment registers and the 

general purpose registers. 

Normally the kernel need not store the container register values in a Pointer 

Call linkage segment. There are however two cases where this may be neces-

sary: 

a) If the code container of the called module (e.g. a library module) is not cur-

rently addressable via one of the currently valid SCIDs (i.e. SCIDs 001 to 

011) then the current value of the container register corresponding to SCID 

011 is stored in the linkage segment and is then reloaded by the kernel to al-

low the new code container needed for the called library module to be ad-

dressed. As for an IMC, the segment register value for the current code 

segment and the current program counter register are stored. 

b) If SCIDs higher than 100 are currently in use (i.e. for free capability param-

eters in the calling module), the corresponding container numbers are stored 

in the linkage and they are invalidated for the called module. 

To return from a PC the application thread executes a kernel return in-

struction, so that here also the compiler sees no difference between a library 

module and a normal module. 
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9.3 Inter-Module Call Message Blocks 

For each inter-module call the kernel creates an IMC message block which 

serves as a record of the progress of an inter-module call. All the active IMC 

message blocks for an active user thread are linked together. Each contains a 

summary of the call parameters (see section 8.1 above) together with infor-

mation acquired from the Co-Module and Call Table entries for the call and fur-

ther information generated as a result of the call. The call block for an IMC is 

deleted when a return from the call is made. These blocks allow kernel processes 

to communicate with each other, as will become clearer when we describe the 

mechanism for executing bracket routines in chapter 26 and the idea of remote 

IMCs in chapter 27. The general idea of message blocks for inter-process com-

munication within in the kernel is discussed in chapter 22. 

Similar blocks are chained into the same lists when CMCs and library calls 

are executed, thus providing the kernel with a convenient overview of the pro-

gress of user threads. 

9.4 Library Module Call Backs 

As described in chapter 18, during the execution of a library call, the library rou-

tine can call its caller back using the LCB instruction. This call has only a single 

parameter, an integer indicating the entry point number in the main module's 

call-back entry point list. 

To make an LCB call the library routine needs to pass parameters to its 

caller and expects to receive a result from the caller. To do this it needs to call 

create_pc_params before making the call. 

The LCB uses the same parameter registers as other calls but it invalidates Seg-

ment Register 5. A return from an LCB call uses a normal return instruction. 

10 Internal Calls 

These calls, introduced in chapter 19, are very simple, allowing the compiler to 

structure the code of a module into multiple segments (thus allowing separate 

bounds checking on each). The kernel instruction internal_call has two op-

erands. The first addresses the code segment in question. The second provides a 

new offset value for the program counter, indicating where execution should 

begin. Other registers are not stored or modified. 

The instruction stores the current value of the code segment register and the 

program counter and reloads these with the values signified in the operands. 
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Chapter 21 

Synchronisation 

 

This chapter tackles the issue of how application threads (of the same process 

and of differing processes) can cooperate with each other, especially in the shar-

ing of data structures within a module (which is the natural form of sharing in an 

in-process system).  It describes how SPEEDOS applies standard techniques and 

introduces some further techniques which are less widely known and used. 

1 Implementing Mutual Exclusion 

In volume 1 chapter 8 the general concept of synchronising processes/threads 

was introduced. In particular that chapter described basic standard techniques, 

including the use of semaphores, to solve synchronisation problems such as mu-

tual exclusion, producers and consumers using a shared bounded buffer, readers 

and writers, and private semaphores (used to control the sequencing of pro-

cess/thread execution). 

It is important, on the grounds of efficiency, to have two uninterruptable 

basic semaphore instructions, such as the DECT (decrement and test) and the 

TINC (test and increment) instructions described in chapter 8, because these al-

low a module to handle its own synchronisation situations in those cases where 

the suspending and reactivating of threads is not necessary. Such situations arise 

frequently, e.g. when no other thread is contending with the current thread for 

the use of a critical region; in combination with DECT/TINT instructions the 

overhead associated with unnecessary calls to a central User Thread Scheduler 

(UTS) can then be avoided. 

DECT and TINC are needed as hardware instructions or uninterruptable 

kernel instructions (which must be coordinated to function correctly in a multi-

ple CPU system). These must nevertheless be complemented by commutative 

suspend and activate routines similar to those which in conventional systems are 

provided by a central process/thread scheduler, to handle the cases in which 

clashes for the use of resources arise. It is assumed that the reader is familiar 
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with these instructions, or refreshes his knowledge of them by re-reading vol-

ume 1 chapter 8. 

1.1 Suspending and Activating Threads 

In a secure system such as SPEEDOS it is important that the code of arbitrary 

modules cannot simply suspend a thread at will, since this may be a deliberate 

attempt to disrupt a user or the entire system. As was mentioned in chapter 20, 

there is a Thread Control Manager module (known as a TCM) in each process 

container, which controls the run-time activities of a thread. Since this is partial-

ly user-programmable and can vary from node to node, and even from process to 

process at the same node, it is impossible here to define all its potential func-

tions. But the facilities which it offers in conjunction with the suspension and 

activation of threads must be standardised to the extent that threads of different 

users and processes working in a common environment can cooperate correctly. 

It is not the function of a particular TCM to schedule all the threads in a 

system (i.e. to determine which may use the CPU(s) at a particular point in 

time); that is the function of the central UTS module. But it should be involved 

in decisions regarding the suspension and activation of its own threads. There 

are two good reasons for this. 

First, if the code of any arbitrary module called by a thread could suspend 

that thread, a devious user could take advantage of this to bring threads to a halt 

without good reason, and thus cause chaos. 

The second is that if all operations involving the suspension and activation 

of the threads of a process are channelled through its TCM, it can keep an over-

view of what is happening to them in scheduling matters. This can provide the 

TCM with information which is helpful in recovering from exceptional circum-

stances, such as the failure of a printer for which threads are waiting in a sus-

pended state, or a failure of other threads which might otherwise leave them 

suspended "for ever". How such control is exercised in detail need not concern 

us here. The important issue in the present context is how the system can be or-

ganised such that TCMs are in a position to exercise an appropriate measure of 

control over their own threads. 

Each TCM must provide the appropriate semantic routines to achieve this. 

It is initially assumed (a) that each TCM provides its own suspend and 

activate routines, although this will actually be discussed further below, and 

(b) that these are commutative
46

. This does not preclude a TCM from providing 

other routines for suspending and activating threads, nor from waking up a 

commutatively suspended thread in order to recover from errors, etc. 

                                           
46

  See the discussion in volume 1 chapter 8 about commutative scheduling operations. 
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1.2 Organising Thread Capabilities 

The next step is to limit calls on these routines to modules which are legitimate-

ly entitled to do so. The SPEEDOS solution in all such cases is to require that 

the caller has a capability. But where do these capabilities come from, and how 

are they distributed to the right recipients? 

The capability needed to access the routines of a TCM for a particular 

thread is a thread capability for that thread, see Figure 21.1 (repeated from Fig-

ure 19.7). 

 

A thread capability is returned (with full access rights set) by the Thread 

Manager when the corresponding thread is created. A copy of this capability 

(preferably with the access rights limited to those needed to allow the thread to 

synchronise with other threads) must be available to any module entitled to carry 

out synchronising operations on the thread. Whether it will be provided with a 

permanent copy or a reduced use copy will depend on the circumstances. 

TCMs have a capability for calling the central UTS, and are normally the 

only modules with this privilege (but see section 1.4). In this way, other modules 

can only call the UTS indirectly via the executing thread's own TCM, while oth-

er modules, which should not be calling the UTS at all, cannot do so, thus pre-

venting arbitrary modules from creating chaos. 

When a Thread Manager creates a new thread it places a thread capability 

for it at the base of the new thread's stack at a location known to the kernel. The 

latter makes such capabilities available on request to executing threads (see 

chapter 19 section 5), subject to the corresponding permission being set (see 

chapter 26 section 2). 

A thread capability can be used in an inter-module call to activate the 

methods of the corresponding thread's TCM routines. This is special in that a 

thread capability is not the same as a module capability for the TCM. The reason 

for this is that some semantic routines of the TCM can be used to control any 

thread of the process, but in the synchronisation situation under discussion it 

would be unsafe to allow a synchronising caller to activate or suspend any 

thread of the process. Unlike a normal capability for a TCM, a thread capability 
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thread 
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Semantic 
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Meta- 
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Figure 21.1: The Basic Structure of a Thread Capability 
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limits the synchronising process to a single thread defined in the capability. This 

is achieved in that the unique container number in the capability identifies the 

container of the process, the thread number field indicates which thread can be 

synchronised (by the TCM) and the access rights correspond to the semantic ac-

cess rights provided by the TCM. Hence when the kernel receives an inter-

module call which presents a thread capability (recognisable from its type field) 

it in fact calls the TCM
47

 responsible for the corresponding thread, passing to it 

an integer parameter (a copy of the thread number in the thread capability). 

1.3 Implementing Semaphores with Thread Capabilities 

An important consequence of this arrangement is that a thread capability is 

needed in semaphore operations in order that the code which carries out these 

operations can arrange for the activation and suspension of threads which are 

required to wait for a resource. 

At first glance it may appear to be a simple task to modify conventional 

semaphore operations to take the thread capability into account. In SPEEDOS 

basic operations DECT and TINC are provided as kernel instructions. In con-

ventional systems, these are combined with two central UTS routines (sus-

pend_me and activate) to create P and V operations, which can be (provision-

ally) defined as follows. 

P (sem) => 

 DECT (sem.counter, local); 

 if local < 0 then scheduler.suspend_me(sem.queue); 

 

V (sem) => 

 TINC (sem.counter, local); 

 if local < 0 then scheduler.activate(sem.queue); 

Notes on conventional P and V operations: 

1. The semaphore variables and the related code sequences are located in user 

modules, which invoke the central scheduler's activate and suspend_me 

routines only when necessary. 

2. The parameter sem.counter is the shared integer value of the semaphore 

(a positive value indicates the number of resources still available, a nega-

tive value the number of suspended threads waiting for a resource, and a 

value of 0 that the resource or resources are currently in use but no thread is 

waiting). (If the resource is a critical region requiring mutual exclusion, the 

value is initialised to 1.) 

3. The value of the returned parameter local is a thread-local copy of the 

semaphore variable's integer value as defined in DECT and TINC (see vol-

ume 1 chapter 8). The executing thread can be interrupted at any point in 

                                           
47

  The TCM has a fixed position in the Co-Module Table in process containers 
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the code, though the scheduler routines themselves must be indivisible and 

commutative. 

4. The routines suspend_me and activate are calls to a central UTS and the 

parameter which they pass to the scheduler (sem.queue) identifies the 

queue associated with the semaphore. The queue itself is held in the sched-

uler's persistent data. 

5. To create such a queue the module which contains the semaphore must in-

voke a scheduler routine; after setting up the queue, this returns an identifi-

er for it. The queue must be created before the suspend and activate rou-

tines can be used. Later the scheduler manages this queue in the code of 

these routines. 

The following code represents an intuitive (but incorrect) first attempt to incor-

porate the use of thread capabilities into the normal semaphore scheme, in order 

to include the TCM in the picture. 

P (sem, thread_cap) => 

 DECT (sem.counter, local); 

 if local < 0 then thread_cap.suspend(sem.queue); 

 

V (sem, thread_cap) => 

 TINC (sem.counter, local); 

 if local < 0 then TCM[thread_cap].activate(sem.queue); 

This code contains deliberate problems and errors, a discussion of which helps 

to illustrate the real nature of the task at hand. 

1.4 Creating Queues 

The appropriate time to create a queue variable for a semaphore is when the 

semaphore itself is created. This typically occurs in a module which contains 

critical sections that need to be synchronised, which is neither normally a TCM 

nor should it have direct access to the central UTS.
48

 

One possibility would be to make a UTS capability freely available to all 

modules with access rights limited to the creation and deletion of queues. While 

this would allow queues to be created, it would open up the possibility that a 

malicious user might hinder the work of the UTS by creating many unnecessary 

queues. 

The alternative here proposed is to introduce the idea of privileged library 

modules. These are basically normal library modules (see chapter 18 section 6.4) 

that are delivered as part of the SPEEDOS system which have certain privileges. 

In this case the synchronisation library module is trusted to have a UTS capabil-

                                           
48

  This is an issue not discussed in Espenlaub's thesis, since he viewed the design of the 

Thread Scheduler and of TCMs as a matter for the operating system design, not the ker-

nel design. 
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ity which allows it to call the UTS to create thread queues. It obtains the (non-

copyable
49

) capability from one of its own constant segments. This is placed 

there as part of the installation of a SPEEDOS system. 

Any SPEEDOS module can access this library module if it has access to 

the appropriate code capability, which provides a high level interface for creat-

ing and using semaphores. Its semantic routines include a constructor (i.e. an 

initialisation routine) to create a semaphore variable, a claim method and a re-

lease method. 

At the point in the code where a semaphore is needed, the initialisation rou-

tine of the main module executes a kernel library call instruction (LC), passing 

to the kernel the following parameters: a code module capability for the selected 

library routine, the entry point number 0 (i.e. for the constructor) and a pointer 

address (via which the root segment of the library module can later be used to 

make further library calls to the claim and release routines). 

The constructor creates an instance of a semaphore, which includes not on-

ly the semaphore itself but also the UTS's queue identifier for the semaphore. 

This routine carries out some checks. For example it ensures that the host mod-

ule is on the current node; it might also have a list of modules which are permit-

ted to create semaphores together with the number of semaphores permitted, etc. 

(This saves the UTS from carrying out such checks.) Provided that the request is 

valid, it calls the UTS to create a queue, notes the identifier of the queue in its 

own root segment. It then creates and initialises the semaphore variable. 

The claim method carries out the entire P operation, including the DECT 

operation and if necessary calls the queuing operation of the UTS). For this pur-

pose it must have access to the thread capability for the currently executing 

thread; this is obtained via a kernel instruction (see chapter 19 section 5). Since 

thread capabilities can be dangerous if they fall into the wrong hands, the kernel 

can test whether the request is issued from the code of the synchronisation li-

brary module. 

The release method carries out the entire V operation, including the 

TINC operation and if necessary the de-queuing operation). 

1.5 Informing the TCM of the Activation of its Thread? 

The deliberately erroneous program snippet for the V operation at the end of 

section 1.3 suggests that a thread capability for a thread being activated in the V 

operation is needed, in order to invoke an activate routine of its TCM. To obtain 

such a thread capability would in fact be a rather difficult task, since the thread 
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  for access rights in capabilities see chapter 26. 
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executing the V operation is not the thread to be activated. 

Fortunately this is not necessary, for the following reason. The thread to be 

activated is currently suspended in the UTS, which was called by the thread's 

own TCM, and so after the UTS reactivates the thread it will exit from the UTS 

back to its TCM. When this point is reached, the TCM code can recognise any-

way that the activation has occurred and can, if appropriate, record this in its 

own data. Hence what could have been a troublesome problem simply disap-

pears! 

If this were the final solution, the library module would have claim and 

release methods with the following skeleton code (which is not correct Timor 

but merely illustrates the principle): 

claim(sem){// sem identifies the semaphore (integer) variable 

   // sem.counter is held in the library routine 

 // the P operation 

 theCapability thread_cap; 

 DECT(sem.counter, local); 

 if local < 0 

      {thread_cap = kernel.get_current_thread_cap(kernelCap); 

     thread_cap.suspend_me(sem.queue); 

    // inform TCM of delay 

    // TCM calls UTS to queue the thread 

    } 

 } 

release(sem){/* sem identifies the semaphore (integer) varia

      ble */ 

   // sem.counter is held in the library routine 

 // the V operation 

 TINC (sem.counter, local); 

 if local < 0 {Thread_Scheduler.activate(sem.queue)}; 

 // after the UTS selects and activates 

 // a queued thread. This will return to its TCM 

 // and then continue to use the resource. 

1.6 Delegating Queuing to the Library Module? 

At this point we note that the semaphore counter and the semaphore queue have 

been separated; the counter is in the library module and the queue is in the UTS. 

This raises an interesting question. If the main semaphore activity is placed in a 

trusted synchronisation library module, then why not do the same with the queu-

ing operations? In this case one could envisage that at the appropriate time the 

library module carries out the queuing operations in its own space
50

 and simply 

calls the central UTS to suspend or activate a thread. At first sight this idea 

seems to have a number of advantages: 
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  In reality a library routine shares the file (or program) space of its host module, but the 

host is not explicitly aware of this. 
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a) This would allow different queuing strategies to be used for different sema-

phores (e.g. using priority or FIFO techniques). 

b) It would very considerably reduce the work of the UTS, which is the most 

frequently activated module in a system, and the most crucial from an effi-

ciency viewpoint. All the scheduler would need to do in this context is to 

provide a "ready list" of threads, from which it selects a thread to run on 

each CPU according to its scheduling algorithm and the scheduling parame-

ters supplied to it by the TCM. Of course the UTS must also be called (by 

the TCM) to remove the current thread from the ready list after it has been 

placed on a waiting queue by the library module. 

c) The scheduling queues are distributed through the system rather than all 

being stored in the UTS. Consequently an attempt by hackers to manipulate 

or destroy the system by interfering with these queues becomes much more 

difficult. 

These advantages sound very tempting, but one must also consider the implica-

tions of this solution. If the organisation of scheduling queues is delegated to the 

library modules, this does not eliminate the need to synchronise them, e.g. to 

avoid problems when several threads want to place entries onto or remove them 

from the queue in parallel, i.e. a scheduling queue is a critical section. But unlike 

other critical sections it cannot be synchronised using semaphores, because this 

queue is part of the technique to implement semaphores! 

This does not rule out the solution entirely. The alternative is to use a more 

primitive synchronisation mechanism to synchronise this queue. In volume 1 

chapter 8 a number of such mechanisms were mentioned, including some which 

use busy waiting (e.g. turning off interrupts, busy waiting instructions such as 

test-and-set or compare-and-swap). As a general mechanism for providing mu-

tual exclusion these are all less efficient than semaphores, as was explained in 

chapter 8, but nevertheless the semaphore queuing operations must be imple-

mented using one of these techniques in the UTS, so it is not entirely out of the 

question that these be used for precisely the same purpose in library modules, 

provided that the use of these modules can be well protected. 

The low-level synchronisation mechanism preferred for the SPEEDOS 

UTS by Espenlaub is turning off interrupts, but he does not provide a kernel in-

struction to achieve this, instead treating the scheduler routines as a special case, 

without indicating his reason for this [4, pp. 169-170]. It is therefore tempting to 

consider whether a general mechanism for turning interrupts off (and back on)
51

 

could be made available by the kernel for use by both the UTS and the synchro-
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  An instruction pair for turning on/off interrupts at the user level was provided in the 

MONADS systems, see [5, p. 125]. 
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nising library routines. The standard SPEEDOS technique to do this would be 

kernel instructions for turning interrupts on and off, protected by means of a 

kernel capability, as will be described in the next chapter. 

If such a mechanism were really to turn off interrupts it would not solve the 

problem at hand, because (a) only the kernel itself is privileged to turn off inter-

rupts, and (b) if it were to do this for non-privileged code the latter could then 

neither turn interrupts back on itself nor could it activate the kernel to do so, 

since kernel instructions are recognised as a result of handling an interrupt! Now 

we see why Espenlaub treated the UTS as a special case. 

However, this objection is not a serious as it may appear, since all that is 

required is that any interrupts which actually occur should not be visible at the 

user system level. What happens at the kernel level is, or should be, invisible to 

the user system (including the UTS and the synchronisation library module(s)). 

This was not possible in Espenlaub's SPEEDOS design, because threads which 

handle real interrupts are scheduled by the UTS. However, as we shall see later, 

there are good reasons (apart from this) to prefer the MONADS thread schedul-

ing solution, in which turning off and on interrupts at the user level does not af-

fect the kernel's ability to react to real interrupts (including a kernel instruction 

requesting interrupts to be turned on again). 

The kernel instructions for turning interrupts off and on are very simple and 

are based on Rosenberg's proposal for MONADS: 

disable_interrupts(modcap kernel_cap) 

enable_interrupts(modcap kernel_cap) 

In SPEEDOS the instructions require a kernel capability to ensure that they are 

not misused. This capability can also be provided as a constant in the code of the 

library module (and of the UTS). 

1.7 The Final Solution 

It is easy to think that the problem has been solved, but to make sure we look 

again at the code of the library module. Remember now that both parts of the 

semaphore variable – sem.counter and sem.queue – are implemented together 

in the privileged library routine. 

The entries in scheduling queues consist primarily of thread capabilities for 

suspended threads. It may be sensible to add other information (e.g. the time at 

which the thread was placed on the queue, which may turn out to be helpful in 

detecting and correcting errors (such as the death of the thread which is queued 

on a semaphore), but such additional features are ignored here. 

However, by using thread capabilities as entries in the queue a further ad-

vantage is gained. When these were hidden within the user UTS the thread ca-
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pabilities also remained hidden, but now they are used as queue entries outside 

the user UTS more flexibility (and efficiency) has been gained. It now becomes 

possible to simplify the release routine by bypassing the TCM and calling the 

user UTS's activate routine directly. We have already seen earlier that the 

TCM can be informed of an activation of one of a suspended thread when it ex-

its from the user scheduler after the thread has been re-activated. So nothing is 

gained (and efficiency is lost) by calling the TCM of a suspended thread when it 

needs to be activated. In other words, it is sufficient to suspend the thread in a 

claim operation and rely on its return from the user UTS, in the second half of 

the suspend_me routine, to inform its TCM. Hence the library module can now 

be defined as follows. 

Library Synchronisation { 

MutualExclusion {  

 semaphore sem;  // sem identifies the semaphore variable. 

    // sem.counter and sem.queue are both held 

    // in the library module 

claim(sem){  

  // the P operation 

 DECT(sem.counter, local); 

 if local < 0 // i.e. if the current thread must wait 

   {// obtain capability for current thread from kernel */ 

    threadCapability currentThreadCap =  

        kernel.get_current_threadCap(kernelCap); 

   // disable (pseudo-)interrupts 

      kernel.disable_interrupts(kernelCap); 

   // add current thread to queue 

   sem.queue.enqueue(currentThreadCap); 

   // the claiming thread is still executing 

   // turn interrupts back on 

   kernel.enable_interrupts(); 

   // inform TCM of delay; 

   currentThreadCap.suspend_me(); 

   // TCM notes the suspension and calls the 

   // UTS to remove the thread from its ready list 

   } 

 // NOTE: when the current thread is later activated 

 // by the UTS it will return to the TCM. 

 // It will then return to this point 

 // and can access the resource. 

 // The thread then returns from the 

 // library module to continue its normal code. 

 } 

release(sem){ 

  // the V operation 

 TINC (sem.counter, local); 

 if local < 0 // i.e. if a thread must be activated 

   {// disable (pseudo-)interrupts 

     kernel.disable_interrupts(kernelCap); 

   // select and remove a thread capability from sem.queue 
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  threadCapability newThreadCap = 

   sem.queue.dequeue(); 

  kernel.enable_interrupts(); 

  /* informs TCM to activate thread by passing 

     it to UTS's ready queue */ 

  user_thread_scheduler.activate(newThreadCap) 

  } 

 } 

 // The selected thread will then be scheduled 

 // and continue to use the resource (e.g.critical region) 

 // The current thread continues by exiting 

 // from the release routine 

} // end MutualExclusion 

... // other synchronisation mechanisms 

} // end of library module 

There remains one final issue with respect to this solution. What has in effect 

been done is to outsource some decisions about when threads can be activated 

and suspended from the UTS to the Library module and the Thread Control 

Managers. So far one important aspect of this activity has been left unmen-

tioned, viz. the saving and restoring of the state of the thread states which are 

delayed and restarted. Put simply, the register states of the threads involved must 

be stored and reloaded to enable other threads to use them. However, the way 

this has been organised as an in-process mechanism
52

 does not affect the im-

portant point that the UTS alone makes the final decision about when a thread is 

actually delayed or activated. For example if a thread has to wait as a result of a 

semaphore P operation it actually continues to execute until it arrives at the 

UTS, which suspends it. Similarly if as a result of a V operation a new thread 

has to be activated, the thread releasing the resource continues to execute until it 

reaches the UTS and advises the latter that the new thread can be activated. 

Hence no special action is needed in the library module nor in the TCM with 

regard to thread switching. How the UTS actually switches threads will be de-

scribed in the next chapter. 

1.8 Summarising the Queuing Operations 

Since the queuing operations will turn out to be useful in the implementation of 

other more specialised semaphores discussed later in the chapter, it will be use-

ful to summarise these here, without comments. 

1.8.1 The Suspend Operation 

Here is the suspend operation in essence. 

if (current thread must suspend) 

 {threadCapability currentThreadCap =    

                                           
52

  For programmers familiar with out-of-process systems this may at first be a little diffi-

cult to understand, which is why I have attempted to spell it out in detail here. 
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   kernel.get_current_threadCap(kernelCap); 

  kernel.disable_interrupts(kernelCap); 

  sem.queue.enqueue(currentThreadCap); 

  kernel.enable_interrupts(); 

  currentThreadCap.suspend_me(); 

 } 

1.8.2 The Activate Operation 

Here is the activate operation in essence. 

if (a thread must be activated) 

 {kernel.disable_interrupts(kernelCap); 

  threadCapability newThreadCap = sem.queue.dequeue(); 

  kernel.enable_interrupts(); 

  user_thread_scheduler.activate(newThreadCap); 

 }  

This initially concludes the discussion of how mutual exclusion can be imple-

mented in SPEEDOS. I have described this in a number of steps in order to give 

readers with little experience of synchronisation some idea of how complex this 

can be and therefore how easy it is to make mistakes, since without explanation 

the implications of the above steps would probably not be clear, possibly not 

even to experienced programmers. 

In the following sections we describe some extensions of the semaphore 

idea. These too can, where appropriate, use the same or similar synchronisation 

modules. 

2 Applying DECT/TINC to Other Problems 

In this and the following sections we describe some extensions of the semaphore 

idea. These too can, where appropriate, use the same synchronisation modules. 

One of my former PhD students, Prof. Bernd Freisleben, illustrated in his 

PhD thesis [11, 12] how the basic DECT and TINC instructions can be com-

bined with commutative scheduler routines not only to achieve mutual exclu-

sion, but also for many other synchronisation purposes, including useful opera-

tions for user scheduling of threads and Conradi's P* operation [13], synchroni-

sation involving thread counting operations, Campbell and Habermann's path 

expressions [14], critical block exit in block structured programming situations 

such as is found in the B6700, and simultaneous P operations (a modified P op-

eration which allows multiple resources to be claimed together, with the aim of 

avoiding deadlocks). Freisleben goes on to show that with an extension to 

DECT/TINC operations all synchronisation problems which can be solved by 

eventcounts and sequencers [15] can be solved efficiently with an extension. 

These operations could be implemented in an analogous way to mutual ex-

clusion, with the help of library modules. 
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Unfortunately for English readers, Freisleben's thesis is in German, but the 

essential aspects of these solutions have been described in English [16]. 

3 Semaphores for Different Classes of User Threads 

This section begins by describing a special technique developed specifically for 

handling the reader-writer synchronisation problem. It then goes on to describe a 

generalisation of this solution for a wider class of problems. 

3.1 Reader-Writer Semaphores 

Since reader/writer situations occur very frequently in the design of operating 

systems and database systems, and the protocols to achieve this form of syn-

chronisation using normal semaphores are neither trivial nor particularly effi-

cient (see volume 1 chapter 8), SPEEDOS supports specialised reader-writer 

semaphores. These were first developed in the context of the MONADS project 

[17]. Whereas the structure of a normal semaphore consists of an integer and a 

related queue, a reader-writer semaphore consists of three integers and a boolean 

variable (see Figure 21.2) together with separate queues for waiting readers and 

waiting writers. 

 

The first three fields respectively hold counts indicating the numbers of 

current readers, waiting readers and waiting writers while the fourth (boolean) 

field indicates whether a writer is currently active. This structure will easily fit 

into a 64 bit word. The initial values of these fields are zero or false. 

There are four primary instructions which operate on this structure, as it 

was developed for use in the MONADS systems: 

READ-P is used by a thread to attempt to claim reader access to the critical re-

gion. This returns a thread-local boolean result indicating whether the 

thread should suspend itself on the reader queue. 

READ-V signals that a current reader thread is now relinquishing access to the 

critical region. This returns a thread-local boolean result indicating whether 

a writer must be activated. 

WRITE-P is used by a thread attempting to claim writer access to the critical 

region. This returns a thread-local boolean result indicating whether the 

writer should suspend itself on the writer queue. 

WRITE-V signals that the current writer thread is now relinquishing access to 

the critical region. This returns a thread-local boolean result indicating 

Figure 21.2: The Structure of a Reader-Writer Semaphore 

Waiting Readers Waiting Writers Current Readers Current Writer 
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whether a thread should be activated, and a thread-local integer result 

which indicates whether a further writer should be activated (if the integer 

= 0) or how many readers should be activated (if the integer > 0). 

The published description of this technique provides further details, includ-

ing the simple algorithms for the four instructions, which can be formulated with 

a small difference in terms of reader priority or writer priority. It is also shown 

that this approach is considerably more efficient than implementing reader-

writer algorithms using only normal semaphores. 

Like DECT and TINC these instructions were designed for use in conjunc-

tion with commutative UTS operations. The suspend interface remains un-

changed from that described in association with DECT, but the activate interface 

requires not only the naming of a queue but also an additional integer parameter 

defining exactly how many threads need to be activated. This modification can 

be used in cases involving the TINC instruction simply by setting this parameter 

to 1. 

To adapt this to the SPEEDOS environment requires that 

a) the SPEEDOS kernel supports the four instructions described above as in-

divisible kernel instructions, which are then used as appropriate in the 

module's code in a similar manner to DECT and TINC. 

b) the library modules described in connection with mutual exclusion above 

be used to organise the queuing operations, but appropriately modified by 

adding an additional integer parameter to the WRITE-V activate routine 

in order to allow it to activate several reader threads if necessary. 

c) thread capability parameters are added to suspend operations as appropri-

ate. 

We illustrate here how these semaphores would appear in a library routine using 

a similar pattern to that used for mutual exclusion in section 1.8 above. 

ReaderWriter {  

rwSemaphore rwSem; 

 readClaim(rwSem) 

 {READ-P (rwSem, local); 

  if local // i.e. if the reader must wait 

  {threadCapability currentThreadCap = 

    kernel.get_current_threadCap(kernelCap); 

   kernel.disable_interrupts(kernelCap); 

   rwSem.readerQueue.enqueue(currentThreadCap); 

   kernel.enable_interrupts(); 

   currentThreadCap.suspend_me(); 

  } 

 } 

 readRelease(rwsem){ 

 READ-V (rwSem, local); 

 if local // i.e. if a writer must be activated 
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   {kernel.disable_interrupts(kernelCap); 

    threadCapability newThreadCap =  

      rwSem.writerQueue.dequeue(); 

    kernel.enable_interrupts(); 

     user_thread_scheduler.activate(newThreadCap); 
   } 

 } 

 writeClaim(rwSem){ 

 WRITE-P (rwSem, local); 

 if local // i.e. if the writer must wait 

  {threadCapability currentThreadCap = 

    kernel.get_current_threadCap(kernelCap); 

   kernel.disable_interrupts(kernelCap); 

   rwSem.writerQueue.enqueue(currentThreadCap); 

   kernel.enable_interrupts(); 

   currentThreadCap.suspend_me(); 

  } 

 } 

 

writeRelease(rwSem){   

 WRITE-V (rwSem, local, readerCount); 

 if (local & readerCount == 0) // a writer to be activated 

  {kernel.disable_interrupts(kernelCap); 

   threadCapability newThreadCap =  

    rwSem.writerQueue.dequeue(); 

   kernel.enable_interrupts(); 

   user_thread_scheduler.activate(newThreadCap); 

 else 

 if (local & readerCount > 0) // readers to be activated 

  {kernel.disable_interrupts(kernelCap); 

   for i in {1 .. readerCount} 

    // activate a reader each time through for loop 

   {threadCapability newThreadCap = 

      rwSem.readerQueue.dequeue(); 

    user_thread_scheduler.activate(newThreadCap); 

   } 

   kernel.enable_interrupts(); 

 } 

} // end ReaderWriter 

3.2 Priority semaphores 

This semaphore variant [18] was proposed by Freisleben and myself as a gener-

alisation of the semaphore concept to allow for claims on a resource (e.g. a criti-

cal section) being made by different classes of threads with different priorities, 

whereby the use of the resource by different classes can be determined to be ei-

ther mutually exclusive or shared within a class. From the application viewpoint 

there are only two simple instructions at the machine level, PRIORITY-P and 

PRIORITY-V for requesting and releasing resources respectively. PRIORITY-P 

nominates a priority semaphore (implemented in the library routine) together 

with an integer indicating its priority class and a thread-local boolean variable. 
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PRIORITY-V releases the semaphore and has four operands: the priority sema-

phore, the priority class, a count of threads and a thread-local boolean variable. 

Like the earlier cases, the instructions are used in association with library mod-

ule queues, whereby the activate routine, as in the case of reader-writer sema-

phores, has an additional parameter indicating how many threads need to be ac-

tivated. 

In principle priority semaphores eliminate the need for reader-writer sema-

phores, since the latter are a special case of the former more general solution. 

But since the reader-writer problem is such a common problem and the imple-

mentation of reader-writer semaphores is more efficient than that of priority 

semaphores, there is a strong case for implementing reader-writer semaphores in 

SPEEDOS as described above. On the other hand the relative complexity of pri-

ority semaphores and the fewer synchronising problems for which they are rele-

vant suggests that they should not necessarily be implemented as kernel instruc-

tions in SPEEDOS
53

. 

4 Set Semaphores 

In Chapter 8 it was explained that the value of the integer associated with a gen-

eral semaphore can be understood as follows: 

> 0: the number of resources currently available 

= 0: no resources free and no waiting threads 

< 0: the number of threads waiting for a resource. 

What the integer fails to indicate is which resources, if any, are currently availa-

ble, or which threads, if any, are currently waiting. For this reason my former 

students and I proposed an extension, called set semaphores, which supplements 

the integer with a set (implemented as a bit list), whereby each bit in the list rep-

resents one of the set of available resources (if the integer value is positive) or 

one of the set of waiting threads (if the integer value is negative) [19]. Assuming 

that the bits are numbered from left to right (starting at zero) and the bit list has 

the value 0010110... then depending whether the integer part is positive or nega-

tive, this means that resources numbered 2, 4 and 5... are available, or that 

threads numbered 2, 4 and 5... are waiting to acquire a resource. Typically the 

set semaphore will be initialised by setting the number of available resources in 

the integer part and the set part will have bits set indicating which resources are 

free. 

The two meanings of the bit list need not be used together, i.e. it is possible 

                                           
53

  If a decision were made to implement priority semaphores as kernel instructions, the 

pattern for doing this would follow a similar pattern to that used for reader-writer sema-

phores. 
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to work only with resource sets or only with thread sets. First we describe re-

source sets in more detail. 

4.1 Resource Sets 

For resource sets the following two basic instructions (similar to DECT and 

TINC) are needed. 

RSETP claims a resource. This has three operands. The first addresses the set 

semaphore (which is implemented as an integer and a bit list). In the sec-

ond, an integer, the instruction indicates which resource, if any, has been al-

located. The third, a thread-local boolean value (e.g. a condition code), in-

dicates whether a resource has been allocated. 

 The instruction decrements the semaphore's integer value by one. If the re-

sult is greater than or equal to zero, the boolean result indicates that a re-

source has been allocated. If so the application discovers from the integer 

result which resource has been allocated (and the instruction removes the 

corresponding resource from the bit list). 

 If a resource was not allocated the thread suspends itself on the associated 

scheduling queue. When it is activated (see below) the resource which has 

been allocated is indicated in a result from the suspend routine. 

RSETV releases a resource. It also has three operands. The first addresses the 

set semaphore; the second, an integer, indicates which resource, if any, is 

being released; the third, a thread-local boolean value (e.g. a condition 

code), indicates whether a thread should be activated. The instruction in-

crements the semaphore integer by one and if the result is greater than zero 

(i.e. a resource is now available) it sets the thread-local boolean variable to 

indicate that a thread should be activated from the corresponding schedul-

ing queue. The releasing thread then causes a thread to be activated from 

the corresponding scheduling queue, indicating which resource it has re-

leased in an integer operand. 

4.2 Waiting Thread Sets 

Waiting thread sets are organised in a similar fashion to resource sets, although 

they are less relevant to synchronisation and more relevant to thread scheduling. 

We now describe how waiting thread sets function and then we examine their 

advantages and disadvantages. Although it will become clear that they cannot 

sensibly applied to normal user thread scheduling, it will be shown in the next 

chapter how they can create an excellent basis for scheduling kernel threads de-

signed to manage interrupt handling. 

4.2.1 How Waiting Thread Sets Work 

Just as resource sets can be implemented without waiting thread sets, so also 
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waiting thread sets can be implemented without resource sets. We now describe 

how they can function in association with normal scheduling queues for imple-

menting the wait operation. In this case, two instructions (WSETP and WSETV) 

are required. 

WSETP has three operands. The first addresses the set semaphore. The second, 

an integer, identifies the currently active thread. The third, a thread-local 

boolean value (such as a condition code value), indicates whether the thread 

must suspend itself on a scheduling queue until a resource becomes availa-

ble. 

 The instruction decrements the semaphore integer and if the result is greater 

than or equal to zero, a resource is available and the thread-local variable 

indicates that the thread can proceed without invoking a scheduler routine. 

(Unless it is combined with a resource set it must by some other means es-

tablish which resource it has now acquired, unless only a single resource, 

e.g. a critical section, is involved.) 

 If a resource could not be allocated, the thread-local variable indicates that 

the thread should call a scheduler to suspend itself, and the thread number 

corresponding to the calling thread is set to one in the waiting thread set. 

WSETV releases a resource; it has three operands. The first addresses the set 

semaphore. The second, an integer, returns the identity of a thread to be ac-

tivated from the scheduling queue. The third, a thread-local boolean value, 

indicates whether a waiting thread should be activated. 

 The instruction increments the integer part of the semaphore by one and 

tests whether the result is greater than zero. If so the thread-local variable is 

set to indicate that the resource has been successfully deallocated and that 

no further action is required. If the result is less than or equal to zero (thus 

indicating that the thread must activate a waiting thread) the thread-local 

boolean operand is set to indicate that another thread must be activated. It 

selects a new thread from the thread set and clears the corresponding bit. 

The thread is advised in the second operand which thread must now be ac-

tivated by calling the scheduler. 

4.3 Applying Set Semaphores in SPEEDOS 

At the level of synchronising user threads, only the resource sets are relevant. 

Waiting process sets would have the following problems at the level of user 

synchronisation. 

a) At his level in the system there is an unspecified number of user threads 

which cannot be uniquely identified simply by integers. 

b) The selection criterion for selecting a thread to execute is in effect a priority 
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mechanism, which could lead to unfair starvation of some threads
54

. 

c) Waiting process sets cannot easily be adapted to the principle that TCMs 

should be kept up to date. 

As we shall see shortly, this does not imply that waiting process sets are entirely 

irrelevant for the design of SPEEDOS. 

However, such restrictions do not apply to resource sets. These can be im-

plemented for use by normal SPEEDOS user threads in a manner similar to the 

above description of mutual exclusion. The differences are as follows. 

a) The SPEEDOS kernel supports the two instructions RSETP and RSETV as 

indivisible kernel instructions (for use by user-level threads), which are 

then used as appropriate in the module's code in a similar manner to DECT 

and TINC. 

b) An additional integer parameter is required in the library module activate 

routine, allowing this to return the number of the free resource; 

c) A thread capability parameter is added to suspend operations as appropri-

ate. This does not affect the kernel's RSETP instruction. 

5 Summary 

In the first section of this chapter it was shown how the normal queuing opera-

tions for semaphores can be extended to allow for the SPEEDOS use of thread 

capabilities which allow Thread Control modules to be kept informed of the sta-

tus of their threads. It was further shown how the work of the central UTS can 

be reduced by placing the responsibility for the synchronisation queues associat-

ed with semaphores with a privileged synchronisation library module, thus re-

ducing the work of the central UTS and increasing its efficiency (which is im-

portant because this is normally the most activated routine in an operating sys-

tem). 

This technique can also be applied to the extended semaphore types dis-

cussed above. These should form the basis for a number of synchronisation li-

brary modules which made are available to all SPEEDOS users. Such library 

modules should at least include: 

a) normal mutual exclusion based on TINC and DECT instructions, which can 

also be used, for example, to implement scheduling control via private sem-

aphores
55

; 

b) reader-writer synchronisation based on READ-P, READ-V, WRITE-P and 

WRITE-V instructions; 

                                           
54

  A round robin algorithm could be implemented with a little more overhead. 
55

  see chapter 8 section 12.3. 
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c) the allocation of resources based on RSETP and RSETV instructions. 

The implementation should be based on non-interruptible kernel instructions and 

non-interruptible commutative queuing routines, managed in synchronisation 

library modules based on the pattern described in section 1. 

In the next chapter it will become clear how waiting thread sets can make 

an extremely useful contribution in the scheduling of kernel processes. 
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Chapter 22 

Thread and Process Scheduling 

 

This chapter discusses thread scheduling in SPEEDOS. The key issues here are 

what role the kernel plays in this activity, which thread is active on a CPU at a 

particular time, how CPU interrupts are handled and finally, how a persistent 

process and its threads are logged out and back in. The important theme of syn-

chronisation, i.e. how threads sharing the same data can synchronise their activi-

ties with each other, was described in Chapter 21. 

1 The Kernel's Role in User Thread Scheduling 

Since thread scheduling algorithms can be quite complex, and different algo-

rithms can be appropriate depending on the kinds of applications which are exe-

cuted at a node (see volume 1 chapter 8), it is appropriate that the user level 

scheduling algorithm itself should not be built into the core kernel, but should be 

provided in a security sensitive co-module, viz. the (central) User Thread 

Scheduler (UTS), thus allowing different SPEEDOS nodes to have different 

scheduling policies. However, this is not an activity which belongs in each con-

tainer (in contrast with many other security sensitive co-modules), but is best 

placed in a separate container.
56

 

Here it is only important that the scheduling activity exists outside the core 

kernel, and that it can cooperate and communicate with the core kernel, which 

                                           
56

  The previous chapter discussed the activities of the UTS in the context of synchronising 

user-level critical regions via semaphores, and the conclusion was reached that much of 

the code for handling this difficult issue can be outsourced to a privileged library rou-

tine. This both reduces the work to be carried out by the UTS (which is important since 

this is usually the most invoked module outside the kernel) and increases the security of 

the system. What remains for the UTS to do is to maintain lists of user level threads 

waiting for input-output operations to terminate and a list of user level threads which are 

ready to run. From its ready list it selects the thread(s) to which the CPU(s) should be 

allocated at any given point in time, i.e. to schedule the use of the CPU(s) at the user 

level. 
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must be responsible for the crucial security aspects of thread scheduling. When 

the UTS communicates with the core kernel (by executing kernel instructions), it 

always presents a kernel capability to identify itself. 

While the UTS decides which user threads should run on a CPU it does not 

carry out the actual (highly sensitive) thread switching activity itself. Instead it 

signals to the kernel that a thread switch is necessary by executing the kernel 

instruction thread_switch. This has three parameters. The first, as indicated 

above, is an appropriate kernel capability demonstrating its right to call this ker-

nel instruction. The second is the unique thread identifier of the thread to be ac-

tivated. This consists of a process container identifier in combination with the 

thread index number. The third parameter 'sleep' indicates to the kernel that the 

currently active thread is being suspended (without activating a further thread). 

When the thread_switch instruction is invoked, the process container must be 

a local container, since the thread switch must be immediately effective in order 

to guarantee that the CPU(s) at the node are used to best advantage. Thus a UTS 

only schedules threads residing at its own node. 

When it is called to make a thread switch, the first task of the core kernel is 

of course to check the authorisation of the caller (by examining the kernel capa-

bility passed to it) and then, assuming that this is in order, it must store the state 

of the current thread (i.e. the thread which is about to lose the CPU). It does this 

by storing its current register values in a save area at the base of its [the thread's] 

thread stack. Having stored the state of the current thread, the core kernel must 

then restore into the CPU registers the previously stored state of the thread now 

selected to run. The full thread identifier of the new thread allows the kernel to 

locate its container and, using the thread number as an index into the container's 

Thread Table, to locate the base of its thread stack, where the current state of the 

selected thread was previously stored. Having reloaded this state, the new thread 

can continue. 

In Espenlaub's version of SPEEDOS the kernel supports a further thread 

switching instruction, return_thread_switch, which, in addition to the pa-

rameters supplied with the normal thread_switch instruction, expects as an 

additional parameter the number of a segment register containing  return param-

eters (as in an inter-module return instruction). Espenlaub described this instruc-

tion as: 

"... a combination of the inter_module_return instruction and the thread_

switch instruction. Its purpose is to avoid blocking threads in the context of the 

UTS. Since each node has a different UTS and it is generally not possible to in-

voke methods of a particular UTS on a node other than that for which it is respon-

sible, this would prevent the straightforward migration of threads to another 

node..." (Espenlaub, p.240) 
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In the new SPEEDOS approach to parameter passing (described in chapter 20 

section 6), this additional parameter would be unnecessary, because by defini-

tion segment register 1 holds the parameters returned from an inter-module call. 

In SPEEDOS threads are not migrated as Espenlaub envisaged, but the kernel 

instruction may nevertheless still be useful to combine an inter-module return 

with a thread switch to the chosen thread. 

When a new thread is first activated, the thread's TCM passes it to the UTS 

interface routine start_new_thread(kernel_cap, new_thread_cap)and the 

UTS uses the kernel instruction new_thread (see chapter 20 section 8.2) to ac-

tivate the new thread. 

In order to allow a thread to delete itself the UTS provides an interface rou-

tine kill_me() which can obtain a thread capability for the thread in the usual 

way. As the final instruction executed (by the UTS) in this thread the kernel in-

struction switch_delete is executed, which nominates a new thread to be exe-

cuted and deletes the current thread. This is normally called on the advice of the 

thread's TCM, but may also be called by a surrogate thread (cf. section 11.2 be-

low). 

A further kernel instruction which can be called by the UTS is the idle in-

struction, which indicates to the kernel that there are currently no user-level 

threads to be scheduled. 

Finally there is a kernel instruction shutdown, which has as its only param-

eter a kernel capability authorising the caller to execute the instruction. The ker-

nel then immediately closes down the system. (It is the responsibility of the as-

sociated security co-modules to write the content of all active pages to disc be-

fore the instruction is executed.) 

2 The User Thread Scheduler 

It is important that the various nodes in a SPEEDOS network can have different 

scheduling algorithms tailored to their specific needs. This is one reason why the 

UTS is implemented as a security sensitive co-module rather than as an integral 

part of the core kernel. This approach supports the principle of separating mech-

anisms from policies. It is also important in that it keeps the fully privileged ac-

tivities of the core kernel to a minimum. 

The UTS has no special privileges except that it has access to a kernel ca-

pability which allows it to call the kernel's thread_switch and related instruc-

tions, including the disabling and enabling of (pseudo) interrupts (enable_

interrupts, disable_interrupts). 
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2.1 Interrupt Handling at the UTS Level 

User threads often need to wait for the occurrence of some event, e.g. that a par-

ticular time has been reached, that a number of milliseconds has expired, that an 

input-output operation which the thread has initiated has now completed, etc. 

Such occurrences are initially known to the kernel as a result of an interrupt, and 

the kernel must then advise the UTS when such an event occurs. This is 

achieved by means of a pseudo-interrupt mechanism, whereby the kernel can 

place a message for the UTS into a buffer which is accessible to both the kernel 

and the UTS. The kernel can then activate the UTS to handle the pseudo-

interrupt. However this activity must be co-ordinated, because the UTS might 

otherwise be interrupted in the middle of a critical section. 

To avoid such a situation the UTS can use the kernel instructions ena-

ble_interrupts and disable_interrupts to indicate when it can/cannot be 

safely interrupted by the kernel. If the kernel is ready to activate a pseudo-

interrupt but the UTS has turned off interrupts, the kernel buffers the interrupt 

until interrupts are turned back on. If it meanwhile wants to activate further in-

terrupts, these are also added to the buffer, and when interrupts are turned on by 

the UTS, the kernel immediately turns off interrupts again for the UTS and pass-

es to it the first pseudo-interrupt, etc. 

This mechanism has a further advantage. The normal semantic routines of 

the UTS are called by normal user threads (e.g. to request that they be suspend-

ed), i.e. the Scheduler itself is a critical section and it is therefore necessary to 

prevent multiple users from being active concurrently in the UTS. By turning off 

interrupts the UTS also prevents other threads from being active
57

, and hence 

provides a mutual exclusion mechanism for the UTS (which cannot use the 

normal mechanism, since its function is partly to implement the mechanism 

which others use, and attempting to use the same mechanism would become a 

recursive problem.) 

As we saw in chapter 21 section 1.6, the same mechanism can be used by 

the privileged synchronisation library module, since it also ensures that a re-

schedule cannot take place in the UTS, and therefore can be guaranteed (in a 

single CPU node) not to lose the CPU at the user level. The fact that real inter-

rupts can still be serviced by the kernel does not affect this, since relevant inter-

rupts will simply be buffered by the kernel until interrupts are turned back on by 

the library module.  

One final point: the description above envisages a simple interrupt mecha-

                                           
57

  This is the case only in a single CPU system. To keep the issue simple we consider only 

single-CPU systems in this chapter. The measures to be taken in a multiple CPU system 

depend on the design of the co-ordination facilities available in such a system. 
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nism, but in fact it would be possible to simulate an interrupt system for the UTS 

in which interrupts could be selectively turned off, in which different classes of 

interrupts have different priorities, etc. 

3 Scheduling Parameters 

The example thread scheduling algorithm described in volume 1 chapter 8 illus-

trates the need for threads to have scheduling parameters (e.g. a priority, a time 

slice). This aspect of a thread is not considered to be part of the thread's state (in 

the sense of register values, etc.), but it is a significant factor in optimising the 

throughput of a system and in guaranteeing the performance of particular 

threads (e.g. for real-time process control purposes). 

SPEEDOS provides for the management of such scheduling parameters 

(which might not merely involve the setting of static values but also their auto-

matic re-calculation based on past performance, for example) by including in 

each process container a Thread Control Manager (TCM) as a further co-

module. What this actually does depends on the nature of the process. 

As was described in Chapter 19 section 10, when a Thread Manager creates 

a new thread, a thread capability is returned to the caller. This can be used in 

inter-module calls to invoke semantic routines of the TCM. In the simple case, 

for example, the latter might provide operations for suspending and resuming 

the thread in question. The TCM is privileged in that it can directly invoke 

methods of the UTS. But since the UTS can vary from node to node and since 

TCMs can be programmed differently for different processes, it is impossible to 

define all the possibilities in more detail. The important point, however, is that 

this design leaves open considerable flexibility for managing processes and their 

threads. Furthermore, it is important that at the interface level a standard set of 

routines (e.g. for use by the synchronisation library and TCMs) is provided. The 

relationship between the TCM and synchronisation mechanisms was discussed 

in the previous chapter. 

4 Managing Real Interrupts in the Kernel 

Various CPU (hardware) designs can include a variety of support mechanisms 

for assisting in the management of interrupts from the hardware into the kernel, 

with various levels of complexity. Here we take the simplest approach, viz. that 

all local interrupts cause the CPU to start executing at the same location in the 

main memory and that they provide the details necessary to process the inter-

rupt. The UTS does not see these (real) interrupts, as they are initially handled 

by the kernel. 
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Following Rosenberg's approach in MONADS I (see [5, pp. 154-155])
58

, 

interrupt handling in SPEEDOS is performed by a short section of code (in 

SPEEDOS called the interrupt analysis routine). The kernel immediately turns 

off (real) interrupts (if the hardware does not already do this) then stores into a 

memory area in kernel space the values currently held in the registers (i.e. the 

register values of the interrupted user thread or kernel process)
59

. Kernel pro-

cesses
60

 have access to the stored registers and may further copy them to an ap-

propriate place (e.g. into the stack of the interrupted thread). 

Normally an interrupt leads to the activation of a kernel process (see sec-

tion 6) and an immediate reschedule of these processes to ensure that their prior-

ities are respected. They synchronise with each other using a variant of set sem-

aphores which leads to the efficient "automatic" scheduling technique described 

in section 7 below. 

Immediately an interrupt occurs the working registers are stored, and can 

then be used by kernel processes to carry out their work. 

At the kernel level there are two interrupt categories, known as synchro-

nous and asynchronous interrupts. 

4.1 Synchronous Interrupts 

Synchronous interrupts occur as a result of some event or action caused by the 

executing user thread or kernel process. Along with asynchronous interrupts 

they are initially analysed by the kernel's interrupt analysis routine, which classi-

fies synchronous interrupts into the following four groups: 

a) kernel instructions (e.g. inter-module calls). The kernel's interrupt analysis 

routine passes these interrupts to a kernel process called the User Request 

Process, which has a relatively low priority (compared to other kernel pro-

cesses). 

b) interrupts which require direct action by the kernel and have one or more 

associated kernel processes. The kernel's interrupt analysis routine passes 

such interrupts to an appropriate kernel process. (Virtual Memory page 

                                           
58

  Rosenberg's thesis describes the kernel for the initial MONADS system, based on a 

modified HP2100A system, later known as MONADS I. This thesis has unfortunately 

not been widely published. Rosenberg and other members of the MONADS team later 

developed the MONADS-PC system. F. A. Henskens has documented parts of the 

MONADS-PC kernel in his own thesis [20] (see esp. Chapter 4 and 8), which is availa-

ble at www.speedos-security.org. 
59

  In a multiple CPU system there is such an area for each CPU if both can take interrupts. 
60

  Since kernel processes are organised quite differently from user processes and their 

threads, we use the term process to distinguish the former from user level threads. 

(From the context it should be clear that these should not be confused with user level 

processes, see chapter 19 section 10 and chapter 20 section 2.) 
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fault interrupts fall into this category. In this special case the actions taken 

by the page fault kernel process are described in chapter 23.) 

c) security sensitive error interrupts, regardless whether they are caused by 

programming errors or deliberate attempts to break the system. Attempts to 

violate the restrictions imposed by segment registers (e.g. attempts to ac-

cess memory outside the range of a segment's data partition or to violate the 

access mode defined by the segment register) fall into this category. 

d) non-sensitive program errors (e.g. divide by zero, arithmetic overflow, etc.) 

Cases c) and d) are handled as forced inter-module calls on the top of the fault-

ing thread, as described in section 9. 

4.2 Asynchronous Interrupts 

Asynchronous interrupts (e.g. an I/O or clock interrupt) occur independently of 

the currently running user thread. Usually the handling of such interrupts leads 

initially to the unblocking of a kernel process (e.g. an I/O interrupt process), 

which may then cause a pseudo-interrupt into the UTS to advise it that a user 

thread waiting for the interrupt can be unblocked. The latter is then moved to the 

ready state (see volume 1 chapter 8). Whether it is immediately selected to run is 

determined by the UTS's algorithm. Some asynchronous interrupts are handled 

internally in the kernel (e.g. by a disc process when a disc interrupts). 

5 Kernel Instructions 

The kernel never executes its instructions as a genuine in-process call, because 

the kernel is neither a normal module nor a library module. Instead it supports a 

number of kernel processes which are activated as described below.  

The stacks for these processes, like other purely internal temporary kernel 

data structures, are held in a non-persistent memory which is logically separate 

from the persistent memory which the kernel and its co-modules create and 

manage for the user level. The use of non-persistent memory by the kernel is 

important in order to allow a kernel to be fully or partially replaced (e.g. to cor-

rect errors, provide more facilities or improve performance) when the system 

has been shut down, without concern for the state of internal data structures. 

Protection of those kernel instructions which are not intended for general 

use is achieved in that a kernel capability must be passed as an operand of the 

instruction. This contains an identification of the node on which it can be used 

(because a kernel instruction cannot be executed on a node other than the node 

on which the active thread is currently executing) and a set of access rights cor-

responding to the kernel instructions which the holder of the capability may val-

idly call. 
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In order to avoid many problems which have arisen in earlier kernels
61

, 

kernel instructions in SPEEDOS are implemented atomically on a kernel stack 

(per CPU) in the non-persistent main memory. In this context atomically means 

that a kernel instruction always either completes without blocking or "fails" (be-

cause it cannot immediately complete the requested action). If it fails, for exam-

ple if during the execution of an inter-module call a page fault occurs, the kernel 

resets the state of the thread to a position immediately before the execution of 

the kernel instruction. Consequently when the thread is later reactivated (e.g. 

after the missing page has been brought to the node and can be accessed by the 

thread) it will repeat the instruction. 

In this environment the kernel needs only one kernel instruction stack per 

CPU in order to process kernel instructions. This can be re-used for each kernel 

instruction executed on that CPU without losing parallelism. Espenlaub points 

out the considerable advantages of this approach in comparison with the mecha-

nisms used in other kernels [4, p. 170]. 

Throughout the book the simplifying assumption is made that the node un-

der discussion has only a single CPU, since the handling of multiple CPUs de-

pends heavily on the nature of the hardware itself. 

6 Kernel Processes 

The approach adopted for the management of kernel processes differs in Espen-

laub's suggestions for SPEEDOS from Rosenberg's original MONADS design. 

It is instructive to compare both approaches. 

6.1 Rosenberg's MONADS Approach 

Although an ardent supporter of the in-process approach to process structuring 

at the user level, Rosenberg adopted an out-of-process structure for MONADS 

kernel processes. In his solution there are a fixed number of threads which have 

different (defined) tasks to perform. These threads are organised as a priority 

hierarchy. Higher priority threads execute before lower priority threads. Inter-

rupts are transformed into messages. Each thread has its own buffer into which 

other kernel processes place messages. Reschedules take place when a new in-

terrupt arrives and when a thread completes the processing of a message. Kernel 

processes can pass messages to other kernel processes and activate them. Typi-

cally the messages are passed between related processes in a standard message 

block. These can not only serve as a vehicle for new messages but can contain a 

record of progress so far in dealing with a request. One such message block type 

is the virtual memory message block, which will be introduced in chapter 23 to 

                                           
61

  For a comprehensive description of kernels in other research systems see [4], chapter 3. 
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record the progress of page faults
62

. 

The highest priority kernel code is the interrupt analysis routine. In contrast 

with the remaining kernel processes this has no standard input buffer, as its in-

puts are interrupts. It is activated as a result of a (real) interrupt, and immediate-

ly turns off (real) interrupts until it completes, when it turns (real) interrupts on 

again. It handles trivial interrupts directly (e.g. buffering of characters for an un-

buffered device, requests for the date and time). Where appropriate it places 

messages in the buffers of the lower priority threads. These are used, for exam-

ple, to handle disc interrupts and page faults. 

The lowest level priority processes are for handling the requirements of us-

er level processing. User level threads execute within a single kernel process
63

, 

the User System Process, which is the second lowest priority process (see Figure 

22.1). The MONADS user thread scheduler (UTS)
64

 executes in this slot; it 

manages all user level threads, including decisions to switch threads (which are 

actually carried out by a kernel instruction, cf. thread_switch described in sec-

tion 2 above). 

 

The third lowest priority thread is the User Interrupt Process, which re-

ceives relevant requests from other kernel processes (in the form of interrupt 

message blocks) and transforms these into pseudo-interrupts for the UTS in a 

                                           
62

  An example which will play an important role in SPEEDOS is the IMC message block, 

which will be introduced in chapter 24 to record the progress of inter-module calls. 
63

  All the MONADS systems were single processor systems. In a tightly coupled multi-

processor system there would be one such thread per CPU. (Other modifications would 

also be necessary to the system as described here in order to synchronise multiple 

CPUs. The details would depend on the nature of the hardware in question.) 
64

  This is called the process scheduler in MONADS literature. 

Figure 22.1: The MONADS Kernel Process Table 
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shared buffer. (From the viewpoint of the user level scheduler these appear to be 

real interrupts but in fact they are simulated pseudo-interrupts. To achieve this, 

the User Interrupt Process saves the current state of the User System Process at a 

fixed location available to the UTS and replaces this with a state which imitates 

an interrupt handler.) 

The fourth lowest priority process is the User Request Process, which is 

used to execute kernel instructions for user threads. The very lowest priority 

process is an 'idle' process, which in the absence of an IDLE instruction simply 

loops doing nothing useful. This can run when the UTS issues a kernel idle in-

struction once the kernel also is inactive. 

As will be explained in section 7 below, the actual kernel process schedul-

ing mechanism in MONADS was based on an efficient microcoded implementa-

tion of set semaphores, where resource sets were used to access the message 

buffers and an extension of waiting process sets were used "automatically" to 

schedule the kernel processes [5, p. 155ff]. 

6.2 Espenlaub's SPEEDOS Approach 

In his proposal for the SPEEDOS kernel, Espenlaub abandoned some aspects of 

the MONADS scheme, but retained the idea of supporting a separate thread or 

group of threads for each potential interrupt source [4, p. 171] (which might be a 

single device or a group of devices, depending on the hardware design). The 

fundamental difference between Espenlaub's and Rosenberg's schemes is that in 

the former the threads for handling asynchronous interrupts are persistent and 

are managed as normal threads scheduled by the user UTS, whereas in the 

MONADS approach interrupt processes are scheduled directly by the kernel and 

automatically have higher priority than application threads.   

Espenlaub's design introduces more flexibility (e.g. by allowing new inter-

rupt threads to be introduced at a later point into a system as a result of users 

introducing new devices into the system) but the cost of this flexibility is a time 

penalty in the thread scheduling activity (e.g. because the core kernel must inter-

act with the UTS to activate the interrupt threads and because of the need to in-

teract with Thread Control Managers). 

6.3 The New SPEEDOS Solution 

The differences between the two approaches introduce a dilemma into the final 

design of SPEEDOS, because in modern general purpose systems (including 

desktop and laptop computers) it is important to be able to introduce new devic-

es (e.g. new external discs or printers), which could be supported in Espenlaub's 

concept by creating new persistent threads outside the kernel for handling addi-

tional asynchronous interrupts. However, in section 10 we introduce an alterna-
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tive design which allows new device drivers to be introduced into a running sys-

tem while following the MONADS approach. Furthermore, efficiency must also 

be a key criterion when making decisions about thread scheduling, since the 

UTS may be activated many thousand times per second. Not only is MONADS 

more efficient, as described above, but an extremely efficient implementation is 

possible using the concept of waiting process sets [19] (see chapter 21 section 

4.2.) This implementation is described in more detail below. 

A compromise between the two can be achieved by implementing asyn-

chronous interrupt processes as a MONADS-style priority list (known in 

SPEEDOS as the Kernel Process Table (KPT) (see Figure 22.2), but also provid-

ing a security-sensitive co-module outside the core kernel, the Kernel Process 

Manager (KPM), which manages information relating to the kernel processes. 

The KPT has a similar structure to that of the MONADS kernel process table 

(cf. Figure 22.1). 

 

Each entry in the KPT holds the information needed to activate and sched-

ule its process. In particular it contains a pointer to the code which the process 

executes, and storage space for its registers, as well as a pointer to its input buff-

er and the semaphore which regulates its access to the buffer.  

The Kernel Process Manager (a privileged co-module held in a container 

for kernel modules) is responsible for creating processes to handle interrupts (for 

the kernel) and for entering these in the KPT. But the core kernel schedules 

these and they are invisible to all other software above the kernel. This solution 

retains the flexibility of Espenlaub's proposal but also the run-time efficiency of 

Rosenberg's MONADS design. 

The Kernel Process Manager also maintains further information needed by 

Figure 22.2: The SPEEDOS Kernel Process Table 
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kernel processes, known as the Kernel Process Information (KPI), as will be dis-

cussed later in the chapter. 

7 Scheduling Kernel Processes Automatically 

Waiting process sets provide a technique for scheduling a set of processes which 

use enhanced semaphore operations to claim a resource or to schedule a set of 

resources. The basic principles behind both resource sets and waiting process 

sets were already described in chapter 21, section 4. 

7.1 The Automatic Scheduling Mechanism 

Waiting process sets can be taken a step further, as is described in Rosenberg's 

PhD thesis [5, pp. 155-162, 19, pp. 146-150] and was successfully implemented 

in the MONADS systems. By combining waiting process sets and resource sets 

and using them in conjunction with a system-wide "ready process set" (RPS, a 

bit list identifying all kernel processes which are waiting for a CPU) and an in-

teger "current process" (CP), it becomes possible to schedule threads "automati-

cally". In this context "automatically" means controlling the synchronisation and 

scheduling of threads entirely by semaphore instructions, which were imple-

mented in MONADS in microcode
65

. 

This is achieved via a modified implementation of WSetP/RSetP and 

WSetV/RSetV instructions (called ASetP and ASetV, where A indicates "auto-

matic"). The ASetP and ASetV instructions combine modified WSetP and WSetV 

operations with resource set instructions. Each instruction has two operands. The 

first is the address of a semaphore (here called SEM) which controls one of the 

kernel's process buffers. The second is an integer (here called R) which contains 

information about the appropriate resource. We refer to the integer part of the 

semaphores as SEMINT and the set part as SEMSET. Two global variables are 

required: 

i) RPS (Ready process set) is a set containing a bit for each kernel process. If 

the bit is set it indicates that the corresponding thread is ready to execute, if 

unset that it is not ready. 

ii) CP (Current Process) is an integer identifying the currently executing pro-

cess. 

A flowchart of these operations appears as Figure 14 in the published paper [19, 

p. 149]. However, this does not include the use of resource sets to enable the 

thread to discover which resource has been allocated or deallocated. We add this 

information in the following program snippets, where R is an integer operand 

                                           
65

  It would be feasible in more modern systems to implement the semaphore operations 

efficiently in a combination of hardware and kernel software. 
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which is used to indicate the number of a message in a bounded buffer. 

(ASetP) 

SEMINT = SEMINT - 1;  // claim a message to be processed 

if SEMINT ≥ 0 // if message(s) available in buffer 

  {R = findbit(SEMSET);// find position of message and 

        // return it in the operand 

   SEMSET = SEMSET – {R};} 

     // make message unavailable 

     // and continue executing 

 

else  {SEMSET = SEMSET + {CP}; // add waiting process 

      // to the set of waiting processes 

   RPS = RPS - {CP};  // remove current process 

       //  from ready set i.e. wait 

   reschedule;} // reschedule selects another thread 

     // from RPS to run and activates thread  

 

(ASetV) 

SEMINT = SEMINT + 1; // release a message position in buffer 

if SEMINT > 0 {SEMSET = SEMSET + {R};} 

   // if no processes waiting, free released message position 

   // in buffer and continue executing 

else  {chosen = findbit(SEMSET); // find a waiting process 

    RPS = RPS + {chosen}; // add it to ready threads 

   copy R into register of chosen; 

   reschedule;} 

The findbit operation searches a SEMSET bit list and returns the integer position 

of the selected bit. In other words in this context it either selects a message to be 

processed (ASetP) or it selects a process to be activated (ASetV).  

The reschedule operation selects a process from the RPS and activates it. It is 

defined as follows. 

(reschedule) 

integer selected = findbit(RPS); 

if selected ≠ CP {switchRegisters(selected); CP = selected;} 

Each kernel process uses a set of registers to carry out its defined activities. 

However the switching of processes would be an expensive activity if all the 

segment registers and general purpose registers in SPEEDOS systems were to be 

available to these processes. Consequently, with the exception of the User Sys-

tem Process, which is the thread in which the user threads are executed, each 

kernel process is restricted to the use of a smaller number of general purpose 

registers and a few segment registers. In this way the switching of kernel process 

registers can be made more efficient.
66

 

One further feature needs to be added to the automatic scheduler mecha-

nism to allow it to become fully functional in the SPEEDOS concept, viz. a 

                                           
66

  A final decision about which registers are available to kernel processes is left open here. 
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mechanism to allow a kernel process to suspend itself during the execution of its 

algorithm. This was already included in the MONADS-PC system, in particular 

to allow the disc process to start a disc access (read or write) and suspend until 

the access has completed [20, pp. 159-160]. We here call the suspend instruction 

AsusP and the corresponding activate instruction AactP. AsusP has no explicit 

operand; it always suspends the kernel process executing the instruction and 

causes a reschedule. AactP has a single operand defining the number of the 

thread to be activated. 

These are implemented via an additional word SPS (suspended process 

set), in which, like RPS, each bit represents a kernel process number. When a 

process issues an AsusP instruction, the bit position corresponding to CP is set 

and a reschedule is then started. When some other process (e.g. the Interrupt 

Analysis Routine) wishes to activate a suspended process (e.g. a disc process) it 

uses AactP (providing the number of the process to be activated). This unsets 

the bit in SPS corresponding to the process number and starts a reschedule. The 

reschedule instruction itself must be modified to take account of suspended bits 

in the SPS. This is most easily achieved by modifying the operand of findbit 

in the reschedule operation into an exclusive or of RPS and SPS, i.e. 

(reschedule) 

integer selected = findbit(RPS xor SPS); 

if selected ≠ CP {switchRegisters(selected); CP = selected;} 

Notice that a process number in RPS must always be set if the corresponding bit 

in SPS is set. 

This automatic scheduling mechanism is extremely efficient, eliminating 

the need for a kernel process scheduler in software
67

 and at the same time it very 

efficiently solves synchronisation problems. Why then is it not widely used? 

One reason is the limitations described in section 4.3 of chapter 21, which pro-

vided the reasons for not using waiting process sets at the user synchronisation 

level. Furthermore, the operations which it supports are quite primitive (e.g. it is 

not possible for a process to wait on the union of several conditions such as a 

timer interrupt or an input from a terminal). 

Automatic scheduling in this form requires that the number of kernel pro-

cesses should be quite small (e.g. not more than 64 in a system with 64 bit 

words) if the set operations are to be kept efficient. Furthermore processes 

should be fairly static (i.e. adding and removing processes during a running sys-

tem should be avoided if possible), so that bit positions corresponding to process 

                                           
67

  The automatic scheduler was implemented in microcode in MONADS, and it might be 

feasible to implement some parts of it in hardware as the basis for a priority interrupt 

system. 
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numbers do not become ambiguous. 

7.2 The Scheduling Algorithm 

The most significant limitation of the automatic scheduling technique is that on-

ly two scheduling policies are easy to implement. If the search for a new process 

for execution (i.e. the findbit function) always begins at bit zero in RPS and in 

ASetV, choosing the first position where a bit is set, the result is a priority 

scheduling algorithm, with the thread corresponding to bit 0 having the highest 

priority and the thread corresponding to the last bit having the lowest priority. 

Since the synchronisation of the kernel processes relies on a priority system, this 

is ideal for the SPEEDOS kernel. But it is far from ideal for user level threads, 

which is one reason why these are scheduled by a separate scheduler, i.e. the 

UTS. 

The only easily implementable alternative would be to have a cyclic pointer 

indicating the bit position at which the last search ended, thus providing a FIFO 

buffering mechanism. This would be a feasible alternative way of implementing 

the findbit algorithm in ASetP, but in view of the added complexity and the 

nature of the SPEEDOS kernel the priority version is to be preferred. 

In the final SPEEDOS system, as in MONADS, priority scheduling is pre-

ferred not only because of its simplicity but also because this simplifies the de-

sign of the kernel processes with respect to their synchronisation with each oth-

er. 

7.3 Managing the Buffers 

There are central pools of message blocks, which are passed via pointers be-

tween processes. These both serve as parameters for the kernel processes and 

can hold further relevant information which can in effect be stored as long as it 

is needed and used by several related threads. The ASetV operation is used by 

the sending process when a message is passed from one process to another. A 

pointer to the relevant message block is placed in the input buffer of the receiv-

ing process, which in effect is a producer-consumer buffer
68

. The process will 

eventually be scheduled and will use the ASetP operation find the first available 

message in its buffer. When it has completed the processing of the message it 

loops back to the ASetP instruction to process the next message. If there are no 

messages in its buffer the ASetP operation causes it to wait until a message ar-

rives. A thread may be temporarily halted as a result of a reschedule (and of 

course its register values are preserved until a further reschedule activates it). It 

will resume (and its registers reloaded) when a further reschedule selects it as 

                                           
68

  see Chapter 8 section 12.1 (Bounded Buffers). 
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the currently highest priority thread. 

There are two exceptions to this scheme, as follows. 

– The interrupt analysis routine has no buffer but is activated by an actual 

hardware interrupt, then after analysis it places a message resulting from its 

analysis into the buffer of the appropriate thread. 

– Disc processes do not simply consume messages passed to them in the or-

der of their arrival but scan the buffer to achieve a more efficient use of the 

disc which they are controlling (e.g. to minimise the disc head move-

ments
69

). This is disguised from the rest of the kernel by having a special 

form of the ASetV instruction for each disc process. 

7.4 Passing Interrupts to the User Thread Scheduler 

Kernel processes frequently pass on interrupts to the main operating system, 

which in practice means that they advise the User Interrupt Process by passing a 

message to it. As this process has a higher priority than the User System Pro-

cess, it cannot be interrupted by the latter, which has the lowest priority except 

for the idle process. Several user pseudo-interrupts might gather in its buffer as a 

result of interrupts being passed on to it from higher priority kernel processes. 

These are serviced one at a time by the User Interrupt Process. 

In order that the UTS can manage these in an orderly fashion, a protected 

mechanism for enabling and disabling (pseudo) interrupts at the user level, im-

plemented via a binary semaphore, is provided (as in MONADS). This does not 

affect real interrupts, but only the interrupts from the kernel to the UTS. The 

protection is provided in that the caller must also present an appropriate kernel 

capability. 

Before passing an interrupt to the UTS the current state of the currently ac-

tive user level thread (i.e. the current state of the User System Process) is saved, 

in order that it can be resumed by the UTS later. 

In MONADS the User Interrupt Process had three "registers" (which might 

be implemented in memory: an Interrupt Target Subsystem
70

 (ITS) register, an 

Interrupt Target Address (ITA) and an Interrupt Parameter Pointer (IPP). The 

first two defined the module to be interrupted and the address at which the inter-

rupt should be made. IPP points to an area in which the parameters (message) 

should be placed. 

In SPEEDOS equivalent information, i.e. a module capability (for the UTS) 

and an entry point number in the module for the interrupt routine, can be placed 

in the KPI, and the current user-level Thread Stack can be used to pass the pa-
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  e.g. the elevator algorithm, see https://en.wikipedia.org/wiki/Elevator_algorithm 
70

  In MONADS modules (in the SPEEDOS sense) were called subsystems. 
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rameters (message) to the UTS. In this way it becomes a kernel design decision 

whether the same interrupt routine is used for all interrupts or whether several 

UTS interrupt routines are provided to handle different kinds of interrupts. 

When an interrupt routine completes, a reschedule will usually be needed at 

the UTS level (e.g. if the pseudo interrupt signalled the completion of an input-

output operation). To achieve this, the interrupt routine ends by executing a re-

schedule operation, which selects the next thread to be run. It then executes a 

return_thread_switch kernel call (see section 1 above), which causes the 

kernel to combine an inter-module return with a thread switch to the chosen 

thread. Of course the kernel had already stored the state of the thread which it 

interrupted at the base of its thread stack. 

8 Kernel Interactions with Co-modules 

The synchronisation mechanisms described in chapter 21 can be used by user-

level threads to synchronise their activities with each other and, as we have seen 

above, to co-ordinate the interactions of kernel processes with each other. But 

there remains one issue to be answered. How can the kernel synchronise with 

those co-modules with which it shares data? And how can it interact with user 

level modules? We examine these two issues in this section. 

8.1 Sharing Co-module Data 

As was described in chapter 17, the kernel makes direct use of data of its co-

modules (e.g. from the Co-module Tables, Code Tables and Thread Tables). It 

only reads the information in them
71

. Is it possible that while it is reading infor-

mation from a data structure shared with a co-module that this could interfere 

with a user-level thread which also wishes to access the same data? 

Recalling that this chapter is only concerned with synchronisation at a sin-

gle-CPU node
72

, we realise that the same CPU cannot at the same time be exe-

cuting both at the user level and at the kernel level. Suppose now that the kernel 

attempts to coordinate with the user threads not by actively using shared reader-

writer semaphores but merely by looking at their state, assuming of course that 

the kernel knows where these semaphores are (e.g. at the beginning of each 

shared co-module data structure). One of the following possibilities arises: 

a) The semaphore shows that readers are active. In this case the kernel can 

also safely read the data. Since the kernel process involved (i.e. the User 

Request Process) is executing at a higher priority than the User System 

                                           
71

  It writes information (e.g. parameter and linkage segments) on a thread stack but this 

does not conflict with actions of the co-modules. 
72

  because there are several possibilities for designing synchronisation between multiple 

tightly coupled CPUs, which cannot all be discussed here.  
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Process (in which user-level threads run) it can also safely read the data, 

without adding itself to the set of current readers. Although it can be inter-

rupted by higher priority kernel processes, it will always resume before a 

user-level thread can run; hence in this situation there is no conflict. 

b) The semaphore shows no readers and no writers. Here too in a single CPU 

system the kernel process, executing safely at a higher priority without reg-

istering itself as a reader. 

c) The semaphore shows that a writer is active. In this (seldom occurring) 

case, the kernel simply sends a request to the user level UTS, telling it to 

reschedule. Since the program counter of the user-level thread has not been 

updated the user-level thread would simply re-try the kernel instruction 

when it is later selected to run by the user level UTS. 

Since the kernel never writes shared co-module data, this possibility simply can-

not arise, and hence we have a trivial solution for the problem in a single CPU 

system, without all the complexities created by Espenlaub's solution [4, pp. 172-

173]. 

8.2 Surrogate Threads 

Sometimes the kernel needs to interact with the user system level not simply by 

reading data, but by executing an algorithm involving non-kernel code. To 

achieve this it can activate a surrogate thread. Such threads are designed to car-

ry out special tasks on behalf of the kernel. In some cases they carry out tasks on 

behalf of the kernel, e.g. helping with the login activity (see section 11 below), 

but sometimes they assist with the execution of user activities in special situa-

tions such as executing bracket routines (see chapter 24) or assisting with the 

execution of remote inter-module calls (see chapter 28). 

Surrogate threads are prepared at system initialisation and can be activated 

when needed by the kernel. They can be implemented as follows. 

a) For each kernel service a pool of threads is set up in its own process con-

tainer as part of the system initialisation. The kernel is then advised how 

many such threads (i.e. thread stacks) have been created and in which con-

tainer they are held. 

b) The kernel maintains a bit list for each service pool in which each bit corre-

sponds to a thread. It can then treat this as a resource set and so quickly se-

lect a currently unused surrogate thread and determine which thread has 

been allocated. 

c) The threads are identified in the system via thread capabilities which as 

usual contain the node number, the process container number and the thread 

number. However the type field in a thread capability for a surrogate thread 

is not "thread" but "surrogate thread". 
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d) As part of the system initialisation the Thread Manager for each surrogate 

thread pool creates the corresponding number of threads and in these builds 

up an appropriate addressing environment. Typically this involves setting 

up values such as the following: 

– images of the kernel pseudo-register values and segment registers (e.g. 

segment register 5 and if the routine needs parameters, segment regis-

ter 0 as well as other relevant registers such as the Thread Security 

Register, as appropriate
73

; 

– appropriate values in the capability accessibility area. 

– parameter values in the input parameter segment. 

e) Not all values can be set up at system initialisation time and some may need 

to be set up immediately before the kernel activates a thread (e.g. the code 

segment register and program counter to address the code
74

). What can ac-

tually be set up at what time depends on the individual cases. Similarly 

some registers may need to be invalidated when a surrogate thread com-

pletes a task. 

e) When the addressing environment is fully prepared the kernel can activate 

the thread by causing an interrupt into the UTS, passing to it a surrogate 

thread capability, as an identifier. The UTS does not keep a complete list of 

surrogate threads, but adds them when advised by the kernel and deletes 

them when advised by the thread. 

f) The UTS schedules them using the normal kernel instruction switch_

thread, providing the thread capability (and the usual kernel capability) as 

operands. 

g) When a surrogate thread has completed its task it calls the normal UTS rou-

tine (killMe()). This then uses the kernel instruction switch_delete 

which advises the kernel that the current (in this case surrogate) thread 

should be deleted. The kernel can determine from the type field in the 

thread capability that the thread to be deleted is a surrogate thread, in which 

case the kernel returns the thread to its deallocated status. 

This may sound like a complicated mechanism but it is in fact simpler, more ef-

ficient and more flexible than carrying out a normal inter-module call, for ex-

ample, or trying to implement the forced module calls suggested by Espenlaub 

A first example of how surrogate threads are used in practice is provided in the 

section 11. 

                                           
73

  see chapter 26. 
74

  These cannot be part of the system initialisation, since they change dynamically as each 

thread executes. 
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9 Handling Synchronous Interrupts 

In section 4 four kinds of synchronous interrupts were listed. The first of these 

(kernel instructions) is straightforward to handle, as we have seen above, in that 

the interrupt analysis routine transforms these into messages placed in the buffer 

of the User Request Process. Now follows a brief discussion of the other three 

cases. 

9.1 Page Faults and Related Interrupts 

In chapter 17 section 3 we referred to Espenlaub's suggestion which would al-

low the kernel to make so-called 'forced method calls'
75

 to interface routines of 

its co-modules and to examine their returned results in order to obtain infor-

mation which it might need. This suggestion is by no means as simple to imple-

ment as it may sound and has therefore been rejected as a general technique for 

the final SPEEDOS system, although it would theoretically be useful, for exam-

ple, to call an interface routine of a container's Virtual Page Table Manager in 

the course of resolving a page fault. However, we will see in chapter 23 that 

there is a much more efficient way of achieving this particular requirement. 

9.2 User Errors and Security Violations 

An error in the execution of a user thread (see cases (c) and (d) in section 4.1 

above) implies that normal execution of the thread cannot immediately continue.  

Hence there is no problem in handling the error via an inter-module call to the 

appropriate error handling module on the faulting thread stack. 

In this case the kernel's interrupt analysis routine places details of the inter-

rupt into the input buffer of the kernel's User Request Process. This saves the 

thread's status (from the kernel analysis routine's register save area) as it would 

if the UTS had issued a kernel thread_switch or an inter-module call instruc-

tion. It then creates a new stack frame (including input parameters based on the 

interrupt details) at the top of the thread stack. The kernel process then "fakes" 

an inter-module call to the required entry point of the co-module to be activated, 

which may differ for different errors, but should always be a co-module with a 

fixed index number in the current container. 

For non-sensitive program errors this could, for example, be a white box 

debugger co-module (at a fixed position in the co-module table, thus allowing 

the kernel to generate an appropriate module capability to fake the co-module 

call). 

For protection violations the co-module called is always a system co-

                                           
75

  This should not be confused with the mechanism for passing interrupts to the UTS, dis-

cussed in the previous section, nor with the forced inter-module call. 
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module, which first carries out security related tasks such as logging the error 

and might then optionally be programmed to activate a user defined module on 

the user thread stack, e.g. to carry out debugging (as described in (c) below). 

When the stack has been fully prepared, the kernel then starts its execution 

(as for a normal inter-module call). The user level UTS does not need to be in-

formed of this, because it was not informed of the interrupt and so assumes in 

any case that the thread is executing. 

On completion of the error handling module it might be necessary to advise 

the Thread Control Manager to delete the current thread, or if the problem is re-

coverable, the kernel can arrange an exit back to the thread state as it previously 

existed. 

One potential danger with this approach was mentioned by Espenlaub, re-

calling that the issue of stack overflow might occur as in systems such as the 

Burroughs B6700 (see chapter 8 section 8). However, with the availability of 

vastly more main memory and much larger virtual addresses, together with the 

paging design presented in chapter 23, this issue is no longer relevant, provided 

of course that precautions are taken to avoid it. 

10 Handling Asynchronous Interrupts 

The kernel receives interrupts which are not directly related to the kernel process 

or user thread) which is currently executing. The most important of these inter-

rupts fall into two groups: general device interrupts (e.g. from printers, from 

keyboards) and disc interrupts. 

Of the remaining asynchronous interrupts only normal asynchronous inter-

rupts from hardware devices are now discussed, since in chapter 23 we will dis-

cuss disc interrupts (which are related to the virtual memory). 

10.1 Espenlaub's Proposal for Handling Asynchronous I/O Interrupts  

For handling asynchronous interrupts arising from device completions and simi-

lar cases Espenlaub suggests handling these almost entirely outside the kernel, 

with the cooperation of the UTS in an out-of-process style. This implies that 

such user level threads contain device drivers which must often send messages 

to other user threads that are using the device, which therefore requires a facility 

to do this. My own intuition is that device drivers are best handled in as in-

process modules in the user thread which wants to use them. This means for ex-

ample that module capabilities can be used in the normal way to determine 

whether a user thread has the right to activate a device. We therefore now ex-

plore this possibility for handling asynchronous interrupts. 
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10.2 Handling Input-Output Operations In-Process  

The basic idea is based on the fact that asynchronous interrupts usually arise as a 

result of a user thread requesting an input/output (I/O) operation. The user 

thread may then wait for the I/O request to be completed. This occurs in the 

form of an asynchronous interrupt, and the user thread must then be reactivated. 

(The only significant exception is the management of memory device (e.g. disc) 

interrupts, which are normally part of the SPEEDOS virtual memory and are 

therefore a special case, discussed in chapter 23.) 

10.2.1 In-Process Device Drivers 

The main issue which concerns us at this point is what part the kernel plays in 

the above pattern. The most important question is how device drivers fit into the 

pattern. These are special hardware modules (usually supplied by device manu-

facturers), which contain the detailed knowledge needed to "drive" the device, 

i.e. to make it function correctly. 

In conventional computers there are two ways of achieving this, depending 

on the hardware design. One is a special hardware instruction (here called 'start 

device'), which can only be executed when the computer is currently in a privi-

leged mode (corresponding to SPEEDOS kernel mode). Alternatively, the hard-

ware might use memory mapped I/O. (For more detail see volume 1 chapter 6.) 

In SPEEDOS memory mapped I/O is strongly preferred, since in this case the 

only special privilege required is that a segment register is loaded to address the 

device memory. To achieve this, the device driver is "simply" a module which is 

invoked by a normal inter-module call and thus executes in the thread of a user 

wishing to use the device. The device driver, when invoked, uses the kernel in-

struction load_devSR in order to gain access to the device in question, specify-

ing as operands the number of the segment register to be loaded, a device capa-

bility which defines the device via a channel number and device number and a 

normal kernel capability authorising the caller to call this kernel instruction. The 

device capability provides evidence that the current thread/module is authorised 

to use the device, and at the same time identifies the device for the kernel. 

The main question remaining (in this context
76

) is how the deactivation and 

reactivation of the user level thread are organised. A kernel device process first 

becomes aware of a user thread's need to use a device when a device driver in a 

user thread requests the loading of a segment register via the kernel load_devSR 

instruction. This can then be the used to access the device via memory mapped 

I/O. When the thread reaches the point at which it needs to wait for the result of 
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  Issues such as organising the use of devices and spooling of printer output are questions 

for the operating system design, which will be discussed in chapter 33. 
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an I/O operation, it calls the Thread Control Manager for the thread in which it 

is active, requesting this to call the user level UTS to suspend it pending an in-

terrupt from the corresponding channel and device number. To ensure that the 

interrupt will eventually be passed to the correct thread, the UTS executes the 

kernel instruction wait_interrupt, which passes a copy of the device capabil-

ity to the kernel. (This enables the kernel's device process to maintain a tempo-

rary list of thread/device combinations waiting to be activated, called the Wait-

ing Thread List.) The UTS then suspends the thread, waiting for the kernel to 

interrupt it (using the usual pseudo-interrupt system, see section 7.4). 

10.2.2 Handling the Interrupt 

Eventually the kernel will receive an asynchronous interrupt from the device, 

which it passes to its device process. This must simply check the result from its 

Waiting Thread List, delete the matching entry and create an appropriate buffer 

entry for the kernel's User Interrupt Process, which will eventually cause the us-

er level UTS to be interrupted. This in turn can reactivate the thread waiting for 

the device. The latter can then continue to re-use the device following the same 

pattern, until it either invalidates its device segment register or it exits from the 

device driver. 

10.2.3 Activating Related Threads 

There are some asynchronous interrupts which require a small extension to this 

scheme, i.e. when a thread that receives an asynchronous interrupt needs to acti-

vate other threads which also have an interest in the interrupt and need further 

information about it. In this case there is no problem in activating another thread 

which is waiting, but the mechanism for activating threads (see chapter 21 sec-

tion 1) provides no facility for passing on new information to the activated 

thread. For this purpose the kernel provides an instruction put_message which 

allows the thread receiving the interrupt to pass a short message of one word (8 

bytes) to the kernel, and a further instruction get_message, allowing the recipi-

ent to receive the message. To ensure that this cannot be used as a covert chan-

nel, the following precautions are taken: 

• both instructions require a kernel capability; 

• the put_message instruction requires that the user of this instruction pro-

vides a thread capability for the destination thread; 

• the get_message instruction requires that the user of this instruction pro-

vides a thread capability for the sending thread; 

• the put_message instruction requires that the user of this instruction pro-

vides a module capability for the destination module; 



Chapter 22 THREAD AND PROCESS SCHEDULING 112 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

• the get_message instruction requires the user of this instruction to provide 

a module capability for the sending module; 

• When the get_message instruction is executed, the kernel not only returns 

the message to the destination module, but also clears it to zero. 

An example of the need for this mechanism appears in chapter 32 section 4. 

10.2.4 Adding New Devices to a Running System 

One of Espenlaub's aims was to make it possible to add new devices to a run-

ning system. This is achieved in the above alternative in that device drivers are 

still located outside the kernel, but instead of having special threads for this pur-

pose they are simply treated as (in-process) modules in the thread using the de-

vice. Their only special feature from the user's viewpoint is that the user may 

need to provide them with a device capability as a parameter. 

In this design a kernel process which receives a device interrupt can have a 

standard design which simply reacts according to a channel/device number. 

When a device driver is installed, this follows the normal rules for in-

stalling a module. It is of course possible to install multiple device drivers in a 

single container and it may even be appropriate for them to communicate with 

each other or share data. In this case they can be installed as cooperating co-

modules (see chapter 18 section 7). Device capabilities which give them the 

privilege to access I/O devices can in principle be stored in the constant seg-

ments of their code. However, since these serve as evidence that a thread has the 

right to use the device, it may be better to insist that device capabilities are 

passed as parameters to the device drivers, as is discussed in the next subsection. 

10.3 Device Management 

In order to use an external device a thread needs a device capability. Users must 

obtain such device capabilities from a source which has such a capability. This 

might for example be from the creating user when a new user is created, or it 

might be from an operating system module, or a system manager, or a central 

directory of device capabilities, etc. Which user processes and threads obtain the 

privilege to use external devices is a policy decision, not a mechanism and is 

therefore not part of the kernel. 

10.4 Handling Interactive Interrupts 

Interactions with modern keyboard-monitor devices are in principle similar to 

interactions with other devices, involving a device driver mechanism. In princi-

ple these can be handled like other input-output devices (see previous section), 

but there are several unusual issues. First, several (but not all) modules which 

are active in the same thread must have easy access to a device capability. Sec-
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ond, different threads may need access to the same device. Third, the question 

arises how the threads with a need to access the same device acquire the re-

quired capability, since there is no guarantee that a user will always log in at the 

same device. 

If we make the assumption that each user logs into a separate device, and 

that this only displays information to which the user should have access, then the 

sharing issues are no problem. A mechanism has already been provided in chap-

ter 19 section 5 which allows authorised modules in a thread to gain access to 

standard input and output modules for the thread, via a capability accessibility 

area
77

. Once a device driver capability is accessible to one thread it can share 

this with other threads, like any other capability. The more interesting question, 

from our present point of view, is how this device driver capability gets allocat-

ed and placed in the capability accessibility area.
78

 The answer can be found in 

the next section. 

11 User Commands to the Kernel 

Sometimes a user may need to instruct or make requests to the kernel, which are 

comparable with operator commands in early systems. For example he may need 

to advise the kernel that he wishes to remove an external disc from the node. 

Such requests may involve several interactions, which are best organised initial-

ly outside the kernel. These are handled in SPEEDOS via normal threads owned 

by the system administrator, or in single-user systems by the owner of the com-

puter. This thread communicates with the kernel by executing privileged kernel 

instructions and examining the responses (see chapter 17, section 6). To execute 

these instructions the thread needs appropriate kernel capabilities, which are 

provided with a new system in segments of the code which the appropriate 

thread executes.  

12 Long Suspending Processes 

Volume 1 chapter 15 section 3 explained how interactive persistent processes 

(i.e. threads in SPEEDOS terminology), are not destroyed when they log out (in 

contrast with conventional systems) but continue to exist in a "long suspended" 

state. Then when the user logs in again they return to the active state, continuing 

from the first instruction after the long-suspend call. This will typically be in a 

                                           
77

  How some modules in a thread can be restricted from obtaining capabilities via the ca-

pability access area of a thread will be described in chapter 26. 
78

  For those programmers who are only familiar with the out-of-process model and who 

are concerned about how the appearance of a screen can be coordinated for different 

threads/processes, the answer is simple. Multiple threads can share a module (with ac-

cess coordinated by semaphores) that holds a representation of what is held on the 

screen! 
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routine of a user module which can then check the authenticity of the person at-

tempting to log in. 

The impression was given in volume 1 chapter 15 that the kernel is respon-

sible for managing long suspends. However, that preceded the discussion on the 

structure of the SPEEDOS kernel and in particular the possibility of using secu-

rity-sensitive co-modules to carry out kernel-related tasks. In fact, the core ker-

nel plays only a relatively small direct role in managing SPEEDOS long sus-

pends. 

This is important because the kernel itself stores no persistent information. 

If the kernel is shut down and restarted, it must rely on information in its co-

modules to enable it to re-start threads logged out at the end of an earlier system 

session. Hence it cannot rely on maintaining its own list of logged out user 

threads. Instead a co-module, the Login Service Module, maintains a list of 

logged out threads. A possible format for entries in this list is shown in Figure 

22.3. 

 

The User Prefix is a unique "username" of up to 16 bytes. However, this is 

not normally used to login. Instead, the user supplies a current login name, also 

up to 16 bytes in length, which can be changed whenever he logs out. Hence a 

different login name can be used not only for each thread or user process but 

also for each session if desired. Since the current login name is not guaranteed to 

be unique, in the case of a clash the system can request the user prefix in order 

to disambiguate the name. This mechanism has the advantage that the user does 

not normally even have to reveal his username when logging in. The user prefix 

is supplied to the Login Service Module by a new user when his first process is 

created.
79

 If he proposes a prefix which already exists for another user, he must 

choose a different one which is not already in use. 

12.1 Logging Out 

The "logout module" shown in Figure 15.5 and later diagrams of volume 1 chap-

ter 15 can now be equated with the Thread Control Manager responsible for the 

process container of the logging out thread. It has a semantic routine, called 

logout, which is the logout command for threads in its container. This should 

only be called via a thread capability for a thread which wishes to long suspend. 

                                           
79

  Creating new users is described in Chapter 31. 

Figure 22.3: Entry in the Login Service Module's Logged Out List 

Current Login Name Thread Capability User Prefix 
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Depending on the parameters of the logout routine the calling thread alone, or a 

defined set of threads in the process or all the threads in the process can be sus-

pended (and later re-activated). 

Here we describe the case of a logout which involves only the currently ac-

tive thread. Situations involving further threads and subthreads are left to an ac-

tual operating system designer, since they may involve the management of er-

rors (e.g. if a thread has claimed a semaphore or is in a semaphore queue when 

its owner issues a logout command), which would by far exceed the scope of 

this book. 

12.1.1 TCM Actions in Preparation for Long Suspensions 

The TCM logout routine performs the following actions: 

a) It carries out any necessary housekeeping duties, such as noting the logout 

time, etc. Via a parameter to the TCM's logout routine the thread/process 

owner is also given the opportunity to change the current login name.
80

 

b) The TCM's logout routine executes a kernel instruction invalidate_ 

IO_cap to invalidate the device capabilities for the current keyboard and 

screen devices. 

c) The TCM invokes the logout routine of the node-wide Login Service 

Module, passing to it the old login name and optionally a new login name. 

Since it is possible to change the current login name each time the service 

module's logout routine is called, a hacker cannot even rely on the 

"username" part of a logged out process or thread
81

.  

 The Login Service Module's logout routine obtains a thread capability for 

the current thread (from the capability accessibility area) and makes an en-

try in its Logged Out List of suspended threads, noting the new login name 

in its list if appropriate, and returns to the TCM. 

d) The TCM then invokes the UTS's suspend_me routine. 

Note: all these actions are taken in the thread which requested the logout. 

                                           
80

  A login name may include characters such as hyphen, full stop, forward slash, back-

slash, etc. From the viewpoint of the Login Service Module such names are simply 

viewed as a string to be matched. Only the character used by the kernel to recognise the 

end of a character string cannot appear in a login name. 
81

  In case a user forgets the name, he can invoke a different semantic routine of his Thread 

Control Manager in a different thread. This can then recover the forgotten name for him 

without having to reveal this to a system manager or superuser, see Chapter 5 section 

7.1. (In a mandatory protection environment (see Chapter 3) it is possible to provide a 

semantic routine for the Login Service Module which gives a 'superuser' access to its 

list of logged out users.) 
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12.1.2 User Thread Scheduler Actions for Long Suspending Threads 

The UTS selects a new thread to be scheduled and calls the thread_switch in-

struction of the core kernel
82

. This instruction causes the current state of the 

thread to be stored at the base of its stack (as usual). At this point the logout is 

effective. From this we see that the core kernel has no direct role in logging out 

activities. 

12.2 Logging In in a Multi-User System 

The most interesting issue from the viewpoint of the kernel is how a logged out 

thread is reactivated. Espenlaub's description [4, pp. 200-201] is not detailed. It 

simply refers to a "node-wide login service" which is out-of-process and which, 

after establishing the login name from the user, calls the corresponding Thread 

Control Manager's login routine. This then calls the UTS to reactivate the ap-

propriate thread(s). This sounds very plausible, but it leaves unexplained (a) 

how the login service thread(s) can be activated when a user wants to log in and 

how it discovers which terminal is active. It also leaves open the efficiency issue 

(for the case that in a large system multiple users attempt to log in at the same 

time). Here is a more detailed and somewhat modified, largely in-process, alter-

native. 

12.2.1 Handling an Unexpected (Asynchronous) Keyboard Interrupt 

A user normally signals his intention to log into a system by activating a free 

interactive device, which creates an unexpected asynchronous interrupt. The 

kernel's interrupt analysis routine will pass the interrupt to its device process. 

This detects from its Waiting Thread List that there is no process designated for 

handling this case, so the kernel puts a message (consisting of the device source) 

into the buffer of the kernel's internal "login" process. 

12.2.2 The Kernel's Login Process 

The primary purpose of the login process is to activate a surrogate thread in the 

privileged Login Service Module. This thread is responsible for obtaining a user 

name for the logging in user. 

12.2.3 The Login Surrogate Threads 

The kernel's login process uses a resource set semaphore to claim a free surro-

gate thread (see section 8.2). After it has prepared for the activation of the surro-

gate thread (including placing a device capability for the interrupting device into 

the thread's capability accessibility area), the login process creates an interrupt 

                                           
82

  A 'sleep' parameter can be used by the kernel as an indication that the stack can be 

paged out. It otherwise takes no special actions with respect to logging out. 
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into the UTS, indicating (by passing its surrogate thread capability) that the 

thread is ready to be scheduled. 

The UTS then schedules the surrogate thread (using the thread_switch 

instruction). The surrogate thread, executing in the Login Service Module, sends 

a login request to the device and suspends itself in the UTS awaiting a reply (see 

section 10.2). It will then need to synchronise its access to the Logged Out List 

via the usual reader-writer semaphore. If a search shows that the name provided 

is on the list it will remove the entry, release the semaphore, and execute the 

kernel's transfer_terminal instruction. This has three operands: a kernel ca-

pability allowing it to use the instruction, the device capability for its current 

thread, and the thread capability for the logged out thread which is to be activat-

ed. The kernel then stores the device capability in the capability accessibility 

area for the thread to be logged in. 

 The surrogate thread then calls the UTS killMe routine, passing the thread 

capability from the matching entry in the list as a parameter and an indication 

that this thread should be activated. When the UTS has done this it calls the ker-

nel's switch_delete instruction and the surrogate thread is returned by the ker-

nel to the pool of surrogate threads. 

Since the kernel surrogate thread requires only few instructions its job is 

done very efficiently. 

12.3 Logging In in a Single User System 

In a single user system the start-up phase of the devices will cause the system to 

be initialised and then can request his log-in details without the above complica-

tions, but carrying out the same security checks. 

12.4 Logging In (the User Thread Level) 

After the UTS has activated the logging in thread, this returns back to the TCM's 

logout routine (which had been called as part of the logging out procedure). 

This continues to execute the second part of the logout routine, which can then 

carry out the following. 

a) It performs housekeeping duties (e.g. note the login time). 

b) It next calls the application's authentication module
83

, which then challeng-

es the logging in user to provide some evidence that he is the valid user. 

(This is possible because the kernel has already set up a capability for the 

interactive input-output device in the thread's capability accessibility area, 

see section 11.2.3 above.) There is no restriction on the form this check can 

                                           
83

  A capability for the authentication module has previously been provided to the Thread 

Control Manager by the owner of the thread. 
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take. If the authentication is successful the Thread Control Manager then 

exits back to the calling module, which then continues as normal. It may al-

low repeated login attempts, but if the authentication finally fails it returns 

this information to the TCM, which again logs the thread out. The TCM can 

also provide a semantic routine which allows the user to change the authen-

tication module by providing a new capability. 

13 Scheduling Real Time Systems 

Espenlaub argued that his kernel design better supports real time systems "which 

cannot tolerate deviations from the schedule", in that the UTS has complete con-

trol of scheduling both normal and interrupt threads [4, p. 171]. This could cer-

tainly be the case in some systems, but in many real time environments handling 

interrupts by priority is a satisfactory approach. 

In the environment proposed above for SPEEDOS, real time systems which 

rely on priority scheduling can be supported effectively by adding the real-time 

threads to the list of kernel processes in the KPT, using the Kernel Process Man-

ager to achieve this. Such threads will not be persistent, but like the kernel's own 

processes they will usually be "lightweight" processes and, like the kernel's own 

processes, they can be initialised by a user level co-module when the system is 

loaded. 

SPEEDOS was not initially intended for use in real time systems, but there 

appears to be no reason why Espenlaub's concept could not be implemented in a 

variation of the standard kernel for systems which are schedule-based. Alterna-

tively, and probably more efficiently, a variant of the kernel process scheduling 

mechanism described above in sections 6 and 7 could be implemented. 
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Chapter 23 

Virtual Memory Management 

at a Single Node 

 

This chapter describes one of the SPEEDOS kernel's most significant functions, 

the management of the virtual memory. In many respects this differs substantial-

ly from virtual memory management in conventional systems. The main reason 

for this is that SPEEDOS adopts a significantly different approach in terms of 

both the persistence of the virtual memory and its distribution over the internet. 

Several aspects of the SPEEDOS design presented in this chapter are based 

on ideas which were successfully implemented in the MONADS kernel [21], the 

very substantial difference being that SPEEDOS "outsources" more complex 

kernel functions into security-sensitive co-modules. 

In this chapter we make the simplifying assumption that all discs compris-

ing the virtual memory at a node are always on-line at that node. In later chap-

ters this restriction will be relaxed. 

A small amount of information in this chapter is repeated from chapter 11, 

to save the reader from the need to frequently refer back to, or to re-read, that 

information, which is very considerably expanded in this chapter. 

Appendix 1 of this volume provides a detailed overview and diagrams of 

the formats of relevant data structures from this and later chapters. 

1 Hardware Translation of Virtual Addresses 

So far we have presented a SPEEDOS virtual address as consisting logically of 

four 64 bit words, as is illustrated in Figure 23.1. 

 

Node Number Disc # in Node Container # in Disc Offset in Container 

Figure 23.1: A SPEEDOS Virtual Address 
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The node number is a unique SPEEDOS identifier of a node. Each SPEEDOS 

computer has a distinct node number which is built into its hardware and can be 

read (but not modified) by the kernel or other software. In order to simplify the 

allocation of node numbers the first 8 bits of the node number represent a manu-

facturer number. However, this does not affect the calculations in this chapter. 

The disc
84

 number within a node is allocated by the kernel when it initialis-

es a disc
85

 and is unique within that node. In reality a physical disc can be subdi-

vided into partitions. For this reason the last four bits of the disc number are 

used to indicate a partition number on disc (see chapter 27), hence reducing the 

number of physical discs which can be created on a node to 2
60

. 

The container number within a disc is allocated when a new container is 

created on a disc (see chapter 19); this is unique within the disc on which the 

container resides. The first 8 bits of a container number are an index field, indi-

cating a module number (within data and code containers) or a thread number 

(within process containers)
86

. The next eight bits are also reserved; they hold a 3 

bit type field, a one bit "valid" field and four status bits, all of which are only 

relevant in the context of capabilities and will be explained in later chapters. The 

effect of this is that only 48 bits are used to identify a physical container. This is 

significant in the present chapter. 

The "offset in container" part of a virtual address itself decomposes into the 

pair «page # in container, offset in page», see Figure 23.2. The maximum size of 

a container is limited to the maximum size of a disc, since a container must fit in 

a single disc. With current technology this suggests a maximum container size 

of 2
42

 bytes. Since the page size is assumed to be 8 KB (i.e. 2
13

 bytes
87

), the page 

number part requires 29 bits. This allows a container to have a maximum size of 

4 TB. Of course most containers will be very much smaller than this. 

In view of the above remarks the maximum size of a SPEEDOS address 

from the viewpoint of virtual memory management is as shown in Figure 23.2. 

 

                                           
84

  The word "disc" is here used generically to describe all devices which can persistently 

store information, including read-only media. 
85

  It is discussed in a later chapter how a disc can be used on several nodes. 
86

  Recall that multiple modules/processes can be held in a single container 
87

  It would be possible to implement byte addressing via the instruction set, as in the Al-

pha computers. This would affect some of the calculations in this chapter. 

Figure 23.2: A SPEEDOS Address for Virtual Memory Management 

Node Number Disc # in Node Container # 

in Disc 

Page# in 

Container 

Offset 

in Page 

64 bits 64 bits 48 bits 29 bits 13 bits 
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A virtual page number has a unique network-wide structure, shown in Fig-

ure 23.3, where a container identifier consists of <node #, disc #, container #>. 

In principle the task of an address translation unit (ATU) at a specific SPEEDOS 

node is to map such virtual page numbers onto main memory page frames. 

 

In the MONADS-PC system, which had 60 bit virtual addresses, the ATU 

was actually able to handle the equivalent of this. Each virtual address in the 

MONADS local area network was unique. David Abramson designed and built 

an ATU (with inverted page table functionality), based on a hash table imple-

mented in hardware, which could translate any virtual page number in the net-

work to a page frame number (or cause a page fault interrupt) [22]. That was in 

the late 1970s/early 1980s. 

Since then the size of main memories has increased enormously, making 

such an implementation economically infeasible. But not only that; MONADS 

had only 60 bit virtual addresses (including two bits to indicate on which of the 

four nodes in the MONADS local area network the container resides), whereas 

in SPEEDOS we are discussing worldwide unique 218 bit virtual addresses. 

These parameters would create two sets of problems for a SPEEDOS im-

plementation based on the MONADS-PC ATU design. First, the increased size 

of main memories means that the number of entries in an ATU based on the 

MONADS approach would increase very considerably. Second, because the 

width of SPEEDOS virtual addresses is vastly greater than that of MONADS 

virtual addresses, the width of entries in a MONADS-style ATU would also be 

significantly larger. 

The first problem alone makes a MONADS style implementation infeasi-

ble, but the second problem creates substantially greater problems. Hence a dif-

ferent approach is needed in order to translate SPEEDOS virtual page numbers 

into main memory page frame numbers. In the next two subsections we consider 

these two problems in turn. The aim is to achieve the translation of SPEEDOS 

virtual addresses in about the same time as the simpler addresses of current sys-

tems are translated and if possible to resolve page faults more quickly than in 

current systems. 

1.1 Managing the Number of Main Memory Page Table Entries 

In the early 1980s, at the time the RISC idea was becoming popular, the problem 

Container Identifier Page # in Container 

Figure 23.3: A SPEEDOS Virtual Page Number 

29 bits 

 
176 bits 
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of increasing main memory sizes had already begun to emerge. In Chapter 11 it 

was illustrated how RISC designers began to cope with the problem by design-

ing systems in which the entire address translation hardware consists simply of a 

translation lookaside buffer (TLB), which did not have enough entries to trans-

late all virtual page numbers in the main memory. Figure 11.7, which for con-

venience is repeated here as Figure 23.4, indicates the task of the software in this 

RISC scenario. 

 

Translated into SPEEDOS terms, the core kernel software is responsible for 

the mechanism aspects of the software code functionality shown in blue in the 

diagram. Because the TLB is too small to provide a mapping for each page 

frame in the entire main memory, a complete mapping from page frames to vir-

tual pages (i.e. an inverted page table
88

, in SPEEDOS terminology the Main 

Memory Page Table, MMPT) must be maintained in software. The MMPT is 

permanently locked into main memory. 

When a TLB miss occurs the hardware interrupts into the core kernel code. 

This first examines the MMPT to establish whether the miss occurred simply 

because the TLB is not large enough to hold an entry for each page. If that is the 

case, it updates the TLB using the information in the MMPT and loads the ap-

                                           
88

  In this context the use of the name inverted page table is not intended to imply a specif-

ic implementation, merely the principle that the actual data structure implemented can 

rapidly translate a virtual page number into a main memory page frame number, without 

holding information about virtual pages not currently in the main memory. This might 

for example be a software implemented hash table which has similar functionality to 

that of the MONADS ATU mentioned above. 

Virtual Page Number Offset in page Virtual Address 

Figure 23.4: The TLB as the entire ATU 
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propriate information into the TLB, allowing the process to continue execution 

without being suspended. 

On the other hand if the TLB miss arises because a genuine page fault has 

occurred, the kernel must resolve the fault. This activity cannot take place syn-

chronously, because the effect would be that all other processes would be held 

inactive until the page fault is resolved. Espenlaub suggested that the Container 

Manager be responsible for resolving page faults [4, p. 159], but this is an ex-

pensive solution, which can be more efficiently handled by kernel processes di-

rectly. 

1.2 Managing the Width of TLB Entries 

The second ATU problem for SPEEDOS systems is the width of entries, which 

arises primarily because a unique logical SPEEDOS address would require very 

wide TLB entries. This follows from the decision to support unique worldwide 

container numbers. Providing an implementation of this in the TLB would be 

especially costly because for each TLB entry a separate comparator is needed in 

hardware for each bit in the virtual page number. Hence an alternative solution 

is needed. 

In practice TLBs can be implemented in different ways. In some conven-

tional systems an address space identifier (ASID) can be associated with virtual 

page numbers in each TLB entry, thus making addresses belonging to different 

programs unique (within the TLB), with each currently active thread using a dif-

ferent address space identifier. On other systems the TLB restricts access to a 

single address space, so that the TLB has to be flushed on each context/thread 

switch. 

We now describe how SPEEDOS might effectively use a TLB which was 

designed to support only a single address space, i.e. without ASIDs. 

1.2.1 TLBs Supporting Only a Single Address Space 

If the TLB hardware assumes that only one address space is mapped into the 

TLB at a time and that on a context switch the TLB is flushed, this raises a spe-

cial problem for SPEEDOS, because a SPEEDOS container is never active 

alone. Typically there are at least three active containers: a process container, a 

code container and a persistent data container. Under some circumstances, there 

may be more concurrently active containers. 

– A module may need access to one or more library code containers (whereby 

several library code modules can be held in a single container, as was de-

scribed in chapter 19). 

– A need for more data containers can arise if a module provides n-ary func-

tionality (e.g. to allow two sets of file data to be merged into a third, or to 
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compare two sets of file data). 

It therefore makes sense to support up to, say, eight containers concurrently in a 

TLB which is flushed on each context switch. To achieve this, the three top bits 

of a virtual address (as viewed by the TLB) act as a short container identifier 

(SCID)
89

. With three bits used in this way up to eight containers can be concur-

rently active. Figure 23.5 shows how a virtual address can be used to address 

eight containers simultaneously in what the TLB views as a single address 

space. 

 
The actual mapping of the 3 bits might by kernel convention be defined as 

is shown in Figure 23.6. 

 

It should be noted that 

 (a) the mapping of containers to actual container numbers in SPEEDOS is a 

trivial activity which the kernel can organise as part of inter-module calls 

and returns, and in association with the loading of segment registers; 

(b) on an inter-module call and also on a thread switch between two threads of 

the same process, entries in the TLB for the stack container do not need to 

be flushed; 

(c) it would be a straightforward matter to implement separate TLBs (and main 

memory caches) in hardware for stack, data and code addressing in an op-

timised processor design. 

1.3 The Main Memory Page Table 

Figure 23.7 illustrates the basic structure of the SPEEDOS MMPT. In contrast 

with the TLB (which in the above proposal contains entries only for the current-

ly executing module), the MMPT contains a complete view of all the pages in 

                                           
89

  It is also assumed that "stealing" three bits of an address is acceptable, but this is unlike-

ly to be a problem in 64 bit computers, even if the within container address is restricted 

to less than 64 bits. 

 
Page# in Container SCID 

29 bits 3 bits 

Figure 23.5 The Page Number Presented to the ATU 

000 identifies the process container of the currently active thread. 

001 to 011 identify the currently active code containers, i.e. for the  

 main code container and up to two active code library containers. 

100 to 111 identify up to four data containers. 

Figure 23.6 A Possible Allocation of Short Container Identifiers 
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the main memory, and must therefore hold the full virtual container number and 

of course the page number in container of each page currently held in the main 

memory. 

 

The SCID is the short container identifier of the page. It is necessary in or-

der that the kernel can work efficiently with the TLB. 

The lock count indicates whether the page is locked into main memory. It is 

a count rather than a single bit, indicating how many times (if any) the page is 

considered to be locked into the main memory, thus allowing different parts of 

the system to lock in the page independently of each other. Only when it has a 

zero value can the page be considered for discard from the main memory. 

The disc address field holds the current disc address of the page, thus al-

lowing a page to be written back to its location in the virtual memory without 

having to access the relevant page table. 

The idea behind a use bit is to indicate whether the page corresponding to 

this entry in the table has recently been used. This bit is set by hardware in the 

TLB each time the page is accessed. It is used by the kernel's discard algorithm 

to help determine which page(s) to discard from the main memory when a page 

frame is needed for a different page. Such an algorithm usually follows the least 

recently used (LRU) strategy [23, pp. 323-333], which is based on the high 

probability that a page used very recently is likely to be needed again in the very 

near future. (Like people, computers cannot see into the future, but this algo-

rithm provides a good approximation.) 

The discard algorithm can also receive advice from other modules. For ex-

ample, when a file module becomes inactive (e.g. as a result of all relevant 

threads closing it) this information can be passed from the appropriate Segment 

Manager to the MMPT module (possibly via the container's Virtual Page Table 

module). Similarly when a persistent thread logs out, its pages can be immedi-

ately discarded. 

Figure 23.7 Structure of the MMPT 
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A change bit is set in the TLB to indicate that the hardware has detected 

that the page corresponding to the entry has been modified. The advantage of 

this bit is that if a decision is made to discard a page which has not been 

changed, then the page need not be written back to disc. 

The use and the change bits are set by the hardware in the TLB entry for a 

particular page. The kernel ensures that they are copied into the MMPT, in order 

that the kernel can use them when making decisions about discarding pages. 

The read only bit is not really required (at the page level) in SPEEDOS. 

However, it is included in the design for compatibility with other systems
90

. 

The execute bit is not really necessary, since the execute bit in the code 

segment register allows the page to be executed as code. It is added for the case 

that the Address Translation Unit can also be used in a more conventional way. 

Two kernel processes, the Page Fault Interrupt Process and the Virtual 

Memory Process are the main users of the MMPT. Their primary functions are 

to maintain this table and to determine which pages should be held in/removed 

from the MMPT. 

1.4 Mapping SPEEDOS Container Numbers onto SCIDs 

The use of SCIDs is sufficient (from the hardware viewpoint) to allow SPEED-

OS addresses to be effectively translated by a TLB which was originally de-

signed to translate addresses within a single address space, provided that the 

TLB is flushed on thread switches and on other context switches (e.g. inter-

module calls). 

However, that is only part of the story. It is also necessary, from the soft-

ware viewpoint, to maintain some form of mapping between the SCIDs and the 

corresponding full 176-bit virtual container identifiers, information which is 

needed, as we shall see shortly, by the core kernel. To achieve this, the core ker-

nel maintains this mapping in pseudo (or real) processor registers, called con-

tainer registers. As defined above, 8 such container registers are needed, their 

functionality corresponding to that defined in Figure 23.6. 

With this scheme the segment registers (which are the vehicle via which 

virtual addresses reach the TLB) must be loaded by kernel instructions to con-

tain a 3-bit SCID index followed by a within container address
91

. While the TLB 

regards the entire structure as an address, the core kernel can use the SCID pre-

                                           
90

  In the MONADS systems a read only bit was essential to implement remote paging, but 

in SPEEDOS the use of remote paging was rejected in favour of remote inter-module 

calls (see chapter 28). 
91

  This also has the advantage that segment registers can be much shorter (and therefore 

much cheaper) than they would otherwise be. 



Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 127 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

fix as an index into the bank of 8 container registers which it maintains for the 

currently active thread, thus allowing it rapidly to discover the full virtual ad-

dress associated with a short address, e.g. when a genuine page fault occurs. 

The container registers form part of a thread's current state, and they must 

be stored/reloaded along with the values in the thread's real registers (e.g. its 

segment registers) on thread switches (as already described in chapter 20). The 

kernel sets them up initially when a thread is first activated. Which container 

registers need to be stored and reloaded on various kinds of call instructions is 

described in chapter 20. 

2 The Local Virtual Memory 

The SPEEDOS virtual memory (from the viewpoint of a specific node) consists 

of the information on its currently mounted discs (which we refer to as its local 

virtual memory) together with the information on other discs at other nodes 

which it can reach via remote inter-module calls. The latter aspect is considered 

in chapter 28. In the present chapter the description concentrates exclusively on 

the local virtual memory of a node, as if it were a stand-alone computer. 

The most significant difference between the SPEEDOS virtual memory and 

the virtual memories of conventional systems is that the SPEEDOS virtual 

memory is persistent, i.e. there is no separate file system in the conventional 

sense. The files of a SPEEDOS system are not held as entities outside the virtual 

memory but are held in containers which comprise the virtual memory. In such 

an environment the main (RAM) memory can be viewed simply as a cache for 

the all-encompassing virtual memory
92

. 

2.1 Virtual Memory Message Blocks 

As in the MONADS design the core kernel maintains a heap of virtual memory 

message blocks, which are of fixed size and therefore can be rapidly allocated 

and deallocated via a resource set semaphore. They enable those kernel process-

es that manage the virtual memory to coordinate their activities with respect to 

the state of the virtual memory. The basic idea is that when the need arises (e.g. 

when a page fault occurs) a message block is allocated and set up with the initial 

details (e.g. of the page fault). It can then be passed between the kernel process-

es, whereby each process updates the message block as a result of its own activi-

ty then places the message block's address in the input buffer of the next relevant 

process. When the reason for creating the message block has been fully handled 

(e.g. a page fault has been finally resolved) the message block is deallocated and 

becomes available again in the pool of message blocks. 

                                           
92

  see Chapter 12. 



Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 128 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

2.2 The Layout of Information on Disc 

A SPEEDOS full virtual address contains both the node number on which a new 

disc was first initialised and the disc number allocated by the node to the new 

disc. At this stage we assume that a disc is always mounted on the node which 

initialised it, but in chapter 27 we consider what happens if the disc is mounted 

at a different node. 

Container number 0 on a disc is a directory of the remaining containers on 

the disc; this is located at a well-known address on the disc. It is otherwise or-

ganised like all other containers from the viewpoint of the virtual memory, with 

its own page tables (see sections 2.3 and 3.6). It contains the number of the next 

unused container on the disc, information about the free space on the disc, the 

length of the directory and the directory itself. The latter provides rapid access to 

the disc address of page 0 of each container stored on the disc (see Figure 23.8). 

 

When a disc is mounted at a node the kernel reads page 0 of its container 0 

into main memory and locks it down until the disc is dismounted (or the system 

shuts down). Thus when a page fault has to be serviced from a container held on 

the disc, locating the page table for the directory does not itself cause a page 

fault (see section 3). But access to the directory entry and to page 0 of the fault-

ing container may cause page faults. 

2.3 Organising the Page Tables 

A key aim in organising page tables is to minimise the number of additional 

page faults which can arise in the course of resolving a page fault. In the 

SPEEDOS environment this in principle involves both finding on disc the con-

tainer holding the faulting page and finding the page within the container. 

The organisation of the page tables in the MONADS-PC system provides a 

Figure 23.8 Structure of a Disc Directory 
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good starting point
93

. SPEEDOS follows the same pattern as far as possible, but 

must take into account both a number of developments in the SPEEDOS design 

(especially the use of security sensitive co-modules) and technological advances 

which have taken place since the late 1970s (e.g. the greater capacity of discs, 

the use of 64 bit addressing, the prevalence of large removable mass storage de-

vices such as USB discs
94

 and of the Internet). 

2.4 Security Sensitive Co-modules and the Virtual Page Tables 

The SPEEDOS design has introduced the idea of security sensitive co-modules 

to assist the kernel. Some of these modules are located in the containers which 

they serve, e.g. the Co-Module Manager, the Code Manager, the Segment Man-

ager, the Thread Manager and the Thread Control Manager and, perhaps most 

significantly in this context, the Virtual Page Table Manager. An important 

question which this raises is the extent to which this development might conflict 

with another significant aspect of MONADS, viz. the idea of implementing in-

ternet (and other network) activity via the transfer of pages between nodes (i.e. 

remote paging). This issue is further discussed in chapter 28, where the decision 

is taken not to use the remote paging technique, but instead to support the idea 

of remote inter-module calls (RIMCs) via a technique akin to remote procedure 

calls. 

3 Structuring the Page Tables of a Container 

Each container has a Virtual Page Table (VPT) Manager. In contrast with Es-

penlaub's approach, the VPT Manager is not invoked via an inter-module call by 

the kernel to translate virtual memory addresses into disc addresses. However it 

is responsible for organising the page table in its container and for preserving 

this during system shutdowns. 

Assuming that a page (corresponding to a block or contiguous group of 

blocks on disc) is 8 KB (2
13

 bytes) in length and that a page table addresses a 

disc block in 32 bits, this allows for a maximum disc size of 2
13

 x 2
32

 bytes = 2
45

 

bytes = 32 TB
95

. This is more than enough to support the proposed maximum 

container size of 2
42

 bytes (see section 1). In principle we might envisage an in-

dexable page table with a separate entry for each 8 KB block on a disc, in the 

worst case that a single container consumes a whole large disc. However, such a 

page table (with 2 entries per 64 bit word) for a single container (restricted to 4 

TB in length) would require 2 K addresses per page, and for a complete 4 TB 

                                           
93

  For a detailed description see [21]. 
94

  Solid state devices (SSDs) are organised as discs and are here simply treated as USB 

discs.  
95

  This assumes byte addressing. If word addressing is used, 256 TB could be addressed. 
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disc it would require about 2 billion (short scale
96

) pages, an obviously ridicu-

lous approach. 

3.1 Small Files 

Most of the files (i.e. co-modules) in most systems are relatively small (e.g. text 

files, code files, emails, presentations, spreadsheets, letters). In fact, every con-

tainer is likely to hold a number of small files, e.g. the kernel co-modules asso-

ciated with a container, such as the Co-Module Manager, the Segment Manager, 

etc. Consequently a Small Page Manager (within the Virtual Page Table Man-

ager) must be automatically installed in every container as part of the initialisa-

tion of that container. 

This might, for example, provide a total space of up to 4 MB (2
22

 bytes) on 

disc for all the small files (user files and kernel co-modules) in a container. With 

a page size of 8 KB (2
13

 bytes), and assuming on-demand dynamic allocation of 

individual pages on disc, the maximum number of entries required for the Small 

Page Manager's page table (i.e. a mapping from virtual page number to disc 

block number) is 2
9
. Assuming once again that the blocks of a disk can be ad-

dressed in 32 bits (2
2
 bytes), the maximum page table length for the small files 

would be 2
9
 x 2

2
 bytes = 2

11
 bytes, i.e. one quarter of a page for each container. 

This could be stored in the first page (page 0) of the container, leaving ¾ of page 

0 free for other information. This is a more realistic approach. 

3.2 Large Files 

Large files need not have massive page tables. Because SPEEDOS decouples 

the mapping of virtual page numbers to main memory page frames from the 

mapping of virtual page numbers to disc addresses, the ATU hardware need not 

be aware of the structure of such page tables (for small or large files). This cre-

ates the opportunity to devise alternative schemes, especially for large files. 

For example, if all the pages of a large file are placed contiguously on disc, 

then a page table can consist simply of a start address on disc and a length. If 

space on a large disc is (partially) allocated in units of say 128 MB (or larger) 

then a very large file could consist of several "multi-pages" of 128 MB, where 

the addresses within a 128 MB unit, each normal page address within a multi-

page unit only needs a start address and length to find the appropriate page. Us-

ing such methods the location on disc of any of the contiguous pages can be cal-

culated rapidly. Such strategies might be used by a Large Page Manager (hid-

den within the Virtual Page Table Manager) for video files and other contigu-

ously stored files, and pre-paging could in some cases be useful. Another possi-

                                           
96

  see https://en.wikipedia.org/wiki/Billion. 
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bility is that large files which start life as small files could be organised initially 

as small files which after a certain limit is reached could be extended to become 

(or converted into) large files. Alternatively they could use small files to index 

into large files. Conventional database techniques and/or "big data" techniques 

might be used in the Virtual Page Table Manager's Large Page Manager. Differ-

ent containers can use different techniques. 

3.3 Page Tables for a Process Container 

Like other containers a process container holds security sensitive co-modules, 

including in this case a Thread Manager and a Thread Control Manager. Their 

needs can be handled using the same small file organisation proposed for the 

other security sensitive co-modules. 

Beyond that, the kernel needs a thread stack for each user thread in the con-

tainer. This almost exclusively contains inter-module linkage and parameters
97

, 

which we refer to jointly as a stack frame. A rough calculation suggests that a 

page frame of 8 KB will typically hold at least 8 such stack frames, and most 

threads will probably never require more than 8 nested stack frames, so that, be-

ing very generous in most situations (the content of) an entire thread stack will 

easily fit into say four pages, and in most cases into one or two pages. 

This situation is not comparable with stacks in other in-process systems 

such as Multics, the Burroughs 6700 or the ICL2900, because those systems in-

cluded not only linkage data and parameters but all the process-oriented data of 

the user programs themselves, and therefore were more prone to the risk of stack 

overflow. 

Even allowing for say 256 threads in a process container (the maximum 

possible using an 8-bit index number), each using four pages, the total space for 

all the thread stacks in a process would be 2
8 

threads x 2
2
 pages x 2

13
 bytes = 2

23
 

bytes, double the proposed size of 2
22

 bytes for a small data file. This suggests 

that a different page table organisation for process containers might be used, in 

which (a) a small file organisation could be used for the co-modules and (b) the 

second page (page 1) of the process container could be used for thread stacks. If 

the entire second page were used as a page table this would allow for 256 

threads each with a stack frame of up to 8 pages. The actual allocation of space 

could be left to a further standard algorithm in the kernel.
98

 

                                           
97

  see chapter 20. 
98

  This makes sense because the kernel manages space directly on the thread stacks, 

whereas the need for new pages in other circumstances is organised by the Segment 

Manager (see section 5 below). 
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3.4 Which Page Tables are Needed in a Particular Container? 

From the above discussion it is clear that different page table constellations are 

needed (and can be organised differently) in different containers. A simple way 

to do this is to let a user creating a new container indicate that the container will 

be used by him for small files and/or for large files (and if the latter approxi-

mately how large his file will be) or for a process. 

Notice that the form which this choice takes need not be expressed at the 

user level simply in the form "large file" or "small file", but rather in terms 

which can also provide other useful information (e.g. a video file, a code file, 

etc.). In some cases it will not be necessary to demand information at all directly 

from the user, since user level software often creates such files (e.g. an email 

program usually creates email files, some video programs create video files, 

etc.). In such cases the program will usually have much more information about 

which Virtual Page Table Manager variant is needed. Similarly, in a copy opera-

tion it should be possible for the software to discover from the Virtual Page Ta-

ble Manager of the file to be copied what is the most suitable constellation. 

But from the system's viewpoint it will usually be sufficient to provide 

standard configurations. A page management table for serving the kernel's co-

modules will always be necessary, but a decision will usually be necessary re-

garding a large file (or files) and a small user file (or files) or a process. A fur-

ther parameter which will be useful (in all cases) is approximately how large the 

required page table should be, and in the case of large files whether the table 

should be organised as a number of units of fixed (relatively large) size. It is also 

conceivable that special managers imitate database techniques (e.g. using "rec-

ord keys") or Virtual Page Table Managers which pre-page (e.g. when it is 

known that the information will be accessed sequentially, as for video files and 

some commercial files). 

3.5 Organising the Page Tables 

From the organisational viewpoint a small file page table can be organised at a 

fixed position in page 0 of each container, indicating the virtual address where 

the individual page tables can be found, as is illustrated in Figure 23.9. This may 

differ from the organisation in a process container, since further information 

about the individual stacks may be necessary. 

The address of the actual page table for the small (8 KB-paged) files is 

fixed in page 0 and is known (see section 2.2.1). The page boundaries in the blue 

boxes allow the kernel to determine which of the two page tables applies when a 

page fault occurs. In each case the address points to information describing how 

the actual page table is organised, its start address, the length of the page table, 
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etc. This information allows the page fault resolution software quickly to estab-

lish which of the page tables is relevant when a page fault occurs.  A null pointer 

indicates that the relevant page table does not exist. The orange fields allow the 

page management software to discover the last valid entry in each page table. 

The green fields are the complete page tables for a large file. This structure al-

lows all the page table information for a container to be held in a single page, 

i.e. page 0!  

 

3.6 Page Table Code 

The above discussion suggests that a number of virtual page table co-module 

configurations should be available in SPEEDOS. To ensure the integrity and 

privacy of other users' information on a disc, it would be unsafe to allow normal 

users to write such modules. Consequently they must be written and tested as 

part of the SPEEDOS software, with users being offered a choice of module. 

3.7 The Disc Directory 

So far it has been assumed that the start addresses of the containers on the disc 

are known, and Figure 23.8 assumes that a directory exists to achieve this pur-

pose. 

The main issue to be faced for a SPEEDOS disc directory is that a very 

large range of numbers (in principle 2
48

) is used to address the containers on a 

disc. Such a large number was chosen to ensure that container numbers remain 

unique over the life of the disc (and so never have to be re-used
99

). However, 

nobody is suggesting that a disc will ever, over its lifetime contain (or have cre-

ated) such a large number of containers. In fact there are very, very considerably 

less bits on even a large disc than there are potential container numbers! Hence 

such large numbers cannot simply be used as indices into an array which has an 

                                           
99

  see volume 1 chapter 2.  

Figure 23.9 An Index of Page Tables for a Container 
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entry for each possible container number. Consequently an efficient technique 

has to be used in order to locate the first page of a container on the disc. Let us 

first get a feel for the nature of the problem. 

The initial impulse of some computer scientists is probably to use a hash 

table
100

 to achieve the necessary mapping from container number to disc ad-

dress. But in the present context this technique has a disadvantage, i.e. the entire 

hash table must be created in advance, before it can be used. However, this is an 

overkill solution for many discs (especially large discs which contain large files 

that are rarely deleted). 

In practice it would be more flexible to use a data structure which does not 

require us to specify in advance the number of containers to be placed on a disc 

but which can dynamically grow to suit the actual need, and which can ideally 

locate containers in a single probe. That may sound like a tall order, but in fact it 

turns out to be quite simple to implement, at least for discs which contain files 

that are rarely deleted. The reason for this is that the hash keys (i.e. the container 

numbers) are not allocated randomly (as they typically are in problems to be 

solved using hashing), but start at zero and increase by incrementing the previ-

ous highest value by one. In our case the first container to be placed on the disc 

is container 0, the second is container 1, the third is container 2, etc. This means 

that at least in principle an extensible array would be an appropriate data struc-

ture. Let us now consider this in practice. 

a) At the beginning of a disc's life it is possible to use only a single page for 

the directory. If the directory entries are 32 bits wide, up to 2
11

 (2048) en-

tries fit into an 8 KB page of the directory. 

b) When the next container number allocated reaches 2048, the table can be 

extended by a page so that the directory can now hold 2
11

 additional entries, 

etc. We see that at any point in time the array need only be large enough (in 

pages) to accommodate the largest current container number. 

c) If a container is deleted, this involves zeroing the relevant entry (without 

changing the length of the array). 

d) So long as container numbers are relatively small, each page of the direc-

tory can be locked down in main memory. 

But now the question arises whether the table can, if necessary, be extended suf-

ficiently to cope with the maximum number of containers likely to be placed on 

the disc. To answer this question we need first to consider how many containers 

can fit on a disc, and then to allow a reasonable number of deletions and re-use 

their space (but not their container numbers). 

                                           
100

  https://en.wikipedia.org/wiki/Hash_table#Hashing 
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The minimum size of a container (including its data) for a very small file 

(e.g. a simple short text file) is one page. The maximum number of pages, i.e. 

small files, which would fit into say a 4 TB (2
42

 byte) disc is 2
42

/2
13

 = 2
29

 pag-

es/small files, and these can be addressed (using 32 bits per address = 2
11

 ad-

dresses per page) in 2
18

 directory pages. Suppose now that each file is replaced 

2
4
 = 16 times over the life of the disc, the length of the directory would grow to 

2
22

 pages = 2
35

 bytes = 32 GB, which is (arguably) relatively insignificant in a 4 

TB disc. 

The numbers which we have used are more or less worst case (and apply to 

discs which at the time of writing are larger than most discs currently in use): in 

reality many files on a large disc will be large files, thus reducing the number of 

containers used very considerably. Likewise the likelihood that each file will be 

replaced 2
4
 times over the life of a disc is improbable, so we can assume that the 

extreme case described above is very unlikely to occur. In fact the situation can 

arise where a large disc is never even once completely filled. This is likely to 

happen ever more frequently as the size of disc capacities increases and the cost 

per byte decreases. 

On the other hand there will also be cases where over time discs are filled 

and their space re-used multiple times. As the extendable array suggested earlier 

grows and its entries become ever sparser, some people will be in favour of a 

solution which is less wasteful of space, the more so if a good chunk of the main 

memory is locked down to ensure faster directory lookups. 

I therefore suggest a compromise solution for such cases. When a new disc 

is initialised the extendable array solution is initially used. But if its size reaches 

a certain limit
101

, the system warns the system manager, who at a convenient 

point requests the system to switch to a hash table solution. (Whereas the size of 

the extendable array solution is proportional to the number of containers used, 

the size of a hash table is proportional to the size of the disc.) 

Such a solution might be as follows. The length is determined for a hash 

table; this has entries that include a valid bit, a container number (as key) and 

the address of the first page on disc of the relevant container, together with an 

overflow mechanism to deal with collisions.
102

 Whether the system continues to 

work with the indexable array for the container numbers which it already holds, 

or adds them to the hash table, is a system design decision. Of course the current 

structure of the directory is held in the first page of the directory. Not only the 

                                           
101

  This limit will depend on the size of the disc in question, on the availability of main 

memory to lock down directory pages). The limit can be immediately recognised when 

a defined new container number has been reached. 
102

  see e.g. https://en.wikipedia.org/wiki/Hash_table   
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first page of the directory, but also as much of the directory as is reasonable, 

should be locked into main memory. 

4 Resolving TLB Faults and Page Faults 

This section describes how the SPEEDOS system can handle page faults. This is 

one of the most significant activities of the kernel, and it serves as an example of 

how the virtual memory approach works. But it also belies the belief of many 

computer scientists that protection and privacy can be "bought" only at the cost 

of efficiency. Whereas some conventional systems are slowed down quite con-

siderably by the fact that they can only resolve a page fault by creating a number 

of further page faults (to access page tables), in SPEEDOS page faults can in 

many cases be resolved without creating additional page faults to access page 

tables (or often in one probe if the relevant directory entry is not in locked down 

main memory). 

Several kernel processes are potentially involved in the handling of page 

faults. The most important of these is the kernel's Virtual Memory Process (VM 

Process) which is responsible for controlling the use of the main memory and 

organising the transfer of virtual memory pages between the discs and main 

memory. It is activated by all other kernel processes which indirectly need ac-

cess to these services. The kernel processes communicate with each other via 

virtual memory message blocks, as was briefly described in section 2.1 above.
103

 

We begin by describing how a TLB fault is handled. This may or may not 

lead to a genuine page fault. We then turn to the handling of the page faults 

which initially arise during the handling of an inter-module call. Finally we con-

sider normal page faults. 

4.1 Handling a TLB Fault 

When a TLB miss occurs, this causes an interrupt which the kernel's interrupt 

analysis thread passes to the Page Fault Interrupt Process, handing to it the SCID 

and address (page and offset) within container of the faulting page (Figure 

23.10). 

 

The Page Fault Interrupt Process then establishes the full virtual page number of 

the faulting page (by establishing which thread is currently executing in order to 

                                           
103

  Much of what follows is based loosely on the MONADS PC design as outlined in chap-

ter 8 of Frans Henskens' thesis [20, pp. 159-181]. 

Figure 23.10: The TLB Fault Information 
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24 001 4030 
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disambiguate the SCID). For efficiency this is placed in a global variable when 

the kernel executes a switch_thread instruction. It then scans the Main 

Memory Page Table to check whether the missing page is in the main memory. 

If so it replaces some other TLB entry with that formed from the information in 

the MMPT and exits, causing a reschedule of the kernel processes. Since the 

User System Process, in which user threads execute, has not been disturbed by 

the TLB fault, the next user level instruction executed (which was executing the 

user thread that caused the TLB fault), is simply repeated
104

 as if nothing had 

happened. 

4.2 Handling Page Faults 

We concentrate on the resolution of local page faults in order to keep the initial 

description relatively straightforward, leaving a description of the issues associ-

ated with the mounting of discs on "foreign" nodes
105

 to later. Thus it is assumed 

in this section that the missing page is on a locally mounted volume. 

An important aim in the design of page fault handling is to minimise the 

number of page faults which arise (as a result of page table accesses) when re-

solving a page fault. The issue arises in SPEEDOS because more than one page 

table must be consulted. In the following scheme the number of page faults can 

often be reduced to one (the minimum possible), i.e. the page fault actually to be 

resolved can be handled without a further page fault occurring (or with a single 

page fault when accessing the disc directory). This is subject to the disc directo-

ry entry being available in locked down memory. 

Since there are only a small number of page table organisations, the code 

for all of them is part of the kernel code
106

. 

4.3 Locking Down Page 0 of a Disc Directory 

This is relevant to the handling of page faults because page 0 of the first block 

on a SPEEDOS disc holds the start of its disc directory, see Figure 23.8 and sec-

tion 3.7. It is therefore essential that this page (for each mounted disc, including 

fixed discs) is read into the main memory when a disc is mounted (or in the case 

of a fixed disc at boot time) and is then locked down until the disc is dismount-

ed. (What happens when a foreign disc is mounted is explained in more detail in 

chapter 27.) 

                                           
104

  Recall that the program counter is only adjusted after an instruction completes. 
105

  We refer to a disc mounted on a node which is not the creator node as a "foreign" disc. 
106

  This differs very substantially from Espenlaub's solution, which involved a forced 

method call to the Container Manager and a further call to the Virtual Page Table Man-

ager (see [4, p. 159]). He argued for flexibility, but here efficiency is more important. 



Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 138 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

The VM Process maintains a list of mounted discs
107

 and establishes which 

kernel disc process is responsible for the disc (if necessary allocating an extra 

kernel process for it) and ensures that the disc can be activated (e.g. by organis-

ing for it an appropriate disc driver and checking whether the disc is authorised 

to be mounted on the current node). The VM Process then allocates a message 

block, records in it a free page frame number and passes the message block to 

the appropriate disc process to read its page 0. On a successful read the disc pro-

cess records this in the message block and returns it to the VM Process. This 

then marks the page as locked down in the Main Memory Page Table and deal-

locates the message block. Thereafter page 0 of the disc directory can be ac-

cessed as part of the resolution of page faults for that disc without causing a 

page fault. 

4.4 Page Faults Arising on an Inter-Module (or Similar) Call 

Page 0 of a file (or program) container is normally first used (leaving aside the 

initial setting up of the containers) when the kernel receives an inter-module call 

or similar call to a module in the container. One of the operands of the call in-

struction is a module capability. From this the kernel (executing in the User Re-

quest Process) forms the address of page 0 of the module in order to access the 

"pointer to state data" of the module's root segment, which is held in the con-

tainer's page 0 (see Figure 19.6). This allows the kernel to load the address of 

the root segment of the module into segment register 5
108

. From the paging 

viewpoint this is fortunate, because page 0 of this container also contains its 

page tables, which will be needed to resolve page faults for all further refer-

ences to the state data in that container. 

The User Request Process (i.e. the process handling the inter-module call) 

claims a new virtual memory message block of the type "request and lock page 

0" (containing the virtual memory address of the required page 0) which it pass-

es to the VM Process. As a result of this, a reschedule allows the (higher priori-

ty) VM Process to execute before the User Request Process can continue. 

When the VM Process receives this message block it checks the MMPT to 

see whether the page is already in the main memory. If so it locks the page (not 

necessarily the first lock) and returns the message block to the User Request 

Process indicating that page 0 is locked down and waits for its next task. If the 

page is not in the main memory it sends a message block to the User Interrupt 

Process indicating to the User Thread Scheduler that the current user thread 

should be suspended and hence should schedule another user level thread. The 

                                           
107

  This is known as the Local Mount Table (see chapter 27 section 2.2 and Figure 27.4). 
108

  See chapter 20 section 8.1 
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VM Process next updates the message block and passes it to the disc manager 

with a request to read the page. The latter eventually reads the page and passes 

the message block back to the VM Process, which locks the page and returns the 

message block to the User Request Process with an indication of success. 

The User Request Process can now access the information required to set 

up the root node of the file module to be called, but still requires the information 

needed to set up the code segment and the code start offset for the IMC
109

. It 

therefore repeats the same procedure by sending a modified "request and lock 

page 0" using the address of the container holding the code (which it obtains by 

examining the co-module table in page 0 of the data container). When it has the 

assurance that page 0 of both containers are locked into main memory it sets up 

the appropriate addresses in the user thread's register save area (including the 

values for parameter segment registers 0 and 1 as well as the code segment reg-

ister and the state data register 5). It then creates a message block for the User 

Interrupt Process indicating that the user thread can now continue. When the 

UTS schedules the thread it will as usual invoke the kernel switch_thread in-

struction causing the kernel to change the global variable indicating which 

thread is active, load the registers for the IMC and proceed in the new module. 

Without taking further precautions it would be possible for the above 

mechanism to result in the page 0 of the data container and/or of the code con-

tainer to be locked multiple times, because if the thread has to be delayed to ser-

vice a page fault, the call instruction is repeated. To avoid this the User Request 

Process places the linkage segment and an IMC stack record (see chapter 20 sec-

tion 8.1) on the thread stack at the first attempt to execute the call, and always 

checks whether this already exists (i.e. whether this is a repeat attempt) before 

carrying out an inter-module call. It records in the IMC stack record whether the 

page 0 for the file module and page 0 for the code module have already been 

locked, to avoid double locking them. 

The page unlock operation must be applied (twice) on inter-module returns. 

This simply involves the User Request Process, when processing an inter-

module return, in sending a virtual message block to the VM Process in which it 

provides the virtual addresses of the two page 0s to be unlocked. If the lock 

counts reduce to zero then the pages can, but need not, be discarded. 

Finally it is obvious that other kinds of calls (library calls, co-module calls) 

can be treated in a similar way, except that for a library call no persistent data 

                                           
109

  In view of the decision (see chapter 28) not to support remote paging, the file module 

and its code module must be stored at the same node. It might be possible to allow re-

mote paging on code modules, since their pages are never modified, but I have not con-

sidered this idea in detail. 
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container is required, since it shares this with its host module. 

4.5 Locking Page 0 for the Process Container 

As with other containers the normal page tables of a process container are held 

in its page 0. However the page table entries for an individual thread stack are 

held in page 1 (see section 3.3 above). 

The appropriate time to access and lock down a process container's pages 0 

and 1 is when the User Thread Scheduler instigates a context change by execut-

ing the kernel thread_switch instruction (see chapter 22), which has two pa-

rameters: a kernel capability demonstrating the right to call the instruction and 

the unique thread identifier of the thread to be activated. The latter contains the 

unique identifier of the process container. By appending to this the page num-

bers 0 and 1 it forms the virtual addresses of the pages containing the appropri-

ate page table entries (including those for the thread stack). Using this infor-

mation it can claim a new virtual memory message block of the type "request 

and lock page 0" (containing the virtual memory address of the required pages 0 

and 1) and pass this to the VM Process. This causes a kernel reschedule such 

that the VM Process will execute before the User Request Process can continue. 

Thereafter if follows a similar procedure to that described in the previous sec-

tion, including requesting that the process container pages 0 and 1 of the previ-

ously active user thread be unlocked. 

Note: If the user thread scheduler has no threads which can be scheduled, it exe-

cutes the kernel thread_switch instruction in which the "unique thread identi-

fier" of the thread to be activated has all zero fields. In this case the kernel takes 

appropriate action to allow the kernel's own lowest priority process (the "idle" 

process) to be executed when it has no work to do. 

4.6 The Page Fault Interrupt Process 

If a TLB miss turns out to be a normal page fault, the Page Fault Interrupt Pro-

cess must first establish the full container identifier corresponding to the SCID 

of the missing page, which is held in a global variable of the kernel (section 4.1). 

Next, as in the MONADS system, the Page Fault Interrupt Process checks 

the currently valid virtual memory message blocks to establish whether there is 

already an outstanding request for the missing page. If so the new page fault is 

linked into the existing message block and then causes a kernel reschedule. 

If this is the first request for the page it must then be checked whether the 

missing page is an unmodified page still in the main memory after it has been 

released to the disc's free list, or whether it is a modified page waiting to be writ-

ten to disc before being released to the free list. In both cases the page can be 

removed from the appropriate list and can be treated as if it has just been read 
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from disc. 

If neither case holds, a new message block is obtained from the pool; de-

tails of the page fault are entered into this block, i.e. request type = <new page 

fault>, container#, page#, user thread#. The process then sends a message to the 

User Interrupt Process to suspend the current user thread and finally places the 

message block into the queue of the Virtual Memory Process. 

4.7 The Virtual Memory Process and the Disc Processes 

The Virtual Memory Process (VM Process) controls the use of the main memory 

and organises the transfer of virtual memory pages between the discs and main 

memory. Using the page table structures defined above, the handling of a page 

fault can logically
110

 be summarised as six basic stages: 

1. Request the UTS (via the User Interrupt Process) to suspend the faulting 

thread. 

2. Ensure that enough page frames are free to resolve the page fault (including 

accesses to page tables). If not, free sufficient pages by calling the discard 

algorithm. Often only one page frame will normally be required, i.e. for the 

page which has faulted. 

3. Access the appropriate Disc Directory to discover the disc address of page 

zero of the faulting container. (This stage is only necessary if stage 4 fails! 

Depending on the structure of the disc directory this may require multiple 

probes.) Since the faulting page address can be used to formulate the virtual 

address of page 0 of its container, stage 4 can in practice precede (and per-

haps eliminate the need for) stage 3. 

4. Access the page tables in page 0 of the faulting container to locate the miss-

ing page's disc address. 

5. Read the missing page into main memory and adjust the MMPT. 

6. Indicate to the User Thread Scheduler that the faulting user level thread can 

now continue. 

We consider these steps in turn. 

4.7.1 Request the User Thread Scheduler to Suspend the Faulting Thread 

This need not be the first step, but it must be carried out before the disc process 

is requested to read in the new page. It is achieved by passing a request to the 

kernel's User Interrupt Process to suspend the current user level thread. This al-

lows other user level threads to be activated and so use the CPU time while the 

page is being read into the main memory. 

                                           
110

  In an algorithm, stage 4 is carried out before stage 3, and may make stage 3 unneces-

sary. 
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4.7.2 Availability of a Page Frame for the Faulting Page 

Assuming that at most one additional page fault (for the directory) for reading 

page tables will normally arise in order to resolve a page fault, then at most two 

free page frames are normally required. (This depends on the directory structure 

and how much of it is locked down.) The VM Process can check if there are free 

page frames by scanning the (locked down) MMPT (or by some optimisation of 

this if the MMPT includes a linked list of free page frames). 

If none is available the page discard algorithm must be activated. This is 

executed in the VM Process. Discard algorithms have been discussed extensive-

ly in the literature and need no further discussion here, except to point out that 

SPEEDOS can use information such as the fact that a persistent thread has been 

logged out as indications that related pages can possibly be discarded. 

When sufficient page frames (normally one or two – see above) have been 

freed by the discard algorithm they are temporarily reserved for use in resolving 

the page fault. 

4.7.3 Accessing the Appropriate Disc Directory 

When the system starts up, the associated fixed discs are initialised such that the 

disc directory of each disc (page 0 of its container 0) is read into the main 

memory and locked down. 

When a removable disc (e.g. a USB hard drive) is mounted at a node the 

kernel's interrupt analysis routine receives an interrupt which it passes to its disc 

process. This then reads its disc directory and, assuming that it is a SPEEDOS 

disc (which we temporarily assume was created at the current node) it similarly 

reads the first page of its disc directory (page 0 of its container 0) into the main 

memory and locks it down. Henceforth page faults for pages on that disc can 

access the directory without causing a page fault on its initial page, though de-

pending on the structure of the disc directory and the extent to which its pages 

can be locked down, further page faults might occur. (In this respect it will be 

sensible, as in MONADS, for the MMPT software to provide a "peek" opera-

tion, which indicates whether a page is in the main memory without causing a 

page fault.
111

) 

4.7.4 Accessing the First Page of the Faulting Container 

In sections 4.3 and 4.4 we have seen how this stage can normally be carried out 

without causing a page fault, since a previous inter-module call or user level 

thread switch will have resulted in the first page of data, code and stack contain-

ers will already be locked down when a page fault occurs for some random page 

                                           
111

  see [22] chapter 7 section 7.4.2.9. 
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within a container. 

4.7.5 Reading the Missing Page into the Main Memory 

When a kernel process (e.g. the VM Process) establishes the need for a page to 

be read from disc into the main memory (or written from main memory back to 

disc), it modifies the current virtual memory message block to indicate the disc 

address of the virtual memory page to be read/written and the main memory 

page frame into which/from which a page it is to be written/read, signifying that 

the operation is a read or write. It then places the message block onto the queue 

of the appropriate disc process and issues an AsetV operation to activate the 

process (see chapter 22). 

Each disc process operates in two parts. The first part takes an entry from 

its input queue, starts a disc transfer then waits for the transfer to complete. The 

second part follows its activation on completion of the transfer, checks the result 

of the read
112

 (or write), removes the message block from its input queue and 

places it on the input queue of the requesting process, indicating that the transfer 

was successfully completed. 

Following the MONADS technique, a disc process has an algorithm along 

the following lines: 

repeat { 

 modified_AsetP // i.e. scan message blocks and get best 

  // entry from queue, see below; 

 start transfer on associated hardware device; 

 AsusT; {wait for interrupt from h/w device} 

 check result; 

 finish job; 

 update and remove the corresponding item from the queue; 

 notify the requesting process of completion (using AsetV) 

 } 

forever; 

It can easily occur that more than one message block accumulates waiting for 

the process to continue, i.e. theoretically for its AsetP operation. However, if the 

process simply begins with a standard AsetP operation and uses the information 

waiting for it in the corresponding virtual memory message block, the result will 

be that the process will sequentially access the requests in the order that they 

occurred. This may be acceptable for SSDs and for memory sticks, but not for 

conventional rotating discs. As is well known, the result of such a course of ac-

tion would be inefficient head movements on traditional discs, and it would be 

much more satisfactory to use an efficient algorithm (such as the elevator algo-

rithm in its C-Scan form
113

) for this purpose. But to use such an algorithm im-

                                           
112

  Here we assume that there are no errors. 
113

  see https://en.wikipedia.org/wiki/Elevator_algorithm. 
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plies that a disc process has an overview of all the currently outstanding requests 

for the disc under its control. 

This can best be achieved by providing a special modified version of AsetP 

(which remains invisible to the clients of the process) in which the process scans 

the entire list of waiting input message blocks to select the best request (i.e. that 

which is most efficient according to the algorithm chosen). The message block 

numbers for all the currently outstanding requests can be discovered by examin-

ing the resource set associated with the disc process's semaphore, in which the 

bits correspond to the positions of the relevant virtual memory message blocks 

holding the details of the required transfers. When the choice has been made, the 

semaphore's integer part and set part must both be modified to reflect that the 

chosen message block has been used. 

The actual transfer of information can then proceed. When the transfer has 

been initiated the process can suspend by using the AsusT
114

 instruction
115

. In 

due course, when the transfers have completed, the appropriate kernel process 

must then remove the message block from its queue and pass it to the next stage, 

using an appropriate AsetV instruction. This is probably the User Interrupt Pro-

cess, advising the UTS that the page fault has now been resolved. 

Each disc mounted at a node has its own individual kernel disc process 

which is responsible for managing the disc and for accessing (reading and writ-

ing) individual pages between its disc and the main memory. 

Processes for fixed discs can be statically allocated at system start-up. 

When a removable disc is mounted a free process must be allocated and noted in 

a table of discs. Its disc directory is then locked into the main memory. 

When the kernel's interrupt analysis routine receives an interrupt for I/O 

completions on a disc, it first consults the table of discs to find out which kernel 

process is responsible and then executes AactT to de-suspend the appropriate 

process. 

Finally, the above explanation of page fault resolution illustrates quite 

clearly that Espenlaub's suggestion of issuing a forced method call from the ker-

nel to an interface routine of the Virtual Page Table Manager is not necessary 

and would be much less efficient (though more flexible) than the above pro-

posal. Also, his concerns about stack overflow can be forgotten. 

5 Allocating Space on Discs and Segment Management 

Having established how the discs are laid out and how page faults are handled, 

                                           
114

  See chapter 22 section 7.1. 
115

  It may be necessary to use AsusT more than once, e.g. if there is a separate seek opera-

tion (see [5, p. 168]), and in the case of other more complicated devices.  
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we now consider how space is actually allocated to containers and their pages. 

5.1 Creating Segments 

We first consider the case of small files, where the page tables allow the possi-

bility that pages can be individually allocated on a page/disc block by page/disc 

block basis. 

The first issue to note is that although the Segment Manager co-module is 

primarily concerned with segments in its container it can easily determine where 

page boundaries are, assuming that the page allocation for users starts at a new 

page boundary which is known to it, since (assuming 8 KB page sizes) each new 

user page begins at a virtual address in which the final 13 bits are zero. Hence 

given the start addresses and lengths of segments it can, for example easily de-

termine whether they are in a single page, whether they span a number of pages, 

etc. 

Thus the Segment Manager has an overview of the mapping between seg-

ments and pages, and is therefore in a position to determine (via requests to allo-

cate segments) when new pages should be allocated for the container which it 

serves. Hence it can use a protected kernel instruction (request_pages), which 

allocates a virtual memory message block and causes the Virtual Memory Man-

ager to be scheduled. This in turn requests the appropriate Disc Directory Man-

ager to allocate space on the appropriate disc and return the disc address(es) of 

the page(s). All the additional pages required for the segment (if any) can be al-

located together. While new pages are being allocated, the kernel requests the 

User Thread Scheduler to suspend the current thread until the page has been al-

located. When this has been completed the Segment Manager continues. 

The disc manager maintains a free list of disc blocks and from this allocates 

the required number of small pages, removes these from the free lists, advising 

the segment process of their addresses. The segment process adds these address-

es to the appropriate page table. 

For large files the procedure is similar, except that it will be quite unusual 

(but not impossible) to have a segment that spreads over two or more large allo-

cation units. 

5.2 Deleting Segments 

Deletion of segments follows a similar pattern except that this is more or less the 

reverse procedure. The Segment Manager can use a delete_pages kernel in-

struction to initiate the deletion. 

5.3 Segment Manager Requirements 

The actual organisation used by a Segment Manager can vary from container to 
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container, but this must conform to the requirements of the kernel, as follows: 

a) It must organise segments into separate groups corresponding to the sepa-

rate page tables and should not allow a segment to cross the page bounda-

ries defining these groups. (It can use information obtained by calling the 

Virtual Page Table Manager to learn where the boundaries lie.) 

b) When requested to create or delete a segment it also checks whether a new 

page is required or a page can be deleted, and calls the Virtual Page Table 

Manager advising it of this. 

c) The Segment Manager is also responsible for garbage collection, and can of 

course use different techniques in different containers. 

6 Creating a Container 

The Container Manager provides a semantic routine newContainer, which is 

responsible for creating new containers. This routine has two main tasks. In the 

first phase, after checking the validity of its input parameters and possibly 

providing a default disc capability, it activates the kernel instruction new_

container. In the second phase it prepares the container for use. 

6.1 The Kernel's new_container Instruction 

This instruction has three operands. The first of these is a capability for the disc 

on which the container is to be created; the second is a boolean value defining 

whether the container is planned to contain a large file and the third is a boolean 

value indicating whether the container is for a new user (or simply a further con-

tainer for the user identified in the red tape of the process container containing 

the thread stack which executed the new_container instruction). 

After carrying out appropriate checks (e.g. that the disc is on-line and is not 

full) the kernel then prepares a page-sized buffer in its main memory to act as a 

page 0 for the new container, in particular preparing a small file page table and 

if appropriate a large file page table. 

It then begins to fill out the identification fields of the new container, as de-

fined in Figure 19.2 and is here repeated as Figure 23.11 for convenience. 

The container numbers in the identification fields are directly or indirectly 

available to the kernel in the red tape of the requesting thread's container or in its 

stored registers (as augmented by extending the SCIDs into full addresses). The 

only exception is the container number of the new container, which is obtained 

in the next step. Depending whether the third operand of the instruction is set to 

'new' or 'existing' user the current owner field is set to either the new container 

number or the owner of the creating thread. 
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The creating thread number is the full thread number of the currently active 

thread. The date and time of creation are obtained from the time and date in the 

system clock. Finally the activity status field is set to "new container". 

After the identification fields have been prepared, the kernel then creates 

the new container, which requires the following steps. 

i) Obtain and update the next container number. This is held in page 0 of con-

tainer 0 of the chosen disc (see Figure 23.8). 

ii) Record the container number in the appropriate identification field in the 

buffer being prepared to become page 0 of the new container. 

iii) Obtain the disc address of the next available page (8 KB block) on the re-

quested disc. 

iv) Add an entry to the disc directory for this container number, mapping con-

tainer number within disc to the disc address. 

v) Add the disc address into the (first entry of) the small page table for the 

new container. 

vi) Prepare a virtual memory message block (see section 2.1) which includes 

the virtual page number of the new container and the disc address, and its 

own process identifier (allowing the disc process to return to it). Pass this to 

the appropriate disc process, requesting a write operation (see section 

4.7.5). 

The disc process completes the write and returns, without locking the new con-

tainer's page 0 into the main memory. 

Finally the instruction prepares an owner capability for the new container 

and returns this to the Container Manager, after unlocking its page 0. 

Figure 23.11: Identification Fields of a Container 

Container number identifying creator 

Container number of this container 

Rest of container contents 

Creating thread number 

Creating code module number 

Creating co-module number 

Container number of current owner 

 
Date and Time of Creation 

Activity status 
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6.2 Preparing the New Container for Use 

The Container Manager then sets up the organisation described in chapter 19 

section 7 and following sections, i.e. it creates a co-module table (see Figure 

19.6) and a code table (Figure 19.8), etc. This stage can involve considerable 

dialogue with the user with respect to which Virtual Page Table Manager, which 

Segment Manager, which Co-Module Manager, which Code Manager, which 

Error Manager(s) should be installed (if a choice is provided), and is primarily 

an operating system issue rather than a kernel issue. 

When the Container Manager has completed this stage, it returns an owner 

capability for the container and a capability (not necessarily an owner capabil-

ity) for each co-module installed in the container. Using these, the user can then 

initialise the individual co-modules. 

7 Copying a Container 

Various techniques for copying containers were discussed in chapter 19, but 

without providing a detailed explanation of how an implementation can be 

achieved. This chapter has added the necessary additional background know-

ledge to consider how the copying of a container can actually proceed in the 

context of the first and certainly most important possibility mentioned in chapter 

19 section 13 ("to make a copy which the owner, or some other user, can use 

independently of the original"), using the page-by-page method. 

The Container Manager provides a copy command for user threads. This 

normally requires at least three input parameters: 

• a valid capability for the file to be copied, 

• a capability for the disc on which the copy is to be located
116

, and 

• an indication whether the owner of the original should remain the owner of 

the copy or whether the owner of the requesting thread should become the 

owner of the new copy. 

The copy command first carries out appropriate checks, including establishing 

that 

• the capability for the file to be copied has the appropriate access rights to 

allow the copy to be made (including a copy with owner change, if this is 

requested, see chapter 26), 

• the disc capability allows the user to create files on the disc, and 

                                           
116

  If the second parameter is null, this might be interpreted to imply that the boot disc 

should be used. But that should be a decision take in the container manager, which 

could then maintain a default (such as the boot disc) or even different defaults for dif-

ferent users. 
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• the container does not contain troublesome capabilities (which can be es-

tablished by calling the container's Segment Manager). 

If these tests are passed, the Container Manager then passes the parameters to 

the kernel's copy instruction, which actually carries out the copying. 

7.1 The Kernel's copy Instruction 

The kernel first needs to carry out some further checks, e.g. to ensure (from the 

Local Mount Table) that the source and destination discs for the copy operation 

are both mounted locally. When this has been clarified, the kernel's copy process 

proceeds as follows. 

i) It claims a new virtual memory message block of the type "request and lock 

page 0" (see section 4.4) and enters into this the virtual memory address of 

page 0 of the container to be copied) then passes it to the VM Process. (If 

the page is not already in the main memory, the VM Process organises for it 

to be paged in and in this case suspends the user thread executing in the 

Container Manager's copy routine.) 

ii) It examines page 0 of the container to be copied to determine the pages to 

be copied and creates a page-sized buffer in the main memory. It copies the 

appropriate entries from the old page 0 into this, making a change of own-

ership (if this is permitted in the generic rights of the original capability, 

which should have been checked by the Container Manager). It zeros the 

page table entries in the new page 0. 

iii) It creates a new container for the new copy (see section 6) and writes the 

new page 0 into it. 

iv) It then carries out a page by page copy of page 1 to the end of the original 

container, by calling the disc process(es) in a loop, modifying the new con-

tainer's page table on each loop cycle. 

7.2 The Page by Page Copy Mechanism 

This mechanism does not use the Segment Manager to create/copy segments, 

but works entirely at the page level. This is not problematic, since all the point-

ers in a container are addresses relative to the beginning of the container, and a 

page by page copy does not affect the positions of segments. Furthermore, if the 

Segment Manager has placed co-module data (its own or that from some other 

co-module, including from a user co-module) in page 0 of the original file, this 

will be copied automatically into page 0 of the new container. (In this way a 

trivial file might be completely copied simply by writing page 0 – as described 

above – without a further loop.) 

The actual reading of pages of the copied container and writing them to the 

new container in a loop is a straightforward procedure which is not here de-
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scribed in detail. For each read and for each write operation the thread request-

ing the copy operation must be suspended in order to allow other kernel pro-

cesses/user threads to be executed, and reactivated on completion of the disc op-

eration. The only complication is that when a thread is reactivated and is sched-

uled by the UTS it must know where the copy operation must be resumed. I 

suggest that this is noted in page 0 of the new container (because in a multipro-

cessor system the same container may be copied in parallel to multiple contain-

ers). 

If the copy is successful, the kernel creates an owner capability for the new 

file and returns it to the Container Manager; this in turn returns the new owner 

capability (with all access rights set) to the requesting thread. 
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Chapter 24 

Qualifiers with Bracket Routines 

 

A qualifier, or qualifying module, is a module which can be associated with 

other modules in order to qualify (modify) the effects of their execution. The 

idea, originally called "attribute types" [3], occurred to me in 1996 while on 

study leave at the University of Sydney. It was further developed by my research 

group at the University of Ulm in the context of modular programming design 

methods, and was later incorporated into our object oriented programming lan-

guage Timor, a new language developed to provide programming language sup-

port for the novel features of SPEEDOS which cannot be programmed in normal 

programming languages [7]. The most significant features of qualifying types 

(the name used in connection with Timor and SPEEDOS) were described to-

wards the end of volume 1 chapter 13. The reader may at this stage find it useful 

for understanding the following to re-read the relevant section of Chapter 13 and 

to study the related diagrams. This chapter describes how qualifiers can be inte-

grated into the SPEEDOS kernel. 

1 Basic Principles of SPEEDOS Qualifiers 

A qualifier is in most respects a normal module. It can have normal semantic 

methods, it can have persistent data structures, and its normal semantic routines 

are explicitly invoked in the usual way via an inter-module call. In addition it 

has bracket methods, which cannot be invoked explicitly, but can be associated 

with the normal methods of other modules in order to qualify them. Bracket 

methods can access the persistent data of their own module and can invoke its 

internal routines. 

1.1 Timor Qualifiers  

In Timor, qualifiers can be statically embedded into other modules. In this case 

SPEEDOS is unaware of the bracket methods; it is the responsibility of the 

compiler to organise the appropriate code sequencing. Alternatively Timor qual-
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ifiers can be dynamically associated with small objects in Timor programs. Such 

qualifiers are entirely handled by the Timor run-time system. The third possibil-

ity, which is the subject of this section, is the SPEEDOS kernel mechanism 

which associates qualifiers with the semantic routines of entire SPEEDOS mod-

ules. 

1.2 Call-in and Call-out Brackets in SPEEDOS 

What makes a qualifier special is that a normal module (or indeed a qualifier), 

here called the qualified module, can be qualified by zero or more qualifiers, 

which may have two different kinds of bracket routines (call-in and/or call-out 

brackets). Call-in brackets "catch" incoming calls to the qualified module and 

can execute their own code as a prelude to executing a body statement, which 

causes the qualified module's semantic routine (or the next bracket routine in the 

list) to be invoked. When this finally exits it returns not to the client module 

which originally called the qualified module's semantic routine but to the call-in 

bracket routine at the instruction following the body statement, known as a post-

lude. After the postlude exits, control is returned to the client module (or the 

previous bracket routine in the list). If the call-in bracket exits (via a bracket_

return instruction) without executing a body statement the target routine of the 

qualified module is not called, and the call-in bracket simply exits back to the 

client module (or an earlier bracket routine in the list). 

The second kind of bracket routine, call-out brackets, has no influence on 

calls into the qualified module, but is activated when the qualified module at-

tempts to make calls out to further modules (here called target modules). Call-

out brackets "catch" such calls and execute a prelude. This can optionally be fol-

lowed by a call statement, which allows the appropriate routine of the destina-

tion module to be entered. When this finally returns, it continues at the postlude 

following the call statement, and finally a return is made to the qualified mod-

ule. If a call statement is not executed in the call-out routine, the call never 

reaches the intended module but returns to the postlude of the previous bracket. 

The same qualifier module can support both call-in and call-out bracket 

routines. 

These above possibilities are illustrated in Figures 13.2 to 13.7 in volume 1. 

The SPEEDOS kernel supports body and call instructions corresponding to the 

Timor body and call statements. These statements, along with the bracket_

return instruction, can only be used in bracket routines. Normally such an error 

can be detected at compile time and should therefore not arise at run-time. How-

ever, a run-time error occurs if they are executed in normal modules at run-time. 
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1.3 Multiple Qualifications 

A list of call-in and/or call-out qualifiers can be associated with a qualified 

module. In this case a body or call statement causes the next bracket in the list 

to be executed, or in the case of the last bracket in a list the appropriate semantic 

routine of the target module is called. The order of accessing is determined by 

the position of the qualifier in the list, which is held in a qualifier list module. 

The ordering can be significant in its effect, e.g. if the first bracket method exits 

without invoking a body (or call) statement, the second bracket routine in the 

list will never be invoked. 

1.4 Sequencing of Bracket Routines with Qualifier List Modules 

In the case of qualifiers dynamically associated with SPEEDOS modules, the 

kernel organises their execution. This is possible because the latter is responsible 

for all inter-module and similar call invocations. In SPEEDOS a bracket routine 

is not permitted to execute the body instruction or the call instruction more 

than once within a single bracket routine. (A synchronous interrupt occurs if a 

normal semantic routine issues these instructions, if a call-in bracket issues a 

call instruction or if a call-out bracket issues a body instruction.) 

The organisation of lists of qualifiers for a qualified module is not a trivial 

activity and is therefore not directly undertaken by the kernel. Instead it relies on 

privileged co-modules, known as Qualifier List Modules (QLMs), to provide 

semantic methods which allow the owners of modules to organise lists (e.g. by 

adding and removing entries and changing their sequencing). 

Whereas at the programming language level (i.e. internal to a module) it 

only makes sense to associate bracket methods with "objects" (in the sense of 

object-oriented programming, where an object consists of a fixed combination 

of data and code), at the operating system level it is sensible to associate sepa-

rate qualifier lists with the data file and the code file of a module. One reason for 

this is that the code module may need to be separately protected (e.g. to guaran-

tee the rights of software providers) while the data file, which may have a dif-

ferent owner, needs to guarantee the latter's protection and security rights. 

For a user defining a list of bracket routines, the order in his qualifier list 

module is first the call-in brackets then the call-out brackets. This applies both to 

QLMs associated with a data file and to QLMs associated with a code file. 

Capabilities for data file QLMs are located in the Co-Module Table and 

those for code files in the Code Table, where they are accessible to the kernel
117

. 

In this way, on receiving an inter-module call the kernel can gain access to the 

qualifier list modules. 

                                           
117

  see volume 1 chapter 19 sections 7 and 9 
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The system applies the brackets in the following order: (for each inter-

module call made to the qualified module) first the call-in brackets for the code 

file, then the call-in brackets for the data file
118

, and (for each inter-module call 

made from the qualified module) first the call-out brackets for the code file, then 

the call-out brackets for the data file. The effect of this is that if a module A calls 

a module B in the course of its execution, then the code call-out brackets for A, 

followed by the data call-out brackets for A are executed. These are followed by 

the code call-in brackets for B then the data call-in brackets for B; subsequently 

module B is executed. 

1.5 Qualifier List Modules 

Qualifier list modules (QLMs), which contain module capabilities for the indi-

vidual qualifier modules with the appropriate bracket routine numbers, have the 

following duties: 

i) to provide the owner of the module with a convenient interface for manag-

ing the lists (e.g. adding new entries, removing existing entries, reorganis-

ing the order); 

ii) to organise the mapping of symbolic names known to the user (e.g. for the 

semantic routines, the bracket routines and parameter names) onto the entry 

point numbers needed by the kernel. For this purpose it calls a further mod-

ule which will be described in connection with command interpretation (see 

Chapter 32 section 2); 

iii) to provide the kernel with information via which it can quickly discover the 

details it requires to invoke the bracket routines in the correct order; 

iv) to indicate to the kernel whether a bracket routine requires no access, read-

only access or read-write access to the qualified module's parameters; 

v) to advise the kernel whether a bracket routine can make normal inter-

module calls. 

The details of the QLM interface for the kernel are predefined, but the remaining 

aspects of qualifier list modules are freely programmable and can differ from 

module to module. 

Since the kernel relies on these modules in ways which affect system secu-

rity, the Co-Module and Code Managers should take special precautions to en-

sure their trustworthiness, when setting up entries for them. 

1.6 Bracket Routines and Parameters 

Bracket routines do not have parameters of their own, but can in some cases ac-

                                           
118

  The sequence for the call-in brackets differs from that proposed by Espenlaub in his 

thesis [4, p. 183]. 



Chapter 24  QUALIFIERS WITH BRACKET ROUTINES 156 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

cess the parameters of the modules which they are qualifying, depending on the 

way the way the bracket routines have been defined. They can be defined to be 

activated  

• when any method of a qualified module is invoked
119

. In this case they have 

very limited access to the parameters being passed or returned, since they 

have no knowledge of the structure and purpose of the parameters. 

• specifically for reader routines (which can be recognised in Timor by the 

keyword enq (i.e. enquiries which do not modify the state data of their 

module, i.e. readers) or for writer routines by the keyword op (i.e. opera-

tions which can modify their state data)
120

. Also in such cases the bracket 

routine has very limited access to the parameters passed by the caller (since 

these vary from routine to routine). 

• when a specifically named routine is called, in which case they may have 

access to the routine's parameters (in read-only or read-write mode, as de-

fined in the qualifier list module). 

The limited forms of access available to the first two categories are described in 

section 3.3 below. 

Permitting read-write mode for parameters gives a bracket routine the op-

portunity to modify the input or return parameters which are passed via a body 

or call statement to/from a qualified module. 

2 An Overview of the Execution of Bracket Routines 

When a module executes an inter-module or similar call, the kernel checks the 

Co-Module and Code Tables of the module to ascertain whether there are asso-

ciated qualifiers, and if so it activates the bracket routines in the defined se-

quence (i.e. the call-out brackets of the calling module followed by the call-in 

brackets of the called module). 

After the call-in brackets have been executed (and assuming that no bracket 

routine has issued a bracket_return statement without issuing a call or body 

instruction), the target module is activated in the usual way. 

If an inter-module call instruction is executed in a qualified module, the 

kernel checks whether this is allowed, and if so places the normal IMC linkage 

segment on the current thread stack (see Figure 20.6). It then checks whether the 

calling module has call-out brackets, and if so executes these one by one on the 

user thread's stack, separating them by bracket linkage. 

After the last call-out bracket has completed its prelude via a call instruc-

                                           
119

  Note that open and close routines are never bracketed. 
120

  The rights with respect to accessing state data are set for enq routines to read-only and 

for op routines to read-write. 
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tion (i.e. assuming that it does not make an early return), the kernel checks 

whether the called module has call-in brackets. If so, they are executed after the 

last call-out bracket of the calling module (if any). Again these are separated by 

bracket linkage segments. 

When a module returns, bracket execution resumes in the postlude of the 

last called bracket routine, and when this issues a bracket_return instruction 

control returns to the postlude of the previous bracket routine, etc. until the call-

ing module is reached. This continues its normal execution and may call further 

modules. In this case also, call-out bracket routines might be needed and in 

some cases these might differ from those previously used (e.g. if specifically 

named modules/semantic routines exist in the call-out list). 

A bracket routine may also call a further module (which might or might not 

be qualified) while it is executing a postlude, and this is handled in the usual 

way. 

3 Managing Bracket Parameters:  

The handling of parameters in bracket routines is not as straightforward as one 

might think. Here are Espenlaub's comments about isolating brackets from each 

other. He points out a potential security risk with the straightforward approach:  

"The brackets having access to parameter information must be isolated against 

each other, i.e. the modifications to the parameter list by an inner bracket must not 

be visible to an outer bracket. This requires saving of the received parameter list 

and restoring it when the next inner bracket returns. Information leaks through 

manipulated parameter lists must be prevented, e.g. by marking parameter lists as 

read-only data once body has been invoked." [4, p. 136] 

In fact not only the outer brackets are affected, but also the calling module. For 

example, if a module passes a capability as a parameter to a further module and 

a call-out bracket invalidates this for security reasons, the caller (possibly a 

hacker attempting to pass (dis)information via the capability) would be able to 

detect that this has happened, thus arousing his suspicion that he is being moni-

tored, whereas the intention of the hacked site may be to continue to document 

his hacking efforts. 

The above comments are based on the view that the parameters in bracket 

routines, when modified by one routine, are visible in the next bracket routine(s) 

and later in the postludes of all the bracket routines. However, the design for 

parameter passing protocols has changed in the current version of SPEEDOS, as 

is described in chapter 20 section 6.2. The key change from the present stand-

point is that after an inter-module call instruction has been executed Segment 

Register 2 (which had been used to prepare the parameters for the call which has 

now terminated) is always invalidated before the called module returns. Hence 
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on return to a calling module the code of the module cannot see whether or not 

the input parameters which it prepared for the call have since been changed by a 

bracket routine. 

3.1 Managing Input Parameters in Bracket Routines 

We now turn to the actual management of parameter segments for bracket rou-

tines. It is important to note at this point that many (probably most) bracket rou-

tines, including many of those which have the aim of improving security, have 

no access to the parameters created by a calling module. And even those which 

do have such access often merely read the parameters. Hence only in fairly rare 

cases are parameters modified. If they were never modified at all, it would be 

sensible simply to allow the preludes of those bracket routines which read the 

parameters to do so directly from the parameter segment which the calling mod-

ule has created via Segment Register 2, by pointing Segment Register 0 of each 

bracket routine to the same segment on the stack. 

So long as no modifications are made, this is a sensible policy. It has the 

advantage that parameter segments need not be copied (possibly several times) 

on the thread stack. Furthermore new output parameters (normally addressable 

by Segment Registers 2 and 3) would never have to be created. Instead, on a 

bracket routine invocation the kernel would simply copy the previous caller's 

Segment Register 0 value for use in the new routine, but changing the access 

rights in conformance with the information which it has received from the quali-

fier list module for the new bracket routine. (Since a routine always at most has 

read-only access to its input parameters the access rights will vary between no 

access and read-only, but never read-write.) 

But if this policy is pursued, what happens when a bracket routine needs to 

modify the input parameters? Here is the solution. 

Initially when a bracket routine is invoked, the kernel invalidates Segment 

Registers 1, 2 and 3. It sets Segment Register 0 to point either to the original in-

put parameter segment or to a modified version of this, now to be described. 

 Just as there is a kernel instruction create_imc_params which allows a 

module to create an output parameter pair when needed
121

, so also there is a fur-

ther kernel instruction change_bracket_input (with a single operand specify-

ing the length of the data partition
122

). This can only be executed in a bracket 

routine, and only in cases where the bracket routine plans to change the input 

                                           
121

  Bracket routines may not execute the kernel instruction create_imc_params. 
122

  The structure of the new segment is based on that of the input parameter segment ad-

dressed via Segment Register 0, but the length of the data can be varied, e.g.  in order to 

vary the length of a string. 
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parameters which it receives from either the calling module or an earlier bracket 

in the list (i.e. those which it addresses via Segment Register 0). On receiving 

such an instruction the kernel first checks the information which it has received 

from the qualifying list module to ensure that this bracket routine has permission 

to make changes. If so, it creates a new input parameter segment at the top of the 

thread stack which it makes addressable to the bracket routine via Segment Reg-

ister 2 in read-write mode. The new segment has the same structure (e.g. number 

of module capabilities) as that which it received via its Segment Register 0, ex-

cept that the length of the data partition may differ. Into the new segment it can 

then write new parameters (which may in part be copied from its own input pa-

rameter segment), see Figure 24.1. 

 

When the bracket routine issues a body or call instruction, the kernel 

a) stores Segment Registers 0, 1 and 3 in the bracket linkage segment with the 

access rights which they currently have, and stores Segment Register 2 in 

the linkage with the access rights set to no access (thus ensuring that it can-

not change this segment in the postlude). 

b) stores appropriate other register values of the bracket routine in the bracket 

linkage area. 

c) sets the called
123

 routine's Segment Register 0 to the values in the previous 

routine's Segment Register 2, setting the access rights to read-only or no 

access as appropriate. In this way the input parameters for the called mod-

                                           
123

  This may be either a bracket routine or the target module's semantic routine. 
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ule may be modified more than once, but the called module will see only 

the final version. 

3.2 Return Parameters 

Assuming that the target (called) module is eventually activated
124

, it receives its 

input parameters (in read-only mode) as described above, and before returning it 

may place some results in its output segment via Segment Register 1 (in read-

write mode). Some bracket routines may wish to examine and possibly change 

these (e.g. by invalidating a module capability). 

Notice at this point that we cannot simply reverse the technique described 

above when dealing with returned parameters, since (unlike the input parameter 

case) the return parameter segment would normally be deleted (as part of the 

normal stack discipline) when an exit is made to a bracket routine! Instead we 

use the original return parameter segment of the caller as the anchor segment. 

What this means is that when a called (target) module wishes to return pa-

rameters, it stores these in the segment which the calling module actually creat-

ed for its return parameters, using Segment Register 1 as usual. Notice that this 

may be some distance down the stack, with bracket linkage and possibly modi-

fied input parameters separating it from the current stack top, but reachable by 

Segment Register 1. 

This will work well so long as bracket routines do not modify the result pa-

rameters. However if a bracket routine (with appropriate access rights) wishes to 

modify the return parameters, it executes the kernel instruction change_

bracket_result (with a single operand specifying the length of the data parti-

tion) which may reduce the length of the data section while adhering otherwise 

to the original segment structure. This instruction first checks that the bracket 

routine in question has permission to change the result, and if so creates a new 

return segment immediately above the existing return parameter segment. To 

make this possible the first bracket linkage segment is placed after a gap on the 

stack top which is sufficiently large to hold a copy of the return segment
125

. The 

kernel then makes the segment addressable to the bracket routine in the normal 

way, via Segment Register 1, which is set to read-write access (only if read-

write access is allowed for the bracket routine). When the bracket routine returns 

to its caller (which could be the original calling module or a lower bracket rou-

tine) the kernel makes this segment addressable via Segment Register 3 (in read-

only or no access mode). 

                                           
124

  This is the case if all the bracket routines issued a call or body statement. 
125

  The stack space for a second return segment must have the same structure as that of the 

original return parameter segment. 
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If more than one bracket routine exercises its right to modify the return pa-

rameter segment the two return parameter segments are organised by the kernel 

to function alternately in a flip-flop manner, simply by clearing the segment 

which holds the older information and resetting the segment register values ac-

cordingly. Notice that by using this technique the original information passed as 

return parameters can get overwritten. This would be the case anyway if a nor-

mal stack discipline were followed. But if such information is important (e.g. for 

debugging purposes) then a bracket routine can make an inter-module call to a 

logging module to preserve information which might otherwise be lost. 

Figure 24.2 shows the effect of Bracket Routine 2 modifying the return pa-

rameters, using the kernel instruction change_bracket_result. 

 

In this scheme, which ensures high efficiency whilst addressing Espen-

laub's point at the beginning of section 3, the input and return parameters are 

decoupled for bracket routines. 

3.3 Access to Parameters in Routines which are not Specifically Named 

The main reason why bracket routines which are not specifically named have 

very limited access to parameters and returned results is because these have no 

knowledge of the structure (e.g. number of capabilities, length and purpose of 

the data partition and (in the case of co-module calls and library calls) the struc-

ture and purpose of pointers). However, the kernel knows the structure of pa-
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rameter segments, and can therefore carry out simple security tasks on behalf of 

such bracket routines. In particular it can invalidate capabilities in the capability 

partition, pointers in the pointer partition (if any) and data in the data parti-

tion
126

. Such an action can be useful in general brackets in order to ensure that 

no information leaks from a module (e.g. if the owner of the data suspects that 

the code of his module is releasing its file information to the manufacturer of the 

code). Since such information might be released in calls to modules and in re-

turns from modules, two kernel bracket instructions invalidate_output and 

invalidate_input are provided by the kernel. These instructions (which have 

operands to further specify the relevant partitions) can only be used in the 

bracket routines associated with the data file of a module (i.e. those specified in 

the module's Co-Module Table). 

4 Implementing Bracket Routines 

Having established the basic principles of qualifying types, we now consider in 

more detail how the kernel can implement bracket routines and how it acquires 

the information needed to do this from qualifier list modules. We begin by con-

sidering what happens when an IMC is received by the kernel for a module 

which is qualified by bracket routines. 

4.1 Handling Inter-Module Calls 

When the user request process receives a request for an inter-module call, it first 

creates a new inter-module call linkage segment for the calling segment. It then 

ensures that the request is valid (e.g. that the requested semantic routine is al-

lowed by the access rights in the capability). The kernel then creates an IMC 

record on the stack which serves as an indication of the thread's progress; the 

kernel stores into it the operands of the IMC (capability, semantic routine num-

ber, read-only flag). If either or both the Co-Module Table and the Code Table 

include a capability for a QLM, these are also copied into the IMC stack record. 

At this stage the kernel cannot simply execute the inter-module call, be-

cause bracket routines may first need to be activated. These bracket routines (as 

illustrated in Figure 24.2) may in the order of their execution be 

• call-out brackets associated with the code of the calling module, 

• call-out brackets associated with the data of the calling module, 

• call-in brackets associated with the code of the called module, 

• call-in brackets associated with the data of the called module. 

                                           
126

  The easiest way to invalidate data is to change its length in the red tape to 0. 
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Figure 24.3 illustrates a thread stack after a module A, with three call-out brack-

ets, has called a module B, which has three call-in brackets, and module B then 

calls a further module C. 

4.2 Summarising the Handling of Brackets 

When a new IMC occurs, the user request process checks whether any call-out 

brackets are required by the calling module. These (and any call-in brackets as-

sociated with the called module) must be executed before the new IMC can be 

executed. 

It can establish this by examining the previous IMC stack record on the 

stack. (At the time of the call this is actually the "current" IMC stack record.) If 

this indicates that call-out routines are defined, it executes these, and then evalu-

ate whether call-in bracket routines are required for the called module by exam-

ining the new IMC stack record. If not, it can then execute the IMC as normal. If 
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call-in bracket routines are required the user request process must acquire the 

information from the appropriate QLMs and add it to the new IMC stack record. 

It must then execute the required call-in brackets if necessary and can then exe-

cute the new IMC itself. 

4.3 How the Kernel Obtains Bracket Information from QLMs 

The kernel's user request thread uses surrogate threads, in this case called QLM 

threads, to obtain the information which it needs from QLMs. We now describe 

this procedure in more detail. Since the basic working of surrogate threads has 

already been explained in principle (see chapter 22 section 8.2) it is now simply 

assumed that a pool of QLMs has been set up and partly prepared at system ini-

tialisation in a separate container (the QLM process container), and that the ker-

nel 

• allocates and deallocates the individual threads as required, using a resource 

set semaphore; 

• completes their initialisation before activating them
127

; 

• schedules and suspends them via requests to the UTS. 

4.4 Acquiring General Bracket Routine Info from a QLM Thread 

We now describe how the kernel acquires general information about the bracket 

status of a new IMC. 

When the new IMC first reaches the kernel, it does not know whether call-

in or call-out brackets or both are defined in the QLM file(s). (This cannot be 

defined statically, since the QLM file can be modified – subject to synchronisa-

tion requirements – at any time by the user.) Hence when the kernel has activat-

ed the surrogate threads and has requested the kernel interrupt process to sus-

pend the current thread, each QLM thread begins to execute; its first task is to 

advise the kernel how many call-in and call-out brackets are defined in its QLM 

for the target module. 

It supplies this information in a kernel instruction bracket_info, which 

passes a bracket parameter block with the appropriate information, including 

(for identification purposes) a copy of the module capability for the QLM and a 

copy of its own surrogate thread capability to the kernel (see Figure 24.4). 

                                           
127

  In this case a QLM thread needs only two input parameters (its own QLM capability 

and the user thread capability, both for identification purposes). Otherwise its job is al-

ready well defined and only varies in that each can access its individual QLM via seg-

ment register 5, which has been initialised to address the root data segment of the QLM 

in question. 
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When each QLM thread has provided its bracket parameter block, it sus-

pends itself by calling the UTS. But before we can consider in more detail what 

follows next, we need to know how bracket routines affect linkage segments on 

the user thread stack. 

4.5 Controlling the Execution of the Bracket Routines 

In order to discover the details of the individual bracket routines, the kernel must 

activate the individual QLM thread(s) in the defined sequence to obtain the in-

formation about the first/next bracket routine. What now follows can therefore 

be viewed as something similar to co-routine activity or to a producer-consumer 

situation between a QLM thread (advising of the next bracket) and the user 

thread (executing this bracket) operating repeatedly until the last bracket has 

been executed. But this simple view is an oversimplification, because the kernel 

has to sit between the two and organise the execution of the bracket routines. 

4.6 Managing the Linkage 

Before a bracket routine can be executed the kernel must first store linkage for 

the routine which was previously executing. In the case of the first call-out 

bracket (or, if there are no call-out brackets, the first call-in bracket) this will be 

the normal linkage for an inter-module call (see Figure 20.5). 

When a bracket routine issues a body or call instruction the kernel like-

wise places a linkage segment on the stack. This has a different form from an 

Figure 24.4: General Bracket Info from QLM Threads to Kernel 
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IMC linkage segment, as is illustrated in Figure 24.5. 

 

4.7 The QLM Thread Provides Information about a Bracket Routine 

The kernel's user request process determines which QLM thread should be re-

started
128

 first, and activates it by placing a request in the input buffer of the user 

interrupt process. It then issues a kernel reschedule. 

When the QLM thread starts executing, it examines its list and selects the 

first bracket routine to be applied, setting up the following parameter block de-

tails for the kernel: 

a) The module capability by which its bracket routines can be invoked. 

b) The entry point number of the appropriate bracket routine. 

c) An indication whether the bracket routine has no access, read-only access 

or read-write access to the input and return parameters. 

d) An indication whether the bracket routine is designed always, sometimes or 

never to invoke the kernel's body instruction. 

e) An indication whether the bracket routine is permitted to make normal in-

ter-module calls. 

f) An indication whether the current bracket is the last call-in (or call-out) 

bracket in the list. 

g) Its own surrogate thread capability and QLM capability as well as the user 

thread capability as identification. 

The QLM thread passes this information to the kernel, using the kernel instruc-

                                           
128

  The QLM thread already exists and is suspended awaiting a request for an individual 

bracket. 
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tion next_bracket (see Figure 24.6). It then suspends itself with the UTS (until 

the kernel releases it to supply information for the next bracket routine). 

 

4.8 Executing a Bracket Routine 

The information available to the kernel's user request process is  

a) that received from the QLM parameter block details in its current next_

bracket instruction, 

b) information about the qualifier module which it can obtain via the latter's 

module capability (e.g. the address of its root data and the start address of 

the bracket routine's code from its bracket entry point list (see chapter 19 

section 9.3), and 

c) information in the IMC stack record. 

The user request sets up the register save area of the stack to point the image of 

segment register 5 to the bracket routine's root data (which is not that of the call-

ing or called module!), its code segment register image and offset to the address 

at which it begins execution, and its parameter segment registers to address the 

input parameters supplied by the user thread (with the access rights indicated in 

section 3). It then places an interrupt message block in the kernel user interrupt 

process's buffer area to advise the UTS to activate the user thread. 

When the bracket routine is executing this can use other kernel instructions 

where it has permission to do so (e.g. to discover environmental information 
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(see chapter 26). If it attempts to make an inter-module (or equivalent) call, the 

kernel's user request process can check whether this bracket has permission to 

make inter-module calls. If so the kernel executes this as normal.
129

 If it is not 

permitted the kernel generates a synchronous interrupt (see chapter 22 section 

8.2)
130

. 

4.9 Executing Body and Call Instructions  

When a bracket executes a body or call instruction, the kernel 

• checks whether this is the appropriate instruction and that it is not being 

called for a second time. (If so, a synchronous interrupt is activated.) 

• places a bracket linkage segment on the user thread stack (see Figure 24.3), 

paying attention to the parameter addressing rules described in section 3 

above. 

• locates the appropriate IMC stack record and checks whether this is the last 

call-in (or call-out) bracket to have completed executing its prelude. If not, 

it activates the next bracket by activating the appropriate QLM thread
131

 

(via the user interrupt process) and exits. 

When the QLM thread issues a next_bracket instruction, the above procedure 

is repeated until all the call-in or call-out brackets have been executed. 

If the final call-out bracket issues a call instruction this signals to the user 

request process that a new series of call-in bracket routines (if any) should 

begin. 

If the final call-in bracket issues a body instruction this signals to the kernel 

that the target inter-module call should now happen. 

4.10 The Postlude Phase 

When a called module executes a return instruction, this might signal the start 

of the postlude phase for bracket routines. Hence the user request process checks 

at this point whether the last linkage segment on the user stack is a normal link-

age segment or a bracket linkage segment. 

If a bracket routine's postlude needs to be activated, the kernel's user re-

quest process loads the registers for the postlude from the linkage segment, pay-

ing attention to the rules for managing parameters in brackets, as described in 

section 3.3. The bracket linkage is then deleted from the top of the stack. The 

                                           
129

  If so the new IMC may also be bracketed and the kernel must nest this on the stack in 

the usual way. 
130

  The action taken depends on a setting in the Thread Security Register (see chapter 26). 
131

  If the bracket issuing the body statement is associated with the data file and there are 

call-in brackets associated with the code file, it activates the code file QLM thread. 
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postlude is then executed and the bracket routine eventually exits using a kernel 

bracket_return instruction. This procedure is then repeated for each outstand-

ing bracket postlude, until the linkage for the module to which the return is 

made is reached. In this case the user request process organises the resumption 

of the module's execution (including the deletion of the IMC stack record on the 

stack). 

4.11 Executing an Inter-Module Call in a Bracket Routine 

If a bracket routine issues an IMC, this is as usual directed to the user request 

process. Since bracket routines need permission to execute IMCs (even if they 

have a valid capability), the user request process checks whether this call is 

permitted. If it detects an illegal IMC attempt it generates a synchronous error 

interrupt. If all is well the kernel places bracket linkage for the calling bracket 

routine on the stack and causes the user request process to be reactivated to carry 

out the legal IMC. This then executes the IMC as normal (including any re-

quired bracket handling), setting up an initial secondary link in the current IMC 

message block (which will be returned to null after the new IMC sequence 

ends). 

4.12 A Bracket Routine Executes a Bracket Return in its Prelude 

This can occur, for example, when the bracket routine has detected a serious 

problems and wishes to abandon the call to the target module before this takes 

place. It is not particularly significant for the kernel which kind of bracket rou-

tine this was. It is merely a sign that the postlude phase has begun, and return 

postludes are then executed until the last call-out bracket (if any) exits. The ker-

nel then deletes the IMC stack record on the stack and allows the calling module 

to execute its next instruction. The calling module is unaware that the call was 

abandoned unless the module abandoning the call indicates this in the return pa-

rameters (or logs an entry in a module accessible to the caller). 

5 Bracket Routines and Free Capabilities 

Free capabilities were introduced in chapter 18 section 8 and chapter 19 section 

13.3 as a technique which allows n-ary access to files in order to overcome the 

strict rules of information hiding in situations such as the copying or conversion 

of a file, by permitting a module (under restricted circumstances) to use the ker-

nel instruction load_free_cap in order to gain direct read-only access to the 

content of a file module. Write access is not permitted for free capabilities. 

But this creates a rather tricky problem associated with the use of qualifi-

ers. What happens when a free capability refers to a data file which is protected 

by qualifiers? For example, it may have an associated Qualifier List Module 
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containing bracket routines which revoke capabilities, provide access control 

lists, log the use of the qualified module, synchronise access to the file or even 

prevent its use entirely. 

Because access to free capability parameters is not via inter-module calls, 

existing bracket routines cannot be used in the normal way. There are several 

reasons for this, e.g. 

• The concept of a body or call statement has no direct significance when 

applied to the loading of a free capability using a load_free_cap instruc-

tion (see chapter 18 section 8.1). 

• Since a semantic routine is not being bracketed (as is the case in normal 

bracketing as described above), there are no parameters which might be 

read or modified. 

For such reasons the solution is to allow a further kind of bracket routine to be 

defined. 

5.1 Free Capability Brackets 

Free capability brackets are defined in a similar way to other brackets except 

that they have no body or call statements (and therefore there are no prelude or 

postlude phases) and they have no access to inter-module call parameters nor to 

the file being passed. 

It would be theoretically possible to give free capability brackets optional 

read-only access to the free capability file (e.g. to allows the bracket routine to 

scan for viruses, etc.) However the free capability mechanism itself can be used 

for such purposes, so that this would introduce a duplicated mechanism which 

would itself have to be protected! 

When the kernel receives a load_free_cap instruction it first determines 

from the Co-Module Table of the (free parameter's) file container and from the 

Code Table (of the code module about to access the file) whether a QLM or 

QLMs exist for free capabilities (see "Free Cap QL Cap" in Figures 19.6 and 

19.8). If so it activates a QLM thread. 

The user request process activates each free capability bracket in turn. 

When the bracket module invokes the kernel's bracket_return instruction, the 

kernel proceeds to the next bracket. When the final bracket executes a bracket 

_return instruction, the kernel then executes the load_free_cap instruction 

and the application continues as normal. 

Free capability brackets can prevent the use of a free capability (e.g. if a se-

curity breach is discovered) in that they can simply execute the kernel's abandon

_call instruction, passing a code to identify the problem which it has found. 

This causes the thread to generate a synchronous interrupt. 
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It would be theoretically possible to introduce a further kind of bracket rou-

tine more or less equivalent to a postlude phase. But this raises the question at 

what point the "postludes" should be executed. In principle they could be trig-

gered when the kernel recognises that the segment register which addresses the 

free parameter 

• is re-loaded via a further load_free_cap instruction, 

• is invalidated either from within the module in which it is initialised (as a 

result of an explicit request to invalidate it via the kernel's reduce_

access_rights instruction
132

 or 

• implicitly when the thread exits from the application module via an inter-

module return
133

.  

This may appear to be overkill, since it is unlikely that such routines could in-

crease the security of a system. Security tests (e.g. based on access control lists, 

capability revocation) are usually applied before a potentially dangerous situa-

tion arises, and this would imply that in the present context the bracket routines 

applied when the load_free_cap instruction is executed. However the lack of a 

postlude phase has disadvantages. For example it eliminates the possibility that 

brackets could be used to synchronise access to an entire file using bracket rou-

tines. This is unfortunate and therefore I propose that a group of "postlude" 

bracket routines also are made available. 

With this solution all the normal security checks applying to the module 

can be made, e.g. to revoke capabilities, to apply access control lists, etc. 

5.2 Effects of Free Parameter Bracket Routines on a User Thread Stack 

The execution of "prelude" free capability brackets takes place at the current 

stack top, and proceeds in a similar manner to call-in brackets, except that they 

have no input or return parameters, hence the values for segment registers 0 to 3 

are invalid. They use the same bracket linkage segments as normal bracket rou-

tines (see Figure 24.5), except that the "Kind of Bracket Routine" is not call-in 

or call-out but "free capability prelude"
134

 brackets, which have no body or call 

statement (and therefore no "official" postlude). 

The second group, free capability "postlude" brackets, which will probably 

by quite rare, should be executed when one of the circumstances listed in section 

5.1 arises. But because of the stack discipline these cannot formally be regarded 

as postludes! 

                                           
132

  This kernel instruction was not envisaged in Espenlaub's thesis. 
133

  A call to a further module is not considered to be an exit from the module. 
134

  An implementer might choose to reduce the size by allocating a new linkage type and 

eliminating the input and output segment registers, etc. 
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Separating "postlude" brackets for free capabilities in this way also solves 

another stack problem. A module can concurrently load and access more than 

one free parameter, with the result that more than one set of bracket routines 

may exist at the top of a thread stack. The first set of stack frames to be deallo-

cated must be that at the top of the stack. Hence if a thread explicitly invalidates 

free parameter segment registers this would always have to take place in the re-

verse order from that in which they were loaded. But if postludes are separate 

routines, this problem does not arise. 

I suggest that at the programming language level free capability bracket 

routines could still be defined as having a prelude and a postlude section, sepa-

rated by a keyword such as file. But the compiler should be aware that it must 

compile these sections as separate free capability routines. 

I have not provided an implementation but this should be fairly clear based 

on the analogy of the main bracket routine implementations described in earlier 

sections. 
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 Chapter 25 

The Confinement Problem: 

Some Principles 

 

The confinement problem is one of the more serious problems which conven-

tional security mechanisms fail to solve in a general way. As was mentioned in 

volume 1 chapter 3, it cannot be solved simply by setting appropriate access 

rights (in the sense of Lampson's Matrix), because the risk can arise in situations 

in which a subject has a legitimate right to access information, but must be pre-

vented from passing it to unauthorised third parties. 

How might information reach unauthorised third parties? In a conventional 

system the information of interest is primarily stored in persistent files in the file 

system. When this is stored in a conventional file system, hackers have more 

than one way of achieving their aims. They can search for weaknesses in the file 

system, or in conventional (non-persistent) virtual memory, or in the interfaces 

between the two. By contrast, persistent information in SPEEDOS is always 

held in the persistent virtual memory in information hiding files with their own 

semantic routines. 

Information held in the SPEEDOS persistent virtual memory is made avail-

able to subjects in the system primarily via inter-module calls. This gives file 

owners an assurance that only those users whom the owner has authorised (by 

providing them with capabilities
135

) can invoke these semantic routines to obtain 

information directly. But one important guarantee is not provided by the capabil-

ity and module calling mechanisms, viz. that the code of the semantic routines 

correctly implements its specification (and nothing more or less than the specifi-

cation)! 

This is one of the reasons why a confinement problem exists at all. In 

                                           
135

  Chapter 26 describes how capabilities and other mechanisms in SPEEDOS can be used 

to prevent users entitled to access to a file from passing on these rights. 
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SPEEDOS, a code implementation containing a trojan horse (or an error, or ma-

liciously programmed code) might attempt to release information in several 

ways. It might, for example 

– pass information directly back to a caller who has a capability entitling him 

to call the module, although not to obtain the information in question; 

– secretly pass information from the file to another file module, via which it 

can be accessed later by a hacker; 

– display information on an output device, e.g. a monitor screen or printer. 

Similarly, incorrectly implemented code of a file module might violate the integ-

rity and/or availability of information held in a file by accidentally or deliberate-

ly changing or destroying it. 

These are not the only – nor even the usual – problems which attract atten-

tion in discussions of how information can be confined. In conventional systems 

the issue is not how the implementation routines of a file module can be con-

fined (because the SPEEDOS concept of a file module with semantic routines is 

not found in such systems). The issue for such systems is rather how programs 

which illegitimately gain access to data in the file system can be confined, but 

also how programs which legitimately need access to a file in order to carry out 

services for applications and their users, such as a spooler module in the operat-

ing system, can be confined so that they do not misuse the information which 

users provide to them. 

The first of these problems should not arise in SPEEDOS, because its im-

plementation of the information hiding principle causes a single authorised pro-

gram to be tightly bound to a file, thus excluding other programs from directly 

accessing the file data. While there are occasions when the program in question 

must be replaced by another, this change is carried out via a semantic routine of 

the appropriate co-module manager. The latter can only be called by a subject in 

possession of a valid capability for this co-module. Therefore this kind of prob-

lem should only arise as a result of a human error or a deliberate criminal act 

carried out by an insider. However, human errors occur, and unfortunately insid-

ers can be persuaded by greed or bribes or even blackmail to commit criminal 

acts and to help others to do so. Consequently it must be anticipated that further 

technical measures must be taken to ensure the confinement of information. 

The second problem, that software with legitimate access to information 

can illegitimately release this to third parties, could just as easily occur in 

SPEEDOS as in conventional systems if the latter did not provide confinement 

mechanisms. This is the main subject of the present chapter, although the solu-

tions described can be equally applied to programs which illegitimately gain di-
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rect access to persistent data. 

The remaining sections of this chapter take a closer look at the information 

channels which might be used to release information against the will of its own-

ers, and how the tools available in SPEEDOS can help confine programs. Final-

ly some examples are presented. 

1 Information Channels 

Neither a system architecture nor an operating system can ever guarantee that 

operating system and/or application code is fully correct. At best, a system ar-

chitecture can ensure that certain basic actions are prevented while a thread is 

executing in a module. For example it can enforce basic access rights which 

– prevent write operations to particular data segments when "read-only" 

mode is set, but 

– allow writes when "read-write" mode is set. 

Because of the SPEEDOS structure, these controls can be applied separately for 

the different kinds of segments associated with a module, as follows. 

1.1 Persistent Data Segments 

File modules have persistent data segments, which may be shared by many users 

with capabilities (via their semantic routines). Access to these segments can be 

variously set individually to "read-only" or to "read-write" for executing threads, 

i.e. some threads can write to them, while other threads can only read them
136

. 

Persistent data segments represent a security problem for two reasons: 

– Because they are shareable by many threads (both concurrently and over 

time) they can serve as an information channel which might be misused. 

– Because they contain persistent data, this must be considered to be "useful" 

data, i.e. data potentially of interest to third parties. 

Hence persistent data segments provide a potential communication channel be-

tween user threads of the same or different processes, and an ideal target for 

hackers. 

1.2 Temporary Data Segments 

Thread-local data segments hold three kinds of non-persistent (i.e. temporary) 

data associated with a particular thread, i.e. its internal computational stack, its 

local heap data and its inter-module parameter segments. The kernel ensures that 

the local data segments of an executing thread cannot be shared with other 

threads, since each thread has a separate root for its temporary segments which 

                                           
136

  Such accesses should of course be synchronised. 
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the Segment Manager dynamically allocates on request from the thread. They 

may therefore be modified without creating the possibility that information can 

be passed from one thread to another. However, inter-module parameter seg-

ments provide a communication channel between modules. 

1.3 Code Segments 

The segments of a module include both local and externally accessible code rou-

tines which may for example consist of the routines for accessing a file module, 

or they may implement a program or library routines. These segments exist in 

one or more code modules. 

A code module starts its life as a persistent data module for a compiler, i.e. 

as a file which is the output of the compiler. But the kernel, with the help of its 

security sensitive co-modules, ensures that once a module has been designated 

as code it cannot be modified while being executed. 

A code module may have its own data segments but these are always set to 

read-only while the module is being executed as code, and therefore they cannot 

be used as a communication channel. They may, however, hold capabilities 

which can be used to make inter-module calls. 

1.4 Communication Channels Relevant to the Confinement Problem 

The above points lead to the conclusion that there are three basic information 

channels which could be used by malicious code to release information illicitly: 

persistent data segments, inter-module parameter segments and module capabili-

ties held in constant segments of the code. In this chapter SPEEDOS mecha-

nisms are described which can restrict the passing of information via these seg-

ments. We now consider in more detail how these mechanisms can be used to 

prevent information from being stolen. 

2 Bracket Routines 

Both call-in and call-out bracket routines
137

 can be used as tools for confining 

modules, especially where the owner of a file module does not trust the code 

which manages it. 

2.1 Call-Out Brackets 

An obvious way of preventing information leakage is to use call-out brackets. A 

call-out bracket is activated when a qualified module attempts to call other mod-

ules. It intercepts outgoing calls and executes a prelude. If this determines that 

the call can proceed, the call-out bracket executes a call instruction, which al-

lows the appropriate routine of the destination module to be entered. When this 

                                           
137

   see chapter 24. 
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finally returns, the call-out bracket routine continues at the postlude following 

the call instruction, and finally a return is made to the qualified module. If a 

call statement is not executed in the call-out routine, the call never reaches the 

intended module. 

There are at least two ways in which a call-out bracket method can confine 

information. It can simply prevent its qualified module from making calls to 

some or all other modules, or it can examine and where appropriate change the 

parameters being passed to the destination module, e.g. by reducing the access 

rights in a module capability or by replacing the module capability with another, 

less dangerous one. Call-out brackets cannot increase the rights in a capability. 

Call-out brackets can only be applied by the owner of a qualified module, 

or by a subject authorised by the owner to access the qualified module's qualifier 

list module in an appropriate way. Consequently this technique is most useful 

for cases where the owner of the module (i.e. the owner of the module's data 

file) does not trust the software which manages his data and/or that which is 

used in the destination module. Since the vast majority of computer users either 

cannot or do not want to write all their own programs, most of the software 

which they use is written by other (usually unknown) programmers and is there-

fore potentially a source of data leaks. 

2.2 Call-In Brackets 

Call-in bracket routines can also be used to help prevent information leakage. 

But whereas call-out brackets are primarily concerned with protecting infor-

mation held in the qualified module from being passed on to third parties via 

inter-module calls, call-in bracket routines are usually concerned with prevent-

ing modules which have called the qualified module from receiving information 

via return parameters. In this case unwanted callers, who have either legitimate-

ly or illegitimately obtained a capability to call the qualified module, may at-

tempt to trick the qualified module into returning information in return parame-

ters which can later be used to access and even modify information illegally. 

If in its postlude a call-in bracket detects a risk, it can, for example, change 

the return parameters, signal an error or simply log its suspicions. 

3 Information Confinement Rights 

As indicated above, there are three basic information channels which could be 

used by malicious code to release information illicitly: persistent data segments, 

parameter segments and constant segments in the code holding module capabili-

ties. We now describe how confinement rights can play a role in restricting the 

passing of information via these information channels. 

The first group of rights, the information confinement rights, is designed to 
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prevent information flow from a module via these channels. Information in this 

context includes both module capabilities and other data. These rights are sum-

marised in Figure 25.1. 

 

The information confinement rights work either by ensuring that segments 

or capability partitions therein are inaccessible (Cap Out, Return Params, Return 

Cap, File), or by setting the access rights of appropriate segments to read-only 

(File Write), thus preventing the writing of information to them
138

. These rights 

can be unset in a capability or directly in the Thread Security Register (TSR), 

for example by a bracket routine.
139

 

3.1 Restricting the Use of Parameters 

In SPEEDOS the kernel can easily distinguish between input parameters and 

return parameters on external calls (i.e. inter-module calls and co-module calls) 

because these are held in different parameter segments. 

The basic SPEEDOS call mechanism (see Chapter 19) already ensures that 

a called module cannot write to its input parameters and that a calling module 

cannot write to the return parameters which are passed back to it. Furthermore, 

there is little point in restricting a caller from writing to the output parameter 

segment while it is being prepared for calling a module, since virtually every 

routine needs these parameters, which become its input parameters. 

It does, however, make sense in some cases to ensure that code does not at-

tempt to pass a capability as an output parameter if it is only supposed to be 

passing normal data. If the right permit_cap_out is unset, the kernel prevents 

this (Figure 25.2). 

It can also make sense to prevent a called module from writing to the pa-

rameter segment via which it returns parameters to its caller (when it should not 

be passing information back). This is achieved by unsetting the confinement 

right permit_return_params. When this confinement right is permitted, a 

                                           
138

  They follow the same principle as other access right settings, i.e. if the corresponding 

bit is set, the thread has access, if it is unset, the corresponding action is prevented. A 

thread can only reduce access (by setting a 1 bit to 0). It can never increase access (by 

setting a 0 bit to 1).  
139

  These possibilities are described in more detail in the next chapter. 

Figure 25.1: Information Confinement Rights 
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called module can return results; when it is unset the return parameter segment 

is set to read-only, preventing the called module from copying data and capabili-

ties (e.g. from its file data) into the result parameter segment, see Figure 25.3. 

 

In the case of a co-module call, the unsetting of permit_return_params 

also prevents a module from returning pointers as parameters. (A similar result 

can also be achieved if the caller sets the lengths of the return parameter seg-

ment in the kernel instructions create_imc_params and create_pc_params to 

zero, but this cannot be done in bracket routines, and there is no guarantee that 

untrusted software will do this.) 

 

The less restrictive right permit_return_cap can be used to prevent ca-

pabilities, but not data, from being returned (Figure 25.4). 

Figure 25.2: The permit_cap_out Confinement Right 
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3.2 Controlling Access to Persistent Information 

The entry point list of a module indicates whether the segments of state data 

should be set for the thread to read-only or to read-write access for each seman-

tic routine individually. However, the read-write setting can be overridden by 

unsetting the confinement right permit_file_write. When this confinement 

right is permitted, a called module can read and write the state data of the mod-

ule, subject to the setting in the entry point list of the called routine. Access to 

all the state segments is set to read-only when permit_file_write is unset, 

regardless of the setting in the EPL entry for the called routine (Figure 25.5). 

 

From the viewpoint of confining information, unsetting this permission has 

the advantage that the software associated with a called module cannot secretly 

write information to a file, even if the file exists and contains valid information 

which can be modified by other callers. 

It also has the advantage that it can prevent threats to the integrity of infor-

Figure 25.4: The permit_return_cap Confinement Right 
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mation and its availability. 

A more drastic way of controlling access to persistent data is provided by 

the permit_file confinement right, since this, if unset, prevents a module from 

accessing persistent data segments. If a module containing file data is called, the 

kernel sets access to persistent file segments as "no access" (i.e. both read and 

write permissions are unset). Calls to independent program modules (see Chap-

ter 18) are allowed (see Figure 25.6). 

 

Both normal application modules with file data and independent program 

modules use a data container for storing temporary thread-oriented structures 

such as local stack and heap data. The unsetting of the permit_file_write 

and/or permit_file rights does not prevent either from creating such tempo-

rary segments, which have no persistent root and which are either deleted or be-

come inaccessible when the thread exits the module. Furthermore no thread can 

access the temporary segments of another thread. Hence they cannot secretly 

store information which will survive after an inter-module return. 

4 Module Call Confinement Rights 

Call-out brackets provide the simplest way of restricting calls from a qualified 

module, and they have the advantage that the decision to make such a restriction 

can be finely controlled, e.g. on the basis of an examination of the parameters 

being passed or the identity of the caller. However, they have the disadvantage 

that they can only be used when the caller wishing to make the restriction is also 

the owner of the module in question or has a capability for the qualifier list 

module. Hence a second group of rights, the module call confinement rights, is 

aimed at preventing an executing module from making particular classes of call. 

These rights are summarised in Figure 25.7. 

Figure 25.6: The permit_file Confinement Right 
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These restrictions cannot be so finely tuned as controlling calls via bracket 

routines, but they have the advantage that once applied to a module, they can be 

automatically applied in appropriate circumstances to modules called subse-

quently, as will be described in the next chapter. 

The call restrictions fall into six categories: 

– all calls (permit_calls). If this permission is unset, the called module can 

make no further calls of any kind, regardless of the other call permissions; 

– calls (permit_const_calls) made using module capabilities located in or 

previously copied from code constant segments; 

– calls to modules via a module capability which has been explicitly passed 

to the module via an input parameter segment (permit_param_calls);  

– calls to modules for which no module capability has been explicitly passed 

and which are not "constant" calls (permit_nonparam_calls); 

– calls to user co-modules for which no module capability has been explicitly 

passed (permit_comodule_calls);  

– calls to synchronising modules (which is explained below). 

These are summarised in Figure 25.7 and illustrated in Figures 25.8 to 25.13. In 

some cases the restrictions refer to the source (segment) of the capability used to 

make the call. Since user code can attempt to disguise such origins by moving 

the capability in question from one kind of segment to another kind, the status 

bits in the capability are used to indicate the origin in the case that a capability is 

moved. This is more fully described in chapter 26. 

4.1 The Permit Calls Right 

Unsetting permit_calls has the very drastic effect. A module which has been 

subjected to this restriction cannot make any calls whatsoever. 

Figure 25.7: Module Call Confinement Rights 
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4.2 The Permit Constant Calls Right 

 

In the case of restricting permit_const_calls, attempts to call modules using 

capabilities embedded within the code segments of a module are forbidden. This 

can be used to prevent a capability embedded in a code module (e.g. for a file 

module at the home base of a software design company) from being used to 

make a call. 
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Figure 25.8: The permit_calls Confinement Right 

Calling Module 

CONFINEMENT: 

not_permit_calls 
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4.3 The Permit Non-Parameter Calls Right 

 

Unsetting the permit_nonparam_calls right has the advantage that a 

module capability hidden in the module being called (e.g. in proprietary soft-

ware which has its own persistent data) cannot be used to make further calls 

(e.g. back to the database of the proprietary company), while the thread can still 

call the caller's own modules passed as parameters. 

4.4 The Permit Parameter Calls Right 

The unsetting of the permit_param_calls right prevents a module from using 

capabilities passed to it as parameters from using these capabilities to make calls 

(Figure 25.11). This might for example be used if a module A calls a further 

module B which then calls a further module C. Since the owner of A may not be 

aware of the call to C and therefore cannot know whether B is releasing his in-

formation to C in parameter form, he might use this confinement to ensure that 

his information is not released. 

It might be thought that in cases where permit_nonparam_calls is set the 

permit_param_calls will also always be set, on the assumption that it makes 

no sense to allow calls to unknown modules while not allowing calls to modules 

deliberately passed as parameters. However there are at least two reasons why 

this might not be appropriate. First, the module capability passed as a parameter 

may be intended for use by the module at some later time and possibly while it 

is executing in a different thread. Second, if the caller does not need to pass ca-

pabilities as parameters then permit_param_calls can be unset as a precaution 

Figure 25.10: The permit_nonparam_calls Confinement Right 
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against a bracket routine which might surreptitiously add a module capability as 

an input parameter. 

 

4.5 The Permit Co-Module Calls Right 

 

If permit_comod_calls (see Figure 25.12) is unset, a called module cannot 

make co-module calls using the CMC instruction, i.e. to another module in the 

same container (but this does not prevent it from making normal inter-module 

Figure 25.11: The permit_param_calls Confinement Right 
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calls without pointer parameters) to such a module, provided that it has a capa-

bility and there are no other restrictions which would prevent such a call. With-

out unsetting this permission it might be possible for modules to pass pointers 

for a database to co-conspiring modules, which provides the latter with direct 

access to the database. 

4.6 The Permit Synchronisation Calls Right 

 

The right permit_sync_calls (see Figure 25.13) has been introduced to sim-

plify the use of permit_nonparam_calls. Leaving the latter permission set (as 

a right) increases the possibility that arbitrary capabilities which have not been 

passed as parameters to a called module (which might therefore have been ille-

gally obtained by the called module) may be used to gain access to a file. This 

risk cannot be avoided in some cases, e.g. when a called module uses capabili-

ties which were legitimately passed to the module as parameters to a constructor 

call. However there is one common situation where this risk can be avoided. 

This arises from the decision described in Chapter 21 that synchronising opera-

tions which involve suspending and re-activating threads must do this via rou-

tines of the appropriate Thread Control Manager. In order to do this, threads 

must not only suspend themselves but must also activate other threads, possibly 

belonging to different users. Without adding a confinement permission permit

_sync_calls it would quite frequently be necessary to leave permit

_nonparam_calls unset when a thread needs to invoke methods of the sched-

uler/synchroniser modules, since the thread capability needed to re-activate a 

Figure 25.13: The permit_sync_calls Confinement Right 
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thread is not acquired via parameters received from a call to the scheduler, but 

typically from a queue of suspended threads. If permit_sync_calls is set, the 

kernel permits calls to a thread scheduler, even when permit_nonparam_calls 

is unset. (The kernel can distinguish calls to a thread scheduler, since these are 

invoked by presenting a thread capability, rather than a normal capability.) 

4.7 Note on Library Calls 

Library calls are in effect simply extensions of the main code file from which 

they are called. Hence they are excepted from the restrictions which would re-

sult on them being called. However if they themselves attempt to make further 

calls to other modules, any call restrictions which have been imposed on the 

main code file apply to these calls. 

5 Conclusion 

This chapter has described some basic principles for solving the confinement 

problem in SPEEDOS and has hinted at some solutions in cases where bracket 

routines cannot always be used. However, it has not concretised how the pro-

posed rights can be implemented in detail. In the following chapter further rights 

are described and more attention is given to implementation details. 
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 Chapter 26 

Some Confinement 

and Access Controls 

 

The previous chapter looked at some basic principles and techniques for solving 

the confinement problem. This chapter continues and expands the basic theme 

by reiterating, bringing together and expanding upon those protection mecha-

nisms which have already been discussed in earlier chapters. We begin by ex-

plaining further mechanisms which can contribute to a safer environment, viz. 

the rights which under certain circumstances 

• allow a thread to acquire information about the environment in which it is 

working, thus allowing appropriate software to carry out protection and 

other checks, and 

• prevent modules from gaining access to certain capabilities. 

We then provide details of the access rights in capabilities and introduce a new 

mechanism, the Thread Security Register (TSR), which is an essential part of the 

state of each user thread and is held at the base of the thread's kernel thread 

stack. 

The rights themselves are held in three locations. Those held in the Thread 

Security Register allow the owner of a thread to set rights which apply to the 

thread while it is executing. Those held in capabilities allow the owner of the 

object addressed by the capability to determine how the capability and the object 

which it addresses can be used. The container rights are held in page 0 of each 

container. 

The basic principle in all the SPEEDOS protection mechanisms is that 

rights can always be reduced but never increased by a thread. The kernel ensures 

this by using an intersection instruction to reduce rights. 
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1 Environmental Checks 

In order to carry out security checks, software (e.g. bracket routines, but also 

normal modules) often needs information about the environment in which it is 

working. For example when checking whether a capability has been revoked for 

a user, it is necessary to know who the user is, and whether he owns the thread 

currently trying to use the capability. To satisfy this and many similar require-

ments, there are kernel instructions which provide such information. 

1.1 Checking Application Modules 

These kernel instructions are listed in three groups by Espenlaub [4, pp. 235-

236]
140

, and a fourth group is added below. 

i) The first group of kernel calls returns information directly related to the 

current environment of a thread, in the form of world-wide unique module 

or thread identifiers
141

 (including the index value): 

unique_id current_thread(); 

unique_id current_file(); 

unique_id current_code(); 

unique_id calling_file(); 

unique_id calling_code(); 

unique_id target_file(); 

unique_id target_code(); 

If these instructions are executed in an invalid situation, they return the value 0. 

When they are executed by an application module, their meaning is straightfor-

ward: 

– current_thread returns the unique identifier of the thread in which the 

instruction is executed; 

– current_file and current_code return the unique identifiers of the file 

module and code module of the currently active application module; 

– calling_file and calling_code return the unique identifiers of the file 

module and code module of the module which called the currently active 

application module; 

– target_file and target_code refer to the unique identifiers of the file 

module and code module about to be called by the currently active module. 

In practice these are only known when the currently active module has al-

ready issued a call instruction; hence if these instructions are used by nor-

                                           
140

  Most of these instructions are based on my lecture slides on "Secure System Architec-

ture" at the University of Ulm, but Espenlaub added some additional instructions for use 

in call-out brackets, i.e. those referring to the target module (the destination module of 

an inter-module call). These are only relevant for use in call-out brackets, and return a 

value of 0 if used in any other context. 
141

  A module/thread identifier is its full 192 bit identifier, i.e. Node #, Disc # and Container 

# (including index). It is not a capability. 
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mal application code, the result returned is always in practice 0. 

The two instructions target_file and target_code encode into the re-

turn value (unique_id) a bit indicating whether the module being called was 

passed to its calling module as a parameter, thus enabling the caller to check re-

strictions on the use of parameters (see, chapter 25 section 3.1). 

If these instructions are executed in bracket routines 

– current_file and current_code return the value 0; 

– calling_file and calling_code refer to the module which called the 

module now making a call; 

– target_file and target_code refer to the module currently being called. 

ii) The second group of kernel instructions identifies the owner of each of the 

above, in the form of a unique container number (showing an index value 

of -2)
142

: 

container_id current_thread_owner() 

container_id current_file_owner() 

container_id current_code_owner(); 

container_id calling_file_owner(); 

container_id calling_code_owner(); 

container_id target_file_owner(); 

container_id target_code_owner(); 

The kernel obtains this information from the red tape at the beginning of the cor-

responding container (see Figure 19.2). For example current_file_owner is 

the owner of the container in which the currently active data file is located. 

iii) The third instruction group returns the number of the semantic routine (en-

try point) of the currently active module, of the semantic routine which 

called this, and of the semantic routine currently being invoked. 

int current_ep() 

int calling_ep() 

int target_ep() 

iv) A fourth group of environmental instructions, known as the calling rights, 

is needed in order that bracket routines can more thoroughly check the ac-

cess rights associated with the target call than was envisaged by Espenlaub. 

bitlist semantic_rights() 

bitlist metarights() 

bitlist capability_rights(); 

bitlist environmental_rights(); 

bitlist confinement_rights(); 

                                           
142

  The index field, which normally signifies the module number within a container, is set 

to -1 when an entire container is being identified. The number of the first container for a 

new user identifies the user uniquely throughout his existence in the system and has the 

index value -2. 
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bitlist thread_rights(); 

The semantic rights, metarights and capability rights are obtained by the kernel 

from the calling capability, the remaining rights from the Thread Security Regis-

ter, which is described in section 4 below. 

1.2 Checking Bracket Routines 

In principle bracket routines should be checkable in the same way as application 

modules. However, it would not only be considerably more difficult actually to 

check these but also to specify kernel instructions for this purpose. However, an 

alternative technique is possible. As was described earlier, the bracket routines 

which qualify a module are held in a list, which is itself a module known as a 

qualifier list module (QLM). Information provided by this module is accessible 

to the kernel when the qualified module is executed or is being called. 

The kernel can make the following information about this list module 

available at run-time to applications and bracket routines: 

unique_id calling_QLM_file() 

unique_id calling_QLM_code() 

unique_id target_QLM_file() 

unique_id target_QLM_code() 

where QLM is an abbreviation for a qualifier list module and refers to the appro-

priate qualifier list module (see Figure 19.6, Figure 19.8 and chapter 24). 

These instructions allow an application module or bracket routine to log 

this information for further security checks, or – if it has a capability for the ap-

propriate module – to call its semantic routines to obtain further information.  

There are corresponding ownership checks: 

container_id calling_QLM_file_owner() 

container_id calling_QLM_code_owner() 

container_id target_QLM_file_owner() 

container_id target_QLM_code_owner() 

These can be useful in cases where certain users are not known or are considered 

to be completely untrustworthy. 

1.3 Rights for Environmental Checking 

The environmental instructions return sensitive information to callers and hence 

their use must be controlled. Normally the right to use kernel instructions is con-

trolled via kernel capabilities, but this method is not sufficiently dynamic for the 

present purpose, so that another technique is used. 

Two sets of rights are maintained (see Figure 26.1). The first lists the rights 

which an application module can exercise; the second lists the rights which 

bracket routines can exercise. Although both sets of rights might be set and un-

set in the same way, they can differ, because the security aims of bracket rou-
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tines can differ substantially from the aims of normal applications. 

 

The environmental rights are summarised in Figure 26.1: 

permit_env_checks 

permit_QLM_checks 

These are general rights which together allow all environmental checks to be 

turned off together (for application modules and/or for bracket routines). If these 

rights are permitted, individual groups of rights can be turned off by unsetting 

the following permissions. 

permit_current_module_checks 

permit_calling_module_checks 

permit_target_module_checks 

permit_current_owner_checks 

permit_calling_owner_checks 

permit_target_owner_checks 

permit_calling_rights 

permit_calling_QLM_checks 

permit_target_QLM_checks 

permit_calling_QLM_owner_checks 

permit_target_QLM_owner_checks 

These rights can appear in capabilities and also in the Thread Security Register 

(see sections 3 and 4). If the corresponding right is unset in either or both, the 

action is prohibited. 

2 Capability Accessibility and Use Rights 

Section 5 of chapter 19 explained how certain capabilities can be made accessi-

ble to the threads which need them. However, not every thread needs, nor should 

have the right to obtain, these capabilities. Known as the capability accessibility 

Figure 26.1: Environmental Rights 
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rights, these are concerned with controlling their accessibility and use (see Fig-

ure 26.2). The sixth accessibility right can control access to free capabilities 

(which were introduced in chapter 18 section 8), while the seventh and eighth 

rights define levels of privileges possessed by the holder of a capability. 

 

The first five rights (permit_segman_cap, permit_threadman_cap, 

permit_thread_cap, permit_SIO_cap, permit_print_cap) determine 

whether the potentially restricted module is permitted to obtain  

– a module capability for the Segment Manager associated with the current 

module, allowing the thread to create segments explicitly, 

– a module capability for the Thread Manager associated with the current 

thread (in order to create subthreads),  

– a thread capability for the currently executing thread, to allow it to syn-

chronise with other threads, 

– module capabilities for the standard input and output modules associated 

with the current thread, and 

– a module capability for the current thread's print request module (see chap-

ter 33). 

Unsetting the permit_free_cap permission is an important precaution 

which can be applied in most situations, since providing a module with direct 

access to the root persistent data segment of another module is not only a viola-

tion of the information-hiding principle but if misused it provides a hacker with 

unlimited access to all the information in the module. However, it is not intend-

ed that free capabilities will be widely used as a normal way of accessing mod-

ules; rather it is intended that they will be used only in special situations such as 

the conversion of files or to enable them to be efficiently copied or compared. 

Hence by default this right should normally be turned off by users. However, it 

cannot be unset as a system default, since it could then never be turned on (or a 

mechanism would have to be devised to allow it as a special case). 

An administrator capability confers certain administrative rights on the 

holder of a capability in which the administrator right set. These are defined at 

the operating system level. There is only one owner capability for a container, 

file or process which is set when the relevant object is created. 

Figure 26.2: Capability Accessibility and Use Rights: An Overview 
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3 Rights in Capabilities 

Module capabilities hold six groups of rights:  

– semantic access rights (the right to access the interface routines of the mod-

ule to which it refers), 

– generic rights (rights which are needed for controlling actions common to 

all modules), 

– metarights (the rights which determine how the capability can be used), 

– environmental rights (see section 1), 

– the various confinement rights (see the previous chapter), and 

– the capability accessibility rights (see section 2). 

Some of these rights have a direct effect on the use of the capability, whereas 

others have an effect on the actions which can be taken by modules which are 

invoked via the capability. 

3.1 Semantic Rights 

These rights indicate on an individual basis which entry points to a module can 

be called using the capability. In addition they include two bits which allow the 

list to be overridden by the following special bit settings: 

00 = none, i.e. no semantic routine can be called; 

01 = all, i.e. all the semantic rights can be called; 

10 = read only, i.e. only enquiries
143

 can be called; 

11 = use the list of semantic rights. 

The first three of these are useful shortcuts for users. 

 

Bracket routines are not considered to be semantic routines and can never 

be invoked directly. However, if an executing bracket routine has a capability to 

call a module the above rules apply as normal. 

3.2 Generic Rights 

Espenlaub has argued that in SPEEDOS, capabilities should not hold generic 

                                           
143

  'Enquiries' is the name used in Timor to signify routines which do not modify the state 

data of a module. 

Figure 26.3: Semantic Rights in Capabilities 
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rights (see Chapter 2), explaining this as follows: 

"Operations such as creating, copying, renaming and deleting modules are the task 

of other modules that relate to the implementation of the virtual memory, and may 

thus be controlled by the semantic access rights to these management modules. 

However renaming and deleting a module implicitly makes the module capabili-

ties associated with the original module unusable, as the container associated with 

the module will no longer exist." [4, p. 179] 

While it is correct that the operations listed below are implemented in the Con-

tainer Manager co-module, there is not a separate Container Manager co-module 

for each container. Consequently access to its routines is via capabilities which 

are unspecific with respect to the module on which the action (e.g. copying) 

should be carried out. Hence a user requiring a generic service can only achieve 

this by passing a capability as a parameter to the routine. Consequently the Con-

tainer Manager can only determine whether the requested action is permitted by 

examining an access right in the capability, i.e. a generic access right. 

Figure 26.4 shows which generic access rights are supported by the Con-

tainer Manager: 

 

Their meanings are as follows. 

copy: If set, the Container Manager's copy operation can be invoked to create a 

copy of the container indicated in the capability, which must be a container ca-

pability.  Process containers cannot be copied. The copy operation will be car-

ried out as described in chapter 23 section 7. The owner of the copy becomes the 

owner of the container to be copied. 

copy with owner change: same as for copy, except that the instigator of the 

copy becomes the owner of the copy. 

delete: If set, the Container Manager's delete operation can be invoked to de-

lete the file or the entire container indicated in the capability, taking care to warn 

the caller of any problems deletion would entail. One result of a delete operation 

is that all capabilities for the object will be implicitly revoked. 

download/upload: If set, these operations of the Container Manager can be 

used to copy the nominated container, which will be transferred to a nominated 

computer (see chapter 29). The operations will only be carried out if all other 

permissions allow this (e.g.  see the rights in section 5.1). In both cases the up-

loaded or downloaded file becomes the property of the recipient. 

rename/change_owner: The meaning of these rights is self-evident. 

Figure 26.4: Generic Access Rights in Capabilities 
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3.3 Metarights and the 'Copy Cap' Kernel instruction 

Metarights
144

 define the access control rules which determine how a capability 

(not the associated container or module) can be accessed and changed. They af-

fect the execution of kernel instructions for which module capabilities are used 

as operands, in particular the inter-module call and related calls, the load_

free_cap instruction and the copy_cap instruction. 

3.3.1 The 'Copy Cap' Instruction 

The latter is defined as follows: 

copy_cap(boolean data_copy, //copy to data or cap partition 

  <segreg#, offset> source_cap, 

  <segreg#, offset> destination_cap, 

  <boolean> restrict, 

  bitlist generic_rights, bitlist metarights, 

  bitlist confinement, bitlist environment, 

  bitlist semantic_rights) 

The various access rights bit lists define for the kernel how the corresponding 

access rights in the destination capability are to be reduced. The mechanism is 

an intersection operation. 

In the initial capability for a new object all the rights are set, i.e. all opera-

tions are permitted. Normally a capability is never changed, but the copy_cap 

instruction permits copies to be made with (or without) reduced access rights. A 

capability copy operation has its source address in the capability partition of a 

segment. Its destination address may be in either the capability partition or the 

data partition of a segment. Where it is in the data partition, all the bitlist pa-

rameters are ignored (i.e. the access rights in the capability are copied but not 

reduced); the copied capability can be read (and modified) as data, but it cannot 

be used as (nor converted back into) a capability. 

Note that these operations can only be carried out when the source and des-

tination segments are currently addressable at the same node, i.e. within the 

same module (including input and output parameter segments) or within another 

co-module in the same container. Whether they can be passed or returned as pa-

rameters to/from other modules depends on the following metarights. 

The boolean parameter restrict does not apply directly to the copy oper-

ation as such, except that it causes the kernel to unset the first capability re-

striction status bit (see section 3.4). This affects further copy operations in that it 

prevents the holder of this capability from copying it to a third party after it has 

                                           
144

  Some of these rights are based on the list of capability confinements which appeared in 

lecture 12 of my lectures on Secure System Architecture at the University of Ulm, Ger-

many. These were further developed in [4, pp. 178-9], but the final list provided here 

has been substantially revised and improved. 
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been copied once to another user, regardless of the settings the metarights 

file_copy, in_param_copy and out_param_copy in the permissions for for-

eign owner and for foreign node owner in Figure 25.6. An implementation is 

described in section 3.4.2. 

3.3.2 The General and Once Only Permissions for Using a Capability 

The following metaright permissions define how the capability which contains 

them can be used. They are checked on inter-module (and similar) calls and re-

turns, by the load_free_cap instruction and by the copy_cap instruction, as 

appropriate. 

Two possibilities are provided for each individual permission. In the first 

(general) case, the normal uses for the capability are defined. The same permis-

sions are repeated as "once only" permissions. If a once only permission is set 

(regardless of the setting in the corresponding general permission) the kernel 

allows the action to be carried out once only. Both the general permission and 

the corresponding once only permission are then unset in the capability by the 

kernel, i.e. the once only permissions override the general permissions. These 

permissions are listed in Figure 26.5. 

Their meanings are as follows. 

 

permit_file_copy: If set, the module capability may be copied to a file seg-

ment, subject to the rights and restrictions defined below. If unset the capa-

bility cannot be used as the source capability for a copy_cap instruction 

Figure 26.5: Metarights in Capabilities 
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where the destination segment is a file segment.  

permit_in_param_copy: If set, the capability can be passed as a normal input 

parameter to another module (i.e. it may be copied to the segment ad-

dressed via SR2). If unset, it may not be copied to the parameter segment 

addressed by SR2. 

permit_out_param_copy: If set, the capability can be passed as a normal re-

turn parameter to another module (i.e. it may be copied to the segment ad-

dressed via SR1). If unset, it may not be copied to a destination segment 

addressed by SR1. 

permit_calls: If unset the capability cannot be used to make inter-module or 

similar calls. This might be appropriate, for example if the capability is a 

free capability. 

permit_free_cap: If set, the capability can be used to access the content of the 

module which it names directly, i.e. providing access as a free capability 

parameter which can be loaded into a segment register. This is not possible 

if the right is unset. 

permit_duplicates: If unset, the source module capability is invalidated 

when being copied, changing the behaviour of the copy_cap instruction 

from normal copy to destructive move. 

permit_read: If set, the capability may be copied to the normal data part of 

any other segment. This allows the content of a module capability to be ex-

amined. If unset, it is not possible to store the content of a capability in the 

data partition of a segment, thus rendering it impossible to examine its con-

tents. 

permit_dir: is discussed below under "Directory Mode". 

permit_print: If set, the file addressed by the capability may be printed. No-

tice that this right could in theory be classified as a generic right, unlike other 

generic rights the printing of files is not carried out by the Container Manager 

but directly by users (see chapter 31) and hence this right has been included with 

the general and once only metarights. 

In a capability the above rights appear in three groups. 

a) The first set of rights applies when the owner of the source segment and the 

owner of the destination segment are the same or when the owner of the 

current thread and the owner of the capability are the same. Allowing re-

strictions even when the same owner is involved allows a user to guard 

against his own potential mistakes, but also helps prevent software and 

hackers from misusing the capability if they gain access to it. 
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b) Subject to the rights in (a) not being infringed
145

, this set of rights ("foreign 

owner") applies when the owner of the destination segment and the current 

thread's owner are different or when the owner of the capability and the 

current thread's owner differ. 

c) Subject to the rights in (a) and in (b) not being infringed, this set of rights 

("foreign node") applies when the home node of the owner of the capability 

is not the same as the node on which the action is being attempted. 

3.3.3 Directory Mode 

Directories (known as folders in some systems) are used in SPEEDOS analo-

gously to their use in some conventional systems (i.e. to store access rights asso-

ciated with the use of files). But since capabilities are separately protected by the 

SPEEDOS kernel, directories need not be special modules. (Directories are dis-

cussed in more detail in chapter 30.) 

In the present context, they present a particular danger. It should be possi-

ble to store a capability in a directory (i.e. in any SPEEDOS module) with the 

intention of ensuring that while it is in the directory it cannot be secretly used by 

the directory software to invoke its associated module, nor to be passed on as a 

parameter to a further module, nor to be used in any other way except as a stor-

age repository. Once it is taken from the directory, these restrictions should be 

removed. 

The "once only" modes do not help in this case, neither does just unsetting 

permit_calls nor the other permissions. Similarly the confinement rights (see 

below) do not help, since they apply only to a particular thread, but a capability 

may be placed in a directory by one thread with the intention that threads of oth-

er users may use it. Hence a special permit_dir metaright is provided. When 

this metaright is set, the capability is treated as normal, but when it is unset the 

capability, once in directory mode, cannot be passed to another module as its 

input parameter (i.e. via SR2 for the caller) nor as the operand for an inter-

module call. 

To change a normal capability to directory mode the kernel first copies it 

(as a normal capability) into an input parameter segment (SR2 for the caller) of 

the directory module (later accessible via SR0 for the directory module). Then 

the user thread unsets the permit_dir metaright. The kernel checks that when 

this unset operation is requested, the capability is in an input parameter segment 

and then unsets the permit_dir metaright. (It cannot – and need not – check 

that the module being called is a "directory" module, since the kernel does not 

recognise such modules as special.) 
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  It makes no sense to apply more stringent rights to oneself than to others. 
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When the receiving module copies the capability from the input segment, 

the kernel checks that the destination segment is a persistent file segment. If not, 

the copy operation fails. The kernel also allows the capability to be transferred 

from one file segment to another (to allow for directory re-organisation), but it 

may not be moved to an input parameter segment in preparation for an inter-

module call. Nor can it be used for any other purpose while in directory mode, 

except to be transferred to a result parameter segment in preparation for an inter-

module return. As part of the inter-module return itself, the kernel resets directo-

ry mode to normal mode, i.e. the permit_dir metaright is set again. 

3.4 Status Bits 

There are two pairs of status bits which can be set in a capability. These appear 

as subfields of the container number, not in the access rights fields (see Appen-

dix 1). 

3.4.1 The Capability Origin Status Bits 

The module call confinement rights were described in chapter 25 section 4. In 

order for the kernel to determine whether a call is permitted, it must know the 

origin of the capability, e.g. if it is currently in or was moved from a constant 

segment of the code, or whether it was passed as a parameter to a module. Since 

the user might attempt to disguise this origin, the copy_cap instruction uses two 

status bits (the origin bits) in a module capability to record the source of its 

movements. If the capability has been copied from a parameter segment the first 

bit is unset (0); if the capability has been copied from a constant segment the 

second bit is unset. 

3.4.2 The Capability Copy Restriction Status Bits 

These two bits are used to prevent a user who has been given a copy of a capa-

bility from further distributing copies of this to other users (see section 3.3.1 

above). To implement this two status bits in the capability are used. The first is 

unset by the kernel in the copy operation initiating the restriction. The second is 

unset by the kernel immediately following it being passed (or returned) as a pa-

rameter to a module not owned by the current user. This allows the original user 

to provide another user with a copy of the capability (which can be used by the 

latter as defined in the metarights) but it prevents this user from distributing it 

(or further copies which this user creates) to third parties. 

3.5 Confinement Rights and Environmental Rights 

The confinement rights were described in detail in chapter 25. These include: 

• the information confinement rights (see Figure 25.1), and 

• the module call confinement rights (see Figure 25.7). 
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The environmental rights were defined in section 1 above. 

When confinement rights and/or environmental rights are unset in a capability, 

the corresponding restrictions are applied to user threads which are executing in 

a module (or bracket routine) which was activated as a result of a call which 

used the capability. 

3.6 The Capability Accessibility Rights 

The capability accessibility rights, when held as rights in a capability, determine 

whether a module called by the capability can access the relevant capabilities. 

Notice that in the case of the free capability right, this determines whether a 

module called via the capability can make use of free capabilities whereas the 

free capability bits in the metarights determine whether this capability can be 

used as a free capability in other modules. When appearing in a capability the 

administrator and owner rights indicate that this is an administrator/owner capa-

bility. 

4 The Thread Security Register 

The Thread Security Register (TSR) is a pseudo register maintained by the ker-

nel as part of the state of each user thread. It holds a set of rights currently asso-

ciated with the thread. Its current values are stored at the base of the thread stack 

and are recorded in the linkage segment on each inter-module-, co-module-, and 

library call and on bracket routine activations (and restored on the corresponding 

returns). Its current values are available only indirectly to active modules and 

bracket routines via kernel instructions. Its content is extremely security sensi-

tive and it is fully protected from direct user access. 

The permissions in the TSR follow the same rules as those for access rights 

in capabilities. Initially all the rights are set (implemented as 1 in the TSR), i.e. 

all permissions can initially be used, but can be reduced (unset/turned off, i.e. 

with the value 0). A permission which has been turned off cannot be explicitly 

turned back on. To reduce the rights, the kernel uses an intersection operation. 

A summary of the TSR structure appears in Figure 26.6. The rights fall into 

four groups (thread control rights, confinement rights, environmental rights and 

capability accessibility rights).The thread control rights are described in section 

4.1. The confinement rights were explained in Chapter 25 (see Figures 25.1 and 

25.7). The environment rights were described in section 1.3 above and the ac-

cessibility rights in section 2 above. When they appear in the TSR the adminis-

trator/owner rights indicate whether the thread can make use of administrator/

owner privileges. 

Each set of rights is repeated in primary and secondary sections, as will be 

explained below. They are stored in the TSR as a bit list, with each bit represent-
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ing a specific right. If a bit is set, the thread has the corresponding right; if the 

bit is not set, the right is denied. 

 

When a thread is initially created, all the rights are set. As the thread pro-

ceeds, some or even all of these rights may be removed or changed as described 

below; an application cannot restore its own rights. The rights are perpetuated 

from call to call in appropriate cases
146

. 

The removal of rights can be effected by an application or bracket routine 

using a kernel refinement instruction. Applications and bracket routines can also 

examine the current contents by executing kernel instructions. These possi-

bilities are described below. 

4.1 The Thread Control Rights 

The owner of a thread may wish to control its use. There are two subgroups in 

this category (see Figure 26.7). The first group (coloured brown) applies to 

standard SPEEDOS operations. The second group (coloured red) applies to In-

ternet operations involving non-SPEEDOS nodes. The latter are explained in 

chapter 34 section 7.3.2. 

 

permit_remote_node: When unset, the kernel prevents a thread from be-

ing transferred to another node. 

permit_foreign_calls: When unset, the kernel prevents calls to mod-
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  The full rights are temporarily restored when the kernel makes a forced call to handle a 

synchronous error. 

Figure 26.6: Thread Security Register 
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ules owned by users other than the owner of the thread. 

permit_foreign_file_caps: When unset, the kernel prevents the thread 

from making use of any file capabilities for modules owned by users other than 

the owner of the thread. 

permit_foreign_code_caps: When unset, the kernel prevents any use of 

code capabilities for modules owned by users other than the owner of the thread; 

permit_foreign_thread_caps: When unset, the kernel prevents the 

thread from making use of any thread capabilities for modules owned by users 

other than the owner of the thread. 

permit_download: When unset, the Container Manager (a privileged ker-

nel co-module which organises downloads and uploads, see chapter 28) prevents 

the thread from initiating downloads. 

permit_upload: When unset, the Container Manager prevents the thread 

from initiating uploads. 

permit_subthreads: When unset, the thread cannot create subthreads. 

permit_callbacks: When unset, the thread cannot invoke or support 

call-back routines
147

. 

permit_websites: When unset, the thread cannot access non-SPEEDOS 

websites. 

permit_mail: When unset, the thread cannot access non-SPEEDOS email 

systems. 

permit_FTP: When unset, the thread cannot access non-SPEEDOS FTP 

facilities. 

permit_other_internet: When unset, the thread cannot access any non-

SPEEDOS Internet facilities. 

Initially these confinement rights are all set for all the threads of a process 

and are stored in page 0 of the process container, but the Container Manager 

provides a routine which allows them to be reduced (for all threads in the pro-

cess). When a new thread is created, the current values held in page 0 of the pro-

cess container are copied into the Thread Security Register, where they can be 

further reduced for an individual thread, using the instruction 

refine_tc_rights(bitlist tc_rights) 

The bitlist parameter tc_rights provides a bit list of thread control rights in 

which the rights to be reduced are set to 0. The remaining bits are set to 1 in the 

input parameter and are not modified in the TSR. 
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  see chapter 20 section 8.5 and chapter 28 section 7. 
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4.2 Understanding the Rights in the TSR 

Control over the environmental and confinement rights cannot be managed 

simply by initialising all the rights in the TSR for a new thread to the permitted 

state, then allowing refinement instructions to reduce these. The reason for this 

is illustrated by the following example. 

A user has a general purpose thread in which it can invoke a command lan-

guage interpreter (CLI) or an equivalent graphical interface to execute different 

commands. Suppose that via the CLI an edit interface of a text file module is 

invoked. This in turn calls a dictionary module used for spelling checking. The 

CLI module is the start-up module for the thread, which is invoked "automati-

cally" when the thread is first activated, on the basis of the capability passed to 

the thread as part of the thread creation activity. Depending on its design, this 

could be an independent program module without file data, or an application 

module which uses file data to keep a log of the modules which it is required to 

invoke. If the former, then it might have a capability for a log file module 

(passed to it when the thread is created). 

The CLI may invoke application modules for which it obtains capabilities 

from a directory (i.e. not passed to it as parameters). The applications which it 

invokes vary at the user's choice, and might be independent program modules 

and/or file applications. The edit command might be an independent program 

module which accesses text files via free capabilities, or it might be a semantic 

routine of a specific text file module. It will also need to communicate either 

directly or indirectly with a monitor/keyboard device driver module to receive 

and display text. And it will possibly need to access a dictionary file to check 

spelling, and a further file containing user preference settings. Eventually it (and 

the CLI) may need to access a logout module. 

This variety of possibilities illustrates that it is not sufficient to use the 

same confinement permissions or simply to reduce them as a thread proceeds. A 

more dynamic mechanism for controlling these rights in the TSR is therefore 

necessary. 

4.3 Primary and Secondary Confinement Rights 

The following mechanism does not claim completely to solve the problem, and 

in some cases may need to be combined with the use of qualifiers and their 

bracket routines to achieve the desired security. 

Because a user owns his own processes and their threads, he determines at 

least the first module to be called and therefore the capability used to call it
148

, 
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  The only exception may be the first capability used to create the first process of a new 

user. 
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and can therefore reduce the rights in this capability to suit the environment in 

which it will execute. He can also pass further capabilities as parameters to this 

module, which can be used for making calls to further modules in the thread; 

hence he can also reduce the rights in these capabilities. Furthermore he can de-

termine – or reduce – the confinement permissions of capabilities for the mod-

ules which he owns (using the capability copy operation), before placing them in 

a directory. In other words he has considerable control over the confinement 

permissions held in many, though not necessarily all, capabilities used in his 

threads to make calls. 

Taking advantage of this, the proposed mechanism organises the environ-

mental and confinement permissions in the TSR and in capabilities into two 

groups: primary and secondary environmental, confinement and accessibility 

rights. The primary rights apply when a user-controlled capability is used to in-

voke a module. The values of these are copied afresh into the TSR as part of the 

call mechanism. The secondary rights are used for all modules which are called 

by such modules on the basis of uncontrolled capabilities. The primary confine-

ments are never carried over on an inter-module call, but the secondary con-

finements are copied into the TSR and applied to all modules called using un-

controlled capabilities. When a controlled capability is used to make a call, both 

the primary and secondary rights in its capability replace those in use up to that 

point. 

4.4 Distinguishing Controlled from Uncontrolled Capabilities 

In the sequel, a module which is invoked via a controlled capability is referred 

to as a controlled module. Otherwise it is an uncontrolled module. Capabilities 

are considered to be controlled if any of the following conditions is met. 

a) The start-up capability is by definition a controlled capability. 

b) A capability passed as an input parameter by a controlled module within the 

thread to another module in the thread is also considered to be a controlled 

capability. The receiving module might nevertheless be an uncontrolled 

module. (The justification for this is that the owner of the thread can reduce 

the rights in the capability, and is aware how the module is to be used.) 

c) The owner of the module addressed by the capability is the owner of the 

thread in which the module is being activated. (The argument for this is that 

even if the capability has been passed to a different user, it must have been 

created by the owner of the module which it addresses. The other user can-

not increase the rights beyond those which were in the capability when he 

received it.) 

4.5 Examining and Reducing Rights in the TSR 

There are 4 pairs of kernel instructions for examining and reducing the rights in 
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the TSR. Each instruction pair consists of a refinement instruction which allows 

the rights to be reduced and a further instruction for examining the current state 

of the rights. There is such an instruction pair for each of the four rights catego-

ries. These conform to the following pattern. 

(a) the rights refinement instructions: 

refine_[tc|conf|env|acc]_rights 

     (bitlist rights; boolean primary) 

The bitlist parameter rights provides a bit list of rights in which the rights 

to be reduced are set to 0. The remaining bits are set to 1 in the input parameter 

and are not modified in the TSR. The boolean parameter primary indicates 

whether the primary or secondary rights are to be refined. 

(b) the rights enquiries: 

bitlist query_[tc|conf|env|acc]_rights 

     (boolean primary) 

On return the bitlist result shows the current settings in the TSR. The boolean 

parameters specify which subset of the environmental parameters is to be re-

turned. 

5 Container Confinement 

Confinement techniques based on capabilities are intended to restrict unwanted 

activity by individual users or threads. But it is also possible to provide some 

blanket restrictions on containers, which apply globally. These can give the 

owners of containers control over the use of the container. They are stored in the 

protected area of page 0 of the container. 

Illustrated in Figure 26.8, the container confinement rights determine 

whether information in the container can be transferred to another node via a 

download or upload, whether they can be used by a thread the owner of which is 

not the owner of the container and whether they can be used by a thread belong-

ing to another node which has been transferred temporarily to the current node 

following a remote inter-module call. 

 

These can be modified by the owner or an administrator of the container 

and they are held in the privileged area in the container's page 0. However, they 

are not transferred to the TSR. The first two permissions are checked by the 

Container Manager before initiating a transfer to another node. The third and 

fourth rights are checked by the kernel as part of an inter-module call to a desti-
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Figure 26.8: Container Confinement Rights: An Overview 
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nation in the container and in the load_free_cap instruction. These rights can 

only be changed by the container's administrator. There is no mechanism for 

them to be changed in any other way. They are not subject to the normal rule 

that rights can only be reduced, since allowing the administrator of a container 

to change them allows more flexibility. 

6 Utility Programs 

The mechanisms described so far are carried out by the kernel when a thread 

requests them. Here we show that it is also possible to supplement such checks 

by means of free-standing utility programs. 

6.1 Examining New Code Files for Hidden Capabilities 

Because the information in SPEEDOS modules is held in structured segments 

which have a known root segment, it is possible to write utility programs which 

can search these in a systematic way, as this example illustrates. 

A utility program could be written which searches newly acquired code 

files before they are put into service. Such a program could, for example, search 

for constant segments and list (or invalidate) all the module capabilities which 

are embedded in the program. 

In order to do this the code file would have to be viewed as a data file and 

the utility program would need a free capability for accessing it. There is no 

technical problem in achieving this, assuming that the ownership of the code file 

is transferred to the user or system manager, etc. This approach would reduce 

the need for some bracket routines. 

6.2 Assistance in Setting Rights in Capabilities 

Setting the rather daunting list of rights described above, if carried out directly 

by users, would be a tedious and error prone activity. For this reason SPEEDOS 

should be accompanied by a utility program which carries out much of the work 

involved. 

This might be based on the provision of a formalised specification of pro-

grams provided by the vendors of program modules. It would in any case be an 

important step towards more transparency in computer systems to expect that a 

readable specification is provided by code developers, since it would greatly in-

crease the transparency of code functionality and hence provide a significant 

step towards more secure systems. 

One form that such a specification might take could be based on a template 

which requires the developer to 

(a) provide an overall description of the program in plain English (or appropri-

ate foreign language), 



Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 208 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

(b) list each semantic routine provided by the code; 

(c) give each semantic routine a standard symbolic name; 

(d) describe which semantic routines of other modules (including device driv-

ers) each semantic routine needs to call and why; 

(e) explain where it obtains the required capability to call each such module 

(e.g. as an input parameter supplied by the user, or from one of its constant 

segments); 

 (f) list which capabilities, if any, each semantic routine needs to return to its 

calling module; 

(g) indicate for each semantic routine whether it places capabilities in its file 

segments and why; 

(h) whether it creates and activates threads and why. 

The above list is not exhaustive and should be extended by adding further points 

which can be automatically translated into settings for the rights within capabili-

ties and the TSR. 
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Chapter 27 

Partitioning and Relocating Discs 

 

In chapter 23 a number of simplifying assumptions were made about the organi-

sation of the virtual memory. One purpose of the present chapter is to replace 

these assumptions with a more realistic description of how SPEEDOS should 

really function. We begin by describing the partitioning of discs. 

1 Partitioning Discs 

When it is initialised a SPEEDOS disc can be subdivided into separate parti-

tions. Each partition can be viewed more or less as a separated disc (except of 

course that such partitions are mounted and dismounted together). The question 

then arises how they are uniquely named. The unique internal name of a 

SPEEDOS disc consists of a 64 bit node number (of the creating node) and a 64 

bit disc number, whereby the node number is system-wide unique and the disc 

number is unique within the node. 

The final 4 bits of a disc number can be used as a partition number. In this 

way nothing changes substantially except that the system can immediately rec-

ognise which "disc numbers" belong together as logical partitions of the same 

physical disc. A disc which is not subdivided into partitions is regarded as a disc 

which only has a single partition numbered 0. Hence when numbering new 

physical discs, the actual discs have a 60 bit number which is incremented with 

each newly initialised disc (see Figure 27.1). 

 

Each partition has its own separate disc directory and page tables (as de-

scribed in chapter 23 sections 2 and 3), but of course these have different physi-

cal disc addresses. This is achieved in that page 0 of the actual physical disc be-
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Figure 27.1: A SPEEDOS Partition Number 
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comes a directory for the actual disc start addresses and lengths of the different 

partitions. The structure of this partition directory is simply a list of entries, one 

per partition, whereby each entry (which is indexed by partition number) con-

sists of fields <disc address of start of partition, length of partition, access prop-

erties>. The length of a partition is an integral number of 8 KB pages. The ac-

cess properties include a "read only" bit, which if set indicates that the pages of 

the partition can only be read. This can be used to indicate devices which can 

only be read (such as CD ROMs, DVD ROMs), but also normally writeable disc 

partitions which must not be overwritten. Similarly it can be used to indicate that 

the partition holds the SPEEDOS kernel or the system co-modules needed to 

boot the system). The resolution of page faults, etc., as described in chapter 23, 

must be straightforwardly adjusted to take account of the existence of this table. 

2 Moving Discs from one Computer to Another 

So far it has been assumed that discs remain at the node on which they were cre-

ated and that containers remain on the same disc throughout their existence. This 

simplified the description in chapter 23 because the unique identifiers of discs 

contain the unique node numbers of the creating node and the unique disc num-

bers of the disc (and partition) on which they are created. This is a very useful 

starting point for addressing containers since it helps to locate them rapidly. If, 

for example, a capability for a container has a node number 233, a disc number 

11 and a container number 12345, then the obvious place to search for the con-

tainer is by finding node 233, looking up disc number 11 and accessing contain-

er 12345. In the vast majority of cases this approach will be successful, but not 

always. 

In reality users sometimes need to move discs from one computer to anoth-

er (often close by, but possibly at the other side of the world). Of course in some 

cases copying a container or even a disc and deleting the original (and thus re-

naming the container and/or disc) would offer a satisfactory solution, but not 

always, because this would prevent all users who already have capabilities with 

old names from gaining access as a result of the changed name. Of course the 

users could continue to access the original disc or container if it were not deleted 

after making a copy, but then the other users would not see any updates made to 

the new version. 

We need to tackle two problems associated with moving a disc to another 

computer. Since it has become commonplace physically to attach a removable 

disc to virtually any computer (e.g. via USB connections) it is of paramount im-

portance to be able to ensure that unauthorised users cannot gain access to the 

information contained on the disc. But it is equally important that those users 

who are authorised can actually access the disc when it is mounted on another 



Chapter 27 PARTITIONING AND RELOCATING DISCS 212 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

computer. (At this stage we do not consider access over a network since that is-

sue is dealt with to the next chapter.) 

2.1 Preventing Unauthorised Access to Information on Disc 

In this section we discuss how it is possible to prevent hackers and others from 

accessing the information on a removable disc by mounting it on another com-

puter and attempting to access it illegally via that computer (e.g. by using a 

hacking program to read it directly, e.g. disc block by disc block). 

2.1.1 Accessing a Disc on an Unauthorised SPEEDOS Computer 

If the computer on which the disc is mounted is a SPEEDOS computer, the fol-

lowing precaution can be taken
149

.  

When the disc is first mounted, page 0 of its partition directory must in any 

case be read. At this stage it is possible to check if the SPEEDOS node on which 

it is being mounted is authorised to access the disc. This is achieved by listing 

authorised SPEEDOS nodes in the disc's partition directory. The list, known as 

the Disc Authorisation List (DAL), can be set up by the owner of the disc (or 

another user with an appropriate capability). To do this he calls a semantic rou-

tine of the disc directory module while it is still on-line at an authorised comput-

er. This mechanism will typically be used in situations such as a group of home 

computers, or when the disc's owner plans to use the disc on a computer which 

is geographically away from his home location. The node on which a disc is ini-

tialised will normally be the first entry in the DAL, but the owner can add en-

tries to the list and remove them from the list by invoking routines of the appro-

priate disc manager co-module (see Figure 27.2). 

 

This mechanism provides an additional precaution over and above the other 

security tools available in SPEEDOS.  But unfortunately, as described above it 
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  If an attempt is made to access a SPEEDOS disc on a non-SPEEDOS computer, the 

encryption technique now described should make this impossible. 

Figure 27.2: A Disc Authorisation List (DAL) [Version 1] 

Creating Node#  

Node# Authorised 

to Use Disc 
Node# Authorised 

to Use Disc 

Node# Authorised 

to Use Disc 

Node# Authorised 
Node# Authorised 

to Use Disc 



Chapter 27 PARTITIONING AND RELOCATING DISCS 213 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

does not solve all the problems. Hence it is called Version 1. 

2.1.2 Encrypting Pages on Discs 

A problem can arise if a hacker takes the disc to a non-SPEEDOS computer and 

reads the information block by block. To prevent this two of my former col-

leagues and I sketched out a plan how such protection could be effectively 

achieved on MONADS systems using encryption (and how the secure booting 

of a MONADS system could also be achieved by means of a similar technique) 

[24]. 

The basic ideas behind encryption techniques were introduced in volume 1 

chapter 4 section 3. Readers not familiar with encryption concepts might like to 

read that section again. There it was explained that only symmetrical encryption 

(i.e. where the same key is used both to encrypt and to decrypt data) can reason-

ably be used to encrypt the content of discs, because the encrypted text (or pro-

gram, etc.) has the same length as the unencrypted text, i.e. a page of encrypted 

text (on disc) has the same length as its unencrypted counterpart in the main 

memory of the computer. 

However, this raises the problem how the symmetrical key can be distribut-

ed to authorised persons without allowing the same distribution route to be used 

by non-authorised persons. The normal solution is to use an asymmetric key on 

the symmetric key in order to distribute the latter securely. An asymmetric key 

has the disadvantage that the encrypted version of a text (or in this case a key) is 

not necessarily the same length as the plain text version (which is one reason 

why the asymmetric keys cannot be used to encode the page). But it does have 

the important advantage that the public key
150

 used to encrypt a message (or 

text, etc.) may be publicly known (e.g. it might even be published in a newspa-

per or openly on the internet). But decryption can only be achieved via the cor-

responding private key (which is kept secret). 

How can this be used to secure removable discs? We assume that the kernel 

at each node of a SPEEDOS network has its own (different) asymmetric key 

pair. The nodes on a SPEEDOS network can safely answer enquiries from other 

nodes about their public keys (since these can be publicly known). Hence a user 

wishing to take his disc (which was created and used on Node A) to Node B can 

ask that system manager (or other user) at Node B to provide him with its public 

key (even by post or in a plain text email). 

Having received the public key of Node B, the kernel at Node A (on which 

the disc is still mounted) can use this to encode its own symmetric key and place 

the result in the DAL in the disc directory. Later, when the disc has been mount-
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  see chapter 4 section 2. 
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ed on Node B, the kernel of Node B can, by using its own private key, learn the 

symmetrical key used to encrypt the disc and henceforth use it to work with the 

disc. 

2.1.3 Encrypting the DAL 

But there remains a small problem. Is the page containing the DAL itself en-

crypted, and if so using which technique(s)? Remember that the DAL may list 

keys for several destination nodes, which each have different asymmetric key 

pairs. 

Under normal circumstances the page containing the DAL would be en-

crypted using the symmetric key of the source node, but precisely this symmet-

ric key should be kept secret and therefore should not be readable on a computer 

which does not know the key! Remember also that Node B does not know the 

order in which the DAL entries are held, so that it cannot simply use its private 

key at a fixed position in the page! And remember that each entry in the DAL 

has been encoded using a different public key, one of which is its own (but only 

if it is authorised)! I suggest the following solution (see Figure 27.3). 

 

The start of the DAL is always in a fixed position in page 0 of the partition 

directory of the disc, and it has a fixed number of entries, each with a fixed max-

imum length (because the public keys used to encode the symmetrical code may 

not produce entries of the same length). Each publicly encoded entry has a 

length field. The DAL itself (in contrast with the rest of page 0) is NOT encod-

ed, except via the various public key entries, but the rest of the page is encoded 

using the symmetric key of the source node
151

. This can then only be read using 

the symmetric key, after it has been recovered. Figure 27.3 uses colour coding to 

show that the different entries in the list have been encrypted by different public 

                                           
151

  It is probably more convenient to place the DAL in a separate page (e.g. page 2 of the 

disc directory. 
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keys. 

Finally in order to discover whether a disc is authorised the destination ker-

nel decodes (only) the DAL using its private key. If it discovers that its node 

number is on the list and its public key details match, it is authorised to mount 

the disc. It can use information in the corresponding DAL entry as the symmet-

ric key for the disc. If it is not in the list a failure message is generated and the 

disc cannot be used. The public key details are included not because they are 

needed as such, but to ensure that a different node's encoding does not decode to 

another node number by chance. (The likelihood is very small, but cannot be 

fully excluded.) 

This procedure not only ensures that the destination computer, if author-

ised, can discover the symmetric key used to encode the rest of the disc, but also 

that no other computer – not even other SPEEDOS computers listed in the DAL 

– can discover the node numbers of the other authorised nodes! 

For the owner of the disc all that is involved in this process is to inform the 

disc directory of changes to the list of nodes at which the disc may be mounted. 

The kernel's disc process responsible for the disc must of course use the sym-

metric key which it has recovered for all further accesses to the disc. 

The next chapter describes how networking is organised in SPEEDOS. In 

principle it would be possible to use this route to obtain a public key from a 

partner computer, but only if that computer is on line. The above method is 

therefore to be preferred for the task which we have described, i.e. accessing a 

removable disc which has been plugged into a different computer. 

One final point on this theme: what we have described should prevent 

thieves from acquiring information from a stolen disc, but it does not prevent 

them from overwriting the information! This unfortunate fact reminds us that 

encryption alone is not the key to achieving high security, as some computer 

scientists and others tend to think... 

2.2 How Authorised Users can Access the Content of a Moved Disk 

After the kernel has recognised another SPEEDOS disc using the above proce-

dure, the question still remains how a user can access its content. 

In chapter 23 the simplifying assumption was made that all discs created at 

a node are always mounted and available at that node. That assumption is self-

evidently too stringent. It is possible to create many more disks at a node than 

can be concurrently mounted. Furthermore discs sometimes fail and have to be 

destroyed. What is clearly needed is a further table, belonging to the kernel disc 
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process, which we call a Local Mount Table (LMT)
152

. This lists all the discs 

and their partitions that are currently mounted at a SPEEDOS node, together 

with the address of the physical disc drive at which it is mounted and, for rapid 

access, the disc address of each partition's directory page 0 (see Figure 27.4). 

 

The table is set up by the VM process when a node is initialised. At that 

point the process enters the details of the disc used to initialise the system 

(known as the boot disc) into the table, along with all its partitions, and those of 

any further discs which are already mounted at the node at initialisation. There-

after the VM process enters any further discs/partitions when an interrupt indi-

cates that a new disc has been mounted (after checking that it is accessible ac-

cording to the procedure described in section 2.1.3) and removes entries as the 

corresponding discs are dismounted. 

2.3 Resolving Page Faults on a Locally Mounted Foreign Disc 

The first page fault for a module occurs on an inter-module call, as described in 

chapter 23 section 4.4. One of the tasks of the user request process handling the 

IMC is to check the local mount table is to establish whether the appropriate disc 

is on-line. It can do this because the capability passed as an operand to the IMC 

contains a creating node # and disc/partition #. This can be checked against the 

Local Mount Table to establish whether the required disc/partition is currently 

on-line, and if so it sends a "request and lock page 0" message to the VM pro-

cess, and continues as described in chapter 23 section 4.4. 

2.4 Accessing Moved Discs which were Created at the Current Node 

So far we have considered the situation where a disc has moved from one node 

to another from the viewpoint of the node where the disc has been mounted. But 

                                           
152

  This name, and much of the remaining content of the present chapter, is heavily reliant 

on the MONADS design, as extended by Frans Henskens and described in his PhD the-

sis [20], which Prof. Henskens has kindly made available on the SPEEDOS website. 

Creating Node#  Disc/Partition # 

on creating node 
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of Directory Page 0 

 

 

 

Figure 27.4: The Local Mount Table 
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from the viewpoint of the node which created the disc, the latter is no longer di-

rectly available, despite the possibility that user threads on the creating node 

might still want to access it. However, this is self-evidently not possible without 

the availability of networking, which is the subject of the next two chapters. 
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Chapter 28 

Accessing the Internet 

 

This chapter examines how SPEEDOS can function in a network environment, 

in particular in the context of the Internet. It does not go into technical details of 

how exactly the Internet works, since there are many experts in this field
153

, but 

merely shows how SPEEDOS ideas can be made to work in the Internet envi-

ronment. The same principles apply, with detailed differences, to other net-

works. 

1 Accessing the Internet  

The first issue is to determine how a thread executing on one SPEEDOS node 

can access or modify information stored on a different node. We take as a start-

ing point the transfer of information between SPEEDOS nodes. 

Information transferred over the Internet must be secured to prevent unau-

thorised users from eavesdropping. The scheme described in chapter 27 for pre-

venting discs from being read by unauthorised parties can easily be adapted to 

deal with this situation. 

Since each node has its own asymmetrical key set, nodes can easily send 

secure messages to each other simply by each SPEEDOS sender encoding its 

messages using the receiving node's public key, and each SPEEDOS receiver 

can use its own private key to decrypt messages which it receives. 

2 Remote Paging 

In the late 1980s an ethernet-based network of three MONADS-PC systems, in 

which each system had its own ATU, was built to experiment with the issue of 

how the MONADS architecture (the predecessor of SPEEDOS, which also sup-

ported a persistent virtual memory) could be adapted to networking. The basic 

                                           
153

  I am not an expert in the technicalities of the Internet, and it may be that some details in 

this chapter may need some small corrections. A further discussion of the Internet ap-

pears in chapters 34 and 35. 



Chapter 28 ACCESSING THE INTERNET 219 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

idea was to test out the feasibility of remote paging, a concept which my former 

student David Abramson and I first proposed in 1985 [25]. This concept was 

then developed in detail in the PhD thesis of Frans Henskens [20], another for-

mer student
154

. 

The basic idea behind remote paging is that pages are transferred across a 

network when a page fault occurs for a page which resides on a remote node. 

Such page faults are implemented by transferring the required page from the re-

mote node (the server node, which owns the faulting page) to the page-faulting 

node (the client node). This should be entirely transparent to the user, who need 

not be aware of the fact that he is working in a network environment. 

As the co-inventor (with David Abramson) of remote paging
155

 I was keen 

to use this mechanism in SPEEDOS, following Frans Henskens' successful im-

plementation of the idea in the MONADS context. However, when I again 

looked into this technique I realised that developments in SPEEDOS made it 

difficult to use the technique so cleanly and efficiently as had been possible in 

MONADS. Some of the relevant issues for this decision were: 

a) the SPEEDOS implementation of semaphores
156

, and 

b) the introduction of security sensitive co-modules
157

. 

For these reasons it was decided to follow an alternative route for SPEEDOS, 

viz. remote inter-module calls. 

3 Remote Inter-Module Calls 

Whereas with remote paging the data and code are transferred across the net-

                                           
154

  This thesis was supervised by another of my former students, John Rosenberg. Hens-

kens has kindly agreed to place a copy for download on the SPEEDOS website: 

http://www.speedos-security.org/ 
155

  Many U.S. researchers think of Kai Lee as the inventor, overlooking the fact that our 

publication of the idea in a Hawaii conference in 1985 preceded the publication of [28] 

in 1986. 
156

  Semaphore operations modify the page in which the semaphore is held. Since in 

SPEEDOS they are held in the file pages of an application container (see chapter 21) the 

result is that each time such an operation occurs the page becomes a "writer" and thus 

prevents further readers from accessing the page; this makes the system, especially 

nodes which have many readers, inefficient by causing otherwise unnecessary page 

transfers and the delaying of threads.. 
157

  Containers contain both system information and application information, possibly in the 

same page. These would have to be kept in separate pages and only application data 

could be remote-paged. Furthermore if the MONADS design were used, the SPEEDOS 

kernels on all nodes would have to be identical, which in the Internet environment 

would be unacceptable (in contrast with a homogeneous local area network, for which 

Henskens' original system was designed). At the time the MONADS remote paging 

work was carried out, the Internet did not yet exist in its present form. With the solu-

tions presented in this chapter only page 0 of a container has a fixed format. 
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work to the thread needing them, with remote inter-module calls (RIMCs), the 

thread is taken to the data and code. In other words RIMCs can be loosely con-

sidered as the SPEEDOS equivalent of remote procedure calls
158

 and remote 

method invocations
159

 in conventional systems (except of course that (a) the call 

is to a SPEEDOS module, with all the accompanying security measures, and (b) 

the implementation differs significantly from conventional RPCs). 

The basic idea underlying an RIMC in SPEEDOS is that a semantic routine 

of a module which is located on a different SPEEDOS node can be called, with-

out the caller necessarily being aware of this. From the viewpoint of the caller 

the call is exactly like a normal inter-module call (with exactly the same pa-

rameters). 

From the system viewpoint the kernel recognises the difference via the ca-

pability presented to the IMC, which contains a node number that differs from 

the number of the node on which the call is made.
160

 We refer to a node issuing 

an RIMC as node A, and the node carrying out the call as node B.  

3.1 An Overview of RIMC Handling at the Client Node 

The SPEEDOS technique selected to implement RIMCs is the use of surrogate 

threads at the destination node B. The thread which initiated the call (at node A) 

is referred to as T1 and the surrogate thread which implements the call (at node 

B) as T2. 

When the kernel receives an inter-module call request at node A and recog-

nises that the node on which the called module is located (the server node) is a 

different SPEEDOS node, it passes on the call to the server node (node B). But 

before it does this it must 

a) store the registers of T1 in a new linkage segment on the T1 thread stack, 

b) check that the call is valid (e.g. by comparing the called routine number 

with the access rights in the capability), 

c) create an IMC stack record on the stack of T1, in which the operands of the 

IMC are noted
161

, 

d) establish whether the IMC needs to be handled as an RIMC, and if so carry 

out the actions listed in e) to i), 

                                           
158

  see https://en.wikipedia.org/wiki/Remote_procedure_call 
159

  see https://en.wikipedia.org/wiki/Distributed_object_communication 
160

  In fact the situation is rather more complicated than this suggests, as will become clear 

when we later discuss the possibility that removable storage devices and/or containers 

can be moved from one node to another. But at this stage the remote IMC mechanism is 

far easier to understand provisionally if we temporarily put this issue aside. 
161

  Before the RIMC is issued, the thread will have used the kernel call create_imc_

params to prepare the parameter segments (see chapter 20 section 6.2). 
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e) check in the thread security register that T1 has permission to make 

RIMCs
162

 (and if not it creates a synchronous error interrupt), 

f) complete any call-out brackets
163

 associated with the current (i.e. the call-

ing) module, 

g) send a message to the user interrupt process that the current thread should 

be suspended by the UTS,  

h) create a top of stack record which indicates that the call is being handled as 

an RIMC together with an indication of the node to which the thread is be-

ing transferred, and 

i) activate a surrogate thread to advise the thread's Thread Control Manager 

that the thread has been transferred to node B. 

Node A then sends a message to node B in which it provides details of the IMC, 

requesting node B to accept and take responsibility for the RIMC. 

When it later receives a message that the RIMC has completed, the kernel 

then finds the stack of T1 (which has been suspended during the RIMC execu-

tion) and brings this back to life by copying the RIMC result parameters into the 

local result parameters. It then requests the user interrupt process to re-activate 

T1 and exits. When this resumes it executes any call-out postludes, etc. and re-

turns control to the module which made the RIMC call. 

3.2 An Overview of RIMC Handling at the Server Node 

When node B receives the request, it checks whether it can handle the IMC at its 

own node, and if so it sends a positive acknowledgement to node A. (If not it 

uses the mechanisms described in sections 8 and 9 to locate the module and 

passes on the RIMC request as appropriate, advising node A. If the module can-

not be located it sends an error message back to node A.) 

It then claims a surrogate thread (known as an RIMC thread) and sets this 

up, using the information which it has received, and initialises this as appropri-

ate, including creating a bottom of stack record which indicates that this is an 

RIMC call, noting the home node of the thread (node A). The kernel then pro-

ceeds more or less as if one of its own user threads had executed an IMC from 

its own node. 

                                           
162

  see chapter 26 section 4.1. 
163

  When an IMC occurs the call-out brackets are associated with the caller and must there-

fore be completed before the actual RIMC occurs, whilst the call-in brackets are associ-

ated with the target module and must therefore be executed after the transfer to the tar-

get mode is initiated. Since call-out brackets can make environmental enquiries about 

the target module, the kernel instruction target_code requires the kernel at node A to 

make an advance enquiry to the kernel at node B regarding the code of the target mod-

ule. The implementation of bracket routines is described in chapter 24. 
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When appropriate the surrogate thread (T2) uses its Thread Control Man-

ager (at the new node B) as a local thread would, e.g. when executing sema-

phore operations. Similarly it uses the UTS at node B whenever it needs to be 

suspended. If the module has associated call-in brackets these are handled on the 

RIMC stack of T2 as normal. 

When the module called via the RIMC has completed its task and has writ-

ten its results (if any) to the output parameter segment (addressed via segment 

register 1) it issues a return instruction (or in the case that the module's call-in 

brackets exit, a bracket_return instruction). When the kernel receives this it 

recognises from the bottom of stack record that the thread is an RIMC thread 

which is now completing. After arranging that an appropriate message be passed 

back to the calling node, it deallocates the RIMC stack and forgets the thread. 

4 Decisions Affecting the Interface between Client and Server Nodes 

4.1 The Thread Control Manager and the Synchronisation Library 

Thread control managers play a significant role in the execution of threads under 

their control. We have seen in chapter 21 how they are involved in the organisa-

tion of semaphores. They occupy an intermediary role between the threads under 

their control (i.e. those threads which share the same process container) and the 

User Thread Scheduler (UTS). Thus when a semaphore operation is carried out 

by a user thread any associated suspend and activate operations initiated by 

the thread are directed (via the synchronisation library routines) to the appropri-

ate Thread Control Manager, which then calls the UTS. Similarly suspend and 

activate operations not involving semaphores normally
164

 also follow a similar 

route to the UTS. This arrangement has two advantages. First it means that for 

each thread in the system its Thread Control Manager knows what is happening 

to the thread and can potentially help, especially in error situations involving the 

thread. Second, the synchronisation library and the Thread Control Managers 

relieve the UTS of considerable work in terms of managing thread queues, 

which is important in terms of efficient scheduling. 

But what happens when a thread executes an IMC instruction which leads 

to the further execution of the thread at a different node? The simple answer is 

that the RIMC surrogate thread at the server node (T2) has a different Thread 

Control Manager, viz. that provided in the surrogate process container. There is 

no problem in T2 using this and the synchronisation library at node B. In fact it 

would be extraordinarily difficult if these attempted to use the software at their 

home node! The only additional problem that might arise is if the thread in some 

                                           
164

  The exception is when the kernel directly suspends a thread or activates a thread. 
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way were to "get into trouble" at node B, for example if it had some sort of an 

error or became involved in a deadlock. The error itself would normally be de-

tected at node B where the thread was currently executing. But if this were not 

its home node, the latter would need to be informed, especially if the thread 

were not able to continue. In this case a message is passed back to the home 

node with an error code and possibly with further information from the Thread 

Control Manager at the server node). 

The thread's Thread Control Manager at each appropriate node should be 

informed of the thread's movements between nodes. 

4.2 Handling an IMC called by an RIMC (Surrogate) Thread 

There is clearly no reason to forbid a surrogate thread at node B from making 

local IMCs to other modules at node B, provided that all the normal security 

rules are followed. Furthermore library calls (which are not possible as RIMCs) 

and co-module calls
165

 from the code at node B should be permitted as normal. 

4.3 Handling an RIMC made by an RIMC (Surrogate) Thread 

When an RIMC surrogate thread is executing at node B, this might in turn call a 

module at a different node. Two situations are conceivable. The first is that the 

new RIMC involves a call to a module at a third node (node C). This is probably 

the more usual case. To keep the situation simple, the obvious answer is for the 

surrogate thread making the call to be treated in exactly the same way as has al-

ready been described, i.e. a new surrogate RIMC thread is activated at node C. 

The second situation is if the destination of a call from a surrogate RIMC 

thread is back to the home node of the original thread, i.e. node A. A first as-

sumption might suggest that this can in some way be handled on the home stack 

of the thread T1, but a little reflection will show that this could add further com-

plications which are best avoided. Instead such a call should be handled in a sur-

rogate thread at the home node, just as in the first case. (A call-back mechanism 

is provided when a surrogate thread needs to communicate with the thread from 

which it was activated, see section 7.) 

4.4 What About the Thread Security Register? 

The thread security register (TSR) is a pseudo-register maintained at the bottom 

of its stack by the kernel for each thread (see chapter 26 section 4). This contains 

a significant number of access controls, which should continue to apply if a 

thread is transferred to another node. Consequently it should be transferred as 

part of the current state each time a thread is transferred between nodes. 

                                           
165

  See chapter 18 section 7.1. 
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5 Communication between the Client and Server Nodes 

5.1 The Request to make an RIMC 

The information which node A transfers to node B (excluding packet infor-

mation for the network protocol) includes: 

a) the node number of the sender (i.e. node A), 

b) the number of the recipient (i.e. node B), 

c) an error code (0 signifies 'initial request'), 

d) a copy of the thread capability for T1 (needed for identification 

es
166

), 

e) a copy of the thread security register, 

f) a copy of the input and output parameters which were created on the stack 

of T1 in preparation for the RIMC, 

g) a copy of the operands used for the IMC call. 

5.2 The Confirmation 

When node B receives the request, it checks whether it is responsible for carry-

ing out the RIMC and then responds with a confirmation (or rejection) as fol-

lows: 

a) the number of the sender (node B), 

b) the number of the recipient (node A), 

c) an error code (1 signifies 'receipt confirmed and accepted'), 

d) a copy of the thread capability for T1 (for identification purposes), 

e) a copy of the surrogate thread capability (T2) in which the RIMC is carried 

out (or 0 if an error has occurred). 

If the error code shows 'receipt confirmed and accepted' the kernel at node A 

copies the surrogate thread capability to the top of the stack of T1. Otherwise it 

sets up a synchronous error and requests the user interrupt process to have the 

thread activated, so that it can handle the error. 

If the request was successful the kernel at the initiating node activates a 

surrogate thread to advise the thread's Thread Control Manager that the thread 

has migrated to node B. This is explained in section 6 below. 

5.3 The Completion 

When the kernel at node B receives the final return instruction (i.e. an IMC re-
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  This and other capabilities used only for identification purposes are all invalidated. 
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turn or if there were call-in brackets associated with the called module the final 

bracket_return) from the surrogate thread or if a non-recoverable error occurs 

for the surrogate thread, the responsible kernel sends a completion message to 

the initiating node, as follows: 

a) the number of the sender (node B), 

b) the number of the recipient (node A), 

c) an error code (2 signifies 'success', 3 or more is an error indicator), 

d) a copy of the thread capability for T1 (to identify the thread which made the 

original IMC), 

e) a copy of the thread security register, 

f) a copy of the input and output parameters containing the results of the 

RIMC. 

On receiving the completion confirmation the kernel at node A: 

i) activates a surrogate thread to advise the thread's Thread Control Manager 

that the thread has now been returned from node B, providing it with a copy 

of the error code (see section 6 below), 

ii) copies the updated thread security register into the stack of T1, 

iii) copies the returned input and output parameters onto its stack. 

If the error code signifies that the RIMC was successful, the kernel then prepares 

all the appropriate registers for a normal return. If the error code signifies that 

the RIMC has an error, the kernel prepares the registers for a synchronous error 

(including passing the error code to the error handling routine). In both cases it 

passes a message to the kernel's interrupt process to activate the thread which 

issued the RIMC. 

6 Surrogate Threads for Advising the Thread Control Manager 

When a thread is transferred to or returned from another node, the thread's 

Thread Control Manager is advised by the kernel, using surrogate threads. For 

this purpose the TCM has an entry point in the code which cannot be called by 

threads other than surrogate threads (which is marked as such in the module's 

entry point list). 

When the kernel wishes to activate this entry point it allocates a surrogate 

thread (known as a TCM thread) from a list of threads, which have as usual been 

prepared at system initialisation. It then sets up the thread to begin executing at 

this special TCM entry point (setting the code segment register and program 

counter to the beginning of the routine and segment register 5 to address the root 

pointer in the TCM's data file) and requests the user interrupt process to have 
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this thread started. When the TCM has completed its task it calls the UTS rou-

tine killMe() as was described in chapter 22 section 8.2 (g). 

7 Remote Call-Back Modules 

A different situation that can arise is if a surrogate thread (here T2) executing an 

RIMC on a remote node (here node B) wishes to call a routine located at the 

original node A. For example, the module at node B (e.g. a banking website 

module) wishes to display its results on the user's screen at node A and possibly 

obtain further instructions from the user at an interactive terminal. This is 

achieved via call back modules
167

, which typically reside at the origin (client) 

node A. A remote call-back module is a "normal" module which also provides 

call-back routines for remote IMC modules which it has called. In this case exe-

cution begins in the call-back module at node A, which then instigates the RIMC 

at node B. 

7.1 Remote Call-Back Calls 

The relationship between a remote call-back module and its RIMC module is 

illustrated in Figure 28.1. 

 

When the RIMC module wishes to invoke a call back routine of the call back 

module it uses a kernel call CBC. This has an interface like a normal IMC which 

allows normal parameters (no pointers) to be passed back to the routine
168

. It 

indicates which routine is to be called by providing a routine number, which is 

an index into the call back entry point list for the module. The second parameter 

(as for a normal IMC, see chapter 20 section 8.1) is a boolean parameter indicat-

ing whether the caller is requesting read-only or read-write access to the mod-

ule's file data. 
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  These are a remote version of the call back modules described in chapter 20, section 

8.5). 
168

  Hence it uses the kernel call create_imc_params to prepare for the call back call. 

Figure 28.1: Call Back Modules 
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7.2 Handling the CBC at the Calling Node (Node B) 

The kernel at the calling node B implements the CBC as follows. It first estab-

lishes whether a surrogate RIMC has issued the call and in this case: 

a) stores the registers of T2 in a new linkage segment on the thread stack, 

b) creates an IMC stack record on the stack of T2, in which the operands of 

the CBC are noted, 

c) checks in the thread security register that T2 has permission to make CBCs 

(and if not it creates a synchronous error interrupt), 

d) sends a message to the user interrupt process that the current thread should 

be suspended by the UTS,  

e) creates a top of stack record which indicates that the call is being handled 

as a CBC together with an indication of the node to which the thread is be-

ing transferred, and 

f) activates a surrogate thread to advise the thread's Thread Control Manager 

that the thread has been transferred back to node A. 

Node B then sends a message to node A containing the following information: 

a) the node number of the sender (i.e. node B), 

b) the node number of the recipient (i.e. node A), 

c) an error code (-1 signifies 'call-back'), 

d) a copy of the thread capability for T2 (needed for identification 

es
169

), 

e) a copy of the thread security register (which might have been modified by 

the RIMC), 

f) a copy of the input and output parameters which were created on the stack 

of T2 in preparation for the CBC, 

g) a copy of the operands used for the CBC call, 

h) a copy of the thread capability for T1 (needed to locate the original stack). 

When node A receives the message it sends a confirmation along the lines de-

scribed in section 5.2 (mutatis mutandis). 

7.3 Handling the CBC at the Called Node (Node A) 

When the call-back message arrives at node A its kernel network process
170

 

passes this to a kernel call-back process, which uses the thread capability for T1 
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  This and other capabilities used only for identification purposes are all invalidated. 
170

  See section 8. 



Chapter 28 ACCESSING THE INTERNET 228 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

to locate the original stack, and checks (by examining the stack) that the associ-

ated thread is suspended waiting for a return from the remote IMC. 

The call-back process then sets up the stack to call the requested CBC rou-

tine, sends a confirmation message to node B and requests the user interrupt 

thread to activate thread T1. 

7.4 Bracket Routines 

Call-back modules may have both call-in and call-out bracket routines. The call-

in brackets of the call-back module are executed in the thread of the call-back 

module (in this case on the thread stack of thread T1 at node A). They are identi-

fied in the Co-Module Table of the call-back module (see Figure 19.6). How 

these are applied at the node containing the call-back module follows the same 

pattern as usual, except that the call-out routines of the original RIMC call are 

not executed before the call-in routines associated with the CBC. These are only 

applied (as usual) when the RIMC module exits, returning back to the call-back 

module via a normal return. In other words CBCs appear to the surrogate RIMC 

thread (in this case T2) to be like internal subroutine calls from the viewpoint of 

bracket execution. 

7.5 Application of Call-Back Routines 

An important use of call-back routines is to allow websites to be designed in 

SPEEDOS without having to rely on the normal mechanisms currently used in 

the Internet. For example, the call-backs can contain code which allows them to 

display web pages at the website client node based on information passed as pa-

rameters to the CBC calls, without using HTML for this purpose. Of course this 

does not preclude the parameters of a CBC from including HTML
171

 (or a capa-

bility for an HTML file which can then be downloaded). In this way the full 

range of SPEEDOS protection techniques can be used to implement websites in 

a secure manner (including secure downloads and uploads, as described in the 

next chapter). 

A further possibility is to provide a general purpose call-back module 

which simply activates SPEEDOS websites, using HTML to display results. 

This will be discussed at the application level in chapter 35. 

7.6 Call-Backs at a Single Node 

We have described how call-back modules can be implemented as a remote ac-

tivity, since it is anticipated that their main use will be for implementing 

SPEEDOS websites. But there is no reason why the same technique should be 

                                           
171

  One advantage of initially using HTML would be quickly to convert non-SPEEDOS 

websites into secure SPEEDOS websites. 
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used to allow communication between a call-back module and a partner module 

to take place (with a much simpler implementation) at a single node. Such an 

implementation could be used conveniently to test website software without re-

sorting at all to the Internet. And I expect that clever programmers will find oth-

er uses for this simpler mechanism.  

8 The Network Process 

The messages described above (and any further Internet communications) are 

transferred between nodes by the kernel's network process at the respective 

nodes. The network process is responsible not only for the transfers but also for 

encoding and decoding them. It also prepares the messages for the appropriate 

network, e.g. the Internet. 

As such it has the asymmetrical key pair associated with the node and used 

over the Internet, but not the symmetrical key used to encode and decode pages 

on disc. It receives messages from other kernel processes at the same node in 

network message blocks. It is activated when it receives a new message block 

(as a result of a kernel reschedule). When a new Internet message arrives, the 

kernel interrupt analysis routine also activates it by placing the message in its 

input buffer. 

The network process is also responsible for locating nodes to which mes-

sages are sent. For this purpose it maintains a Network Address Table (NAT), 

which holds the network addresses that it has so far acquired as a result of its 

users requesting and using such addresses. This simply consists of entries con-

taining a unique SPEEDOS node number, an indication of the network to which 

a node is attached (which may for security reasons be a private network not 

reachable over the Internet), a network address within that network and the pub-

lic key of the node
172

 (see Figure 28.2). It may also hold a capability for a public 

directory (the "shared capability") at the node listed, thus enabling user level 

software at the current node to have a starting point for communicating with us-

er level software at the node listed in the NAT (see chapter 31 section 9). 

The first entry in the NAT is an entry for a SPEEDOS "directory" node, 

which can accept enquires about the location of other nodes. This can interface 

with other similar directory nodes (existing worldwide) to pass on enquiries re-

ceived by it for which it currently has no entry. When a SPEEDOS node comes 

on line it should communicate its own details to its local directory node. In this 

way the information needed to communicate with other SPEEDOS nodes could 

grow rapidly. A security co-module initialises the NAT at system start-up and 

                                           
172

  Although public keys can be generally known, it would of course be even more secure 

to keep public keys secret and made available only to other SPEEDOS kernels. 
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"shares" it with the kernel, securing it between system shutdowns and start-ups. 

 

9 A Note on Remote Login 

Conventional systems provide a remote login facility which allows users to ac-

cess their files from other systems. This is a dangerous facility, because it allows 

anyone who obtains a user's password secretly to access, copy and even destroy 

his files. SPEEDOS does not provide (and does not need) such a facility. 

If a SPEEDOS user needs access to some of his files from a remote com-

puter, as in a conventional computer, he first needs access to a thread on the re-

mote computer. In SPEEDOS this will be a normal thread of a user process, pos-

sibly set up for this purpose. To give this thread access to the files on his main 

computer he simply needs an appropriate directory capability for these. He can 

supply the appropriate capability, e.g. on a memory stick, thus completely elim-

inating the need for a dangerous remote login facility. 

10 Further Networking Activities Relevant to the Kernel 

This chapter has shown how inter-module calls can be handled over the Internet 

as well as describing the basic functions of the kernel's Network Process, which 

is the process that handles network traffic at each node
173

. In the next chapter we 

build on this basic information to explain how the downloading and uploading 

of containers is organised by the kernel and how the kernel can efficiently locate 

discs and containers which have been moved between the nodes of a network. 

 

                                           
173

  How the kernel actually uses the Internet to transfer its messages is discussed in Chapter 

34, which also considers how other Internet activities, such as email, can be handled in 

SPEEDOS. 
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Chapter 29 

Locating and Transferring Objects 

in the Internet 

 

In chapter 28 a basic form of network activity ('remote inter-module calls') was 

described. This allows a user who is in possession of a capability for a module 

located at a different node to activate the module. It also described how a kernel 

can communicate with other kernels and it ended by explaining how SPEEDOS 

nodes could use "directory" nodes to help them locate other SPEEDOS nodes. In 

this chapter we continue the story by considering how discs which have been 

mounted on a 'foreign node', i.e. a node which is not the node on which the disc 

was created (the 'home node'), can be located and how containers can be moved. 

1 Locating Moved Discs 

Chapter 27 described how a user can take removable discs to other computers 

and use them directly, even if the disc's home node is not online. The inverse 

issue is that a user at the creating node cannot assume that all the discs which it 

created are available at its own computer. Thus if the kernel discovers from the 

Local Mount Table (LMT, see Figure 28.2) that one of the discs which it has 

created is not currently online at its own node, it cannot simply assume that it is 

offline. In this case it must be able to check whether its disc is mounted else-

where. It would be possible to extend the NAT and the SPEEDOS directory 

nodes to provide information about moved discs, but that seems to be an overkill 

solution. I suggest the following alternative. 

When a disc has been successfully mounted on a foreign node, the kernel at 

the foreign node attempts to send a message to the creating node to advise it 

where the disc is mounted. If this succeeds the home node notes this in a Moved 

Disc List, with entries indicating the disc number and the number of the node on 

which it is mounted. Later when it is dismounted the same kernel advises the 

creating disc's home node of this. Thus when the home node receives a request 
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(e.g. a local IMC or a request by another node to accept a RIMC) it can establish 

the present whereabouts of the disc from its Moved Disc List and act according-

ly by passing on the request to the foreign node on which it is mounted.
174

 

If the disc's home node is not on-line to receive either of these messages, 

the appropriate message is added to a queue of unsuccessful messages, for 

which further attempts to send are made at regular intervals
175

. If the original 

mounting message for a disc cannot be sent before the corresponding dismount-

ing message is due to be sent, both messages are cancelled. 

2 Moving and Locating Containers 

Containers must sometimes be moved from one disc to another. For example, a 

user of a computer utility on which his files are stored may for some reason need 

to change to another location. In this case his files might not be stored on a 

computer or disc which is entirely his property, so he might want to move those 

containers which are his onto a disc which he owns and can take with him. How 

can he go about this? 

The simple answer is that he can make a destructive move (i.e. copy the 

container to the new disc and delete the old container). But that does not neces-

sarily solve all his problems, since there could be capabilities (held both by the 

user moving the container and by other users at the original or another node) 

which address the moved container and which hold access rights that they may 

still wish to exercise. 

If no further measures are taken to allow such users to gain access to the 

container at its new location, the effect is that the capabilities are revoked. Thus 

by relocating a container (even to another location on the same disc) a user has 

an effective way of revoking capabilities, which, it will be recalled
176

, is one of 

the problems with using capabilities. Consequently it may be sensible to allow 

this situation, but only as an option, because this may not be the container own-

er's intention. So we now have two ways of handling the issue. 

2.1 The Revocation Option 

Assuming that the new location is to a disc mounted on the same node as the 

existing container, the move can be implemented by the owner simply calling 

the Container Manager's copy routine (see chapter 23 section 7). Then in the 

second stage it calls the Container Manager's delete routine for the original 

file. (The issues arising with copying have been partly dealt with in chapter 19 

                                           
174

  A further possibility is that the users who own discs can provide information about their 

current whereabouts. 
175

  The kernel's network process could delegate this activity to a surrogate thread. 
176

  See chapter 2 section 4.1. 
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and for the Internet context will be further discussed later in the present chapter.) 

2.2 The Re-Use Option 

At this point the important issue is how a container can be moved but can re-

main accessible to other users despite the fact that it has changed its identifier. 

The preferred solution for SPEEDOS follows the route commonly used to solve 

many problems in current systems, viz. by using indirection. This is managed by 

the Container Manager's rename_container routine. 

The technique proposed to organise the indirection is for the information 

about the new location of a container to be placed in page 0 of the old container, 

with a flag indicating that the container has been moved and its new location. In 

this case the disc directory for the disc which previously held the container 

would not be zeroed on "deletion" of the container, but an attempt to access the 

container (e.g. in an inter-module call) would see that it has been moved and 

could then provide the information to forward the thread to the possibly correct 

location. I say possibly correct, because the "same" container might be moved 

more than once. In this case the container could be located by following the 

"chain" of forward references in the various page 0s.  

A further advantage of this solution is that page 0 of the old location could 

also contain an access control list (ACR) listing those users (e.g. by unique iden-

tifier) whose threads are allowed to be forwarded. In other words this technique 

could be used to revoke the capabilities of some users while allowing other user 

continued access to the container. 

2.3 A Possible Optimisation 

If users repeatedly needed to access the moved container their access could be 

speeded up by adding advisory fields to capabilities
177

 which consist of a <node 

#, disc #, container #> triple. This would increase the size of capabilities by 192 

bits (from the beginning, not just when something is moved). The idea is that 

these fields are initially zero, but they could be used as necessary (and overwrit-

ten with the latest information) to advise the kernel where to search for moved 

objects and thus avoid a chain of accesses possibly to different nodes. Neverthe-

less what really matters is the identifiers in the original fields of a capability. 

However we do not propose that this should be implemented in SPEEDOS, 

since the greater majority of containers are never moved, and the technique 

would considerably increase the size of capabilities. 

What we have not described in this section is how the moving of a contain-

                                           
177

  The idea of having advisory fields in capabilities was first proposed by Henskens in 

section 6.2.1 of his thesis [20]. 
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er to a new node actually happens. This brings us to the next theme: download-

ing and uploading of containers. 

3 Downloading and Uploading of Containers 

One of the most common activities in the Internet is the downloading and up-

loading of files. In SPEEDOS terms this means the copying of a container from 

another Internet node to one's own node (downloading) or copying a container 

to another Internet node from one's own node (uploading). Thus the fundamental 

question becomes, how can containers be copied over the Internet? 

In the discussion of copying containers in chapter 19 section 13 several dif-

ferent reasons were mentioned as situations in which copying might take place. 

The first of these ("to make a copy which the owner, or some other user, can use 

independently of the original") is also normally functionally the same as down-

loading or uploading, with the extra premise that the transfer of data takes place 

over the Internet (or other network). 

Before such an operation can begin the system must ensure that it does not 

contain "problematic" capabilities
178

 (e.g. owner capabilities
179

). For this pur-

pose a semantic routine of the container's segment manager can be invoked to 

confirm that the download or upload operation is "safe". 

3.1 Downloading 

On current systems a website offering a download facility the origin node, (node 

A) indicates this in such a way that a node wishing to take advantage of the 

download offer (the accepting node, node B) can select it. In SPEEDOS terms 

this means that node A provides a capability for the container on offer (contain-

ing an access right download), usually via a website for which node B already 

has a capability (or obtains it via a search machine)
180

. Optionally it may also 

offer a capability for the associated code module. 

The download operation is thus instigated at the accepting node, which in 

SPEEDOS terms (at the kernel co-module level) means that the capability is 

provided to the Container Manager's download operation as a parameter at node 

B. There may be further parameters (e.g. a disc capability at node B indicating 

where the downloaded container should be located). After carrying out appro-

priate checks (e.g. that the capability's generic rights and the thread security reg-

ister of the current thread include a download right, see chapter 26) the Contain-

                                           
178

  see chapter 19 section 13.1. 
179

  Of course once a container has been downloaded to a user, that user will become the 

owner of the downloaded copy, but that is a quite different issue. 
180

  Accessing websites and search machines, etc. is a user level matter (i.e. not directly of 

interest to the kernel design) which is discussed in a chapter 34. 
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er Manager routine at node B calls its kernel's download instruction, passing the 

capability to it. The kernel handles this like any other kernel instruction, except 

that it places the capability for the container to be downloaded into the input 

buffer of its download process and issues a reschedule of the kernel processes. 

 

3.1.1 Downloading at the Accepting Node 

Before starting the download operation the kernel at node B, the accepting node, 

first causes the user thread issuing the download operation to be suspended by 

the User Thread Scheduler (noting the thread capability for later reactivating the 

thread). It then starts the download procedure by sending a message to the origin 

node (node A), requesting a copy of page 0 of the container to be downloaded. 

The request contains a copy of the capability for the container to be downloaded, 

in which the download right is set. When page 0 arrives, the Container Manager 

at node B first checks whether it also has a copy of the associated code module, 

or if this is otherwise accessible at the downloading node. If so it creates a new 

container for the requesting user. It places in the new container's page 0 a copy 

of the page 0 which it received from node A, and modifies this by changing the 

identification fields to reflect the new situation. The activator of the download is 

regarded as the creator of the new container and the appropriate fields are modi-
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Figure 29.1: An Overview of Downloading a Container 
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fied accordingly
181

. It sets the address of the code module at node B into the 

copy of page 0. It also clears the qualifier entries in the co-module table as these 

are not downloaded. It then checks whether the code module needs to be down-

loaded and if so follows the same procedure to do this. 

Node B then sends a request to node A to download the next page; when 

this arrives a free disc page is requested on the appropriate disc at node B and 

the page is copied into this and written to the free page; the disc location is noted 

in the page table. This procedure is followed for each page which arrives until 

the entire container has been downloaded. 

When the download of the file container is completed, node B must check 

whether it already has a copy of the code module (which it can establish by ex-

amining the entry in the copied co-module table). If not, and if Node B has pro-

vided a capability for the software, the same procedure is repeated to download 

the code module, assuming that the settings in the capability allow this. 

When the download has been completed the Container Manager creates ca-

pabilities for the new containers and returns them to the user who requested the 

download. It then reactivates the thread requesting the download. 

3.1.2 Downloading at the Origin Node 

When node A receives the initial request, which contains the page number re-

quired (initially 0) its download process checks that the requested container is 

on-line (by examining its local mount table), that the access rights in the capabil-

ity allow downloading and that there are no problematic capabilities. If all is 

well it requests the network process to send page 0 to node B. It then exits. 

Requests from node B for further pages contain the download capability 

and the page number and are handled in the same way. Thus node A's kernel 

need not concern itself with a loop and the activity is controlled entirely by node 

B. Not only does this simplify the task at node A but is also simplifies error 

handling (e.g. because node B can, for example, request the same page twice 

without creating a problem at node A, if a timeout indicates that a page has not 

been sent or received). 

3.2 Uploading 

This activity is similar to downloading a container, except that a copy of the 

container is transferred from one's own node to another Internet node. In this 

case a website typically offers an upload facility, which can be accepted over the 

website software by a user at the origin node. Thus the fundamental difference is 

                                           
181

  The kernel designers might consider extending the identification fields to add infor-

mation about the download source and to scan the download content for viruses. 
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that the roles of the two nodes are partially reversed. 

The uploading node, Node A, instigates the uploading activity by passing a 

capability containing an upload access right to the upload semantic routine of 

its Container Manager. To do so it passes the following parameters to the Con-

tainer Manager: 

• a capability for the container which it wishes to upload, 

• a capability for use at the destination site (e.g. a directory at the accepting 

site into which the newly uploaded file can be placed). (This is obtained 

from the website software at the origin node, and allows it to identify the 

purpose of the upload.) 

• a message (e.g. a character string provided by the website to assist in identi-

fying the upload container). 

Normally the website software at the origin node will activate the Container 

Manager's upload routine, providing these parameters. 

 

The Container Manager at the uploading node A now carries out a number 

of checks. It examines the first capability to ensure that the upload access rights 

are set. It ensures that the container to be uploaded has no "problematic" capa-

bilities, and that the capability's generic rights and the thread security register of 

Figure 29.2: An Overview of Uploading a Container 
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the current thread include an upload right. It then passes the parameters to the 

kernel's upload instruction. 

3.2.1 The Uploading Procedure 

Before starting the upload operation the kernel at node A, the requesting node, 

first causes the user thread issuing the upload operation to be suspended by the 

User Thread Scheduler (noting the thread capability for later reactivating the 

thread). 

Node A, the uploading node, after checking that node B, the destination 

node, is on-line, starts the upload procedure by sending a copy of the parameters 

and a copy of page 0 of the container to be uploaded. The network process at 

node A passes this over the Internet to the upload process at node B. When this 

arrives, the kernel at node B creates a new container for the requesting user. It 

places in the new container's page 0 a copy of the page 0 which it received from 

node A, and modifies this, changing the identification fields to reflect the new 

situation. The recipient of the upload is regarded as the creator of the new con-

tainer and the appropriate fields are modified accordingly. 

Node B then sends a request to node A to upload the next page, and when 

this arrives a free disc page is requested on the appropriate disc at node B and 

the page is copied into this and written to the free page; the disc location is noted 

in the page table. This procedure is followed for each page which arrives until 

the entire container has been uploaded. If the code module has to be uploaded 

(cf. the downloading procedure) this is then carried out. On completion of the 

upload operation the kernel at node A then reactivates the user thread. 

3.3 Encryption 

As usual the encoding of information transferred over the Internet can be based 

on asymmetrical encryption, where the sending node uses the receiving node's 

public key to encrypt messages, while the receiving node uses its own private 

key to decode messages. If this method is considered to be too slow, then the 

initial request (which is encoded using the download node's public key) can in-

clude a symmetric key for use in the further exchange of pages. 

Of course when a page is written to/read from disc to main memory it must 

be encoded or decoded using the node's own symmetric key. 

3.4 Website Assistance 

To simplify downloading and uploading for the end user, the kernel provides an 

instruction access_container_manager. This allows a website to obtain a ca-

pability that allows it to call the Container Manager directly, thus simplifying 

the work of users. The use of this kernel instruction is not limited to website use. 
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Any software at a node can use this instruction, provided that it has access rights 

allowing the following semantic routines of the Container Manager to be called: 

upload, download, copy, delete, rename. The security of the actions taken by 

these routines relies on the access right in the capabilities which are provided as 

parameters, not on the semantic routines themselves. 

How the website software itself is uploaded to a user site will be explained 

in chapter 35. 
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Chapter 30 

Capabilities and Directories 

 

This chapter looks more closely at how modules and module capabilities can be 

organised in operating systems developed above the SPEEDOS kernel. 

1 Handling Capabilities 

We begin by reviewing some key aspects of what the possessor of a capability 

can do with it. Most of these possibilities were described in more detail in Chap-

ter 26. 

1.1 Examining Capabilities 

Unprivileged programs can only directly access the contents of module capabili-

ties by copying the capability into another capability partition or into a data par-

tition of a segment, specifying this in the destination address operand of the ker-

nel instruction copy_cap. The instruction only works if the appropriate capabil-

ity metaright (see Chapter 26) allows this. If the copy destination is a data parti-

tion the capability can then be examined (and even modified) but it can no long-

er be used as a capability. (The format of module capabilities used by the kernel 

is not necessarily the same as the format which appears in the data partition of a 

segment.) 

1.2 Creating Capabilities for New Containers and Modules 

A capability for a new container or module cannot be directly created by normal 

modules, as a special kernel capability is required to do this. However, when a 

container is created and initialised by the Container Manager co-module (see 

Chapter 19), this returns a capability for the new container and for new modules 

in the container (see Chapter 23 section 6). In this sense the Container Manager 

acts as a bootstrapping device for other containers. 

1.3 Distributing Capabilities 

The possessor of a capability can execute the kernel operation copy_cap in or-
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der to create copies of the capability as a capability (e.g. for distribution to other 

users). Parameters for this instruction include a set of bit lists which are inter-

sected with the bit lists representing the access rights in the source capability. In 

other words a bit has the value one set in the new capability only when the same 

bit is set both in the original capability and in the corresponding parameter list. 

The result is that the new capability contains only the access rights which appear 

both in the source capability and in the parameter list. Consequently access 

rights can be reduced (but not increased) using the copy capability instruction. 

For more details see chapter 26 section 3.3.1. 

1.4 Changing the Ownership of a Container 

As described in Chapter 19 section 17, the kernel provides a change_owner in-

struction, allowing the ownership of a container to be changed (after taking cer-

tain precautions). This affects the ownership of all the modules in the container. 

There is no mechanism for changing the ownership of individual co-modules in 

a container. 

1.5 Restricting Capability Distribution 

When a user makes a copy of a capability for use by another user, he may wish 

to restrict the right of that user to pass it to a third party. To achieve this, the ca-

pability restriction bits are set as described in chapter 26 section 3.4.2. 

However, a user who has received a restricted capability is only restricted 

from passing it on to third parties. He may wish to store a copy of the capability 

into a (different) directory and/or use it in the context of several of his processes. 

For this reason the metarights in a capability are divided into three groups. The 

first group indicates whether the capability can be copied to other modules (e.g. 

directories) owned by the same owner. The second group determines whether it 

can be copied to modules of other owners, while the third group indicates 

whether it can be copied to users who were created at a different node. 

In each of these three groups there are two parallel sets of rights. The first 

set indicates ongoing rights, while the parallel set indicates that the right in ques-

tion can be used only once. In that way a user can, for example, provide another 

user with a copy of a capability while ensuring that the other user cannot distrib-

ute it further. 

Each set of rights defines in more detail to which destinations (i.e. what 

kinds of segments, for example file segments, parameter segments) a capability 

can be copied. This arrangement gives a user very fine controls over how his 

capabilities (which give access to his files) can be used. 

For more details see chapter 26 sections 3.3 and 3.4. 
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1.6 Deleting Capabilities 

A capability may be explicitly deleted using the Container Manager's delete ca-

pability instruction. There is no problem with deleting a normal capability, ei-

ther explicitly or implicitly (by deleting the segment or container in which it is 

stored). These operations have no consequences on the module to which the ca-

pability refers, except in the case of owner capabilities. 

Making the deletion of objects explicit creates a potential problem: how 

can lost modules be deleted? A lost module is one which cannot be reached from 

a capability. This problem can in principle happen in two ways. The first case is 

when all the capabilities for a module have been deleted without the module it-

self being deleted. The second case occurs when capabilities still exist but have 

been stored in such a way that they are no longer reachable. 

There is a relatively easy solution to the first problem, which corresponds 

more or less to what most users would want to happen, i.e. the deletion of an 

owner capability is regarded also as a request to delete the module. In this way 

there is always at least one capability – the owner capability – in existence for 

an existing object. (Issues such as whether the user is warned are questions for 

higher level software.) 

The second problem, whereby capabilities exist but become unreachable, is 

trickier to deal with. It can happen when all the capabilities for an object end up 

in an unreachable circular structure. This can happen, for example, when the on-

ly capabilities for modules are placed in a lower level directory and then the on-

ly capability for this directory is deleted from a higher level directory. The 

MONADS systems introduced a complicated scheme in microcode to ensure 

that this could not happen. However that mechanism created severe overheads. 

In SPEEDOS the problem is deliberately left unsolved at the kernel level. It 

can easily be avoided by higher level software storing at least one capability 

with module deletion rights (e.g. the owner capability) in a directory which is 

guaranteed to be reachable, because the capability for this directory is managed 

carefully (e.g. never deleted). In fact in many systems there is a system adminis-

trator who wants to retain a capability for each module for administrative pur-

poses. This can easily be kept in a directory module which remains reachable. 

However, this solution is only a suggestion, not an integral part of the architec-

ture. 

1.7 Administering Capabilities 

The kernel is designed to allow users to maintain control over their own infor-

mation. However some system designers prefer to exercise a measure of control 

over their user community. The kernel makes no direct provision for this, leav-
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ing all such decisions to the operating system(s) above the kernel.  

In a system designed to function with a "superuser", the following question 

arises. How can a system administrator ensure that he can obtain the object dele-

tion right – and other rights which he probably thinks that he needs for user 

modules? The solution is in fact quite simple: he does not provide users with a 

capability containing the right to create containers and objects within them (i.e. 

he prevents users from calling the creation instructions of the Container Manag-

er directly). Instead he distributes a capability or capabilities giving his users 

access to one of his own modules that can create objects for them (via a capabil-

ity for the Container Manager). In other words the superuser reserves for himself 

the capability which enables him to create new containers and control similar 

actions. 

When the superuser creates a new container for a user, he (the superuser) 

receives the owner capability and can retain this. This capability confers on him 

full rights over the module, including the object deletion right. Then he can later 

delete the user's module if and when this becomes necessary. 

However, such a mechanism is not supplied as a compulsory part of the op-

erating system, since not all systems have (or need) administrators. 

1.8 Revoking Capabilities 

The decision to base protection on capabilities confronts us with what some 

computer scientists see as the main drawback of the capability mechanism: the 

difficulty of revoking capabilities, a problem which was described in Chapter 2. 

Most early capability systems which allowed a flexible non-centralised, imple-

mentation of capabilities did not succeed in solving this problem
182

. However, in 

realistic systems it is essential that users can revoke the rights which they have 

bestowed on others to access their module. 

A drastic way of solving this problem is to rename the module for which a 

capability should be revoked (see Chapter 26 section 3.2). This results in the ca-

pabilities for the original module becoming useless. It can be an expensive solu-

tion, especially if a number of capabilities have been issued to different users 

and the capabilities for only one of these is to be revoked. In order to restore the 

rights of other users, capabilities for the renamed module have to be redistribut-

ed to them. Alternatively, as described in chapter 29 section 2.2, an access con-

trol list might be maintained in page 0 at the original node of the moved module. 

A flexible solution exists in SPEEDOS, using qualifiers. In chapter 13 sec-

tion 10.4 the idea of "testing" bracket routines (known in Timor as "testing 
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  In fact some designers made a virtue out of the problem by arguing that the possession 

of a capability bestows an absolute right which cannot be revoked, e.g. [27]. 
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methods") was introduced. This is repeated here for convenience as Figure 30.1. 

The basic idea is that when a module invokes another, the invocation is "caught" 

by a bracket routine of a qualifying module, which carries out a test. If the test 

fails, the bracket routine simply returns to the calling module without calling the 

intended target module. 

 

To use this pattern as a revocation mechanism the owner of the qualified 

module defines a qualifier which has a call-in bracket (see chapter 26). He plac-

es in the persistent data of the qualifier a "revocation" list (via normal semantic 

routines of the qualifier) with entries consisting of some means by which the 

holder of a capability for the qualified module can be prevented from gaining 

access to the qualified module, and places a corresponding test in the bracket 

routine. This test might, for example, be to check the owner of the calling mod-

ule (the client object in the pattern). To do this it could for example use the ker-

nel instruction calling_file_owner()to test whether the owner of the calling 

module's file data is on the revocation list (see Figure 30.2). But there are sever-

al other tests which might be applied in a qualifier to revoke a capability. Fur-

thermore the bracket routine might alternatively take some other action, such as 

causing a synchronous error interrupt and/or logging the error. 

Which of these approaches is used, and how the lists are implemented, de-

pends on the circumstances, as well as on the scope of the list. For example a 

situation might arise in which a user wishes to deny access to several of his files 

by all users except those whom he really trusts. This is best achieved by defining 

a qualifier with an ACL (access control list, see chapter 2 section 4.2) consisting 

simply of the users whom he trusts. 

Client 

Object 
Qualified 

Object 

prelude; 

if test passed 

body 

else ... 

postlude; 

Qualifier 

Figure 30.1: A Testing Bracket Method 
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Apart from ensuring that certain users who were at some stage legitimately 

provided with capabilities for the file are now prevented from accessing the 

module, such an ACL qualifier also denies access to hackers who have some-

how acquired or succeeded in forging capabilities. Just a few lines of code, but a 

very powerful security tool! 

By reversing the test in the bracket routine (i.e. by checking that the user at-

tempting to access the file is not on the list and causing a synchronous error in-

terrupt if he is listed) this ACL qualifier would function as a revocation list, 

denying listed users access to the file module. 

1.9 Reducing Access Rights 

Using ACL and revocation lists can have a further useful advantage. Not only 

can they be used to revoke capabilities, but also to reduce the access rights 

which a capability contains. In this case the above example is no longer ade-

quate, since that simply views access rights in terms of the subjects attempting 

to access the module. 

A solution tied specifically to the target module would be to maintain a list 

of all the users together with the access rights which they can exercise when 

calling the target module. Notice that the kernel's inter-module call mechanism 

will already have at least provisionally checked that the caller has the right to 

call the specific module and its designated semantic method. However by check-

ing the associated list a qualifier could discover that although the caller has the 

right to call the target module the required access right for the semantic routine 

(which has passed the kernel's original test) might no longer be permitted to call 

the current semantic routine, even if it still has a right to call other semantic rou-

tines of the module. 

2 Directories 

A capability can be freely stored in a protected partition of any segment of any 

Module using 

"revoked" 

capability 

Qualified 

Module 

if 'callng file 

owner' not in 

revocation 

list 

then body 

else return; 

Qualifier with 

list of revoked 

owners 

Figure 30.2: Using a Revocation List in a Call-in Qualifier 
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module, in a temporary heap or in a file (provided that the addressing register 

used has write access permission). This means that there is no prescribed meth-

od of managing capabilities. For example if a file module needs a capability for 

another file, it can store a capability for it in its own space and thus avoid having 

to go to a directory each time it needs to access the capability. This is not only 

efficient, but it also makes life more difficult for hackers trying to break into 

files if capabilities for them are not in directories. 

Nevertheless users will often want to store capabilities in an orderly fashion 

in directories (folders). In SPEEDOS systems directories are not a special oper-

ating system feature but instead are normal file modules like other modules. 

Thus if a user or a system administrator chooses, he can define a private directo-

ry type with its own code implementation. This also makes it more difficult for a 

hacker, because he cannot assume a standard directory interface. 

On the other hand there are some advantages of using standard interfaces. It 

then becomes easier for example for standard software, e.g. a command lan-

guage interpreter (CLI) or graphics interface, to be built which searches directo-

ries to implement user commands. Some standard operating system modules are 

inevitable. However, it is emphasized that users have the alterative of program-

ming (or buying) non-standard directory modules. Whereas the basic kernel 

should be viewed as a relatively fixed entity, its kernel co-modules are relatively 

flexible, and further modules comprising an operating system, such as directory 

modules, can be freely designed and different directories, for example, can even 

coexist at the same SPEEDOS system. What we now describe are merely exam-

ples of how such modules might be designed. 

3 A Basic Directory 

The most flexible way of storing directories involves each entry being held in a 

separate segment (although other organisations are possible). 

3.1 A Directory Module 

In its minimal form a directory module consists of a list of symbolic module 

names and the corresponding capabilities (together with some information about 

the date each entry was made, the type of module, etc.). Its interface routines 

include operations to create a new entry, to delete an entry, to get a capability, to 

reduce the access rights in a capability, to change the symbolic name in an entry, 

and to list a selection of (or all) the capabilities in a directory. Such a directory is 

illustrated in Figure 30.3. 
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It is important to realise that the same module can have different symbolic 

names in different directories (and even in the same directory). It is similarly 

important that the concept of a "shortcut", found in some conventional systems, 

is superfluous in SPEEDOS. Where a user thinks that he needs a shortcut to 

provide a direct route to a file module of code module, he can simply place a 

copy of the appropriate capability in a directory or elsewhere, since a capability 

is a direct route to a module, and potentially there is no limit to the number of 

capabilities which can exist for the same module. This also has the advantage 

that the kinds of problems which occur with shortcuts (especially when these are 

placed on different discs) do not occur in SPEEDOS – unless of course a disc 

containing the destination module is not on-line. And it has the further ad-

vantage that capabilities (in contrast to shortcuts) contain access rights. 

One semantic routine, deleteMyEntry, perhaps needs some explanation. 

Whereas the normal deleteEntry allows the holder of an appropriate capability 

to delete any entry in the directory, deleteMyEntry first checks that the caller 

created the corresponding entry before allowing the deletion to proceed. Uses 

for this will become apparent in later examples. 

The changeName routine allows the caller to change the symbolic name of 

an entry in the directory. It does not affect the capability in any way. (Different 

directories can contain different names for entries containing capabilities for the 

same object.)  

Figure 30.3: A Basic Directory Module 
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3.2 A Directory Entry 

A directory entry might be organised as follows in the usual three partitions in a 

segment (see Figure 19.4). The data partition provides the user's description of 

the entry, e.g. the symbolic name by which the user identifies the entry, the date 

and time of creation, the date and time of last access, the unique identifier of the 

user who created the directory entry, etc. 

The capability partition of the segment holds the capability providing ac-

cess to the object associated with the entry (e.g. a file module, a code module, 

etc.). The capability might be for a directory, thus allowing the creation of hier-

archical and network structured directories (see section 4 below). 

The pointer partition of a directory entry can be used to link individual en-

tries together. This can be used to allow several ways of viewing the directory. 

For example the first pointer in the directory might be used to provide an alpha-

betical view (whereby each directory entry points to the next entry in alphabeti-

cal order), the second could be used to order the entries by date and time of crea-

tion, a third could order entries by the unique identifier of users who created the 

entries, a fourth by the type of object to which the capability refers, etc. 

3.3 Extending a Basic Directory 

The directory which has just been described is very rudimentary, but from the 

viewpoint of this book it provides all that is needed for describing further con-

cepts. However, it is an easy matter to extend such a basic directory structure 

using Timor, with more methods and/or with more information. 

4 Hierarchical Directory Structures 

In conventional systems a user typically has a hierarchical directory structure, 

which he can use to organize his files into groups, projects, programs or whatev-

er. Because in SPEEDOS directories are just files, this is simply achieved by 

placing capabilities for directories in other directories. 

However, this does not mean that SPEEDOS directory structures and con-

ventional directory hierarchies are equivalent. In SPEEDOS it is normal for sev-

eral capabilities for the same module to exist in different directories, often be-

longing to different users. These capabilities can contain different access rights 

and a user can only access a module if he can reach it via a capability. 

 But the fundamental difference between SPEEDOS and conventional sys-

tems is that each user can have his own root directory which is not necessarily 

reachable from the directories of others, as will be seen in the next chapter. This 

contrasts with conventional systems, in which there is usually a single root di-

rectory for the entire system. Thus in SPEEDOS modules are highly protected 
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not only by the capability mechanism itself but also potentially by the fact that 

other users may not even be able to see the directories in which capabilities are 

stored. To access a directory requires access to a capability for the directory. 

Furthermore, capabilities need not even be stored in directories. Any file module 

can have capabilities stored in its segments. 

Since directory modules contain capabilities which are in effect protected 

pointers to objects, the system cannot guarantee that directory structures are 

purely hierarchical, but may have more complicated network structures. Poten-

tially this can lead the problem that some directories become unreachable and 

therefore that some objects cannot be deleted. However an organisational struc-

ture will be recommended in chapter 36 section 2 which solves this problem. 

The next chapter describes how the directory structures of users might be 

organised, including how new users are introduced in a SPEEDOS system. 
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 Chapter 31 

Users and Processes 

 

This chapter examines how users and their processes can be created in a 

SPEEDOS system, how a user might organise his directories, how he can log in 

and out and how a rudimentary mailing system might be organised. We begin by 

describing the creation of a process in a new container and how this might be 

converted into a new user. 

1 Creating a New User 

To create a new user, an existing user begins by creating a container for the new 

user (assuming that he has the right to create new users). This will serve as the 

latter's "root" container, and the world-wide unique identifier which it contains 

will also become the new user's identifier. To create this container the creating 

user calls the interface routine createContainer of the Container Manager, 

setting the parameter new_user, which then carries out the following steps. 

• After carrying out various checks, it calls the kernel's new_container in-

struction (see chapter 23 section 6.1), which returns a container owner ca-

pability. The new container already contains the identification fields (see 

Figure 19.2). 

• It sets up some basic software in the container including a Co-Module 

Manager and a Virtual Page Table Manager. 

• It subsequently returns a capability for the container to the creating user. 

This is the usual procedure for setting up a new data container, which ensures 

that the co-modules installed are standard co-modules. 

2 Creating a New Process and its Threads 

2.1 Creating the Process 

The next step involves creating a process in the new root container. To do this 

the creating user calls the newProcess routine of the Container Manager (indi-
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cating in a parameter that this will become the root container of a new user). 

The Container Manager (still operating in the creator's thread) then calls the 

Co-Module Manager of the new container to install a Thread Manager. It then 

installs a Thread Control Manager. Since these are also kernel co-modules the 

Container Manager is responsible for ensuring that they are correctly installed. It 

then uses the Thread Manager capability to call the latter's constructor (routine 

0), passing to it a capability for the Thread Control Manager. 

Executing in its constructor (still in the creating user's thread), the Thread 

Manager stores the Thread Control Manager capability in its persistent data for 

future use. It then sets up the stack management structure described in Chapter 

20 and calls the constructor of the  Thread Control Manager, which sets up its 

own data structures. The Container Manager then returns to the user, passing to 

it a capability for the Thread Manager. 

At this point a new process has been created, but not yet activated. 

2.2 Installing the New Process as a New User 

Depending on the detailed design of the operating system, which is not deter-

mined by the kernel, the creating user (still executing in a thread of one of his 

own processes) might then call the User Manager module, passing to it various 

parameters, including a symbolic name to identify the new user (corresponding 

to the startThread parameter in the next section) and a copy of the new con-

tainer capability. This module could, for example, determine whether the calling 

user has the right to create new users, determine resource quotas for the new us-

er, etc. When the User Manager has completed setting up the details of the new 

user, but still executing in a thread of the creating used, returns to the creating 

user's thread. 

2.3 Creating the Initial Thread for the New User 

Executing in one of its own threads the creating user calls the createThread 

interface of the Thread Manager in the new process to create the new user's first 

thread, passing the following parameters: 

– a capability for the module (startMod) in which the first thread should 

start executing; 

– an integer startRoutine which indicates the semantic routine number of 

startMod that will first be invoked; 

– a string parameter startThread providing a symbolic name for the first 
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thread
183

; and 

– a capability rootMod for what the first thread will regard as its root module. 

Using this information the Thread Manager sets up a stack for the first thread 

such that it is ready to make the first inter-module call (to startMod at the rou-

tine startRoutine with a parameter segment containing the capability root

Mod). It then advises the Thread Control Manager of this thread and the latter 

then sets up a thread state and calls the global User Thread Scheduler to sched-

ule the thread when a CPU becomes free. Notice that up to this point all the ac-

tivity has been carried out in a thread of the creating use, which might now re-

turn from the Thread Control Manager and go about its further business. 

What happens next in the new thread depends on what the startRoutine 

of startMod is programmed to do. Some possibilities are discussed shortly. 

2.4 Creating Further Threads 

A user can create further threads for his process as described by repeating the 

steps described in section 2.3 (using his own thread). These can be created from 

another thread in the same process or by a thread of another of his processes. 

2.5 Creating Subthreads 

As was explained in Chapter 20 sections 5 and 8, the code of an application 

module called within a thread can create subthreads (subject to the restrictions in 

the thread security register, described in Chapter 26). It does so by executing the 

kernel instruction get_subthread_cap to obtain a Thread Manager capability 

and uses this to call the createSubthread interface of the Thread Manager, 

passing as a parameter the entry point number in the Subthread Entry Point List 

(see chapter 19 section 9.5), which determines where the subthread should start 

executing. Hence the createSubthread interface of the Thread Manager has a 

parameter which indicates the internal routine number in the list. It then obtains 

the identifier of the calling module (i.e. the module in which the subthread 

should start executing) by executing the kernel's calling_file instruction (see 

chapter 26 section 1). It then creates a new thread, sets up the initial register val-

ues for the thread and places a 'subthread' backstop on the new stack (which al-

lows the kernel to carry out the final return correctly). The Thread Manager 

then calls the newSubthread interface of the Thread Control Manager, passing 

to it a thread capability for the new subthread, the identifier of the start module 

and the number in the Subthread EPL. This updates its own data structures then 
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  This serves as the user prefix described in chapter 22 section 11. It is passed to the Log-

in Service Module, which checks that it is unique within the current node; if not it re-

turns an error message to the Thread Manager; this then advises the user to supply a dif-

ferent symbolic name. 
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calls the User Thread Scheduler's newSubthread interface, passing on the pa-

rameters; this notes the new thread details and when the new subthread can be 

scheduled it calls the kernel's new_subthread interface (see chapter 20 section 

8.2), which eventually activates the new subthread (see chapter 19 section 5). 

2.6 Passing Parameters to Subthreads 

The above scheme provides no mechanism for passing parameters to subthreads. 

However this can be organised in the code of the module in which a subthread is 

activated. For example the state data of the module could include a table which 

is protected by a reader-writer semaphore. In this table there could be an entry 

for each subthread, indexable by its subthread number. The subthread number 

itself can be obtained by the thread requesting its own thread capability. 

Similarly subthreads can communicate with each other (and with their cre-

ating thread) via semaphores. They could thus advise their creator of their im-

pending deletion, or co-operate on a common task. 

2.7 Deleting Threads and Subthreads 

Threads and subthreads are deleted when the kernel executes their final return 

instructions. The kernel recognises this condition from the corresponding back-

stop condition on the subthread's stack. In both cases the kernel then creates a 

surrogate thread in which the Thread Manager is activated in a dele-

teThread/delete Subthread interface routine (to which it passes the thread 

number of the thread to be deleted). This can carry out appropriate final activi-

ties such as deleting its data structures; it then calls the Thread Control Man-

ager's deleteThread/delete Subthread interface routine which does like-

wise and then calls the User Thread Scheduler's killMe routine, which removes 

it from its scheduling data and finally executes the kernel's switch_delete in-

struction (cf. chapter 22 section 1). 

3 The Initial Capabilities of a New User 

As was described above, when a new thread is created one of the parameters 

which it passes to the startMod module is a capability (rootMod) which is typi-

cally for a directory. 

3.1 Root Modules which are not Directories 

If the thread's root module is not for a directory module then the thread has very 

little scope, except simply to execute startMod. This need not be a standard 

command language interpreter but can be an application module. This scenario 

might for example be useful in a public library setting, where the public is per-

mitted to access the library catalogue online. Such a process/thread will have no 

capabilities except those embedded in its own segments. These can of course be 
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exchanged or added to by other library threads (which are only accessible to li-

brary staff) invoking different interfaces of the module. 

3.2 Root Modules which are Directories 

In many cases the rootMod will be a directory which holds capabilities of fur-

ther directories. Neither the kernel nor the operating system defines what these 

should be, and their content will in part depend on the nature and purpose of the 

operating system. What now follows is an example of how the directory might 

be organised for a general purpose multi-user environment. 

3.2.1 Access to Public Software 

In such an environment some of the threads of most processes are likely to need 

access to a variety of publicly available software (both code modules and data 

modules). This could include standard utilities (e.g. text editors, spelling check-

ers, dictionaries, etc.) and also system software (e.g. compilers, libraries, etc.). 

Such software can be made reachable to the new user via a capability in 

rootMod which leads to further directories. This capability is referred to as the 

user's public capability. 

3.2.2 Access to Capabilities shared with the Creator 

The creator of the process (who might or might not be its owner) might chose to 

share some of his own software and files from other processes which he owns. 

The directory via which these can be reached is accessible via a creator capabil-

ity in rootMod. 

There are a number of capabilities which the creating user holds that can be 

viewed (depending on the security model) as belonging to a new user. These 

include capabilities for the Thread Manager, the Thread Control Manager, the 

Co-Module Manager, the container and the initial thread capability. All these 

capabilities can be returned to the creating user via the module addressed by the 

creator capability. 

Whether the creating user retains a copy of these capabilities is a further 

system design decision. If the new user wants to prevent the creating user from 

secretly accessing the latter via a secret copy of the capability, he has at least 

two possibilities. He can place revocation brackets around the module (if the 

owner capability has been passed to him), or more simply – he can copy the con-

tents of rootMod to a new module which he creates and remove these capabili-

ties from the old module. 

3.2.3 Private Modules 

Then finally the owner of the thread might want to create a root directory for his 

own personal files and programs. When he has created this directory (his private 
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root) the capability for this could also be placed in rootMod, but might simply 

be stored in a private root directory which is not reachable by the creator. 

3.2.4 Simpler Cases 

Notice that even in the envisaged environment some threads will not need access 

to a root directory containing all of these items. For example, if a process con-

sists of a number of cooperating threads where most are active in a particular 

module simply as a means of providing parallel processing, they might need ac-

cess only to the module in question and perhaps to a further module which has 

been designed to co-ordinate their cooperation. 

4 Different Kinds of Processes and Threads 

4.1 Interactive Threads 

A process can, but need not, have some interactive threads. For such threads the 

rootMod capability will provide access to an authentication module (for check-

ing the authenticity of a user when he logs in) and some form of command lan-

guage interpreter (which may of course use graphics to allow a user to select the 

commands which he wishes to invoke) in addition to capabilities for the com-

mands themselves. 

If the startMod for such a thread is the command language interpreter, this 

will normally carry out its own initialisation then call the logout module. The 

latter will long suspend until the owner of the thread logs in. The logout module 

can be a module of the user's choice which freely uses any criteria to establish 

his identity (see Chapter 22 section 11). 

When a user logs in for the first time, he will typically use an authenti-

cation module provided by his creating user (and passed as a parameter by that 

user to his new Thread Control Manager) and will have to be informed by that 

user how he can pass the authentication test. But thereafter he can use an authen-

tication module of his own choice, after passing a capability for this as a param-

eter to his Thread Control Manager. In order to minimise their security risk, us-

ers can use a different authentication module for each of their interactive 

threads, so that if a hacker succeeds in breaking into one thread, this does not 

help him to break into other threads of the same user. 

4.2 Multiple Processes 

A single user can have multiple processes, which might be dedicated to different 

activities or different projects, each with multiple threads. SPEEDOS gives him 

the opportunity to maximise the security of his individual processes/threads, 

simply by following the "need to know" rule (in this case providing each thread 

only with the capabilities which it needs). 
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And finally, it is even possible to give a new interactive thread access to 

only one module, without an authentication module. This could be suitable, for 

example in a public library system which allows users unchecked read-only ac-

cess to a library catalogue. 

5 Communication between Processes 

In the SPEEDOS design the only way in which two threads can communicate 

with each other is via shared file data, but in order to gain access to a shared file, 

each user needs to have a capability for the file with appropriate access rights. 

How can these capabilities be distributed? Suppose for example that a user has 

created a message for another user in a file (his "email" message). How can he 

send a capability for this to him? 

Section 3.2.1 above describes how a new user can gain access to standard 

capabilities when he is introduced to the system. What is now needed is a gen-

eral mechanism which allows users to pass capabilities to each other and thus 

communicate in a general way. In principle no further software is required to 

achieve this. The solution is to use directories, and the trick is to set them up in 

the right way. 

5.1 Sending Capabilities 

Suppose that there is a capability reachable via the user's public directory (see 

section 3.2.1 above) – or a directory which can be reached from this, which we 

call the public mailbox directory (PMD). Like other directories it contains a list 

of symbolic names and capabilities corresponding to these names (see Figure 

31.1). The capabilities in this directory are for the private mailbox directories of 

the named users. So if a user A1 wants to send a capability to another user A3, 

he calls the getCapability routine of the appropriate PMD, passing the name 

"A3" as a parameter, and back comes a capability for Y's private mailbox. 

A3's private mailbox is a directory module, so to deposit the desired capa-

bility into it, A1 simply calls the createEntry interface of A3's private mailbox 

directory, passing the capability and giving it a symbolic name (e.g. "A1.mail"). 

A3 can use the listEntries interface of his mailbox directory to see who has 

sent him messages in this way, and he can call the getCapability interface to 

get the capability for A1's file. Then he can access the file like any other. Since 

the unique identifier of the user creating the entry is not supplied by the user, but 

instead is obtained by the directory software from the kernel, it is guaranteed 

(subject to the correctness of the directory implementation) that the user identi-

fier is correct. 
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Interestingly, the aim at the start of this section was to distribute a capabil-

ity to another user, but what has also been achieved (almost accidentally) is the 

design of a rudimentary local email system (as the names which were given to 

the various directories hinted at). Assuming that the capability is for a text file, 

the text is almost equivalent to a conventional email. 

Apart from the fact that normal directories have been used, there is one 

other substantial difference from a normal email system, i.e. the capability for 

the message is copied, but not the "email" itself. This means that the receiver 

can decide whether he wants a copy (assuming that the access rights in the capa-

bility allow this) and consequently ensure that his "mailbox" is not cluttered up 

by rubbish sent by others. 

5.2 Receiving Capabilities 

It has been shown how A1 can send mail to others, but how can they send mail 

back to A1, a new user? First, A1 has to create a new mailbox directory for him-

self, make a copy of its capability with reduced access rights and then insert this 

into the PMD. To create his own mailbox he will need a capability which gives 

him access to a constructor for a directory module, which he can expect to find 

in the public directories available to him. 

When he has created the mailbox he will need to insert a capability for it 

into the PMD. This means that the capability which he acquires from the public 

directory system for the PMD must not only give him getCapability access 

but also an access right for createEntry. 

This raises the following question. If A1 can create an entry, shouldn't he 

also be allowed to delete it if he decides that he doesn't want to receive any more 

mail? Giving him access to the deleteEntry interface has the consequence that 

he can mischievously delete other entries. This is one reason why the special 
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deleteMyEntry routine was included in the semantic routines of directories 

(see Figure 30.3). It will be recalled that this allows a user to delete only those 

entries in a directory which he created. 

So if A1 wishes to delete the entry which he has made in the PMD, he can 

do so by calling deleteMyEntry, which checks that the calling thread has the 

same user identifier as that recorded in the entry to be deleted. So in fact X 

needs three access rights for the PMD: getCapability, createEntry and 

deleteMyEntry. But he does not have an access right for the more general rou-

tine deleteEntry, which does not carry out this check. (In a system controlled 

by a system administrator, the latter (who created the PMD in the first place) 

will probably keep this interface restricted for his own use, to delete entries for 

users who deregister from the system.) 

5.3 Deleting Capabilities Already Placed in a Foreign Directory 

It turns out that deleteMyEntry is not really a special interface for this purpose, 

but is in fact generally useful. If it is available with individual mailboxes, for 

example, it will allow A1 to delete mail which he has deposited in another mail-

box and then decided to revoke (e.g. because he realises that he has sent some 

wrong information), without allowing him to interfere with mail from other us-

ers which happens to be still in the mailbox. 

Who has the right to delete the email message itself? That depends on the 

sender. He can send a capability with or without this right. He might even pass 

an owner capability. 

5.4 Receiving a Copy of the Capability's Content 

In conventional mail systems the recipient receives a copy of an email in his 

own file area. To achieve this in SPEEDOS, no further mechanism is required. 

Since at present we are only considering messages sent within a single system, 

the recipient will already have a capability for the Container Manager at that 

node. Hence assuming that the sender has set a copy access right in the capabil-

ity the recipient can call the Container Manager to copy the module and store it 

in his own space. 

The recipient thus has the choice of copying the content or not, which he 

would obviously not be necessary, for example, if he recognises that the mail is 

spam. (This would also make life more difficult for spammers!) Of course, if a 

user does not copy the content of the mail there is always the risk that he will 

later not be able to access it, if the sender decides to delete it. 

6 Is the Communication Secure? 

So without any extra software whatsoever, the basic directory module has pro-
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vided us with a local mail system. But is it a secure system? What is to stop each 

user from reading the mail in other mailboxes, for example? The answer is sim-

ple: the access rights in the various capabilities can be restricted to doing the 

"right thing". For example the capability which user A1 receives from the PMD 

for a private mailbox can restrict him to inserting entries – he cannot use inter-

faces such as listEntries or getCapability; only the owner of the private 

mailbox can do that. It is of course the receiver's choice to decide whether he 

allows the sender access to the semantic routine deleteMyEntry. 

What is to stop A1 from being mischievous and deleting other users' mail-

box entries from the PMD? In this case A1 only has a right to call the get

Capability and the listEntries interface routines, and possibly delete

MyEntry. The access rights in his capability restrict him from calling delete

Entry, changeName and other mischievous possibilities. 

7 Mutually Suspicious Users 

Including the unique identifier of the creator/modifier of each entry in directo-

ries has another security advantage. It allows mutually suspicious users to be 

sure about the sender and the receiver of a message, provided that they each al-

ready know the unique user identifier of the other (which need not be kept a se-

cret). 

A receiver can determine the unique identity of the sender, because this has 

been recorded in his mailbox entry. Assuming that the code of the directory 

module is correct, the sender's identity can be regarded as reliable, because it is 

supplied by the kernel. 

But how can the sender be sure about the identity of the recipient, i.e. how 

can he be sure that the capability that he acquires from the PMD is for the per-

son he intends to send mail to? This too is no problem, since the information is 

stored with the entry in the PMD. 

Hence users of a SPEEDOS system can have far more confidence than in 

conventional systems about the identity of the sender or the receiver of messag-

es
184

. 

It is in principle possible that a trojan horse could exist in the directory 

software, and this might change the unique identifiers. However, this could be 

checked by using a special bracket routine designed for the purpose. This inter-

cepts calls to the create entry routine and logs the parameters and the caller's 

                                           
184

  As was mentioned in Chapter 4, there are methods involving encryption which aim to 

dispel doubts about the identities of senders and receivers of messages, but these are by 

no means simple and are not used on a routine basis, in contrast with the mechanism 

just described. 
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identifier (which it obtains from the kernel) in a separate log file together with 

the date and time of each call. By comparing this file with the arrival of mail as 

reported by the directory module, it would be possible to ascertain that all mail 

is being recorded and that the sender is being correctly recorded. 

Such a check would not have to be carried out manually; it could be auto-

matically built into a more sophisticated mail system, as could many of the op-

erations which we have explained above. For example when a user process is 

created the User Manager module which first executes in his process could cre-

ate for him a private mailbox, make an entry for him in the PMD etc. 

8 Further Mail Refinements 

What we have so far described is a rudimentary email system, which works only 

within a single computer system. In the next section we shall consider how it 

might be extended to cover mail from users working at other computers. But 

before doing this let us consider how it might be used locally to serve users bet-

ter. 

You probably get annoyed with the amount of junk email which arrives in 

your mailbox. What can be done about this? A nice simple solution is to have no 

entry for yourself in the PMD at all (or remove it if the User Manager has put it 

there for you). Then you will not receive any email at all. This is perhaps a bit 

drastic. You might prefer to receive email from just a few special contacts. One 

way to ensure this is to create some private mailboxes and send capabilities for 

them to your contacts, and delete your original mailbox. Another way would be 

to bracket your mailbox with a qualifier which uses an access control list to de-

termine from which senders you wish to receive mail. This is equivalent to using 

filters in conventional systems, but can be far more flexibly programmed, and 

much more reliable with respect to the identification of senders. 

A system administrator also gets some powerful tools to control mail. For 

example if some user is not entitled to send and/or to receive mail at all – which 

is another possible approach for confining information – then the system admin-

istrator can create a directory system for users which does not include the right 

to create new directories. Then the user cannot create a mailbox. Or the new user 

does not receive a capability allowing him to make an entry in the PMD. Or it is 

possible to develop a more centralized mail system in which all mail has to be 

transferred through a central mailbox and then distributed further. This central 

mailbox could be bracketed by ACLs to determine which users can send or re-

ceive mail, or it might be a special module which even monitors the mail itself. 

There are endless possibilities for improving or changing the basic mail 

system which we have described. Some improvements can serve to make the 
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system more convenient for users, while in a draconian mandatory system very 

tight controls can be exercised. 

9 Distributed Email and File Systems 

Having seen how a basic email system might be implemented in a stand-alone 

SPEEDOS system, we can now consider how this can be extended to function 

across all the SPEEDOS nodes in a system. 

9.1 A Distributed Email System Using Remote Inter-Module Calls 

Figure 31.2 shows separate mail systems at three nodes based on the design de-

scribed above. The only problem is that they are not connected with each other. 

The aim of this section is to show how they can be linked together. 

 

The solution is remarkably simple. In chapter 28 section 8 we described 

how the kernel's network process maintains and uses a network address table 

(NAT) which has an entry for each foreign SPEEDOS node for which the cur-

rent node has contact details and how it has access to a world-wide network of 

'directory nodes' in order to obtain similar information about nodes with which it 

has not yet obtained contact details. 

One of the items in each NAT entry is a 'shared capability' the purpose of 

which is to provide a starting point for communicating with user level software 

at nodes listed in the NAT. The kernel design does not define more specifically 

what the capability actually addresses and at this stage I would not like to rigor-

ously define its particular purpose. But what we can say is that the capability is 

either for the PMD at that node, or is a capability which leads to a directory, 

within the structure of which a capability exists for the PMD at that node. In 
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other words the public mail directory at the node is reachable via this capability. 

Exactly how, is a design decision of the operating system above the kernel. And 

if the PMD for a node can be reached, so also can the mail boxes of those users 

at the node who wish to be reached. Hence the problem of linking the nodes for 

email purposes is solved. Notice that just as in current systems one needs to 

know a person's email address in order to send mail, in SPEEDOS one needs to 

know his node and his local name at the node. 

9.2 Retrieving Emails from other Nodes 

I pointed out in section 5.4 that a full email in the local email system can be re-

trieved simply by using the copy routine of the local Container Manager. This is 

not the case if the email is held on a different node from the recipient's node. But 

that is scarcely a problem. Instead of using the Container Manager's copy facili-

ty one simply uses the download routine of the Container Manager (see chapter 

28 section 10.1). In this case the download access right must be set in the capa-

bility. The difference between a local copy operation and a download operation 

could easily be hidden from the user in a more sophisticated version of the email 

system described above. 

9.3 An Advantage of the Above Design 

I emphasize that the design as presented if fairly rudimentary and does not con-

tain all the facilities found in current systems. But that is not a shortcoming. In-

dividual designers can extend the design to make it more user-friendly. But I 

would like to emphasize that I would be very sad if it turns out that some de-

signers were to make their email systems as non-transparent as they have de-

signed current email systems. In particular they should not turn the email system 

into a world of its own, which, for example, completely hides the operating sys-

tem directories. My reason for this is that emails thus become a "special" sys-

tem. Emails are rarely isolated in practice from other work of users, yet to store 

an email in a normal directory along with other files as part of a project is cur-

rently very difficult. As I have defined them, emails ARE just files like any oth-

er and should be treated as such. Apart from the greater convenience for users, 

large amounts of software in current email systems would simply become re-

dundant. 
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Chapter 32 

Command Languages, 

Name Management 

and Graphical Interfaces 

 

So far nothing has been said about the interface between the operating system 

and its users. The purpose of this chapter is to fill that gap, at least in broad out-

line. The first issue is that users need a way to communicate with the system. 

The first section briefly describes the ad hoc command languages which were 

developed in the early days of computing to activate user programs, followed by 

a more systematic command language approach based on a unified technique for 

invoking operating system operations and user programs.  

The second aspect of the user interface issue is that, as so far described, low 

level names (typically consisting of integers) have been used when describing 

various objects (e.g. node numbers, module numbers). Because of its efficiency 

advantages this technique is appropriate in addressing the kernel and low level 

operating system features, but it would be dehumanising to expect normal users 

to work with such numerical names
185

. Humans expect to be able to use symbol-

ic names, such a 'MyFile' or 'Temp'. The consequence is that an operating sys-

tem needs to be able to translate between the two, and for this reason it needs a 

name management system. The second and third sections briefly describe how 

such a system might be organised for a SPEEDOS operating system. 

Text-based command languages have largely been superseded in more 

modern operating systems by a user-friendly approach based on the extensive 

use of graphics and pointer devices. Suggestions for how this approach might be 

implemented in SPEEDOS are made in the fourth section. 

                                           
185

  cf . chapter 2 section 2.1.  
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1 Command Languages 

We begin by briefly describing the early development of ad hoc command lan-

guages. We then consider a more systematic approach. 

1.1 Ad Hoc Commands 

In early systems computer card readers, paper tape readers and/or simple telex 

devices were used to communicate with the operating system. Individual com-

mands were devised to allow users to activate operating system features and the 

programs which they had developed. Gradually standardised syntaxes arose, 

usually consisting of characters (such as //) which allowed the computer to rec-

ognise that what follows is to be understood as a command for the operating sys-

tem to execute. Then followed the name of the operating system command, e.g. 

// copy. This was in turn followed by further information needed to indicate 

what the command had to achieve, e.g. 

// copy MyFile NewFile 

which might mean that a file called 'MyFile' should be copied and the resulting 

copy should be called 'NewFile'. 

That was sufficient to invoke standard operating system commands, but us-

ers also wanted to start application programs which were not part of the operat-

ing system. It seemed obvious in those early days that this should be achieved 

by having a further operating system command which could start user programs, 

e.g. 

// start MyProg 

If 'MyProg' needed further information then the program itself (after it had start-

ed) had to read this information into its memory. The program would usually 

expect to find this information on further cards or at the following paper tape 

positions or on a further line typed into the telex device, e.g. 

// start PayrollProg 

file = EmployeeFile, printer = Printer1 

In this example the format of the second line is fully determined by the individ-

ual program, which could have chosen a quite different format and quite differ-

ent separators, e.g. 

// start PayrollProg 

EmployeeFile; Printer1  

or it might have been defined by the program that different items should be 

placed on different lines, e.g. 

// start PayrollProg 

EmployeeFile 

Printer1 

The consequence of this is that users had to learn (from information supplied 
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with each program which they used) how the input was formatted, which could 

differ considerably from program to program, even for different programs which 

achieve the same thing. 

In this case the file name and the printer name are best understood as input 

parameters for the program 'PayrollProg', just as 'MyFile' and 'NewFile' are in-

put parameters for the operating system command 'Copy'. Hence it is thinkable 

that the problem of different formats could have been solved by using the same 

syntax for invoking user programs and for calling operating system commands. 

In other words instead of writing 

// start PayrollProg 

file = EmployeeFile, printer = Printer1 

or 

// start PayrollProg 

EmployeeFile; Printer1  

it could have been written (using the same format that was used above for the 

copy command) 

// start PayrollProg EmployeeFile Printer1  

This would have regularised command formats (and considerably reduced the 

amount of learning required to call different programs). 

The problem in conventional systems was (and still is) that user level pro-

grams are defined by programming languages and by operating systems in such 

a way that they cannot have standardised parameters. Consequently in these sys-

tems there was and still is a shortcoming that user program interfaces cannot be 

regularised. Even with modern graphical interfaces, the interfaces for calling 

programs cannot be standardised. The result is that programs still today must 

create extra graphical interfaces (which vary from each other) to obtain their pa-

rameters. 

1.2 The SPEEDOS Solution 

SPEEDOS, following the MONADS approach [26], could in principle overcome 

this problem in that operating system modules and user modules are uniformly 

structured according to the information-hiding principle
186

. One consequence of 

this is that their semantic interface routines can in appropriate cases be regarded 

as commands which in principle can be invoked using the module name and the 

name of one of its semantic routines, followed by the routine's parameters. The 

preferred syntax for this is rather like an object-oriented method call, e.g. 

containerMan.copy(MyFile, NewFile); 

or 
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  see chapters 13 and 14. 



Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 267 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

Payroll.calculate(EmployeeFile, Printer1); 

However the actual syntax is not important, and could in SPEEDOS be deter-

mined by the programmer of a command language interpreter. 

1.3 SPEEDOS Command Language Interpreters 

In the SPEEDOS environment a command language interpreter (CLI) is not a 

special module nor does it have special privileges. It is simply a module which 

is designed to invoke other modules, normally within the persistent thread in 

which it is executing, though it may of course create and activate subthreads. 

In order to function correctly it needs access to a directory module of the 

user who owns the thread in which it is executing. This directory module serves 

as a starting point for the CLI to find the commands which it is required to exe-

cute, i.e. the modules and their semantic routines to be called. As we saw in 

chapter 30 directories can contain capabilities for other directories so that a hier-

archical (or network) directory structure can be created. 

Chapter 31 section 3.2 described how each user has a private directory 

structure which is initially set up when a new user is introduced. The user is rep-

resented by a persistent process and its initial thread starts the first activity of the 

user. Except in special cases the first module which the user will normally call is 

a SPEEDOS CLI. This can gain access to the standard input and output modules 

(via the mechanism described in chapter 19 section 5) which allow it to com-

municate with the user. From there on it can receive commands (including 

commands which allow the user to move from one directory to another) based 

on the modules and their semantic routines, as described above. 

But there is one element missing in this description. The modules and their 

semantic routines which the user finds in his directories use numbers as names, 

yet the normal user wants to be able to work with commands which use symbol-

ic names. We now consider how this gap can be bridged. 

2 Translating Numbers into Symbolic Names 

At the low level, executing a command (i.e. calling a semantic routine of a mod-

ule) consists of a module capability, the number of a semantic routine and pa-

rameter values for the semantic routine. We consider these in turn. 

2.1 The Module Capability 

Symbolic names associated with a capability are normally held in directories 

which hold a potentially large number of details relating to the capability, in-

cluding a symbolic name which was chosen by the user when he entered the ca-

pability into the directory. This is the name which the user will use when he 

wants to call a routine of the module addressed by the capability. In this sense 



Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 268 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

there is no problem in associating symbolic names with capabilities. Neverthe-

less several users can have separate capabilities for the same module, and they 

can provide different symbolic names for the same module
187

. Each directory 

will have a semantic routine which takes as one of its input parameters the sym-

bolic name of a capability and which returns a copy of the capability. This rou-

tine can be used by a CLI to translate the module name part of a command and 

thus obtain a capability. Hence the first part of the translation is solved in a very 

straightforward manner. 

Of course the user might first want to obtain a list of the directory entries, 

in order to decide which entry is relevant for him. This too can be obtained in 

exactly the same way by the CLI, using a semantic routine of the directory mod-

ule which lists its entries. And in a similar manner the user can use the CLI to 

make new entries, delete entries, etc. in a directory for which it has access. 

But this raises a further question. How can the CLI, and more generally us-

ers who know the symbolic name of a module entry, discover the symbolic 

names which the user can use for the semantic routines of modules in a directo-

ry? 

2.2 The Names of Semantic Routines 

Normally, semantic routines have symbolic names. These are given to them in 

programs created by high level programming languages. Consequently it is rea-

sonable to expect that when a compiler compiles a module it can also create a 

"partner" module which lists the names and maps them onto the numbers by 

which they are known at the kernel level. If this list is available to a CLI then it 

is in a position to select the appropriate routine number when the user issues a 

command in which it provides not only a module name but also a semantic rou-

tine name. 

The question then arises where this list should be kept. If it were held with 

or integrated into the compiled version of the module (e.g. as symbolic names in 

entry point lists), it would not be easily accessible to CLIs, and it would be 

awkward and not very flexible to expect that inter-module calls could pass sym-

bolic routine names. 

A better alternative is that the compiler should produce a separate module, 

which we call a template manager, containing the mapping between routine 

names and entry point numbers. However, it is not immediately obvious how the 

CLI gains access to a capability for the template manager associated with a par-

ticular module to be called, since in many cases the module to be called is a file 
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  This possibility of having different symbolic names for the same module can of course 

be used to confuse hackers. 
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module, the code for which is implicitly (rather than explicitly) associated with 

the module's data container. From the viewpoint of the CLI the most convenient 

place to store a capability for a module would be in the same directory entry as it 

obtains the capability for the module to be called. But how does it get there? 

When a directory entry is created, one of its parameters indicates whether 

the module can be used as a command for a CLI. If so the directory module exe-

cutes the kernel instruction getTemplate, passing to it the capability for the 

module to be called. This returns a read-only capability for the template manag-

er (which it obtains by examining the Co-Module Table for the module, see 

chapter 19 section 7). The directory module then places this capability in a field 

of the entry which it is creating, so making it accessible to the CLI. Since the 

information is not security sensitive and the capability provides only read ac-

cess, this instruction is unprivileged. 

2.3 Passing Parameters to Semantic Routines 

In addition to listing symbolic names for the semantic routines of a module, a 

template manager also lists the names and types of the parameters for each rou-

tine, together with further information such as the errors which it can cause. This 

information is useful to a CLI not only in terms of error checking but it can also 

be used for example to prompt a user by providing the names of the parameters, 

using these as keywords. 

A template manager might also contain further information which could be 

helpful for the system software or for the user, e.g. a symbolic name for the code 

module (e.g. 'PDF'). 

2.4 Alternative Template Managers 

A template manager is an information-hiding module like any other, so that not 

only compilers can use its routines to create templates for the CLI. Users who 

would prefer to use other names than those which were taken from the source 

code of modules can thus use its routines to create their own templates for the 

CLI. In order to use such templates the user simply needs to use the directory 

manager routines to add or overwrite the field in the appropriate directory entry. 

2.5 The CLI as a Module Tester 

When a programmer writes any new program he will of course want to test the 

correctness of his code. A CLI as described above provides a useful basis for 

doing this, by allowing him to call the individual routines of the module and 

check the results. 
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3 Other Naming Modules 

The user normally wants to use symbolic names not only for command language 

interpretation but also for other purposes where the kernel uses numbers as 

names. One example of this which we have seen already is the names of users 

themselves, when they need to identify themselves and their persistent 

threads/processes as part of the procedure for logging out and in (see chapter 22 

section 11). Where appropriate the "Current Login Name" shown in Figure 22.3 

could also be used as a thread/process name. 

4 Graphical User Interfaces 

Users today expect to use graphical interfaces rather than old-fashioned CLIs. 

However, I have deliberately emphasised the "classical" interface style as found 

in most systems before graphical devices became popular. There are three rea-

sons for this. 

First, operating systems which support graphical interfaces should not be 

seen as an alternative to the classical style, but rather as an extension. The basic 

functions of the kernel and an operating system remain substantially the same 

regardless of the interface which is offered to users. It is therefore important for 

a kernel (and an operating system) to provide a clear and secure basic design 

independent of the style of the user interface. 

Second, it is important that the basic design and implementation of the sys-

tem are thoroughly tested before the complexities of a graphical interface are 

added. This can best be achieved by testing the kernel, its security sensitive co-

modules and related service modules (such as the spooling system which will be 

presented in the next chapter) without being concerned about the final user inter-

face. This can be achieved by using a CLI designed along the lines which we 

have outlined earlier in the chapter. I thorough recommend that path is followed 

when a SPEEDOS system is built. 

Third, I also recommend that certain systems, which can easily dispense 

with the complexity and the additional risks which a graphical interface repre-

sents for security, should do so. Here I have in mind mainly process control sys-

tems such as those used in power stations, in aircraft, in weapons systems, in 

automobiles and some (but not all) hospital applications, to name a just few, as 

most of these can easily be driven by a CLI style interface. Furthermore the con-

sequences of security mishaps can be very serious indeed in such systems. 

Graphical interfaces are nice but the complexity of the software to drive them 

may put such systems unnecessarily at risk. 

I must confess that I have little experience with graphical design, and I 
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have little time to learn in detail about such systems
188

. Nevertheless I will now 

offer some comments on how the basic SPEEDOS architecture might potentially 

be enhanced by a graphical interface. 

4.1 The Graphical Devices 

I briefly consider three graphics-related devices: the visual display screen(s), the 

mouse and the keyboard. I regard these as a related set of devices which together 

provide the graphical interface. However, I do not discuss the hardware and 

software of these devices as such, since there is an overwhelming number of ap-

proaches and techniques. I simply assume that appropriate hardware and driver 

level software are available. I further assume that in a system which supports 

many graphical devices, each graphical unit has its own processor. 

4.1.1 The Visual Display Screen Set 

I refer to a 'set' because a main screen is sometimes extended by one or more 

auxiliary screens. Each might have its own device driver, and it is a function of 

the operating system (not the kernel) to provide the user with what he (with a 

slight stretch of the imagination) can regard as a single screen. 

As was indicated in chapter 22 section 10.2, device drivers load a segment 

register via the kernel instruction load_devSR and thereafter control what is 

happening to their device using (pseudo-)memory addresses. In the present case 

I assume that appropriate mechanisms are available (in hardware, driver soft-

ware and/or library software) for drawing graphical objects and writing charac-

ters in positions, sizes and colours, i.e. we do not concern ourselves with the 

pixel level as such. If multiple screens are to be treated as a single logical 

screen, this can be managed by a software module which directly accesses the 

device driver/interface module (see chapter 33 section 1 and section 4.1). 

4.1.2 The Pointer Device 

I assume the existence of a pointer device
189

, which I will refer to as a mouse, as 

this is the most popular of the available pointer devices. It can be used to guide 

the movement of the pointer on the screen, and can take on different pointer 

forms, depending on where on the screen it is positioned (e.g. arrows, text cur-

sor, eggtimer wait symbol, etc.). The pointer can be dragged across the screen 

and its movement can be tracked via interrupts which report its position as xy 

screen coordinates. It also typically has two or more buttons which can be used 

to cause single or double "clicks" which cause interrupts that can be interpreted 
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  At the time of writing I am 82 years old, and I have firm plans to write several further 

books on other subjects. 
189

  This might even be a finger on some devices, such as touchscreen devices. 
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by operating system software. 

4.1.3 The Keyboard 

The keyboard, which on tablets and smartphones may be a logical keyboard, 

basically allows character input, which not only allows letters, numbers and 

punctuation marks to be input but also has further modifier keys (e.g. to signal 

upper and lower case, to input special symbols such as currency signs, percent-

age, ampersand and other symbols, to provide special functions, to delete char-

acters already input, to terminate a line, and much more). The keyboard device 

may include a buffer which allows a text sequence as a whole to be passed to the 

main processor via an interrupt
190

. In systems which do not support graphics the 

keyboard may provide the only way of interacting with a system. 

4.2 Graphical Libraries 

The first prerequisite for adding graphics to the SPEEDOS design is to build a 

good graphics library, which can be integrated into SPEEDOS via the latter's 

library module mechanism (see chapter 18 section 6 and chapter 20 section 9.2). 

This should support all the usual mechanisms needed for a graphical user inter-

face (e.g. windowing, menu creation, icons, drawing boxes and shapes with and 

without text, selecting colours, and much more). 

4.3 A Possible SPEEDOS Graphical Interface 

In this section I provide some general remarks which might assist the designer 

of a graphical interface to map his work onto the SPEEDOS architecture. 

4.3.1 Gaining Access to the Graphics Devices 

When a user logs in, his modules (in so far as they have appropriate privileges) 

can obtain capabilities to access the appropriate devices (e.g. screen, keyboard, 

mouse), as described in chapter 19 section 5 and chapter 26 section 2. Chapter 

22 section 11 describes how these might be handled when a persistent thread is 

logged out/in. 

4.3.2 When Should a Desktop for a New User be Set Up? 

Most graphical operating system interfaces provide a desktop (which is actually 

a "start" directory) that is displayed over the main surface of a visual display 

monitor. The main items on the screen are directories and modules which are 

reachable from the desktop. To consider how this desktop is set up we begin 

                                           
190

  In a simple system each character input may cause an interrupt which allows the kernel's 

input analysis routine to buffer the text until an end of line character is received (as in 

MONADS, see chapter 22 section 6.1). However, in a graphics based system it is im-

portant for users that they can see each character as it is typed. 
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with the situation in which a new user (and therefore his first desktop) is set up. 

Section 2 of chapter 31 describes how a new user is created – an existing user 

(the creating user), with the help of various methods of the Container Manager 

and other kernel co-modules, 

a) creates a container for the new user; 

b) transforms this into a process container; 

c) registers the new user with the User Manager and the Login Service Mod-

ule; 

d) creates an initial thread in the process; 

e) prepares this for running by providing a capability startMod (and a string 

name startThread, which is a symbolic name for the initial thread, regis-

tered with the User Manager), an integer startRoutine defining which of 

its semantic routines should be called, and a capability rootMod which is 

passed as a parameter when the routine is called and thus provides an envi-

ronment for the new thread. 

This might sound like a good time to prepare a desktop, which after all is part of 

the new environment that we need, but then we realise that all the activity so far 

described has taken place in the environment (and in one of the threads) of the 

creating user, and is therefore not under the control of the newly created user 

(especially if startMod is a standard module designed to introduce new users). 

Eventually the initial thread will call the process's Thread Control Manager, 

which will log the thread out (see chapter 31 section 4.1). 

The new user first takes control when he first logs in to his new (previously 

logged out) thread. Not only is it appropriate to allow the user to create a desk-

top when he takes over control, but also because at this point he is sitting at a 

graphical device (which may be one of many in a multi-user situation) via which 

he can exercise this control. But how does this happen? 

4.3.3 The Login Procedure Re-Visited 

The following procedure is carried out when a logged out thread is to be reac-

tivated, regardless whether the thread is for a completely new user logging in for 

the first time or for a thread which the user himself has logged out. The proce-

dure is described in more detail in chapter 22 section 11.2, and only those details 

relevant to our task at hand (i.e. setting up a desktop) are described. 

a) The user sits at a (in this context) graphical device with pointer device and 

keyboard. He indicates his presence by pressing a key at the keyboard, 

which causes an "unexpected" interrupt. This causes the kernel to create a 

login surrogate thread, which executes in the Login Service Module; this 

obtains access to the devices in order to establish the identity of the logging 



Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 274 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

in user (see chapter 19 section 5). At this point it needs a mechanism for 

communicating with the user, i.e. a desktop! 

b) When the surrogate thread has discovered from the user which thread 

should be activated it executes the kernel's transfer_terminal instruc-

tion, which transfers the device capabilities to the capability access area for 

the thread to be activated. It then activates the thread and kills itself. 

c) At this point the re-activated thread (which is executing in the last module 

before it was logged out, i.e. the Thread Control Manager) carries out ap-

propriate housekeeping tasks then calls the user's authentication module. 

This also needs a desktop to carry out its checks! When these are completed 

it returns to the TCM which in the case of a failed authentication logs the 

thread out again or if the authentication was successful it returns to the 

module which called it. This will also need a desktop!  

4.3.4 Setting Up a Desktop 

This brief overview of the login procedure shows that setting up a desktop is not 

a once only procedure but is needed several times. The best way to achieve this 

flexibly is to use an interface routine createDesktop of a graphical library 

module. This has the advantage (assuming that a capability for the appropriate 

graphical device is available, e.g. in the capability access area) that it can be 

called (using the kernel's library call LC instruction) from various different mod-

ules as necessary. Each use of this library routine will clear the current screen 

and set up a new screen. Parameters to the call will indicate what kind of desk-

top format is required. This might for example be a simple text screen with a 

selectable background or it might be a directory displaying the details of the ob-

jects in a directory. 

4.3.5 Handling Multiple Activities 

In the course of his activities at the computer a user might carry out a variety of 

activities in the same session, moving from one activity to another in an appar-

ently random order. For example he might 

• check his emails from time to time 

while 

• carrying out his primary activity (in my case writing a book), 

• using the internet as a super encyclopaedia, 

• writing an urgent letter, 

• paying some bills which just arrived in the post via internet banking, 

and so on. 
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One of the ideas behind the SPEEDOS notion of persistent processes and 

their threads is that these various, and to a large extent unrelated, activities can 

be managed quite separately and without interfering with each other. This is not 

always the case in current systems. Just to take a simple example, if I use a par-

ticular document editor in some current systems for more than one activity (con-

currently) and switch between the different uses while leaving the documents 

open but off-screen, the likelihood is that not only do I activate the document 

which I want but the former document also reappears on the screen. 

In SPEEDOS the intention is that different activities can (but need not) be 

organised in different processes, while the threads used in a user level process 

all contribute to the same activity. Hence when a user switches from one process 

to another the former activity (including its desktop) can be "cleared" temporari-

ly by logging out the process, and a different activity (with a different desktop) 

can be cleanly retrieved by logging the process in
191

. Recall in this context that 

logged out processes and threads are simply saved in the persistent memory and 

can be retrieved by logging in to the process again (see chapter 22 section 11). 

To simplify this, a graphics screen could provide a list of process icons e.g. 

at the bottom of a screen, so that in whichever process the user is active he can 

see his other processes. Simply by clicking on the image for a new process he 

can then start the logout procedure for his current process followed by the login 

procedure for a different process. However, this is simply a suggestion and 

should not be regarded as a mandatory aspect of a SPEEDOS system. 

4.3.6 Other Desktop Windows 

As the previous subsection implies, a desktop often consists not only of a main 

window (e.g. displaying the entries in the start directory), but also of other, usu-

ally less conspicuous windows, which can often be viewed as command bars 

(e.g. containing icons representing other processes of the same user and their 

threads, and/or continuous access to generally useful information such as the 

time and date, which printers are available, and so on). What actual windows are 

provided is a matter for the operating system design, not for the kernel. 

If we assume that a command bar containing icons representing the current-

ly logged out processes of the current user normally exists, this would make it 

easy for users to switch between their different logged out threads as they 

change to a different activity. A similar bar could be used to represent the cur-

rently active and the temporarily suspended threads of a user. These could be 

used, for example, to switch between threads. But once again these are matters 
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  It would also be possible simply to switch desktops temporarily to change the visible set 

of activity threads. 
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affecting the design of particular operating systems which need no further dis-

cussion here. 

4.3.7 Composite Windows 

Any window may be part of a collection of sub-windows which in some sense 

should be treated as a unity (e.g. in a main directory window there may be sub-

sidiary windows which provide quick access to related windows). The entire 

collection of such windows can then be treated as a single entity for some pur-

poses (e.g. for re-sizing and moving) while they may be treated separately for 

other purposes (e.g. for scrolling). While this is important for the user it provides 

no special problems for implementation, provided that appropriate data struc-

tures are developed which define the relationships between the parts. Therefore 

we do not discuss the issues involved, since they have more to do with applica-

tion design than with kernel or operating system design. 

Similarly some parts of a window (e.g. the frame, scroll bars, etc.) may ap-

pear to the user to be part of a single window, whereas they may be separate en-

tities from the implementation viewpoint (often with the help of graphical li-

brary routines). Again we do not discuss the issues involved since they are 

scarcely impacted by the special aspects of the SPEEDOS design but may be 

relevant to the designers of the graphical libraries. 

4.4 Some Technical Aspects 

To discuss all the technical aspects of possible graphical interfaces for various 

SPEEDOS operating system designs is of course well beyond the scope of this 

book. However, it could be helpful if I provide a few general comments. 

4.4.1 A Basic Approach 

In a new SPEEDOS system (or in a multi-user SPEEDOS system when a new 

user is created) the user starts executing in the startMod module, receiving 

rootMod as a capability parameter. The startMod module could be a standard 

module and rootMod could, but need not, be a directory which holds further ca-

pabilities giving him access to system software and to software which the creat-

ing user wants to share with the new user. 

As we saw above, after the new user has logged in and passed all the neces-

sary authentication tests, the Thread Control Manager, which organised the tests, 

will return to its caller, which is probably the startMod module. At this point 

the new user will need a desktop. This can be organised by the startMod mod-

ule making a library call to createDesktop and passing to it the capability 

rootMod, from which it creates a desktop which gives the user a starting point 

for carrying out his work, creating more processes, etc. If he does create new 
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processes the procedure which it uses could follow the pattern which we have 

already established for the introduction of the new user, except that the process 

containers created will belong to the same user (unless he wants and has permis-

sion to create new users). Each of these new processes can have its own desktop, 

fashioned to suit the purpose of the process. 

4.4.2 Displaying Directories and their Contents 

When the content of a directory is displayed, the symbolic names associated 

with the capabilities can be shown along with appropriate icons. In contrast with 

most current systems the module names need not contain an indicator showing 

what type of module is represented, since in SPEEDOS the code associated with 

the module is fixed and cannot be directly modified
192

. However, since the syn-

tax of a name certainly includes characters which can serve as separators (e.g. 

the full stop (period), colon, hyphen etc.), a user can optionally develop his own 

convention to indicate the type of the module (or can use a standard convention 

if this is made available by SPEEDOS OS designers
193

). Alternatively the type 

might be indicated by displaying an identifying icon along with the name. An-

other possibility is that the symbolic name for the code to which the module is 

bound (which could be made available via the template manager
194

 that is stored 

in the directory) could be displayed if appropriate. 

4.4.3 Interpreting Mouse Clicks 

To access an item which is currently displayed on the desktop, the user selects 

and clicks on a desktop item. What happens then? I suggest that a click causes a 

desktop thread to receive a parameter from the system that provides the xy 

screen coordinates and indicates whether the click is a left click, a right click or 

a double click, etc. It must then determine the window in which the click is lo-

cated and activate the item in some way, depending on the kind of click. This, 

and the following related activities, should be largely carried out in the graphical 

library routines. 

4.4.3.1 Following the Pointer 

When a pointer device is moved this movement is displayed on the desktop. The 

actual motion of the pointer should be independent of the window in which the 

movement occurs, since the pointer can traverse several windows. Nevertheless 

it is not entirely independent of the window (or sub-window) being traversed, 
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  The type of a module can be modified by using a conversion routine in association with 

a free capability. 
193

  Unlike conventions in current systems, a possible SPEEDOS convention (which I con-

sider to be superfluous) has no effect on the design of the system. 
194

  see section 2.2 above. 
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since it is usual practice to change the display of the pointer itself to suit the kind 

of window being traversed. For example if the pointer is moving across a direc-

tory window it will probably appear as an arrow, but if the window is for typing 

text then its appearance may symbolise a cursor. This suggests that the pointer 

management must detect when a window boundary is crossed and change the 

pointer symbol accordingly. How can this be organised? 

4.4.3.2 Managing the Desktop 

A "map" of the current desktop, showing where the various windows are cur-

rently located, is needed in order to discover the window into which the pointer 

has moved when a window boundary is crossed and to change the pointer sym-

bol. This map can be maintained by a standard Desktop Manager module which 

can be accessed by threads that create windows on the desktop. 

Each entry in the map could hold at least the following information: 

– the coordinates of the window's left top corner, 

– a current width (horizontal) and a current depth (vertical) or alternatively 

the coordinates of the window's bottom right corner, 

– a title (with font information) to be displayed at the top of the window, 

– a pointer to the entry for the window in which this is nested (for the first 

level windows a pointer to the desktop entry), 

– a list of pointers to entries which describe windows and sub-windows nest-

ed within this window, 

– a symbol for the pointer to be used when the mouse is traversing the win-

dow, 

– information about the borders of the window, e.g. what border style is used, 

how borders should be displayed (even if these are invisible), 

– a thread capability for the thread which created and is responsible for the 

window, and 

– any further information which the designer of the module considers appro-

priate. 

This Desktop Manager module can activated by the initial start thread (since this 

has otherwise completed its essential functions), and the latter then becomes the 

'desktop thread'. 

Given such a map of the desktop, the coordinates can be used to establish 

the window in which the mouse is currently active. 



Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 279 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

4.4.3.3 Thread Activity and Mouse Movements 

There are of course more kinds of pointer-based activity which affect the desk-

top than simply pointer movements and clicks, e.g. the dragging of objects from 

one position to another, the resizing of windows, as well as the effects of some 

of these activities on the appearance of other objects on the screen. The interest-

ing question is which threads are active, and when, with respect to such events. 

Furthermore some of these activities have a side-effect on other (possibly unre-

lated) windows, e.g. when a window is moved in such a way that it reveals an-

other window, which may need to be redrawn. 

From the purely logical viewpoint it would seem appropriate to associate a 

separate thread with each window currently on the desktop. This would most 

appropriately be the thread which creates a window. To create a new window, a 

thread uses the appropriate graphical library routine createWindow, which inter 

alia creates a new subthread (see chapter 20 sections 5 and 8) to control each 

new window. 

The desktop thread would initially be responsible for the desktop, and as 

new windows are created on the desktop it would remain the responsibility of 

the desktop thread to control those regions of the desktop which do not contain 

windows
195

. 

When the mouse pointer is at rest the desktop thread suspends waiting for a 

mouse interrupt. When such an interrupt causes the thread to be activated, it 

proceeds as follows: 

• pointer position changes: the desktop thread moves the pointer to the new 

position. 

• dragging objects held in a window: the desktop thread moves the dragged 

object to the new position, updates the map and activates the threads re-

sponsible for the initial position of the object and the final position of the 

object, providing details via a put_message kernel instruction described in 

chapter 22 section 10.2.3 in each case and redraws the (affected parts of 

the) desktop. Any consequences of the move (including cancelling it) can 

be taken by the application threads involved. If the drag action moves an 

object to a different position in the same window, the responsible thread is 

                                           
195

  This might seem to imply that different threads should take responsibility for correctly 

moving the mouse across their part of the desktop, which would in turn imply that each 

time a user rapidly moves the pointer across the screen, several thread switches might 

be necessary in rapid succession, which could perhaps overload the system with thread 

switches. This would not be a very efficient way of using the CPU, especially when 

most of these thread switches would not achieve any effective purpose except to change 

the pointer symbol. Hence we suggest that all mouse movements are undertaken by the 

desktop thread. Since this executes in the Desktop Manager it is in a position to change 

the pointer symbol as this moves from one window to another. 
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advised of this. The recipient thread or threads can obtain the messages via 

the get_message kernel instruction. 

• changing the position of, and resizing, a window: the desktop thread notes 

the change in the map and redraws the (affected part of the) desktop, and 

other windows affected by this
196

. 

• clicks (of any kind): it activates the thread associated with the current win-

dow, passing to it an indication of the kind of mouse click and the position 

of the pointer. These details are passed using the put_message kernel in-

struction. 

The desktop thread then suspends awaiting the next pointer interrupt. 

4.4.4 Application Windows 

A click or double click can signify quite different things, depending on the win-

dow in which the click occurs, on the position of the click in the window and on 

the type of the click. As was indicated in section 4.3.5.3, all mouse interrupts are 

initially directed to the desktop thread. If the interrupt is for any sort of click (ra-

ther than just a pointer movement, window movement or drag action) the desk-

top thread, executing in the Desktop Manager module, redirects this to the 

thread for the window in which the click has occurred by activating the latter in 

the normal way, i.e. by calling an activate semantic routine of the thread's 

Thread Control Manager, which then passes this on to the User Thread Sched-

uler, after first transforming the coordinates into their relative positions within 

the window. The desktop thread first uses the put_message kernel instruction to 

enable an activated thread to discover why it has been activated. 

When the suspended thread has been activated, it receives the interrupt in-

formation (location, click type) by executing the kernel's get_message instruc-

tion. It then interprets these to determine what action it must take. This depends 

entirely on the nature of the application. 

4.5 An Example: Directory Windows 

In conventional systems directory modules are part of the operating system 

software. However, as we saw in chapters 30 and 31 and in the earlier parts of 

the present chapter, they are simply application modules in SPEEDOS, with no 

special privileges. Hence the core actions of directory windows of the desktop 

provide a useful case study of how relatively simple application windows can be 

organised. 
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  These functions suggest that behind a window is a canvas which contains all the details 

displayable in the window. This can also be used to modify information in a window 

while it is not or is only partly visible. 



Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 281 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

4.5.1 A Question of Privacy and Security 

In conventional systems it is quite normal that when a directory is displayed on 

the screen, further directories are automatically displayed in an associated win-

dow, which may appear to the user to be parts of the same window or window 

group, allowing him to navigate from one directory to others. 

But herein lies a tricky problem for SPEEDOS, because it implicitly sug-

gests that if a user has access to one directory, he automatically has access to the 

related directories and the files in them. Furthermore, in conventional systems 

directories serve as access control lists (ACLs) and therefore their contents (files 

and other directories) can be accessed (occasionally with restrictions) by any 

thread which has access to the directory (see chapter 2). But this assumption 

does not carry over to SPEEDOS, which is a capability-based system. 

The basic rule of access in SPEEDOS is that to access an object one must 

have a capability for the object and is also restricted to accessing the object in 

terms of the semantic routines permitted by the access rights which it contains. 

The question therefore arises, how can directories be displayed in SPEEDOS? 

One quick answer might appear to be as follows. Allow related directories and 

their entries to be displayed in composite windows, as in conventional systems, 

but enforce the capability rule if the user attempts to access an object. However, 

this concept has a flaw, viz. that even if a user cannot access all objects which he 

can see in a window or on a screen, he can see them, and this alone can be re-

garded as a potential privacy and security violation! 

The issue becomes clear when we look at the proposal in chapter 31 section 

5 for defining a simple mail system, such that a user A, sending mail to another 

user B, can do this by inserting an entry in a mail box (directory) of B. We al-

ready described how A could use a special interface deleteMyEntry to delete 

the mail entry later. Thus User A has a capability allowing him to create an entry 

in B's mailbox and delete this entry later (if it still exists). 

Clearly if user A could use this capability to view the entire mailbox, he 

would potentially see mails for B sent by other users. It is clear that such a viola-

tion of privacy should be prevented. The solution is similar to that for deletion. 

The directory needs two further semantic routines: view which allows the direc-

tory content to be viewed in full, and viewMyEntries, which restricts the holder 

of the capability to displaying and viewing only those entries which he has 

made. In this mail example the recipient of the mails needs to see all his mails 

(and therefore uses the view interface), while the senders of individual mails 

have no access to this semantic routine, but instead can only use the viewMy

Entries interface. 
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4.5.2 Creating a New Module 

When a new module (which might or might not be a directory) is to be created, 

the user might use a single click (e.g. a right click) on the area of the screen at 

which the new module is to be created. What happens then? 

Recall that single clicks, in our example system, cause the desktop thread to 

activate a thread associated with the window. Since such a click can in some 

cases activate a long running program, during its execution the user may want to 

activate other modules. Hence the initial thread associated with the window can 

best achieve this parallel activity by creating a new thread to carry out the user-

intended task. It can then suspend itself waiting for a further click. But it may 

carry out short activities itself. 

Since different types of modules can be created, the activated thread must 

have access to all the necessary components to build the different kinds of mod-

ules which it offers, including for example a capability for the code of the new 

module, an option for associating with the new module a qualifier list and a 

module capability for the template and those required to create a container for 

the module (see chapter 19). Some of these are standard, while others can be 

determined via submenus. Finally it creates an entry for the new object in the 

directory. 

4.5.3 Activating Modules 

The most used facility of a directory module is probably the activation of mod-

ules which have entries in the directory. Typically the user double clicks on an 

entry to activate the corresponding module, and of course the desktop thread 

(acting in the desktop module) passes the double click to the thread responsible 

for the window. As was already described for the creation of new modules, the 

window associated with the directory will create a new thread, pass the "parame-

ters" to it via the put_message/get_message mechanism and the new thread 

will then take the necessary steps to activate the module to be called. 

This primarily involves making an inter-module call via the capability held 

in the directory, but before that can be done the semantic routine to be called 

must be selected by the user and the parameters for this routine must also be 

prepared for the call. By their nature these cannot be predefined in the directory 

entry. Hence the thread must obtain the necessary information from the user. He 

can do so by retrieving the template manager which is stored in the entry and 

use this to request the name of the semantic routine to be called (e.g. using a 

pull-down menu) as well as the appropriate parameters for this, perhaps using a 

pop-up menu (which could indicate the symbolic name of each parameter and 

the parameter type for each parameter in turn). The directory thread can check 
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the parameters as they are typed in, convert them to internal format and, after 

creating the appropriate four parameter segments on the stack (see chapter 20 

section 6.2), can use segment register 0 to enter them into the input parameter 

segment which it has created at the top of the kernel stack, then execute the in-

ter-module call instruction. It will eventually return, perhaps passing back some 

return values of interest to the user. Meanwhile the user can carry on using the 

pointer to carry out further work. 

4.5.4 Returning Results 

When an inter-module call has been activated as described above, it will eventu-

ally return, and at this point it may have some results to report to the user. Since 

the thread might have executed over a long time span, it may arrive when the 

user is not expecting it, or is busy carrying out other activities. Hence the ques-

tion arises how he can receive these results at his own convenience. A possible 

answer is that executing threads may be listed or symbolised by icons in a sepa-

rate window on the screen (and perhaps coloured red while they are still run-

ning, or green when they have completed). In this case the user could double 

click on a green thread symbol and be shown the results returned by the module. 

5 Concluding Remarks 

A substantial part of this chapter has attempted to show how a basic SPEEDOS 

system can be enhanced by the use of graphical equipment, and to the extent that 

it does this it should be regarded more sceptically than those chapters which de-

scribe other parts of the SPEEDOS design. The reason for this is that I have in 

the past never been deeply involved in designing a graphical interface nor using 

graphical hardware or software. I hope that the chapter will nevertheless be 

helpful in so far as it makes suggestions about mapping a graphical interface on-

to the SPEEDOS architecture. 
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Chapter 33 

I/O Devices and Spooling 

 

 

Previously, input/output devices have only been mentioned with respect to 

SPEEDOS in Chapter 22, in connection with the handling of asynchronous in-

terrupts. When an interrupt occurs, the kernel's interrupt analysis routine exam-

ines the interrupt and passes it on to the appropriate kernel process. This chapter 

discusses in more detail what happens when the interrupt is a general device in-

terrupt (e.g. from a printer) and explains how print spooling can be managed in a 

secure way. Interrupts from discs are not included since these are directly han-

dled in the kernel as part its virtual memory management function. Similarly 

communication with other nodes is initially handled within the kernel and is not 

considered in this chapter. 

1 Device Drivers 

The module which directly interfaces with a device is its device driver. Howev-

er, in contrast with device drivers in most conventional systems there is very 

little that is special about a SPEEDOS device driver. It is implemented as a 

normal SPEEDOS module. It has appropriate semantic interface routines tai-

lored to its own needs, and only other modules which have a capability for the 

device driver can call these routines and therefore use the device which it con-

trols. Its only special privilege is that it has a kernel capability, which is typical-

ly stored in a read-only segment in its code; this allows it to execute the kernel 

instructions load_devSR and wait_interrupt.  

A request by a module to activate an I/O device is invoked and handled as 

an in-process operation within the thread which requests the I/O operation. 

When the thread has invoked the device driver, the latter activates the device. In 

conventional computers there are two ways of achieving this, depending on the 

hardware design. One is a special hardware instruction (here called start_

device), which can only be executed when the computer is currently in a privi-
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leged mode (corresponding to SPEEDOS kernel mode). Alternatively, the hard-

ware might use memory mapped I/O
197

. In SPEEDOS memory mapped I/O is 

strongly preferred, because this gives the system much more control over the 

operation. In this case the only special privilege required is that a segment regis-

ter is loaded to address the device memory. To achieve this, the device driver 

uses the kernel instruction load_devSR, specifying as operands the number of 

the segment register to be loaded and a device capability which defines the de-

vice
198

. 

Having activated the device, the driver (still executing in the application 

thread) executes the wait_interrupt instruction. The kernel then notes that an 

interrupt is expected from the device and which application thread should be 

activated when the interrupt arrives. It then calls an interface of the User Thread 

Scheduler, advising it to suspend the application thread. 

When the device operation terminates it causes an interrupt, which leads to 

the activation of the appropriate kernel device processes (see chapter 22 section 

10.2). Having examined the interrupt parameters and taken any further actions 

necessary, this then activates the Thread Scheduler to advise it that the interrupt 

has arrived, allowing the latter to put the waiting application thread into the 

ready state for eventual re-activation. The kernel process then suspends itself 

and waits for another interrupt. 

The above description provides a general pattern, but does not exclude the 

possibility that further optimisations may be introduced in particular situations. 

2 Device Allocation 

In older computer systems the allocation of devices to application (and to some 

extent system) threads was quite a problem. Usually a central device allocator 

module existed which had the job not only of determining which users could use 

the system's I/O devices and when, but also whether particular users had a right 

to use particular devices and with what priority. But above all the problem of 

deadlocks (sometimes called deadly embraces) had to be solved. 

2.1 Deadlocks 

A deadlock (in the operating system sense) arises when applications have re-

ceived permission to use more than one device or other resource (e.g. a sema-

phore) which they claim for concurrent use, with the result that there is no order 

                                           
197

  For more detail see Chapter 6. 
198

  Segment registers containing mapped device capabilities can neither be stored as point-

ers nor copied into other segment registers (including the parameter registers). Device 

capabilities can only be used at the node indicated in the capability. Usually the right to 

copy a device capability is unset. 
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of execution which allows all the threads to complete, because each is waiting 

for another to relinquish a resource.  In the very simplest case this can involve 

two threads (say T1 and T2) and two resources (say R1 and R2), such that R1 has 

been allocated to T1 and R2 to T2. Then T1 claims R2 and waits for it to be allo-

cated, but instead of releasing R2, T2 claims R1 and waits for it. In this situation 

each is waiting for the other and neither can proceed. Real situations could be 

far more complex than this, for example involving circular waits by several 

threads. 

The fundamental problem arises when threads can claim exclusive use of at 

least two resources. Two quite different strategies for solving this problem were 

developed by different system designers. The first approach was to detect the 

problem (after it was noticed that the applications were not making progress, or 

as a regularly run algorithm) and then to "solve" it (e.g. by deleting one of the 

offending threads). The second approach attempted to prevent the problem from 

occurring (for example by defining a set order in which devices can be claimed, 

e.g. if a thread has successfully claimed a printer, it may not then claim a card 

reader. If you are interested in this issue, you will find plenty of information 

about various strategies in older books on operating system design. 

In modern systems deadlocks are far less a problem than a few decades 

ago. The main reason for this is that many I/O devices which need to be used 

exclusively (e.g. card readers, tape drives) have all but disappeared. The second 

reason is that some modern devices, although they generally need to be used ex-

clusively, are allocated not by software modules, but rather by humans claiming 

them separately (e.g. keyboards and monitors which are general claimed by a 

user simply sitting at an unused device). The third is that many computer users 

now have their own personal computer system, which is used without competi-

tion from other users
199

. The fourth is that devices which are used exclusively 

have become cheaper and more plentiful, so that competition for their use has 

diminished (e.g. printers). Consequently a device allocation module will rarely 

be needed and is not illustrated here. 

However, in a multi-user system the use of printers and other output devic-

es (e.g. graph plotters) could in principle still be a problem. But there is a differ-

ent way of solving that problem; this approach is known as spooling. 

3 Spooling – The Basic Principle 

Spooling (simultaneous peripheral operations on-line) is the name given to a 

method of interfacing programs and slow I/O devices in such a way that (a) us-

                                           
199

  This alone does not solve the problem, e.g. if a user organises the concurrent use of 

threads which claim the same resources. 
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ers are not inconvenienced by having to wait for the device to become available 

and (b) the device can be driven at full speed. This technique used to be im-

portant for devices such as card and paper tape readers and punches, but today 

its main application is for printing. It can also be used to achieve considerable 

cost savings (e.g. telephone connection charges) with output devices such as 

computer driven faxes. 

To understand why print spooling is necessary, consider what would hap-

pen in a typical multi-user system without it. Such a system might have many 

users and few printers. A user at a terminal wishing to run an application pro-

gram which produces print output – most applications produce results for print-

ing – would therefore have to wait for a printer to become available before he 

could start his program, or before the program could start printing. This would 

be extremely inconvenient for the user, who in some older timesharing systems 

could have done nothing but wait, or tap the keys of his terminal impatiently. 

Then when the printer eventually became available his program would start us-

ing it. 

Now suppose that when a printer at last becomes available to a user, he 

starts an application which does a lot of calculation and which every five 

minutes for the next hour prints a result consisting of one line. The other users 

waiting for access to the printer would be rather irate at such a wasteful way of 

using the device! 

Spooling solves both problems simultaneously. The idea is simple. First the 

application is run, but instead of it using a printer directly, it outputs its results to 

a disc file. (Discs are shareable so there is no waiting problem for the user.) 

Then when the file is complete, it is passed (in conventional systems) to a sys-

tem thread, called the spooler. The spooler runs continuously (whenever there is 

work to do) printing files one after another (for different users). With this tech-

nique a user never waits for the printer and, because the files to be printed are in 

their final form, the printer can be driven at full speed. 

This is fine as far as efficiency and convenience is concerned, and it is in 

principle how nearly all multiprogramming systems organise the printing of user 

output (although it is amazing how some operating system designers can com-

plicate even a simple idea like this!). 

But from the security viewpoint it is far from ideal. The spooler program 

has the opportunity to see just about every interesting item of data in the system 

and make a secret copy of the juiciest bits for an unauthorised user. Further-

more, because the spooler has to be able to access the files of many users, it is 

sometimes given a protection status that allows it unrestricted access in the file 

system, which means that it can even access files which it has not been asked to 
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print. 

4 Spooling – The SPEEDOS Approach 

How can these problems be avoided in a SPEEDOS system? The problem of the 

spooler having a special privileged status is avoided in a capability system be-

cause SPEEDOS has no privileged status of this kind. The only "privileges" are 

conferred by capabilities (including kernel capabilities) and if used properly 

these limit the privileges which they confer only to those needed to carry out a 

specific task. If a spooler is to print a file, it needs a capability for the file. Thus 

it needs a capability for each file to be printed, but not for others. That is a start, 

but it is not sufficient, because the spooler might retain the capability or make a 

secret copy of the file, or pass information in the file to a third party. So there is 

potentially both a revocation problem and a confinement problem. 

In the remainder of this chapter a spooling system design will be presented 

which sets out to solve these and other security problems while retaining the ef-

ficiency and convenience aspects of spooling. We begin by considering some 

general issues associated with spooling. 

4.1 Spooling Files, Interfaces and Drivers 

Spooling files are normally created by application programs using a format 

which allows the same file to be printed later on many different kinds of printer 

and displayed on many different monitor types. A widely used example of such 

a format in conventional systems is Adobe PDF (which is a successor of Post-

Script, a format which was earlier in widespread use for printing). 

At the other extreme, manufacturers of actual hardware devices produce 

printer drivers (and drivers for other devices such as monitors, graph plotters, 

etc.) which differ widely from each other (even those manufactured by a single 

company), and which are often quite complicated and messy to use directly. 

Consequently they usually provide software drivers with their hardware which 

accept a much simpler form of interface and do the messy things for the applica-

tion. 

Since it is impossible – and also unimportant in this context – to discuss all 

the possibilities in detail, a simplified scenario is now presented in which it is 

assumed that application programs create PDF files
200

 and that these serve as 

print files which are accepted by the printer drivers in a system. 

In order to shield spoolers and other software from the complexities of an 

actual driver interface, it is assumed that in a SPEEDOS context an interface 

module is implemented for each driver, which allows all other software to ac-
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  Since 2008 there is an ISO standard for PDF files. 
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cess the printer in a standard form. This results in the situation shown in Figure 

33.1, which illustrates the final stage of printing a file in a spooler thread. 

 

When called by the interface module, the driver takes the necessary device-

dependent steps to carry out the actual printing (including a call or calls on the 

kernel's wait_interrupt instruction). On completion of the printing the driver 

returns to the interface module, which returns to the module that called it. 

4.2 An In-Process Spooling Architecture 

We now consider what modules and threads are needed in order to provide 

spooling in such a way that it is both efficient and secure. The normal starting 

point in an in-process architecture is that a task should be fully carried out in a 

single thread (or a collection of cooperating threads following the in-process 

principle), since this provides a framework which encourages both security (e.g. 

in the case of SPEEDOS via the thread security register) and efficiency. Howev-

er, the spooling principle demands that the spooling activity should be carried 

out in a separate thread from that of the thread requesting the printing. In a con-

ventional system this is a thread belonging to the system which accepts requests 

from all users. For each printer such a system thread is needed. Before rushing 

into such a solution as the obvious and only one, let us consider an unconven-

tional alternative. 

4.2.1 Each User provides his own Spooler Thread(s) for each Printer 

The idea that the spooling activity should take place entirely in a thread or 

threads owned by the user is attractive for a number of reasons
201

. First and 
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  Some readers may fear that providing extra spooling threads for each user will be ineffi-

cient, e.g. because these will clog up the scheduler. However a SPEEDOS user thread is 

implemented as part of a user process, which is in fact more comparable to a file than a 

conventional process. In SPEEDOS user threads must only be made known to the User 

Thread Scheduler (UTS) when they become active and are then removed from the UTS 

Figure 33.1: The Final Stage of Printing a File in a Spooler Thread  
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foremost, this allows the user to exercise some control over the security issues, 

e.g. via the thread security register. But also, since the owner of the thread is the 

user, the processor time, the disc and printer I/O operations, and any other re-

sources used can be automatically clocked up to the user on whose behalf they 

are consumed, not to a system thread. Consequently spooling is not a special 

case with respect to accounting, logging, resource limits, etc. 

In a single user system this architecture would not present any significant 

problems, but the question arises in a multi-user system how the different users 

could then share access to the same printer, and how the print requests of differ-

ent users could be handled fairly. We tackle the fairness issue first. 

4.2.2 How Can Print Requests be Handled Fairly? 

It is by no means clear what fairly means when users are competing for the use 

of the same printer. Is it fair, for example, if a user requests in quick succession 

that three of his files should be printed which each take an hour or more to print, 

thus preventing users with much shorter print jobs from accessing the printer? 

To avoid this situation it would be possible to adopt a scheduling policy known 

as shortest job first, i.e. a printer scheduler gives preference to print job requests 

according to the (estimated) time they will need the printer. 

Is it fair, for example, to give higher priority to some users over others? 

Should user jobs be selected for printing on the basis of their urgency? Who de-

termines urgency and using what criterion? For example should print jobs for 

the Managing Director of a company get higher priority for his print jobs than 

those of his staff? 

These issues make it clear that in a good system it is appropriate for an in-

stallation to have scheduling rules which are laid down in a scheduling algo-

rithm suitable for that installation. From the present point of view it thus seems 

appropriate to have a scheduling module which determines when different print 

jobs (possibly from different users) should be started. At first sight this may 

seem to suggest that this should exist in a separate thread, which is used by all 

who have a right to use the printer. However, that would be a typical out-of-

process solution for the problem. 

4.2.3 Printer Scheduling Modules and User Spooler Threads 

The in-process solution is that such a scheduling module (hereafter called the 

Print Scheduler Module) should exist, but not in a separate thread. Instead it is a 

module which is invoked in different user spooler threads as appropriate. Since 

                                                                                                                                    
when they become inactive, i.e. they are not a permanent burden to the UTS. While they 

are inactive they behave more like a passive file. 
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this module determines which print request should be passed next to the printer 

interface module/printer driver module (see Figure 33.1), and since the latter is 

executed in a thread of the user whose print job has been selected, a switch must 

occur to a waiting spooler thread of the user whose print request has been select-

ed as next for printing. How should this switch be coordinated? 

The answer of course is via semaphores. The scheduler maintains a list of 

print requests from various users and sorts them into an order determined by the 

scheduling policy. When it receives a print request while the printer is occupied, 

it uses a P operation to suspend the current thread, which we assume is a user 

spooler thread (see below). When some other spooler thread (of the same or an-

other user) frees the printer it returns to the Print Scheduler Module in the cur-

rent thread, it then examines its scheduling list and selects the next appropriate 

spooler thread to execute, by issuing a V operation to wake up the thread
202

, 

which will then call the Printer Interface Module to start the printing of its own 

print request. 

The user spooler thread structure just described is illustrated in Figure 33.2. 

 

4.3 The Print Request Module 

When a user requests the printing of a file it will be executing in a normal appli-

cation thread of the user (or in a Command Language Interpreter Thread, see 

Chapter 32), not in a spooler thread. This suggests that the PRM should be ac-

tive not only in the user's spooler threads but also in any application thread 

which requests that a file be printed. In this way one of its semantic routines can 

be seen as a 'print' command, which is called in application threads that have a 
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  In order to wake up the selected thread it will need a thread capability for this thread, 

which is part of the print request information provided by the thread itself. 

Figure 33.2: Printing a File in a Spooler Thread  
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capability allowing this (see Figure 33.3). 

This solution requires that the PRM can be invoked both in application 

threads requesting the printing of a file and in user spooler threads in order to 

pass print requests to the Printer Scheduler Module (for the printer on which the 

request is to be printed). How are these two "halves" of the module linked? In 

other words how is the print request passed from the application module to the 

spooler module? 

 

The simple answer is via a shared data structure, as is usual in in-process 

systems when a module is active in more than one thread. How this happens in 

detail depends on how user spooler threads are organised. The following sugges-

tion attempts to avoid a number of problems which could otherwise arise in this 

scenario. 

Although it was suggested above that there should be a user spooler for 

each request, I now propose that a single thread receives requests from applica-

tions of the same user; this allocates requests to different subthreads, which it 

creates and manages. These carry out the actual spooling activities. In the first 

stage, the PRM receives print requests for its user from application threads of 

that user via a shared data structure. This serves as a multiple producer/single 

consumer bounded buffer, in which different application threads of the same 

user can each produce print requests and enter them into a shared buffer while 

the PRM, acting in a separate user thread, consumes them in turn and allocates 

them to separate user spooler threads. 

Why not instead simply also have multiple consumers (each being a user 

spooler thread)? That would imply that a sufficient number of user spooler 

threads for this use must always pre-exist. (If insufficient were to exist then a 

print request for the user would have to wait for another print request from the 

same user to complete, which would then adversely affect its chances at the 

Print Scheduler Module level, where requests from different users compete with 

each other.) 

In the proposed solution the single consumer would receive requests in the 

Figure 33.3: Receiving a Print Request 
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order in which they had been submitted and ensure that each is immediately al-

located to a user spooling subthread. The implementation then becomes a strate-

gy decision: it would be possible to maintain a small pool of threads which 

might be sufficient for the normal flow of print requests, but if this turns out to 

be insufficient the Print Request Module can dynamically create new user 

spooler subthreads as required. Alternatively it might adopt a strategy of dynam-

ically creating and deleting a user spooler thread for each request from its user. 

In either case we end up with a scenario as illustrated in Figure 33.4. 

 

This figure suggests how the individual user spooler threads might be imple-

mented, viz. as application subthreads of the Print Request Manager (see chapter 

20 section 5). In this case the initial master spooler thread continuously waits 

(via the bounded buffer) for new print requests and then dynamically creates 

subthreads for them (and deletes them on completion). 

4.4 After the Print File has been printed 

When the printer driver has completed the printing of a file it returns to the 

printer interface module, which then returns to the Print Scheduler Module; this 

then selects a further request to be printed. However, it does not simply pass this 

to the Printer Interface Module/Printer Driver, but activates the thread which 

made the request and which is now in a wait state (see section 4.2.3). The best 

way to organise this is by each thread having a private semaphore (see chapter 8 

section 12.3) in the Print Scheduler Module, with the current thread activating 

the thread whose print request has been selected. Once activated this thread calls 

the Printer Interface Module/Printer Driver to have its file printed. 

Figure 33.4: Three Print Requests Active 

in the Spooler Threads of a Single User 
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Meanwhile the thread which activated it (i.e. the thread whose file has now 

been printed) continues by exiting from the Print Scheduler back to the Print 

Request Module, where it exits from the subthread (which causes its deletion). 

In this case there is no need to advise its creating thread of this. 

4.5 Scheduling Equivalent Printers 

In some cases several equivalent printers might exist (e.g. in the computing lab 

at a university). ("Equivalent printers" simply means a set of printers which are 

equally convenient for the user to use.) This requires a relatively trivial exten-

sion to the system as described above. In its last phase the print scheduler will 

normally have a binary semaphore which is used to signal that the printer has 

been claimed (via a P-operation) or released (via a V-operation). If there are 

multiple equivalent printers then this can simply be replaced by a resource set 

semaphore, thus allowing more than one printer to be in use concurrently. This 

is of course initialised to show the number of printers which are free. 

4.6 The Print Request Module 

A PRM's semantic routine print (i.e. the print command) expects three parame-

ters: 

i) a capability for the file to be printed, 

ii) a name by which the user wishes to refer to the file (e.g. to appear at the 

head of the printed file, or to indicate which file if he decides to cancel the 

print request before it has reached the printing stage), 

iii) the number of print copies which he requires. 

However, when the print request module places this in the bounded buffer, it 

adds a fourth parameter: 

iv) a thread capability for the thread in which the print request is made. This is 

needed to synchronise the bounded buffer with the spooler thread. 

When the printer interface module prepares for the printing, it can establish 

the identity of the user requesting the printing from the fact that it is operating in 

a thread of that user (and can therefore use the kernel's environmental instruction 

current_thread_owner). Hence this need not be passed as a parameter
203

. 

4.7 Simplifications for Single-User Systems 

Many desktop and laptop computers, as well as smartphones and other mobile 

devices with operating systems, are used exclusively by a single user with pri-
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  If a symbolic user name is to appear in a heading of the print output, the interface mod-

ule for the driver can provide this, if necessary by looking up the user's unique identifier 

in the user directory (see Chapter 31). 
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vate printers. For such systems the spooling mechanism can often be simplified 

in two ways. 

First, the Printer Scheduling Module (PSM), which is designed to schedule 

requests from different users, can usually be eliminated. This simply involves 

providing the Spooler with a capability for the PrinterInterface module, ra-

ther than with a PSM) capability. However, if the user has equivalent printers, 

he can consider retaining a PSM to manage these. 

The second possible simplification is that a single-user system will only 

need a single thread for each printer, because the PRM already supplies a queu-

ing system which (in a single-user system) does not suffer from the fairness 

problem described earlier. 

4.8 Additional User Facilities 

The PSM would need some further routines to allow requesters prematurely to 

report on the current position of a request or to remove a request from the buffer. 

These are not described in detail. 

5 Security Aspects of Spooling in SPEEDOS 

As was noted in the introduction to the spooling section of this chapter, from the 

security viewpoint the conventional spooling technique is far from ideal, be-

cause spooler software has the opportunity to see just about every interesting 

item of data in the system and make a secret copy of the juiciest bits for an un-

authorised user. Furthermore, because the spooler has to be able to access the 

files of many users, it is sometimes given a protection status that allows it unre-

stricted access in the file system, which means that it can even access files 

which it has not been asked to print. 

5.1 Checking the Right to Print 

The right to print a file is determined by the "metaright" print (see chapter 26 

section 3.3.1). However, unlike the generic rights (to which categorisation it 

ideally belongs) it is not immediately clear how this can be controlled. In the 

case of the normal generic rights (see chapter 16 section 3.2) the implementation 

is carried out by the Container Manager – a kernel co-module–, which is nor-

mally responsible for checking the generic rights. As so far described in section 

4 above, no module in the chain is a kernel co-module. How then can it be 

checked? 

Ideally it would be good to have the necessary check carried out as soon as 

the print request is made. The Print Request Module would be the ideal module 

to carry out the check, but this module is a normal user module, which in princi-

ple could be different for each user. Hence, although it can carry out a check of 
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the corresponding metaright in the capability for the file, this check could not be 

enforced. 

The Print Scheduler Module is the next module to see the capability for the 

file to be printed. In a multi-users system this module is not directly under the 

control of a particular user. In principle there is a separate (instance of a) Print 

Scheduler Module for each printer or group of equivalent printers, which must 

be used by all the users wishing to print a file on the printer(s) which it controls. 

Its independence of a particular user makes it a good candidate for carrying out 

checks which apply to the files of each user. Hence when a Print Request Mod-

ule passes a print request (including a capability for the file to be printed), the 

Print Scheduler Module should check whether the print right is set in the capa-

bility. 

The Print Scheduler Module thus becomes a kernel co-module, which is in 

any case appropriate for a module which carries out a scheduling task that arbi-

trates between users. When a printer is installed in a system the installation 

manager must allocate for it a Print Scheduler Module, a Printer Interface Mod-

ule and a Printer Driver Module. He must also provide and distribute capabilities 

for invoking these modules. (Without access to these capabilities a user cannot 

print files on the corresponding printer(s)). 

5.2 Securing the User's Information 

Except for the device driver, which will be considered shortly, no module in the 

SPEEDOS spooling system outlined above has any special privileges, e.g. ker-

nel capabilities (not even the Print Scheduler Module despite its status as a ker-

nel co-module). Spooling modules have access only to those files for which they 

receive a capability, and the only file capabilities made available to the spooling 

software are the individual files to be printed and capabilities allowing each 

module to call the next module in the spooling chain. 

Although the scenario outlined in section 4 ensures that all spooling opera-

tions are carried out in spooler threads owned and controlled by the user of the 

file to be printed, this does not eliminate all dangers. In particular the code mod-

ules which are used in these threads are potentially untrustworthy, unless they 

can be controlled by SPEEDOS security mechanisms. 

Hence there could be a danger that a module in the spooling system which 

contains secret code (e.g. a trojan horse) may attempt to copy or retain a print 

file capability for later use, or pass the capability or information in the file to a 

third party. So there is potentially both a capability revocation problem and an 
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information confinement problem to be considered
204

. 

The first security decision which the user has to make is to secure the capa-

bilities for 

– his print files, 

– the system modules discussed above, 

– the parameters passed to the spooler module. 

We now consider the security settings which should be applied in these capabili-

ties. 

5.3 Securing Print File Capabilities 

When an application initially calls the print request module, it provides a copy 

capability (not the original) for the file it wishes to have printed. At this point 

the user has the opportunity to tailor the rights in this capability to secure it from 

attacks. Here are some of the measures which might be taken. 

a) The Printer Interface and Printer Driver modules need direct access to the 

file's content. Hence the metaright permit_free_cap must be left set. 

However, no spooler module needs access to any of the semantic rights, so 

that the special setting 00 can be set in the semantic rights. This prevents 

any semantic routine from being invoked (see Chapter 26 section 3.1). 

b) The following further metarights could be unset: 

i) permit_duplicates:  if unset this results in each subsequent copy 

action becoming a destructive move, i.e. the source capability in each 

copy operation is invalidated, and therefore becomes unusable. This in 

effect revokes the capability at each stage of its transition to the driv-

er. 

ii) permit_read: unsetting this prevents the software in the spooling 

system from examining the capability. 

iii) permit_calls: unsetting this ensures that the software cannot in-

voke any semantic routines of the print file module. This is possible 

because the driver accesses the file not via a semantic routine but via 

direct access using a free capability. 

 These rights could be unset in all the metarights categories listed in chapter 

26 section 3.1.1. 

Notice that as the thread returns from the Driver, none of the modules to which 

the return is made have access to the capability, since the parameter segment in 

                                           
204

  Other potential dangers are that capabilities passed to the spooling system for printing 

might be used to alter or destroy their contents. These can be avoided by unsetting the 

"write" bit in the semantic rights. 
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which it is held is inaccessible after return instructions have been executed. 

5.4 Securing the Capability for the Print Request Module 

If the owner of a thread finds the system's standard Print Request Module satis-

factory then he will initially find this in the public software made available when 

his directories are created (see chapter 31, section 3.2.1). Alternatively he may 

choose to develop his own module or buy a module from a software vendor. 

He can then make a copy of the capability for this and has the opportunity 

to reduce the rights in it. In particular he could reduce the semantic rights such 

that modules executing in the thread can only call the module's semantic routine 

print (and any associated rights allowing him to check the progress of, or to 

delete, a print request (see section 4.8)). He can also reduce the metarights as he 

finds appropriate, e.g. by unsetting the rights: permit_file_copy, permit_

in_param_copy, permit_free_cap, permit_read, permit_dir, permit

_print
205
. 

He can then distribute the capability for use by modules in his thread(s) by 

following the same pattern as the distribution of capabilities for other standard 

modules (see chapter 19 section 5), i.e. a user wishing to print can use a kernel 

instruction to obtain the capability for the Print Request Module which the 

thread owner has set up for the thread. 

5.5 Securing the Capability for the Print Scheduler Module 

The possession of a capability for a Print Scheduler Module, which contains a 

scheduling algorithm associated with a specific printer, indirectly gives a user 

access to that printer. Consequently the system administrator will provide spe-

cific users with the capability. The recipient of such a capability will need a 

copy of this capability for each thread which he creates as a spooler thread. In 

the architecture proposed such threads are actually subthreads which are dynam-

ically created as demand dictates. This implies that the administrator cannot re-

strict the capability's metarights to once only use for the new owner. But if he 

allows unrestricted copying, he loses control over who can use the capability! 

To retain control, i.e. to prevent the recipient user from passing it on to other 

users, he can make a copy capability in which he unsets all the metarights for 

foreign owners
206

 and foreign node owners, as well as the read and print rights 

for the same owner, while leaving the remaining permissions for the same owner 

metarights set, but also unsetting all the once only permissions for the same 

owner. This alone would not solve the problem because the administrator would 

                                           
205

  This is not intended to be an exhaustive list. 
206

  Note that in this context "owner" does not mean the owner of a file, but refers to the 

source and destination segments in move or copy operation, see chapter 2 sect. 3.3.1.  
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still need to pass the capability to a different user. He then places the capability 

in an output parameter segment (to pass to the new user) leaving the once only 

permission for permit_out_param_copy set in the foreign owner section of the 

metarights. This allows him to transfer the capability to the new user, thereafter 

leaving the permit_out_param_copy unset. Thereafter the new user can only 

copy the capability between his own segments. 

The capability for the Printer Interface Module will be held in the constant 

segments of the Print Scheduler Module and will have been pre-secured. Simi-

larly the capability for the Printer Driver Module will be held in the constant 

segments of the Printer Interface Module and will likewise have been secured, 

so that the normal user cannot reach these directly. 

5.6 Securing the Confinement of Information and Preventing Unauthor-

ised Access by the Spooler Software 

Although the above metaright settings provide a strong measure of protection, 

they do not guarantee that either the capability for, or the information in, the file 

to be printed cannot escape to a third party. But unsetting confinement rights in 

the capability for the file to be printed cannot confine the spooling modules, be-

cause the effect of de-activating confinement rights specified in a capability only 

occurs when the capability is actually used either to make an inter-module call 

or as a free capability. But this implies that the capabilities used to invoke the 

spooling modules (rather than the file to be printed) can be used to restrict the 

confinement rights. 

5.6.1 Confining the Print Scheduler Module 

The Print Scheduler Module must be able to store the capability in its file data 

and pass it on to the Printer Interface Module. It requires no further facilities 

with respect to the capability. How might it illicitly make the capability availa-

ble to a third party? Here are its only possibilities: 

a) It might pass the capability as a parameter to an inter-module call, using a 

secret capability to make the call. 

 This can be prevented by ensuring that it cannot use a capability to make 

such a call. Hence the module call confinement rights permit_param_

calls, permit_nonparam_calls and permit_comodule_calls should 

be unset. 

 The right permit_const_calls must remain set to allow the Print Sched-

uler Module call the Printer Interface Module. We consider below how it 

can be guaranteed that there are no illicit capabilities in the constant seg-

ments of the module. 

b) A module executing in a different thread may call the Print Scheduler 
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Module (assuming the improbable situation that it can obtain a capability 

for this module), using a different (secret) semantic right which has a return 

parameter via which the print file capability is passed. This can be avoided 

by unsetting the Information Confinement Right permit_return_cap. 

Then there is the question: How might the Print Scheduler Module illicitly make 

the content of the file available to a third party? In order to do that it must be 

able to access the content. Since the capability for the print file itself is protected 

by the unsetting of permit_calls, access to its semantic routines is unavaila-

ble. The only possibility would be via access as a free capability activity (which 

implies knowledge of the internal file structure). However, this is easily pre-

vented by unsetting the right permit_free_cap (at all levels) in the capability 

used to call the Print Scheduler Module. 

5.6.2 Confining the Printer Interface Module and the Printer Driver 

Module 

Much of what was described in the previous subsection with respect to the Print 

Scheduler Module can be applied to the Printer Interface/Printer Driver. The 

fundamental difference is that these need access to the file content, so that the 

risk arises that these modules could leak the content of the print file. 

This can to some extent be avoided by unsetting the Information Confine-

ment Right permit_file (see Figure 25.1) in the capabilities used to invoke 

them. The effect of this is that they cannot have persistent data. In fact they do 

not need persistent data, because they have no need (according to their purpose) 

to store information persistently. The working space which they need can be 

provided in the temporary data that they can create and address via segment reg-

ister 4 (see chapter 18 section 5.1). This has the effect that they cannot keep cop-

ies of the file content after they have returned. 

5.6.3 How Can the Capabilities for the Spooler Modules Be Restricted? 

We have described the restrictions which might be applied to the capabilities of 

the Printer Interface/Printer Driver Modules, but this raises the problem that the 

owner of a spooler thread does not have direct access to these, because they are 

held in constant segments of the code modules of the Print Scheduler and Printer 

Interface Modules! How can these settings then be applied? 

The answer is straightforward. When a driver is introduced into the 

SPEEDOS system its owner is (or becomes) the system, and since it is in the 

interest of SPEEDOS to provide a very secure system the settings which we de-

scribed above can be applied by the system to the capabilities for the Printer In-

terface and the Printer Driver Modules. 

Furthermore such modules are thoroughly checked (e.g. using bracket rou-
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tines) to provide a further guarantee that they are secure from information leak-

age. Thus although the individual user, as a non-owner, cannot bracket these 

modules, he can rely on the system to guarantee their safety. 

5.7 A Concluding Note on Security Settings 

In this chapter I have concentrated on describing the most important security 

settings with respect to the management of spooling, but as a glance at chapters 

25 and 26 will show, I have by no means provided an exhaustive description of 

how all the security settings should be set in the relevant capabilities. 

Furthermore no attempt was made to illustrate the use of all the security 

mechanisms available in SPEEDOS. For example the special facilities provided 

by the Thread Security Register and those provided by bracket routines were not 

needed to solve the spooling issues and were therefore left unmentioned. That 

should not be taken as an indication that these mechanisms are unimportant or 

superfluous. Both of these are important features of SPEEDOS which have a 

significant part to play in solving security problems in many environments. 

6 Other Devices 

In this chapter we have concentrated on the spooling issue because it is more 

complex than most other security problems associated with the use of input-

output devices. This has allowed us to illustrate how security settings can be 

used effectively to prevent information leakage and other security problems. But 

at the same time it has allowed us to illustrate in a more positive sense how de-

vice schedulers and drivers can be organised at the operating system level. 

Of course, not all devices have been illustrated, but a general pattern has 

been supplied to cover other devices which may be spooled, such as graph plot-

ters and other drawing devices. 

Simpler devices, such as built in cameras and sound devices, will also need 

device allocators and device drivers and it is important that their use is restricted 

by using capabilities to restrict their use to authorised users/modules, but in a 

secure environment such as SPEEDOS offers, they should present no special 

problems. 
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Chapter 34 

A Secure Internet? 

 

At the outset of this chapter it must be clearly stated that there is no such thing 

as an absolutely secure Internet! And this remains true however many precau-

tions are taken. One reason for this will be explained in section 9. In this chapter 

we explore mechanisms whereby SPEEDOS computers can be made much safer 

than is often the case for users of the Internet. 

That current systems frequently fall victim to attacks from Internet hackers 

need hardly be said. But why? The heart of the problem is very simple to state. 

In order for a hacker to break into a system, he needs some way of executing his 

programs on the computer system which he is attacking. Why is this even possi-

ble? To answer this it is first necessary to have a basic understanding of the na-

ture of the Internet. 

1 The Basic Functionality of the Internet 

There are several layers of activity and protocols involved in sending messages 

across the Internet. We now briefly examine those which are relevant to 

SPEEDOS. 

1.1 Transmission Control Protocol/Internet Protocol 

The Internet is a vast collection of interlinked computers which can communi-

cate with each other by sending messages. The basic mechanism for doing this is 

called TPC/IP (Transmission Control Protocol/Internet Protocol)
207

, which con-

sists of two layers. The TCP layer takes a message intended for the internet and 

breaks it down into individual packets, and when these arrive at their destination 

the TCP layer at the receiving computer reconstructs the message from the indi-

vidual packets. When it receives a packet from the TCP layer for actual trans-

mission, the IP layer is responsible for actually sending this to the correct desti-
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  see https://www.hostingadvice.com/blog/tcpip-make-internet-work/ 
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nation. 

There are two kinds of computers on the Internet: routers and hosts. Host 

computers are end-user computers. Routers are responsible for passing commu-

nications from one to another until their destination can be reached. We need not 

be concerned with exactly how this works, except to say that every computer has 

its own address, known as an IP address. These are unique addresses, which for 

some computers are fixed, while others are dynamically allocated; they identify 

a computer's network interface and provide the location of the host on the net-

work
208

. 

Each packet contains the destination IP address and the number of the 

packet within the message; in addition it contains the packet content and other 

relevant information such as the IP address of the sending computer. But this 

alone is not sufficient to tell the receiving computer which of the many internet 

protocols the sender is using or which of its processes knows how to deal with 

the message, since the latter may provide several services. This brings us to the 

subject of ports. 

1.2 Ports 

In order that a receiving computer knows what to do with an incoming message, 

the message contains a port number
209

, which is a 16-bit unsigned number. The 

port number is used to identify a specific service on the receiving computer and 

when a message arrives for a specific port the corresponding service is activated. 

There are three ranges of port numbers. The "well known" (or system) 

ports are numbered in the range 0 to 1023. Then there are "registered" ports, 

which are numbered from 1024 to 49151; these are registered for use by specific 

users (especially firms). The use of these ports is controlled by the Internet As-

signed Numbers Authority (IANA)
210

. The remaining ports (49152 and greater) 

are known as dynamic or private ports
211

, which can be used by any Internet us-

er. 

1.3 Secure Transfers 

The most common way of attempting to provide security for internet messages 

is via the Transport Layer Security (TLS) protocols, which are the successor of 

the Secure Sockets Layer (SSL) protocols and are jointly referred to as TLS/
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  see https://en.wikipedia.org/wiki/IP_address 
209

  see https://en.wikipedia.org/wiki/Port_(computer_networking) 
210

  see https://www.iana.org/numbers 
211

  For an extensive list of port numbers see https://en.wikipedia.org/wiki/List_of_TCP_

and_UDP_port_numbers. 
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SSL.
212

 These protocols are encryption-based and also incorporate integrity 

checks (i.e. techniques such as checksums used to establish whether during 

transfer operations an attacker has modified a packet) in addition to a digital cer-

tificate. The latter, which contains the server's public encryption key, confirms 

via a 'certificate authority' that the server is secure. 

A secure connection is created via a 'handshake' between the client and the 

server, using the server's public key to agree on a symmetric key, which can then 

be used to pass messages via the secure connection. 

1.4 Email Protocols 

Emails are normally transferred between computers using the protocols SMPT 

(Simple Mail Transfer Protocol) and either POP3 (Post Office Protocol version 

3) or IMAP (Internet Message Access Protocol).
213

 

SMTP differs from the others in that it is used to send emails from an email 

client program to an email server (a computer which accepts, transfers, holds 

and/or sends emails). Such servers are typically on-line the whole time, in con-

trast with the computers of casual email users, which are often turned off at 

night, for example. Hence a user typically has his incoming email sent to an 

email server with which he is registered, and when he goes on-line his email 

program calls up incoming emails which have arrived at his server and thereafter 

at regular intervals until he goes off line again. The SMTP protocol, which uses 

port 25 (or port 465
214

), is responsible for managing incoming email messages to 

the point where they reach the destination server. Thereafter there are separate 

(alternative) protocols (POP3 or IMAP) which are used to transfer emails from 

the destination server to the client user's email program on his own computer. 

POP3 (Post Office Protocol version 3) allows a client to collect his emails 

from his email server usually on port 110 (or for SSL/TLS encrypted emails via 

port 995). It also deletes the emails from the server when they are downloaded; 

however, some versions allow a user can specify a period of time before the 

emails are deleted. 

IMAP (Internet Message Access Protocol) also allows a client to retrieve 

his emails from his server. The main difference between this and POP3 is that 

IMAP does not implicitly delete emails from the server. This makes it better to 

use in situations where a user regularly accesses his emails from more than one 

device. IMAP also allows folders to be created on the server and to be searched, 
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  see https://en.wikipedia.org/wiki/Transport_Layer_Security, which provides details of 

TLS/SLL mechanism. 
213

  see https://www.jscape.com/blog/smtp-vs-imap-vs-pop3-difference 
214

  Port 465 is a 'secure' port which uses encryption; it is sometimes known as SMTPS. 
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etc. It uses port 143 by default and for a secure version uses port 993.
215

 

1.5 HyperText Transfer Protocol 

There are many protocols for sending messages across the Internet, the most 

popular of which is probably HTTP (HyperText Transfer Protocol), which is 

best described as a request-response system
216

. The normal HTTP port is port 

80, while HTTPS port 443 is used for secure (encrypted) HTTP messages. A 

host computer sends an HTTP request across the network, and this is delivered 

to the computer with the corresponding IP address. The recipient then deals with 

the request and responds to it by sending a reply message over a port which is 

specified in the original message. 

1.6 Domain Name System 

In order to simplify the management of IP addresses, which are 32-bit numbers, 

a database called Domain Name System (DNS) exists which translates ASCII 

strings into IP addresses. This is used for example to translate email addresses 

and web page addresses into IP destinations. 

1.7 World Wide Web 

Websites are domains on the World Wide Web (www) which are addressed by 

URLs (uniform resource locators) that can be thought of as the addresses of in-

dividual web pages. A URL normally consists of an Internet protocol name 

(usually, but not always, http or https) followed by the symbols :// and then a 

DNS name (of the host computer), optionally followed by a / separator and the 

name of the web page to be displayed (e.g. https://www.jlkeedy.net/biography. 

html). If a URL is used without specifying a web page, then the start page of the 

domain is assumed. 

When a client computer wishes to connect to a web page the browser of the 

client computer first obtains the corresponding IP address for the website from 

the DNS data base then connects to the requested port (e.g. port 80 for http) of 

the website (the server). When a TCP connection has been made the client then 

requests the specific page, which the server then supplies and the connection is 

released. When the browser receives the page from the server website, it dis-

plays this at the client computer. It can then typically obtain a further URL from 

the web page and activates this in the same way, and so on. 
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  see https://www.jscape.com/blog/smtp-vs-imap-vs-pop3-difference 
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  see https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics

.html 
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1.8 Hypertext Markup Language 

The Hypertext Markup Language (HTML) is a standard language used for creat-

ing web pages. It describes how a web page can be displayed as part of a web-

site by following instructions contained in tags which describe structural ele-

ments of the page, such as a page's title and subtitles, images and videos to be 

displayed, etc.
217

 These may involve downloading further information such as 

files, images and videos. 

Programs can be embedded in the HTML. These are written in scripting 

languages
218

 (often interpreted rather than compiled, such as JavaScript
219

). They 

can be used, for example, to allow the user to interact with the web page. 

The presentation of documents can be separated from their contents by us-

ing a style sheet language
220

 such as CSS (Cascading Style Sheets)
221

. Using 

CSS technology the same content of a web page can be presented in different 

ways, e.g. different layouts, colours and fonts, and/or for different display devic-

es, e.g. visual display units, smartphones, tablets. 

1.9 The Cloud 

Perhaps the best way to understand "The Cloud" is simply to regard it as the In-

ternet. "Cloud computing" means accessing your data or your programs over the 

Internet. Large companies have developed business models (e.g. Software-as-a-

Service
222

) in which businesses subscribe to application programs over the In-

ternet (and pay fees for this). There are lots of business models which in effect 

mean that you put your data, your programs, your internet bandwidth and your 

trust in the hands of large companies, which make you pay handsomely for it. If 

you want to know more I suggest that you begin by reading the Wikipedia arti-

cle "Cloud Computing"
223

 (especially the sections "Security and privacy" and 

"Limitations and disadvantages") and also the PC Mag article "What is Cloud 

Computing?"
224

 (especially the section "Arguments Against the Cloud"). 

This (oversimplified) description of basic Internet mechanisms should be 

sufficient to understand how SPEEDOS deals with basic Internet issues. The list 

of protocols described in this section is not necessarily complete (from the 
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viewpoint of relevance to SPEEDOS). Other protocols, such as FTP
225

, may also 

be relevant, and can easily be fitted into the architecture described in section 3 

below. 

2 Browsers 

Browsers are standard programs which are notoriously insecure but which play 

an essential role in conventional systems. Their main functions are to assist the 

user 

• to activate internet requests which the users specify and 

• to display the results of these requests, 

with the aim of shielding users from the low level details of accessing the Inter-

net. These two related activities, together with email, represent the main modus 

operandi of Internet use for most users. 

2.1 Browsers and Malware 

The main problem with browsers for normal computer users occurs in connec-

tion with the browser's second function, displaying the results of requests. This 

corresponds to the response stage of HTTP requests, sent in reply to a request 

from the user (which normally takes the form of clicking on text on the web 

page). It might for example involve displaying a text file or other file, e.g. a PDF 

file, or it might involve playing an audio file, displaying a video file or a spread-

sheet, etc. The heart of the problem appears to be that browsers need access to a 

variety of programs to allow these files to be displayed and to implement this 

need they typically allow plug-ins
226

 and other browser extensions to be used to 

supplement the functionality of the browser; for example different plug-ins pro-

vide the functionality to display the various kinds of file on the user's screen. 

While this may appear to be advantageous (by allowing the browser to be 

customised and extended), it also has a dark side, since users who use plug-ins 

to customise their browsers are in effect placing their trust in the code of these 

plug-ins, which often have access to "sensitive data, such as browsing history, 

and have the ability to alter some browser settings, add user interface items, or 

replace website content... There have also been cases of applications installing 

browser extensions in a sneaky manner, while making it hard for the user to un-

install the unwanted extension".
227

 

The plug-ins may include mechanisms which display adware, i.e. software 

which generates advertisements that appear alongside the intended information 
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display. Sometimes the adware may appear in a window that cannot be closed, 

which is particularly annoying.
228

 

Cookies
229

 are small files which are placed on the user's computer when he 

visits a website. They are included in the discussion of browsers because it is 

browsers which provide the facilities for websites to store cookies. Like plug-

ins, cookies can have a useful purpose (e.g. they can store information allowing 

hosts to log in to a website, they can store user preferences, they can allow web-

sites to personalise their content), but they can equally be used for malicious 

purposes (e.g. some cookies, known as trackers, can be used to track the sites 

which hosts visit on the web)
230

. In the words of PC World, cookies can "hide in 

your computer so that your browser and websites can track your browsing ses-

sions and save certain useful information, such as account names and passwords, 

for later retrieval. Although cookies may seem harmless overall, they can threat-

en your privacy if an attacker tries to use them maliciously."
231

 

Supercookies and Zombie Cookies
232

 are pernicious extensions of the cook-

ies idea which use storage space outside of the normal cookie storage in brows-

ers to store cookie-like information, especially tracking information, often in 

multiple locations, to ensure that the usual browser cookie deletion mechanism 

cannot delete them. If an advertiser discovers that his tracker information has 

been deleted from a location he can restore this by copying it from another loca-

tion. 

2.2 Browsers and SPEEDOS 

In principle the first function of browsers (the activation of internet requests) 

should be entirely superfluous in SPEEDOS, since the standard ways of access-

ing other SPEEDOS nodes (i.e. Internet requests) are as described in chapter 28 

(i.e. via remote inter-module calls) and in chapter 29 (via download and upload 

operations). However, at least until SPEEDOS becomes widely used, many us-

ers are unlikely to willingly forgo the use of the millions of websites which al-

ready exist in the World Wide Web. Therefore section 4 describes a SPEEDOS 

alternative to conventional browsers, which can access websites. 

An important ancillary service provided by browsers, maintaining "book-

marks", should similarly be completely unnecessary since in SPEEDOS terms 

these should be nothing other than module capabilities via which remote inter-

module calls can be activated. Since these can be stored in normal SPEEDOS 
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segments (and therefore directories), there should be no need for special lists 

with separate list management facilities as are found in browsers. In fact this is a 

more natural alternative for bookmarks, since the capabilities can be stored 

alongside other relevant information related to a remote site or to the user's 

work, rather than separately in a browser. Furthermore SPEEDOS capabilities 

have the advantage over bookmarks that they contain access and other usage 

rights which enhance privacy and security. Nevertheless we consider in section 

3 how "bookmarks" can be maintained for websites in a SPEEDOS context. 

We therefore conclude that browsers in the conventional sense should not 

be needed in a SPEEDOS environment. But of course that is not the same as 

saying that existing websites and otherwise useful aspects of the Internet can 

simply be ignored. 

In the following two sections we consider how websites and email designed 

for a SPEEDOS environment can function. Then we consider how users of 

SPEEDOS systems might take advantage of existing Internet facilities. There-

after we look at the implications of providing Internet support for the SPEEDOS 

kernel and review protection aspects of the proposed design. 

3 Implementing SPEEDOS Websites 

In chapter 28 a mechanism was described whereby a user sitting at his own 

computer (the client side) could activate a "call back" module which might then 

invoke a remote inter-module call (RIMC) via a capability that gives access to a 

remote (server side) module, e.g. a website which has been designed as a 

SPEEDOS website. This can in return use a call-back call (CBC) to a routine of 

the client side call-back module (which is waiting for information to display, 

e.g. a page from the website)
233

. The user might then choose to initiate some ac-

tivity enabled by the webpage (e.g. select a file to download or activate another 

web page). In SPEEDOS the way in which this is done is determined by the 

page design, which might, but need not, offer facilities that resemble those used 

in conventional browsers. The decision on how the display works is not limited 

to browser-like facilities such as a typical website download mechanism or se-

lection of a URL. Rather the design is entirely in the hands of the programmer of 

the call-back module and its remote partner. 

When the call-back call exits, it returns the user's request back to the web-

site call-back module at the server side. The website module then examines the 

returned information, completes the required action(s) and issues a further call-

back call to provide and as appropriate display the results. This pattern of call-
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  How a SPEEDOS user can obtain a call-back module and a capability for this is de-

scribed in chapter 35. 
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back calls continues until the required action is to terminate the session. 

Hence a SPEEDOS website designer has a choice between using HTML 

(with or without JavaScript) or using a quite different technique. 

SPEEDOS websites are discussed in more detail in chapter 35. 

4 Email in SPEEDOS 

Chapter 31 sections 5-9 described how a primitive email system could be devel-

oped in SPEEDOS environments simply by using SPEEDOS directories and 

capabilities. The basic principle is that capabilities for messages can be passed 

from a sending user to a designated mailbox directory of a receiving user. If he 

chooses, the receiving user can then use the capability to view (or copy/down-

load) the message. For emails between users at the same node the mechanism is 

straightforward. If sender and recipient are at different nodes the sender of an 

email can acquire a capability for the public mailbox directory (PMD) of the 

remote node and thence the mailbox of the intended recipient, which he can then 

store for future use. 

To simplify the discussion emails in current systems are referred to simply 

as "emails", whilst emails in a SPEEDOS system are designated as "S-mails". 

4.1 Delivering S-Mail 

Provided that a receiving user's node is on-line at the time an S-mail is sent to 

him, delivering the S-mail is not problematic and simply involves an inter-

module call (local or remote) to the receiver's mailbox, but if it is not on-line the 

receiver's mailbox cannot be accessed. The solution in current systems is to use 

mail servers, which are permanently on-line (see section 1.4). 

An alternative solution might be to delay the sending of the email until the 

node comes on-line. Is this viable? In some cases this would be acceptable, but 

not always. For example if a user in England is trying to send a message to a 

contact in New Zealand, there is a time difference of 13 hours, so that normal 

users will rarely be active at the same time in both countries. This would make 

the delivery and receipt of S-mails an irritating and uncertain activity. 

But delaying the sending of messages is not the only alternative. Another 

possibility is to send the message in stages via intermediate SPEEDOS nodes. 

How might this look in practice? The answer is: very difficult, because the S-

mail (a capability) is inserted into the mailbox via an (in this case remote) inter-

module call, rather than being transferred as a file! 

In fact the last point makes clear that S-mail, as so far described, is quite 

different from email in its mode of delivery. We now consider this in more de-

tail. 
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4.2 S-mail by Remote Inter-Module Call or by Content 

Current systems deliver mail by sending the content of the email, whereas S-

mail, as described in chapter 31, uses remote inter-module calls to directories. 

But as we just saw, that can lead to a problem when attempting to deliver email 

to a node which is not on-line. 

In fact this issue applies in principle not only to sending S-mail but also to 

the uploading of files (as described in chapter 29 section 3.2); otherwise the so-

lution could have theoretically been to upload S-mail in such circumstances. But 

whereas under normal circumstances the uploading of files is unproblematic, 

because it usually takes place in the context of website activity (where both 

nodes are normally on-line at the time of an upload request), this is not the case 

with S-mail. 

Chapter 28 section 8 introduced the idea of permanently on-line SPEEDOS 

directory nodes to allow a node's kernel network process to locate other nodes. 

Such nodes can also function as S-mail servers for the case that an S-mail desti-

nation node is not online. To achieve this efficiently, the sending node uploads a 

container which holds the content of an S-mail to the directory node associated 

with the destination node of the S-mail. If necessary this then further uploads it 

to another directory node, etc., until the directory node of the recipient has re-

ceived it. When the destination node then comes on-line it not only advises its 

directory node that it is on-line, but also asks how many S-mails it is holding for 

the node. It then requests these to be uploaded one by one to the destination 

node, with details of the intended recipient. An email client node can also con-

tact its directory node from time to time to check for the arrival of new emails 

(automatically in an enhanced system). 

4.3 Appearance of S-Mails 

Current email schemes produce an email with standard information and text. No 

such scheme was suggested for S-mails. However, the scheme outlined in chap-

ter 31 is intended only as an outline proposal. If operating system designers feel 

it appropriate or necessary to imitate the standard scheme or to produce an alter-

native, this path remains open for them. However, it would be very regrettable if 

the basic idea of using ordinary SPEEDOS directories as the basis of an email 

scheme were to be abandoned, since this brings with it considerable simplicity 

in the implementation, and in addition it allows standard SPEEDOS utilities 

such as search facilities (which, as pure application programs, are not presented 

in this book but which are of course necessary) to be used on all directories, 

whether or not they contain S-mails). 
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4.4 S-Mail Security 

Emails in current systems are not very secure. One issue is that by default they 

are not encrypted, though it is possible to use secure ports. This is not the case in 

SPEEDOS, since all SPEEDOS messages sent across the Internet (including the 

initiation of remote inter-module calls needed to place S-mail in remote directo-

ries, and the uploading of S-mails to SPEEDOS directory nodes) are encrypted. 

A further problem with SMTP transfers is that there is no check on the le-

gitimacy of the senders of emails. The result is that it is easy for spammers to 

send unwanted emails, some of which may be malicious. With the directory-

based S-mail approach the basic mechanisms used not only always uniquely 

identify the sender of an S-mail but also make it possible for mutually suspi-

cious users to be sure about the sender and the receiver of a message, as is de-

scribed in chapter 31 section 7. 

In order that this level of security is maintained where S-mail is sent via 

SPEEDOS directory nodes the message must be accompanied by the unique 

identifiers of both sender and recipient of the message. 

4.5 S-mail Attachments  

In a conventional email system one of the features often used is the ability to 

attach files to an email. Chapter 31 did not explicitly describe how this can be 

achieved in S-mail systems, but there are two obvious ways to do this. 

First, each attachment could be entered as a separate entry into the receiv-

er's mailbox, if appropriate giving it a name such as "attachment 1 to email x". 

Second, the directory structure described in chapter 30 serves as an exam-

ple, but should not be regarded as definitive. Any user (at least in a system in 

which the access rights are discretionary
234

) can define a directory system which 

suits his purposes (because he can define segments which include capabilities). 

This raises the possibility that a directory structure can be defined in which each 

entry has as an additional possibility for storing several capabilities (either in a 

fixed number of slots or as a linked list), the first of which is intended as the ac-

tual S-mail and the remaining for attachments. 

5 A SPEEDOS Architecture for Managing Conventional Internet 

Activities 

At this point we turn to the situation in which SPEEDOS users would like to 

take advantage of Internet facilities which are only available in a non-SPEEDOS 

environment. This approach is based on two principles. First, the kernel should 

have only a minimal involvement in the activity, and second, measures should 
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  see chapter 2 section 3.6 and chapter 36. 
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be adopted to ensure that a high level of protection is provided to safeguard both 

the rest of the SPEEDOS system and the module/thread which carries out the 

internet activity itself. 

The basic idea is based on the normal SPEEDOS in-process/inter-module 

call mechanism. Some user threads are authorised to access certain non-

SPEEDOS protocols. The permission to access a particular protocol or group of 

protocols is based on the possession of a capability authorising the user to access 

one (or more) of a restricted set of System Internet modules, which serve as a 

protected environment, in Internet jargon a "sandbox"
235

 (see Figure 34.1). 

 
These have all the SPEEDOS protection mechanisms at their disposal to 

isolate them from the rest of the SPEEDOS system. Such modules can for ex-

ample be severely restricted by bracket routines, as will be described below. 

These requests are then passed on to a firewall module, which has a separate 

interface routine for carrying out separate checks on requests for the various pro-

tocol groups supported. These routines also examine and if necessary block the 
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  see https://www.computerhope.com/jargon/s/sandbox.htm 

Figure 34.1: A SPEEDOS Internet Architecture 
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results from the Internet when a response to a request is returned back through 

the firewall. 

Figure 34.1 illustrates this arrangement by two example modules, webmod 

and mailmod, which are described in more detail below, allowing users to ac-

cess non-SPEEDOS websites or mail servers. Such modules will always be sin-

gleton file modules which register details of users, including their unique 192-bit 

SPEEDOS identifiers. These modules can also note users' preferences, maintain 

other relevant security information and prepare (e.g. by calling the DNS data-

base) and carry out individual user Internet requests. 

If all is well, the firewall uses one of the kernel instructions provided to 

support the different protocol groups. The kernel issues the appropriate Internet 

request, causes the user thread to be suspended and passes a message to the ker-

nel's listener process to listen for a reply. 

When a reply arrives, the listener passes this back to the suspended thread 

and causes the latter to be re-activated. The reply then gets passed back to the 

firewall module, which carries out its checks; if all is well it then returns the 

reply back to its caller (e.g. webmod or mailmod) which may carry out further 

(e.g. user related or protocol specific) checks and where appropriate displays the 

results (e.g. by interpreting HTML) on the user's monitor. In this sense the Sys-

tem Internet modules serve a function similar to that of browsers and/or mail 

programs. 

This general architecture can be used to define any approved Internet ac-

cesses, while the details may vary from case to case. In the following we first 

explain the two examples (websites and email). Then we provide further details 

of the kernel mechanisms and consider the protection aspects in more detail. 

6 Accessing non-SPEEDOS Websites 

In current systems websites work hand-in-hand with browsers, which display 

their results, returned in the form of HTML. This can introduce security risks. In 

particular it is possible to insert interpreted code into a web page, e.g. using Java

Script. In the words of the 'Computer Hope' website, "Because JavaScript is 

downloaded from an unknown origin and executed on your computer, Java-

Script could have the potential of being a virus or doing other malicious things 

to your computer."
236

 This risk should clearly be avoided in SPEEDOS. The ide-

al situation, from a SPEEDOS viewpoint, would be for all websites to be de-

signed as SPEEDOS websites. But that is obviously unrealistic. 

The webmod module offers an interface routine which makes contact with a 
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conventional website. As its main parameter this has a character string in the 

form of a URL (see section 1.7) such as https://www.jlkeedy.net/biography.html. 

Like other SPEEDOS modules this is called using a normal (local) IMC. 

Once activated, webmod establishes the website's IP address by activating a 

request to the DNS database and subsequently uses this to request a web page, 

using the appropriate protocol (e.g. http or https) indicated in the URL. 

When the webpage arrives, webmod obtains the device capability for the us-

er's screen in the usual way and then creates a new window by calling the graph-

ical library routine createWindow (see chapter 32 section 4.4.3.3). It then reads 

the HTML from its buffer, using a reliable HTML interpreter to display the re-

sults on the user's new web page window. Thereafter it reacts to mouse clicks 

until the user activates a further URL embedded in the HTML. In this case the 

webmod module services this call in the same way as the initial URL. When the 

user closes its last window, the webmod module exits. 

6.1 Cookies 

In principle a cookie is nothing more than a small file. The risks arise because 

unscrupulous websites can use them in an uncontrolled way and because they 

are not normally visible to the user on the computer which hosts them. They can 

for example store personal information about a user, garnered from the use of 

their own website and sometimes from other websites. They can also be used to 

introduced viruses and other malware (e.g. spyware) into the host's computer. 

Why then are cookies tolerated? The primary answer
237

 is that websites 

need to store information during a user session to help them to relate requests to 

each other. For this reason cookies hold a "session id" and are passed backwards 

and forwards between user and website server with every HTTP request over the 

course of a session. This is necessary because the Internet as such (and HTTP) is 

stateless. The length of a cookie is limited to 4 KB to keep the level of traffic on 

the Internet reasonably low. A domain can have up to 20 cookies, which can be 

read and modified at both the server side (i.e. the website software) and the cli-

ent side (i.e. the browser). 

Cookies are managed at the client side by JavaScript (in conjunction with 

the local browser). Each cookie has an expiry date, which can be set in the 

HTML. If no date is set then it is deleted when the browser closes. But cookies 

can outlive browser sessions; this means that a website can leave data on the cli-

ent side, which might for example contain registration details for the website. 

These reasons for cookies make good sense, and to allow SPEEDOS users 
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to take advantage of non-SPEEDOS websites they should be supported by the 

webmod module. But the problem is that in conventional systems there is no con-

trol over what is stored at the client side, and the owner of the client node cannot 

examine this, although his browser will probably delete cookies on request. 

It is therefore suggested that cookies be maintained in webmod as small 

SPEEDOS files associated with the webmod registry, and that transparency is 

achieved for end users in that an interface routine is supported which allows the 

registered user to read (but not write) cookies, providing him with a capability 

for the cookie with the access rights set for searching, for reading and for delet-

ing the cookie. However he should not be given write access to the cookie, since 

this would enable him to cheat websites. It is of course part of the job of webmod 

to attach the content of a cookie to each user's webpage request and to update 

the cookie when a response is received. The system can set Thread Security 

Register restrictions and add call-out bracket routines to ensure that cookies are 

not used as platforms for launching malware. 

7 Email Programs 

Emails have become a standard mechanism for communicating between users of 

the Internet and must of course be provided in SPEEDOS systems. 

7.1 Current Email Programs in Current Systems 

In current systems email has developed into a quite sophisticated system, organ-

ised by application programs which deliver the email to users and assist them in 

receiving email, sorting it into email folders, etc. In my view such programs are 

unsatisfactory in the sense that they duplicate many functions of an operating 

system and thus make it difficult to integrate emails (which are nothing other 

than files uploaded and downloaded between users) into the general work of the 

user. Put simply a user normally places all the (non-email) documents relating to 

a particular event or task, etc. into a single directory (possibly with further sub-

directories), but because email is organised as a separate activity with its own 

filing system one ends up with parallel but formally unrelated directory systems. 

Furthermore general purpose utilities, such as search programs, often cannot be 

used in the context of the data associated with email programs. 

7.2 Using Conventional Email in SPEEDOS Systems 

Presumably SPEEDOS users will want to communicate by email with non-

SPEEDOS users. This can be implemented as an option, but those who use the 

mechanism which I now present should be aware that in doing so they open 

themselves up to risks which do not arise normally in SPEEDOS systems and 

therefore that wherever possible they should use S-mail. 
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Rather than using a conventional style email program, the intention is to 

provide a simple mechanism which simply allows conventional mail to be sent 

and to be received by SPEEDOS users. Its aim is not to provide a separate man-

agement system for mails by providing its own folder system
238

, etc. 

7.2.1 A SPEEDOS System Internet Mail Module 

A SPEEDOS mail module, mailmod, needs three basic semantic routines. 

a) A mailRegister semantic routine, which allows a user to apply for regis-

tration with mailmod. This accepts as parameters: 

– a string containing the email name (i.e. the part preceding the @ sym-

bol) to be used by the sender; and 

– a capability for a directory into which arriving emails should be saved. 

 After carrying out appropriate checks (e.g. that the thread security register 

permits external emails or, in a mandatory system, that the email name con-

forms with conventional standards, that the user meets criteria set by the 

system manager), the identifier of the calling thread's owner is established 

by calling the kernel instruction current_thread_owner (see chapter 26 

section 1). The email name and the unique identifier of the user (i.e. the 

value returned from the kernel call) are entered into a list for use when a 

user attempts to send or receive emails. A user can register multiple email 

names. 

b) The sendMail semantic routine accepts as parameters 

– a text file containing the body of the mail; 

– a list of capabilities for attachments to the mail; 

– a string containing the email name used by the sender; and 

– a list of strings containing the email addresses of the recipients. 

 It creates an email in standard conventional form from this information and 

sends it to the recipient, using the SMTP protocol. 

c) The receiveMail semantic routine accepts as parameters 

– a return parameter indicating the number of attachments received; 

– an indication how many further emails are waiting for the user. 

 It accepts emails in standard form from a normal email server (using POP3 

or IMAP) and converts each email which it has received into a SPEEDOS 

file, then places a capability for this in a directory provided (as a capability) 
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by the user when he registers his email name with the mail program. 

8 Kernel Mechanisms for Accessing the Internet 

This section describes how the kernel handles Internet requests (including those 

from the network process, from the mailmod module and from the webmod 

module). 

8.1 Handling Requests from the Network Process 

The kernel network process at a SPEEDOS node (see chapter 28) sends and re-

ceives encrypted messages via the Internet to and from other SPEEDOS nodes. 

For this purpose it uses two as yet undefined ports, but the encryption is carried 

out not as part of the port definition but as described in chapter 28. It uses 

asymmetric encryption to allow 2 nodes to agree on a common symmetric en-

cryption key, or for short messages it simply uses the asymmetric keys, using 

the TCP/IP transfer protocol. 

8.2 Listening for Messages from another SPEEDOS Node 

At each node a kernel Listener process listens continuously for messages from 

other SPEEDOS nodes, and when it detects one, it checks the authenticity of the 

message. Authentic messages received on the SPEEDOS receiving port are 

transferred by the listener process to the network process, using the normal in-

ter-communication mechanism provided by the SPEEDOS kernel's process 

scheduling mechanism (see chapter 22 section 7). 

8.3 The Listener Mechanism 

The Listener process is the lowest priority kernel process, i.e. the process which 

in chapter 22 was called the 'idle' process. This listens continuously on the in-

coming SPEEDOS port for the arrival of SPEEDOS messages but also on a 

round robin basis for other messages which it is expecting. The latter are listed 

in its Listener Table, which contains a list of all the expected message arrivals. 

Entries in the Listener Table hold the number of the port on which the mes-

sage is expected, a further identifier to allow it to be distinguished from other 

messages arriving on the same port and a thread capability for the waiting 

thread. The latter is used to re-activate the waiting thread when a reply is re-

ceived. 

All other ports are kept closed, since the SPEEDOS Internet facilities only 

request information from other Internet sites (except other SPEEDOS nodes). 

9 Protecting SPEEDOS and Its Users from the Internet 

In this section we describe some precautions provided to help protect SPEEDOS 

and its users from the usual Internet problems. 
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9.1 Kernel Instructions 

To communicate with the Internet the webmod, for example, executes the privi-

leged kernel instruction web_request (or other correspondingly named kernel 

instruction). Its constant segments hold a kernel capability which allows it to use 

this instruction. (By providing a separate kernel instruction for each protocol 

group, more protection is achieved, and individual instructions are kept simple.) 

In the case of web_request this takes as operands the IP address, the port num-

ber and the requested webpage. This instruction causes the thread to be suspend-

ed awaiting a response from the website. When the response arrives, the listener 

process passes the HTML page back to the requesting thread and causes the 

thread to be reactivated. 

The module mailmod uses two similar kernel instructions mail_request 

and mail_send in order to request and to send emails, which are also protected 

by two (separate) kernel capabilities. In both cases the calling program must 

supply an IP address and the port number. In the case of mail_send the kernel 

expects as a further operand the mail to be sent. And in both cases the calling 

thread is suspended. When the corresponding replies are received the kernel 

makes these addressable and causes the waiting thread to be activated. 

Kernel capabilities for kernel Internet instructions are only issued (in the 

constant segments of the program code) to the respective modules. Notice that in 

a multi-user system each user could be provided with a separate instance of the 

file module, but the mail registration module should a singleton module (be-

cause the list contains entries for multiple users), a capability for which could be 

embedded in the individual file instances of the users. 

The kernel instruction dns_request can be used by these modules to ac-

cess the Domain Name System database. 

9.2 Managing the Lengths of Messages Received over the Internet 

The length of the information returned from an Internet request is variable and 

might be quite long; the actual length is returned to the user at a fixed position in 

the segment addressed by segment register 15, which holds the operands for 

kernel instructions (see chapter 17 section 6). To avoid the inefficiency of trans-

ferring long messages as return parameters from the kernel or from one inter-

module return to another the following mechanism can be used. 

For all returns from calls which are Internet-related (e.g. calls from mod-

ules such as webmod, mailmod and firewall) and for related kernel instructions 

(e.g. web_request, mail_request, dns_request) segment register 14 is 

used to address a large segment (created by webmod, mailmod and similar) 

which is used as a buffer by the listener to accept Internet messages for the 
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thread concerned. The access rights of segment register 14 are set to read-only 

by the listener after reading in the message. Segment register 14 is stored and 

reloaded as with normal thread switches, but on inter-module calls and returns 

this register remains unchanged by calls, returns and kernel instructions if a spe-

cial code is set at the bottom of the thread's stack. There is a protected kernel 

instruction fix_sr_14, which sets or unsets a code (depending on the setting of 

a boolean parameter for the kernel instruction). The code is checked as part of 

calls, returns and kernel instructions to determine whether segment register 14 

should be invalidated or not (in contrast with the normal IMC mechanism which 

invalidates all segment registers except registers 0 and 1 on inter-module calls 

(see chapter 20 section 8.1). 

9.3 Security Measures 

All the SPEEDOS protection mechanisms (e.g. module capabilities with re-

stricted access rights, the thread control register, environmental control instruc-

tions and bracket routines) can be used to safeguard the use of the Internet. 

But above all, the listener keeps only the necessary ports open for accessing 

mail and websites and special (protected) kernel instructions are used to access 

the Internet from outside the kernel. It ignores any messages on other ports. 

We now look at some specific examples of how security measures can be 

taken. 

9.3.1 Protecting Access to the Internet 

Leaving aside the kernel processes themselves, users can only gain access to the 

Internet via System Internet modules such as mailmod and webmod. Access to 

these programs in each case requires an appropriate capability, which is initially 

under the control of the administrator of a node
239

. He can determine which oth-

er users, if any, can obtain a copy, and these must all call the firewall module 

to access the Internet. They obtain a copy of the necessary capability for calling 

firewall from within their own constant segments. These capabilities have in-

dividual access rights to different routines of firewall, tailored according to 

the needs of their own functionality. Only firewall has a kernel capability 

(embedded in its constant segments) which gives it the right to execute the spe-

cific kernel Internet instructions. 

The code capabilities for the System Internet modules can be used as a ba-

sis for creating "file" instances (see chapter 19 section 7), which can contain 

persistent data that records information such as registration details of users. (In 

reality only a singleton module is required for some Internet applications, in 

                                           
239

  At a single user node this is of course the user who owns the node. 
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which case normal users only need a capability for the appropriate singleton 

module.) 

9.3.2 Thread Security Register Settings 

To cover the use of the Internet the TSR includes thread control rights allowing 

its use (see chapter 26 section 4.1). These are separate rights for calling web-

sites, mail, FTP and other Internet operations), which are checked by the kernel 

on inter-module calls but also can be checked by the registration module and by 

the kernel instructions. There is one special rule: if a System Internet module is 

called and the thread is neither already registered with its Internet activity group 

nor is currently being registered, that System Internet module unsets the corre-

sponding rights in the TSR. Thereafter that group of Internet operations cannot 

be used by the thread. 

The effect of this rule is that only registered threads can access the Internet. 

9.3.3 Bracket Routines 

Bracket routines (which from the standpoint of Internet activity can be thought 

of as private firewalls for individual modules) can be used by the system for a 

number of purposes, e.g. as a revocation list, which holds the unique identifiers 

whose right to use the Internet have been revoked. 

Another use of bracket lists could be to hold a list of website URLs; it 

could contain a list of websites etc. which have been disallowed because they 

are known to be dangerous
240

. This would be applied as a set of call-in bracket 

routines which check the parameters supplied to mailmod or webmod, etc. 

Possibly the most important form of bracketing would be the use of call-out 

brackets on the System Internet modules and firewall to ensure that if these 

modules are in some way penetrated, the attacker could not activate new mod-

ules of its own devising or penetrate other SPEEDOS modules. The output re-

turned to a caller of these modules should also be checked by call-in brackets to 

ensure that capabilities, for example, could not be passed. 

There are certainly several other uses to which bracket routines could be 

put, but there is one problem which they cannot directly solve, i.e. checking the 

results which are returned from the Internet, because this involves executing 

kernel instructions rather than making inter-module calls. We now consider this 

issue. 

                                           
240

  A mechanism could be devised to allow SPEEDOS nodes to share information about 

dangerous websites, etc. 
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9.3.4 Checking Information from the Internet 

Information from a website comes in 2 basic forms: as HTML or as a download-

ed file. It is of course important to check that such information does not have 

dangerous content, such as viruses and the like. It is not the function of the ker-

nel to carry out such checks. Rather, this is primarily the responsibility of the 

firewall module. 

9.3.4.1 The Firewall Module 

The firewall is responsible for checking all internet content which arrives 

from the normal Internet (excluding transfers between SPEEDOS nodes), in-

cluding cookies. 

The interface routines used by the System Internet modules to call the 

firewall module correspond to the kernel's Internet instructions, i.e. there is an 

interface routine webrequest (corresponding to the kernel instruction web_

request), an interface routine mailrequest (corresponding to the kernel in-

struction mail_request), an interface routine mailsend (corresponding to the 

kernel instruction mail_send), etc. These routines accept the corresponding In-

ternet requests, carry out checks on them and if these checks are successful, each 

routine uses the corresponding kernel instruction to activate the Internet. When 

it returns, it uses segment register 14 to address the response from the Internet 

and to check its content. If all is well it returns to its caller in the normal way. 

However, if it detects a serious problem it raises an error exception. 

Perhaps the most serious risk is that JavaScript could be used in an attempt 

to attack the rest of the system. It is therefore especially important that checks 

should be included in the firewall module, but also in the modules which inter-

pret JavaScript to ensure that any such attack can be contained, e.g. by the use of 

call-in and call-out bracket routines. 

One reason for placing the firewall outside the kernel is that from time to 

time it will need to be updated. One possibility for simplifying the update activi-

ty would be to put the updates into a file which it accesses as part of its work. To 

reduce the risk that this file is broken into, a capability for the file should be em-

bedded in its own segments (e.g. a constant segment) rather than being held in a 

more accessible location. Another capability could be held at a site responsible 

for the update, and via this changes could be made to the file. (Such an arrange-

ment would of course have to be synchronised.) 

10 Search Machines and Similar 

The issue of search machines has been left to last, because the issue of accessing 

search machines appears to be quite straightforward. A search machine is simply 

a website which returns information about other websites. Consequently the 
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website mechanism proposed in section 6.1 (i.e. using webmod) can also be used 

to gain information on the existing Internet about other websites which a 

SPEEDOS user might wish to access. Similar considerations apply also to other 

commonly used websites, e.g. for on-line shopping, for accessing social net-

works, etc. The next chapter discusses search machines for SPEEDOS. 

11 Concluding Remarks 

As was stated at the beginning of the chapter, there can be no guarantee of ever 

reaching complete security when accessing the Internet. The reason for this is 

that there is no way of preventing denial of service attacks. A denial of service 

attack occurs when an attacker deliberately tries to overwhelm an Internet node 

by transmitting huge numbers of Internet requests to that node, beyond its ca-

pacity to deal with them
241

. What is particularly pernicious about some such at-

tacks, especially if they are initiated by Internet bots
242

, is that the attacker may 

target several IP addresses which in effect by sheer volume of messages then 

clog up the same or related routes to the target nodes; this can in the end affect 

not only the target(s) but other 'innocent' nodes which use the related IP address 

ranges. 

Can SPEEDOS withstand such attacks? In the end the best that it can hope 

to do is in effect to turn off the Internet by closing all Internet ports. One way 

the listener process could do this is by observing the amount of incoming traffic 

and when it reaches a suspicious level (or a higher rate than it can cope with) 

and closing down the ports, and only reopening these when the attack has sub-

sided. Fortunately the servicing of Internet calls by the listener is the lowest pri-

ority task of the kernel processes, so that this will only affect those processes 

which are dependent on the Internet, while the rest of the kernel should continue 

to function normally. 

Finally, this chapter should be regarded more sceptically than those chap-

ters which describe other parts of the SPEEDOS design. The reason for this is 

that I have in the past never been deeply involved in designing Internet software. 

Hence I have ignored certain more advanced features, such as virtual private 

networks (VPN) and remote desktop (team viewing). How these can be safely 

integrated into the SPEEDOS architecture would make good topics for PhD stu-

dents. 

I hope that the suggestions about mapping Internet interactions onto the 

SPEEDOS architecture will nevertheless prove to be helpful. 
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  see https://en.wikipedia.org/wiki/Denial-of-service_attack 
242

  see https://en.wikipedia.org/wiki/Internet_bot 
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 Chapter 35 

Secure Website Applications 

 

The previous chapter outlined how SPEEDOS users can access the conventional 

Internet, hopefully in a more secure way than is possible using current operating 

systems. However, the techniques presented there are intended as an intermedi-

ate solution which will allow users to convert conveniently to SPEEDOS sys-

tems. In the longer term it should become possible for SPEEDOS users to con-

fine their activities to applications which are based entirely on SPEEDOS con-

cepts and remain within its protection bounds, without the need to access mech-

anisms and software not designed especially for SPEEDOS. This chapter de-

scribes in further detail how SPEEDOS can support websites which are designed 

especially to use its protection mechanisms rather than the rather insecure mech-

anism available to conventional Internet users. 

1 The Basic SPEEDOS Networking Mechanisms 

The SPEEDOS kernel supports four basic networking mechanisms: 

a) The remote inter-module call (RIMC), which allows a user to activate a 

module that is located on a different node
243

. 

b) A call-back call (CBC), which allows a remotely active module to "call 

back" an entry point routine of the module which activated it (i.e. at the 

original node)
244

. 

c) The downloading of a module from a remote node (which is managed by 

the Container Manager with the assistance of the kernel)
245

. 

d) The uploading of a module to a remote node (which is managed by the 

Container Manager with the assistance of the kernel)
246

. 

The most significant of these for supporting SPEEDOS websites are the RIMC 
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  see chapter 28 section 3. 
244

  see chapter 28 section 7. 
245

  see chapter 29 section 3.1. 
246

  see chapter 29 section 3.2. 
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and the CBC, but the websites can of course offer the downloading and upload-

ing facilities  to their users, as was described in chapter 29 section 3. 

2 How a SPEEDOS Website Operates 

SPEEDOS websites rely on the existence of a related call-back module at the 

computers of their users. This plays a role similar to that of browsers in conven-

tional systems. However, as was discussed in chapter 34, browsers are the cause 

of much insecurity in current systems. An ideal alternative is to dispense with 

browsers entirely and replace them with SPEEDOS call-back modules, as was 

suggested in chapter 34 section 4.1. We begin by outlining this approach. 

2.1 Using Custom-Built SPEEDOS Call Back Modules 

In this scenario a user of a website, at the client node A, activates a thread T1 

which has a capability for a website call-back module at the client node. This 

makes a normal local IMC to activate the call-back module (at node A). The lat-

ter has an embedded capability which allows it to make a remote IMC to the 

website module at node B. 

In the course of initialising the call-back module at node A, thread T1 ob-

tains and stores capabilities for the user's monitor, mouse and keyboard. It may 

then display a standard start page. At this point the user might request a further 

page. In this case the call-back module issues a remote inter-module call to the 

website at node B, using a capability which is embedded in its own segments. 

This activates a surrogate RIMC partner thread T2 in the website module. 

At the remote node B the partner thread carries out any preliminary tasks 

such as ensuring that the caller is registered. It then prepares the requested web 

page information and uses a call-back call (CBC) to return this to the call-back 

module at node A, causing the initial thread at node A to be reactivated. 

The call-back module will then display the new information on the user's 

screen. The user might then activate a further request, in which case the call-

back module requests the appropriate information in its return parameters and 

exits back to the website RIMC thread. 

In a further call-back call the website module provides the necessary in-

formation to fulfil the user's request and the call-back module displays it. This 

activity pattern is repeated until the user signifies that he wishes to close the ses-

sion. The call-back module then exits from the call-back with a return parameter 

indicating that the session is to be closed. The RIMC then makes a normal return 

back to the call-back module and the surrogate thread is deleted in the normal 

way. The thread in the call-back module at node A then also exits and the ses-

sion is closed. Normally the thread will then log out until it is needed at some 

future time. This activity pattern is illustrated in Figure 35.1. 
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The organisation behind the displaying of web pages is an internal matter 

determined by the programmer(s) of the website module and of the call-back 

module. SPEEDOS does not define how this works, leaving the programmer of 

the website free to determine, for example, whether HTML is used or whether 

some other technique is applied, e.g. using preformatted pages held in the call-

back module. 

This arrangement is particularly suitable for websites which a user will fre-

quently visit (e.g. an internet banking facility, the employer's website, a 

bookshop website, a shopping website, etc.). It presupposes that before the web-

site can be accessed the user must not only have a capability for the call-back 

module but also a copy of the module itself. Otherwise he must somehow obtain 

these. This can occur in several ways. 

One possibility is that he buys the call-back software or obtains it free. In 

this case he might use a CD or a memory stick supplied by the website owner or 

bought from a software shop, which he then uses to install the call-back module. 

Alternatively he might download the software from the website. But how 

he might obtain a capability for this? Before answering this question we consid-

er how more casual visits to a website might be organised. 

2.2 Using Standard Call-Back Modules with Library Routines 

The architecture described in section 2.1 is suitable for accessing websites which 

Figure 35.1: Custom-Built Call Back Modules 
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are frequently visited by a user, but not for accessing websites which are used as 

"quick lookup" websites, such as encyclopaedias, dictionaries, calendar and in-

ternational time zones, etc. These are the websites which one normally expects 

to access quickly but infrequently. 

For such websites each SPEEDOS node can offer a number of standard, 

pre-prepared library routines which use standard display strategies such as 

HTML
247

. Unlike browsers the SPEEDOS library module does not offer the 

dangerous possibility of plugging in new software. 

The library routines offer functionality which can display and download 

(SPEEDOS conform) PDF files, play videos, etc. Like all SPEEDOS modules 

and library routines these are rigorously tested in advance to ensure that they 

perform the correct functionality required of the individual module according to 

their specification (and nothing more!)
248

. 

To find and quickly access other SPEEDOS websites a search machine 

module is needed. This might crawl websites, just as in conventional systems, 

but an alternative is suggested in section 2.4. The search machine itself should 

be developed with its own pre-installed call-back module to help users with their 

searches. When the search machine displays a page, this will offer a menu of 

webpages which attempt to meet the search criteria. Associated with each 

webpage listed there will be a webpage address (in an as yet undefined SPEED-

OS format
249

) and a website capability/page number pair. 

If the user selects a page to be displayed from the search machine's menu, 

the search machine module prepares parameters for a new subthread, including 

the page number and a capability for the website's main module
250

. It then cre-

ates a subthread
251

 by calling the Thread Manager. 

When activated the subthread locates its parameters and calls the selected 

standard call-back module, which then makes an RIMC call to the website mod-

ule. This in turn locates the requested page and prepares it for display, if neces-

sary using the library routines. It then makes a call-back call to the standard call-

back module, which displays the page in a separate website window. The user 

can then use this page to select further pages of the same website, which the 

call-back routine passes to the main website module, etc. This procedure contin-

                                           
247

  The HTML call-back should not be confused with webmod, which was described in the 

previous chapter, although the two could use common library routines, e.g. for interpret-

ing HTML and JavaScript. 
248

  see chapter 26 section 6.1, section 6.22 and chapter 38 section 3. 
249

  perhaps a node number and module number? 
250

  see chapter 31 section 2.6 for passing parameters to subthreads. 
251

  see chapter 20 section 5 and chapter 31 sections 2.5. The reason why subthreads are 

used is to allow the search machine to manage multiple requests. 
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ues until the user closes the website window, in which case the call-back routine 

signals the search machine call-back module and exits, causing the subthread to 

be deleted. 

Note that the user may leave windows open while he searches for other 

websites. When all its windows have been closed the search machine itself can 

exit. This solution is illustrated in Figure 35.2. 

 

In the unlikely case
252

 that the SPEEDOS library routines cannot display or 

otherwise process a request, a message will be displayed to this effect. 

2.3 SPEEDOS Bookmarks 

A SPEEDOS website bookmark is simply a capability for a SPEEDOS website 

or for its call-back module. Hence bookmark software is in principle simply di-

                                           
252

  This should not happen because we are considering only SPEEDOS websites in this 

chapter. The designers of SPEEDOS websites will be aware of the constraints imposed 

by the library. 
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rectory software. If it is felt necessary to develop special software for book-

marks this simply involves extending a normal SPEEDOS directory. 

When a user activates a SPEEDOS search machine he passes a capability 

for a directory module as an input parameter. The search machine can then rec-

ord capabilities and names for all the websites which it visits. In this way when 

an Internet session completes the user can access the directory (for which he has 

retained a capability) and distribute appropriate entries to other files and directo-

ries. In this way Internet access can be fully integrated with the user's other 

work. 

This approach to bookmarks also answers the question which was posed at 

the end of section 2.1, i.e. he can obtain the first capability for a custom-built 

website (e.g. for his favourite bookshop) by using the mechanism described in 

section 2.2. In this way he can then take advantage of an offer from the website 

to upload the necessary call-back module. 

2.4 Must a Search Machine crawl? 

Because we are concerned in this chapter only with SPEEDOS-conform web-

sites, it would be possible for new SPEEDOS websites, when they want to go 

on-line, to provide the necessary information to a distributed SPEEDOS data-

base of information and to provide other SPEEDOS nodes with access to this 

information on request, including providing a capability giving appropriate ac-

cess to the semantic routines of the website. This could be organised in conjunc-

tion with the idea of "directory" nodes briefly described in chapter 28 section 8. 

3 Conclusion 

The proposals in this chapter not only describe how SPEEDOS-conform website 

activity might be implemented but they also by implication explain how many of 

the dangers of the conventional Internet might be eliminated, in particular those 

associated with browsers, including for example how all the commercial espio-

nage software, such as the tracking of users' use of the Internet, can be avoided. 

As in the previous chapter the present chapter should be regarded more 

sceptically than those chapters which describe other parts of the SPEEDOS de-

sign. The reason for this is that I have in the past never been deeply involved in 

designing Internet software. I hope that the chapter will nevertheless be helpful. 
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 Chapter 36 

Mandatory Access, Rule Based Systems 

and Computer Administration 

 

As was explained in Volume 1 part 1, there are two quite different approaches to 

viewing security in a computer system: the libertarian view (which some might 

perhaps see as the anarchist view) and the authoritarian view (which others 

might perhaps see as the dictatorial view). 

In the variously coloured security criteria which have appeared since the 

Orange Book in the early 1980s (see chapter 1), these two viewpoints are usual-

ly described as "discretionary" and "mandatory" access controls. Not surprising-

ly the coloured books all favour the mandatory view. I say "not surprisingly" for 

two reasons. First, these documents are the work of military and/or government 

departments. Second, the original formulations of the security criteria stem from 

the age of mainframe computers, computers which were (and still are) so expen-

sive to buy and to run that they can only be purchased by the military, by gov-

ernment departments and by business and commerce. 

But since their heyday the computing scene has radically changed. Today 

mainframe computers are increasingly thought of as the dinosaurs of the com-

puter revolution. In the last three decades the microprocessor has made it possi-

ble for virtually every household to possess its own personal computer(s), tablets 

and smartphones, and these have become as indispensable as the home tele-

phone or television. 

When personal computers first appeared, it seemed that security problems 

were not a serious worry for them. However, it has become increasingly evident 

that this is not the case. As PCs grow in power and storage capacity, they are 

already individually more powerful than many mainframes of the past. This 

means that they are being increasingly used to hold sensitive data and are there-

fore increasingly targets for penetration by hackers. And in the last two decades 

the Internet has taken off in a spectacular way. It is now normal that virtually 
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every personal computer, tablet and smartphone can be reached via the Internet, 

thus making inter-computer communication and therefore illicit penetration by 

hackers a major problem. 

But PCs and smartphones on the Internet do not fit the mould of mandatory 

access controls. They do not have the paraphernalia of mainframes, with opera-

tors and system administrators and so on. People own their own devices and ex-

pect to make their own decisions about how they can use them. This, together 

with the lingering death throes of the mainframe industry, makes it clear that the 

coloured books no longer provide a balanced view of computer security. Discre-

tionary controls have undoubtedly become far more important than the role giv-

en to them in those documents. 

Hence this book had been written primarily with discretionary access con-

trols in mind. However, the purpose of the present chapter is to demonstrate that 

implementing both rule-based systems and mandatory access systems (even side 

by side) is also straightforward in SPEEDOS, beginning with a description of 

how the Bell-LaPadula rules, and by implication the Biba rules, and most rules 

based on the Access Rule Model (see chapter 3), can be implemented. 

1 A Bell-LaPadula System 

Chapter 3 describes the rules of the Bell-LaPadula security model. The aim of 

these rules is to permit information flow only to trustworthy objects, and thus to 

solve a special case of the confinement problem for systems, as viewed through 

the eyes of the military and similar organizations. Each subject in the system is 

given a clearance which reflects his hierarchical role in the organization and 

each object (e.g. file) in the system has a similarly hierarchical classification 

which determines how subjects may access it. A set of projects is also associated 

with each subject; these define his permitted sphere of activity in terms of access 

to the files, and files are likewise associated with specific projects. 

1.1 The Bell-LaPadula Rules 

The rules of the Bell-LaPadula model are as follows: 

a) Reading of Objects (simple security property): 

 (clearance (subject) ≥ classification (object))  (projects (subject)   projects (object)) 

b) Writing of Objects (*-property): 

 (clearance (subject) ≤ classification (object))  (projects (subject)   projects (object)) 

c) Creation of subjects: 

  Subjects creates Subjectt   (projects (Subjectt)   projects (Subjects))  (clearance 

(Subjectt) ≤ clearance (Subjects)). 
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To implement the Bell-LaPadula rules two modules could be used in SPEEDOS. 

1.2 The Subjects File 

The first, a file module (see Figure 36.1), maintains a list of subjects together 

with their clearance and associated projects. It supports the following basic se-

mantic operations: 

• for creating new subjects (identified by their unique SPEEDOS identifier), 

with a clearance level and a list of projects; 

• for changing the subject details (e.g. with a new clearance level and/or 

changed list of projects). 

All routines assume that the users already exist in the SPEEDOS system and 

therefore have unique identifiers. The first routine (creating new subjects) exe-

cutes the kernel instruction current_thread_owner, and uses the result to es-

tablish (from the module's list of users) whether the caller is authorised to create 

a new subject at the proposed clearance level and with the nominated projects, 

using the Bell-LaPadula subject creation rule. If so it enters the new subject into 

its list with the appropriate details. 

The remaining operations carry out similar checks and if the caller is au-

thorised to do so the changes are entered. 

Further semantic routines can provide an authorised caller with information 

(the clearance and projects) about another user. 

 
Figure 36.1: A Subjects File with Semantic Opera-
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1.3 The Objects Qualifier Modules 

The second module is a qualifying module which contains protection infor-

mation (classification, associated projects) about a Bell-LaPadula object to be 

protected by its brackets routine (see Figure 36.2). 

 

It has interface routines that can be used by the system administrator to de-

fine and redefine a classification and the associated projects for the file, and to 

make enquiries about this information. One of the routines (callable by the sys-

tem administrator) provides a capability for the subjects file. The system admin-
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istrator also has a capability allowing it to set up and redefine the protection 

properties of each file to which the qualifier routines are to be attached, includ-

ing the classification level and associated projects; he also indicates which se-

mantic routines are subject to the Bell-LaPadula 'reading' rule and which are 

subject to the 'writing' rule. 

Such a qualifier is associated with each protected file (i.e. each object) in 

the system and is set by the administrator to suit the individual security proper-

ties of the file. The qualifier has a call-in bracket routine which is activated for 

all calls to the protected file. When this is activated it first executes the kernel's 

current_thread_owner instruction to establish the identity of the caller. It 

then uses the capability for the subjects file to request details of the clearance 

level and projects of the caller. Next it determines the semantic routine number 

of the call by executing the kernel instruction calling_ep (see chapter 26 sec-

tion 1.1) to establish whether it is a read or write routine. It then invokes an ap-

propriate subroutine to carry out checks needed for the current routine number, 

using the read or the write rule as appropriate. If it discovers an error it raises an 

exception which disallows the call and then writes the error into a log. 

1.4 Conclusion 

We have now seen how the rules for creating new subjects and for controlling 

read and write access to protected files can be achieved in a SPEEDOS based 

Bell-LaPadula system. 

It is interesting to note that more stringent rules could easily be applied. For 

example, since SPEEDOS can easily detect when a new file is being created 

(because the entry point number 0 signals that a constructor is being called) it 

could implement a further rule defining which subjects can create new objects. 

Similarly it could check that a user has opened the file before he calls the normal 

routines. It could also be supplemented by a call-out bracket which ensures that 

no information is released by malicious code. 

It will be obvious to the reader that similar access control rules, e.g. those 

of the Biba model described in Chapter 3, can be implemented in a similar way. 

In fact SPEEDOS can use a similar pattern to implement most access rules that 

can be expressed using the Access Rule Model. 

Finally, as we already observed in chapter 3, the Bell-LaPadula model does 

not guarantee the integrity of objects, because it permits subjects with a lower 

clearance to write to objects with a higher classification. Similar problems arise 

in Biba, which simply reverses the Bell-LaPadula model. 

2 Retaining Control of a System 

We now turn to a more realistic issue. Systems which involve multiple users 
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normally need a controller (e.g. a system administrator or a superuser) who is 

responsible for the correct, secure and orderly management of the system. How 

can such a person exercise control and carry out his functions safely? 

2.1 Retaining Control in a Business System 

How can a business system administrator ensure that he can maintain control 

over the rights which he needs? The basic answer is straightforward. He 

achieves this by not providing users with a capability containing the right to 

carry out sensitive actions (e.g. by preventing them from calling the Container 

Manager's createContainer routine and other related routines, e.g. copy

Container, download) if they are not permitted to create files. This is easily 

organised, since when a system is first initialised by the system administrator, 

the basic capabilities needed to use the system are handed over by the system 

software to the thread which carries out the initialisation, in this case the system 

administrator's thread. It is then a question for the system administrator to de-

termine which capabilities (with what access rights) he hands over to other users 

when he creates them (see chapter 31). 

There are probably cases where other staff members may need to create 

files, for example in the business's software development department. The best 

way to do this is undoubtedly on separate computers which themselves are sepa-

rate nodes, with carefully scheduled tests on the main computer carried out un-

der expert supervision. But if that is not considered necessary, how can such 

staff be prevented from accessing the active business files? The answer is of 

course that they may be permitted to create new files using the Container Man-

ager, but they do not receive capabilities for the business files which are current-

ly in use. And just to be sure, the sensitive files can be bracketed to indicate 

which users of the system can – and/or cannot – access the files. In other words 

the brackets can implement both access control lists and revocation lists. 

To ensure that problems do not occur when the system administrator is on 

leave or ill, etc., his deputy or deputies may need to take over the system admin-

istrator's duties. This could be arranged, for example, by the deputy being pro-

vided with the knowledge to allow him to log in as system administrator. Alter-

natively the administrator could nominate two or more deputies, who are each 

provided with half the information needed to log in as system administrator (just 

as in a bank two keys might be needed to open the vault door). But of course 

such arrangements should be determined by the business itself, and not fixed by 

SPEEDOS. For this purpose lots of mechanisms are available within SPEEDOS 

to provide the needed level of security. Inventive minds can use capabilities, ac-

cess rights, kernel enquiries, bracket routines, passwords, the thread security 

register, etc. to devise good solutions. 
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2.2 Retaining Control in a Multi-User Discretionary System 

Whereas in business systems the business staff may not be allowed to create 

new files, in a discretionary multi-user system such as a computer system at a 

university, the users will want to create files, etc. Nevertheless the superuser 

may wish to retain the power to delete student files (e.g. when students leave the 

university). He may also want to ensure that students do not exceed limits which 

he sets on the use of resources), etc. How can such requirements be organised? 

Consider first the delete issue. Only one way of deleting a file has so far 

been described, i.e. by presenting a capability for the file with the owner right or 

the delete right set. To expect a student (or other user) voluntarily to provide the 

superuser with a copy capability in which the delete right is set is certainly not a 

guaranteed solution! One alternative is for the superuser to obtain the owner ca-

pability before it gets into the hands of the user. This solution could in fact be 

made to work, as is shown in Figure 36.3. 

 

As in the business situation described in section 2.1, the superuser does not 

provide other users with a copy of the Container Manager's createContainer 

routine and other related routines (e.g. copyContainer, download). But in con-

trast with the business scenario, users in a discretionary system expect to be able 
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to create their own files at will, so that can only be part of the solution. The 

superuser (as a person) does not expect to be directly involved in the creation of 

user files, but he can do so indirectly by providing users with a capability for a 

module that creates files for him. This module would retain the owner capabili-

ties for all the containers which it creates, and thus the superuser has complete 

control over all the containers in the system. This is the solution which I pro-

posed in an earlier (unpublished) version of this book, and I have presented it 

here to show the flexibility of the SPEEDOS system. Nevertheless I now reject 

the solution because 

• it involves considerable overheads in managing the system; 

• it gives far too much control to a superuser, who can easily misuse the 

mechanism to violate other users' privacy; and 

• above all, this solution would obviously offer a perfect target for hackers! 

Instead I now recommend a much simpler alternative. All that is required to 

solve the problem is a "superuser" capability which the superuser can retain for 

himself when the system is first initialised. In fact this is a special kernel capa-

bility which allows the superuser to delete (but not examine) all the containers 

owned by a specified user before he left (or was removed from) the system. An 

implementation of the mechanism could be as follows. 

A kernel delete_users instruction takes as its parameter a list of users. 

These are specified as full 192-bit user identifiers. (Recall that a user identifier is 

the full container number of his first container, and that this is stored in the red 

tape of each container which he creates.) The kernel then scans all the containers 

at the node (or perhaps on a specified disc if the user can only create files on a 

single disc) searching for containers for which the users listed are marked as the 

owners (in the red tape at the base of the container, see chapter 19 section 2). 

The kernel deletes each such container. 

This is a time consuming activity, especially if used for each student indi-

vidually. For this reason it would be sensible to take the following steps to help 

optimise the deletion procedure. 

• Include as many users as possible in the search. This is why a parameter has 

been included to list multiple users. In a student situation this makes sense, 

because at the end of an academic year many students leave the university 

at the same time. 

• To reduce the scope of the search it would be sensible to place the files of 

all the students (or all the students in a single annual intake) on a single disc 

or disc partition. 

How does the superuser know the identifiers of the relevant users? The answer 
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is of course that he initially creates the users and in the first part of this proce-

dure a new container, which is used as the new user's first container (and there-

fore his unique identifier), for which an owner capability is returned to the creat-

ing user (see chapter 31). This can then be held in a list of new users which the 

superuser can also use to store other details, such as his name. 

2.3 Managing Forgotten Passwords 

One service which a superuser or business administrator often provides is to 

help a user to log in if he has forgotten his password. This solution is not feasi-

ble in SPEEDOS, where logging in is carried out in an unconventional way and 

may not involve passwords (see chapter 22 section 11). The central control of 

passwords is also undesirable in a secure system, not only because it gives a 

superuser inordinate powers, but also because a central password system offers a 

tempting target for hackers. 

But the problem is easily solved in SPEEDOS. Normally a user can create 

multiple processes/threads with different login procedures, so that if he forgets 

how to log in for one thread (thread A), he should still be able to log in to anoth-

er thread (thread B). Provided that he has had the foresight to provide thread B 

with access to a capability for the authentication module of thread A, he could 

call this directly in thread B to call a semantic routine which temporarily turns 

off the tests and allows the user to log in to thread A. Alternatively he could use 

a semantic routine of the Thread Control Manager to change the login authenti-

cation module. 

3 Resource Management and Exceeding Rations 

In the general discussion of the kernel the issue of logging and controlling the 

use of resources was not discussed, because to do so would have taken the focus 

off the main issues. But also, it is not always clear what logging requirements 

and limits are necessary. It would therefore be appropriate, as far as possible, to 

leave such decisions to the user. One difficulty in achieving this is that the use of 

some resources is entirely under the control of the kernel. This is particularly 

true of the use of discs and other mass storage devices. 

3.1 Disc Usage 

Here at least two kinds of measurements can be made, e.g. on a user basis: (a) 

the amount of space used, and (b) the number of disc accesses made. 

3.1.1 Counting the Pages Used 

Measuring the amount of space involves counting the number of pages as they 

are allocated and reducing the count when a page is deleted, noting the identifier 

of the user on whose behalf this occurs and checking if a limit has been reached. 
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Counting the pages as such is relatively straightforward, but assigning their use 

to a particular user is not quite so simple. This cannot simply be achieved by 

establishing which user thread was last active, because the kernel may be servic-

ing several requests. 

The first page of a container is allocated as a result of executing the kernel's 

new_container instruction (see chapter 23 section 6.1). This accesses the ap-

propriate Disc Directory Manager to obtain a new page. Additional pages for the 

container are requested by the Segment Manager (see chapter 23 section 5.1). In 

both cases a kernel virtual memory block is used. This contains the number of 

the thread issuing the request, and so a note of the user and of the count of new 

pages can be returned to the Container Manager or the Segment Manager; these 

can then access a log file to which the new pages can be added to the count for 

the user in question. 

Deleting pages can follow the same pattern, more or less in reverse. Appro-

priate measures must also be taken with respect to the copying, downloading 

and uploading of containers. 

3.1.2 Counting the Number of Disc Accesses 

Since the discs are used to resolve virtual memory page faults such actions are 

not visible outside the kernel. This implies that counting must take place inter-

nally within the kernel. Yet it would be undesirable to clog up the kernel space 

with large amounts of data. For this reason an implementation is best sought by 

using shared co-module data, which also had the advantage that it is persistent 

(see chapter 17 section 3). Such a solution must also respect the fact that the 

kernel should not be delayed by too much processing activity. 

The Container Manager can provide an appropriate data structure (prefera-

bly as its first persistent data structure, so that the kernel can find it easily via the 

state data pointer in the Container Manager's co-module table (see Figure 19.5). 

This can be a simple list of disc numbers and user thread numbers, each repre-

senting a disc access for the thread in question. The individual disc processes 

(see chapter 23 section 4.7) add such entries to the list as each access is made. 

They are aware of the user thread number from the virtual memory block which 

requests the access. The Container Manager has a thread which reads and clears 

the list at regular intervals. It counts the individual entries and writes them into a 

log file. To avoid the kernel's disc processes from searching for the list each 

time, they find this once when the system is initialised or a new disc added, and 

store its address in their local data. 

3.2 CPU Time Usage 

This is simply organised by the User Thread Scheduler, which uses the start time 
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and stop time for each user thread which it schedules to calculate the total time 

which it uses. It provides a semantic routine which allows a Container Manager 

thread to obtain the details at regular intervals and to add these to a log file. 

3.3 Printer Usage 

Since the control of printers is organised outside the kernel, it is a straightfor-

ward procedure to count the number of files and/or pages printed by each user at 

a particular printer and to check that this is within the limits imposed by the sys-

tem administrator or superuser. The appropriate module in which this occurs is 

the Printer Interface Module (see Figure 33.4). 

3.4 Internet Usage 

Statistics of Internet usage are best gathered by the Listener process (see chapter 

34, section 8), since all Internet traffic passes through this kernel process. It 

should record details of all Internet requests and the unique identifiers of the us-

er threads (from which the responsible user can also be identifier) and all re-

sponses to user thread requests, all external requests (which should not occur, 

except for requests from other SPEEDOS nodes) and record these in Container 

Manager data in a similar way to disc accesses. It should also record SPEEDOS 

kernel requests and replies to and from other (normally SPEEDOS) nodes, in-

cluding the amount of bytes transferred. 

3.5 Remote Inter-Module Call Resource Usage 

The same statistics are of course gathered for resource usage at a remote node as 

a result of a thread being transferred following a remote inter-module call (see 

chapter 28). If the calling node indicates that it requires such statistics (not all 

will) it indicates this on the caller's stack when it makes the RIMC, and when 

the RIMC exits, the statistics are also provided on the stack with the return in-

formation. The kernel at the remote node obtains the necessary information by 

activating a surrogate stack, which obtains the information from its Container 

Manager. 

3.6 Charging for Resource Usage 

Whether charges are made for the use of resources is clearly a matter for indi-

vidual systems. To obtain the details of what resources have actually been used 

by a user is made available to the system administrator or superuser by calling a 

semantic routine of the Container Manager (which has an overview as provided 

in the previous subsections). 

3.7 Run-Time Monitoring 

A system administrator should be provided with a run-time monitoring tool 

which provides him with an overview of the kinds of activities discussed in the 



Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 341 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

previous section, e.g. a list of active threads, an overview of disc activity and of 

internet activity. In contrast with some conventional systems this should be 

transparent, showing exactly which users (by their unique identifiers) are active. 

4 Initialising a New System 

The processor of a new SPEEDOS node has an in-built read-only memory ad-

dress which is directly accessible only to the kernel. This contains its world-

wide unique node number (see chapter 16 section 2, which describes how this 

can be world-wide unique). Using the technique designed originally for the 

MONADS-PC system [24], the new node is securely booted and the kernel and 

related software are loaded from the system disc. The kernel then initialises it-

self and its co-modules, in so far as this is necessary. When this is completed, 

control is passed to an initial thread in a standard user level process of the user 

(in a single PC system), of the superuser or of the system administrator. This can 

then be used to create users and initialise files, etc. In the course of this initiali-

sation the thread can invoke modules and pass parameters necessary to custom-

ise the system, initialise external discs, etc. It can use subthreads to allow longer 

tasks to be processed in parallel. When the initialisation is complete the system 

can be freed for use by other users. 

5 Closing Down and Restarting a System 

In many cases a user or superuser may wish to close down his system (e.g. over-

night) and reactive it at a later time (e.g. next morning). One might think that 

because the system is persistent no special action is necessary, but this is not 

quite accurate. 

Although a SPEEDOS system is persistent it uses the main memory as a 

cache for the persistent memory devices. Consequently the least which must be 

undertaken before the system can be turned off is to write to disc all the pages 

currently in main memory which have changed since they were paged in. For 

this purpose the kernel provides a privileged instruction close_down, which can 

only be executed by the User Thread Scheduler (because this can confirm that 

there are no executing user level threads). 

When the decision is made to close down a system, the initial thread (i.e. 

the thread which was used to initialise the system, see section 4) is reactivated 

and calls all the Thread Control Managers in turn to close down their threads. 

(This means that the threads are brought to a state in which they can continue 

after the next system restart.) When a Thread Control Manager has done this it 

returns to the initial thread, which then continues to the next to do likewise. 

When this phase is completed, the initial thread calls the User Thread Scheduler 

to check that there are no executing threads and uses the kernel's close_down 

instruction. The stack and the thread state for this thread are frozen by the kernel 
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which then closes the kernel threads down and ensures that they have all run to 

completion. It then stops the CPU and dies. It does not store the kernel state as 

such (see chapter 17 section 2) but it ensures that the shared co-module state da-

ta is consistent. 

In order to restart the system the kernel is re-bootstrapped and then sets it-

self up to a functional state and reactivates the initial thread to restart the system 

at the user level. 

As a final note, we observe that by restarting the system in this way, the 

problems which might otherwise arise from the fact that the user can re-

configure the system while it is closed down (e.g. by removing external discs) 

are avoided. If a re-started thread attempts to use a disc or device which has 

been removed from the system during close-down it causes an error for the 

thread, but not for the system and is treated like any other error, e.g. in that the 

system requests that the disc is brought on-line or causes an exception condition 

for the thread. 

6 Handling a System Crash 

Systems can crash for a number of reasons, e.g. because of a loss of power, be-

cause of an unrecoverable processor or disc failure, because of an error in a key 

kernel process or in the User Thread Scheduler. 

In the early days of computing, power failures were a major problem, but 

that should no longer be the case. In fact even most PCs have batteries which 

allow the PC to run for several minutes (or even hours) without external power, 

and warn users when the battery is beginning to get low, thus allowing users to 

either provide external power or to organise their system to run down in an or-

derly manner. Larger systems can be organised to have an uninterruptible power 

supply (UPS)
253

 which will at least serve the same purpose or for a longer use of 

the system some form of emergency power generator. 

In the very unusual situation that the processor or main memory has an un-

recoverable error, the manual intervention will of course be necessary. 

Whatever the cause of a system crash (assuming that the processor and the 

main memory are in order) both the reason for the crash and the extent of the 

damage must be established. On the assumption that power is available, at least 

for a reasonable amount of time, a special kernel process should be automatical-

ly activated which first saves the current values in the registers, then establishes 

which kernel process is active (or was the last to run), and if a user thread was 

currently active. From this information it should then be possible to establish the 

nature and extent of the damage. 

                                           
253

  see https://en.wikipedia.org/wiki/Uninterruptible_power_supply. 
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The most likely cause of a system crash is a software failure. If an applica-

tion contains a software error, this can normally be handled as described in 

chapter 22 section 9.2, and the SPEEDOS protection mechanisms will ensure 

that the effects of such a failure are limited. 

Of course SPEEDOS systems should be regularly backed up to minimise 

the effect of failures. As in other systems there are several ways of doing this, 

e.g. at the end of every day take a full back-up, or use some form of on-line 

backup system. To allow a special backup thread to copy an entire disc it can be 

armed with a capability (the owner capability for the disc or a disc capability in 

which an 'archive' right is set) which allows the thread presenting the capability 

to have page access to the disc. Notice here that an archive of a disc must be 

marked as such, since it contains owner capabilities and possibly other items 

which should be unique in a running system. To convert an archive into a "live" 

disc a procedure must be devised which solves this issue. 

Finally we also mention that there are ways of using duplicated hardware to 

keep a critical system running. There is no reason why all such techniques 

should not be used with SPEEDOS, but they are beyond the scope of this book. 
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Chapter 37 

An Example – Online Banking 

 

Banks, but not only banks, have a long history of adapting their computer sys-

tems to changing circumstances, improved technology and new ideas. Conse-

quently it is not irrelevant to begin by asking how easy it is for them to carry out 

this process of modifying their software. This is relevant in the context of securi-

ty because computer programming is not an easy discipline to master, so that 

each time changes are made it is easy to make (and introduce new) mistakes, 

and mistakes in programs are one of the main causes which can give rise to se-

curity and privacy problems. The hackers' evil handiwork is of course made eas-

ier if they can discover mistakes in programs which they can use to their own 

advantage. 

Added to this is the fact that the CEOs of companies are themselves often 

under pressure from their investors to introduce improvements as quickly as 

possible and to complete the necessary changes to their software (and of course 

other) products before their competition does. This pressure is passed down to 

those who are responsible for the new products and those who are involved in 

making the changes necessary to bring the new product to market as soon as 

possible. But pressure only leads to hastily carried out and therefore often im-

perfect work. 

1 Software Structures 

As was explained in volume 1 chapter 13, one of the reasons why software mod-

ifications are often badly carried out is because the tools available to program-

mers are quite inadequate. There the fundamental structural problem of conven-

tional systems was discussed in a general way, drawing attention to the many 

problems that are created by what I called "flow of control modules". Using this 

standard technique, which is forced on programmers by standard programming 

languages and operating systems, the fundamental data structures in a system are 

separated from the modules which contain the program algorithms that access 
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these. I strongly recommend that readers look again at chapter 13 and remind 

themselves of the difficulties which this "normal" technique brings (and bear in 

mind that this is the technique which still persists in conventional operating sys-

tems and programming language). Here is a summary of the shortcomings which 

were listed and explained there
254

: 

(i) the specification of the system design is difficult; 

(ii) communication between the implementers of separate modules is high; 

(iii) inconsistent modules create difficult debugging problems; 

(iv) verification is difficult; 

(v) synchronisation problems easily arise; 

(vi) maintenance of the system is difficult; 

(vii) extension/adaptation of the system is difficult; 

(viii) optimisation of the system is difficult. 

It was suggested that the solution of these problems lies in rigorously enforcing 

the information principle and object orientation techniques at the operating sys-

tem and programming language interface level, and qualifying types were added 

as a new technique. 

These ideas have formed the basis of the SPEEDOS design, in two senses. 

First, the principles have been used as the basis for the SPEEDOS design it-

self.
255

 Second, a primary aim of the SPEEDOS system is to free user applica-

tions from the straightjacket of conventional systems, allowing applications also 

to be designed according to the information hiding principle. Consequently fu-

ture systems and applications which are based on SPEEDOS should benefit both 

from the support of a more reliable and secure operating system, but also from 

being able to apply the same principles directly to their own software systems. 

With this in mind we now focus attention on developing in outline some of 

the main components of a banking system, showing first how a fictional banking 

system first designed in say the 1960s might have benefitted from the infor-

mation hiding approach as it would have gone through various stages of devel-

opment up to modern times. But before we do this we should briefly look at how 

a fictional system might have fared using conventional techniques. 

                                           
254

  See volume 1 chapter 13 section 5. 
255

  The kernel design itself does not directly use them, but this is because the job of the 

kernel is to implement them for the rest of the operating system. However, the kernel re-

lated co-modules do. 
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2 The Framework of a Conventional Design 

At the heart of any banking system is the idea of bank accounts. Using conven-

tional systems these are stored in files in the file system, and are accessed by 

programs which have embedded in them subroutines for carrying out the typical 

operations on the bank accounts, such as opening an account, closing an ac-

count, making deposits, making withdrawals, adding interest, setting an over-

draft limit, enquiring about the current balance, listing recent transactions, etc. 

Not all of these operations should be made available to all the employees in 

a bank, but should be restricted to those with a "need to know" and a right to 

carry them out. For example the bank teller should not have the authority to add 

interest to an account or to increase an overdraft limit. A bank branch manager 

will possibly also not have the authority to add interest, but a bank accountant 

might have, etc. In a conventional system the easiest way to give different au-

thorisations to different staff is to provide these in different programs, such that 

a particular staff member (or employee group) can have a separate program in 

which the appropriate access is provided. This is reflected in Figure 37.1, which 

is based on Figure 14.2). 

 

The reason for this is that protection works at the file system level, which 

associates rights with entire data and program files. The bank employees can be 

given access to programs and the programs can be given access to files. 

One particularly significant drawback of this arrangement is that in effect 

the same operation may appear in different programs, and normally programs in 

a large operation are programmed by different programmers. Consequently not 

only might the same logical operation on the bank account file be programmed 
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in several individual programs by different programmers, but the actual pro-

grams may be different. And such duplicated effort is not only costly (on pro-

grammer salaries) but can lead to problems if a change is needed. And above all, 

the problems listed in section 1 also possibly arise. One way of tackling such 

issues is to use database systems, but this adds another level of complexity and 

the possibility of yet more errors. 

A further problem can arise with respect to access rights. If all the bank ac-

counts are held in a single central file, the implication is that a bank teller at one 

branch can access to all the accounts of all customers, even possibly those at dif-

ferent branches. 

3 The Effects of Technological Changes on the Conventional Approach 

With the passage of time radical technological changes and improvements have 

taken place which have affected banking (and often other) systems. We now 

briefly look at the main developments and their effects on the bank programs. 

3.1 Batch Processing Systems 

Commercial computing systems in the 1960s were based on an arrangement 

called "batch processing". This was the age when computers were large mon-

sters which stood in large computer rooms (and sometimes even in separate 

computer centres), when rotating discs still were physically large but with very 

small storage capacities. The main medium for storing files was magnetic tapes, 

which had the severe disadvantage that they could only be accessed sequentially. 

Furthermore data input to the system was achieved by punched card or punched 

paper tape devices. Figure 37.2 illustrates how such systems functioned. 

In such a system the information about bank accounts was typically held on 

a magnetic tape, called the "master" file, in a fixed sequence (ordered for exam-

ple by increasing bank account number). The day's banking transactions were 

collected together each evening, they were encoded onto punched cards or paper 

tape and then were read into the system. There the transactions were checked for 

consistency, reasonableness and so on by an "edit" program, and after that they 

were copied onto a magnetic tape and sorted into the same order as the master 

file. In the next step the master file update program read the transaction file and 

the main file together, and created from them a new master file on a different 

magnetic tape. This program included the code for processing the individual 

transactions and modifying the banking data, recording deposits, withdrawals 

and transfers, authorizing overdrafts, etc. In the final stage relevant information 

was printed about the day's transactions. On the next evening the transactions for 

that day were vetted, sorted and read against the master file, and yet another new 

master file was created. 
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The control code in the master file update program consisted basically of a 

large loop in which the next transaction was read and the appropriate subroutine 

for the deposit, the withdrawal, etc. was invoked. It was in this program that the 

semantic routines were buried. Since they did not appear on the interfaces of the 

programs they did not need to be specified in the design documentation. 

The whizzing tapes which you may sometimes have seen in computer 

rooms in old films are reminders of that era. These were eventually replaced by 

files on disc, but although disc accesses need not be sequential they were often 

used as if they were sequential tapes to minimize the changes to the system. 

3.2 Online Terminals for Bank Staff 

The next stage in the development of banking systems was the introduction of 

online terminals for the bank staff. For those banks adventurous enough to in-
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troduce online updating of the master files on disc, a transaction processing 

monitor program was needed. Bank staff had to input transactions into a transac-

tion processing system which read the transactions from terminals, processed 

them and updated the master file – which was by this time a disc file in which 

the relevant accounts could be accessed directly. Different control routines were 

needed in the transaction processing monitor, but although the basic semantic 

file operations (deposit, withdraw, etc.) had not changed, new routines to im-

plement them were needed in the transaction processing monitor. 

3.3 Automatic Teller Machines 

Later ATMs (automatic teller machines) were introduced, from which customers 

can directly initiate transactions. New programs were needed with new control 

routines to read in the customers' plastic cards, to check PINs (personal identifi-

cation numbers) etc. And again the basic banking operations, although these had 

not changed, had to be incorporated into new programs, which typically meant 

that they also had to be rewritten. 

3.4 Online Customer Banking 

Later still online customer banking from home computers was introduced, once 

again requiring new programs to access the banking files. This time other pro-

tection requirements had to be built in, but although the basic banking opera-

tions did not change, these once again had to be incorporated into the new pro-

grams. 

3.5 Online Banking from Smartphones 

And of course further adaptations of the programs were needed to cope with the 

introduction of banking via smartphones. 

3.6 The Fundamental Problem 

Conventional systems (not only banking systems) suffer from the fact that they 

separate data structures (e.g. files) from programs. One of the results of this sep-

aration is that programmers, partly for protection reasons but also for structural 

reasons, constantly need to rewrite their programs as technology develops. The 

latter problem is exacerbated because programs need to serve two purposes in 

conventional systems. First they serve as "control" routines and second as "data 

management" routines, such that with technological advancements the control 

routines need to be updated or changed, whereas the data management routines 

can usually remain more constant, but since the conventional concept of a pro-

gram forces programmers to mix these two things up in a single program struc-

ture new programs had to be developed. 

You might of course want to argue with this analysis by pointing out that 
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data management is separated in conventional systems by the separate existence 

of file systems. But the fact is that conventional file management systems cannot 

take into account the semantics of the file data; they only provide a few basic 

routines for organising files which have different semantics into patterns which 

simplify their organisation in the file system (e.g. as index sequential files, as 

sequential files, as hashed files, etc.). And as we discussed in chapter 2, the best 

that they can do is to provide a totally inadequate protection system, based not 

on the semantics of the data but simply on a choice between no access, read ac-

cess and write access. And database systems, while offering an improvement 

over the simpler file systems, introduce more complicated mechanisms which 

also, in the final analysis, do not solve the protection problems adequately and 

are often cumbersome because they are often built on top of file systems. 

4 Using the SPEEDOS Approach 

As was explained in volume 1 chapter 13, SPEEDOS offers its users the possi-

bility of organising their applications in such a way that the semantic routines 

associated with major structures (such as bank accounts), are tightly bound to 

the data itself in modules, while the control programs are held as separate mod-

ules. The most important effects of this different structural method are that: 

a) when the control structures have to change in order to adapt to improved 

technology or new ideas there is no necessity to change the file modules 

containing the major data bases in the system (such as, in the present case, 

the bank accounts). 

b) the semantic routines associated with the data (e.g. the deposit routine, the 

withdrawal routine) do not have to be repeated in multiple programs, which 

is both cost saving and reduces the potential for errors. This is not merely a 

software engineering advantage but also a security advantage. 

c) protected access to a data structure such as a bank account can be based on 

the semantic routines themselves. 

In other words, we have a win-win situation by providing a better software engi-

neering mechanism and a much more flexible security system. We now look in a 

little more detail how some parts of a fictitious banking system might look. 

4.1 A Bank Account File 

We re-use Figure 2.7 as Figure 37.3 to remind readers how a bank account file 

and its semantic routines might look. Note that in a real bank account there 

would certainly be more routines than are listed here. These are only provided 

for illustrative purposes. Furthermore in the next few sections we make the ob-

viously false assumption that a bank only provides one kind of account for all its 

customers. This assumption will be corrected in sections 4.6 and following. 
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These routines can be divided into two groups: operations, which manipu-

late and change the state of the bank account, and enquiries, which provide the 

subject with information about the account without changing its state
256

. Exam-

ples of operations include the routines 'deposit', 'withdraw', 'transfer', 'add inter-

est' and 'authorize overdraft'. These can be viewed as differing kinds of write 

operations. The enquiries are distinguished in the diagram by a question mark. 

They include such routines as 'customer number?', 'overdraft limit?' and 'current 

balance?'. The enquiries can be viewed as different kinds of read only routines, 

which return specific information to the caller. Such read only routines are pro-

tected by SPEEDOS to ensure that they do not make modifications. 

4.2 Protecting Access to the Semantic Routines 

Because they are protected in SPEEDOS by module capabilities, users of the 

semantic routines can be provided with separate capabilities on a 'need to know' 

and a 'need to use' basis. Figure 37.4 (repeated from Figure 2.8) illustrates how 

the authorisations might look. 

                                           
256

  The programming language Timor [7] allows programmers to distinguish between these 

two kinds of semantic routines, thus also allowing SPEEDOS to ensure, for example, 

that enquiries cannot modify the data, and thus add further protection to a system. 

Figure 37.3: A Bank Account with Semantic Operations 
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Notice that this diagram is of a different kind from those which were used 

to illustrate Lampson's Access Matrix in chapter 2. An entire column in Figure 

37.4 corresponds to a single access rights field of Lampson's Matrix. What this 

means is that Figure 37.4 refers to the access rights for a single object (identified 

by the capability). In other words, it is not sufficient simply to define which op-

erations of an object class a particular subject may invoke. Such a list of permit-

ted operations only makes sense in conjunction with a particular object or list of 

objects. For example, I may have the right to withdraw money from my own 

bank account, but that should not automatically give me the right to withdraw 

money from yours! 

4.3 How Many Bank Account Files? 

In principle all the accounts of a particular type (e.g. savings accounts) could be 

kept in a single file module, but this would have the disadvantage that access 

rights associated with the routines can only be associated with all the accounts in 

the module as a single group
257

. Keeping each account in a separate file module 

has the advantage that different accounts at the same branch can, for example, 

be associated with different customer advisers. Separate accounts can of course 

share the same code module, because the protection is based on the access rights 

to the data files, not to code files (as is usually the case in current systems). 

If each bank account has a separate file it has a separate owner capability; 

                                           
257

  The implication of this approach would be that a further layer of protection, such as a 

password, would be needed. 

Figure 37.4: Authorisations based on Semantic Routines 
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additional capabilities can be created by copying them (subject to the metarights 

in the capability from which the copy is made, see chapter 26 section 3.3). 

4.4 Collections of Bank Accounts 

For some purposes the bank will need routines which are associated with a 

group of accounts, for example to maintain a cumulative balance of all the ac-

counts of a particular type at a branch or to add interest to the accounts, etc. 

Such routines can be programmed in separate file modules, which again can 

share a single code module. Such a file module will have access to a stored ca-

pability (with appropriate access rights) for each account, giving it access to the 

individual details of the accounts files. The rights to the individual accounts in 

these collection modules will be restricted on a need to know basis. For example 

in a module designed to calculate a cumulative balance for all the accounts the 

module might only have the right to call the 'current balance' routine for each 

account. 

4.5 Using the More Traditional Approach 

Nothing in SPEEDOS (or Timor) forbids the more traditional approach of plac-

ing an entire set of bank accounts into a single file module and providing some 

additional routines which operate on all the accounts in the file to maintain cu-

mulative balances, add annual interest to them, etc. This is possibly marginally 

more efficient and easier to organise, but it lacks the extra security provided by 

keeping each account in a different file. 

4.6 Different Kinds of Bank Accounts 

So far we have made the simplifying assumption that our fictitious bank only 

offers one kind of bank account.  In reality banks have a whole range of account 

types, some but not all of which are interest bearing and some offer higher inter-

est if the money in the account exceeds a certain amount and is left on deposit 

for a fixed period of time. Other accounts are loan accounts, or accounts associ-

ated with stocks and shares, etc. For such accounts different module types with 

different routines are needed
258

. But such accounts must be distinguished from 

each other, so that in practice each account associated with a particular customer 

will have not only a customer number but also a separate account number. 

4.7 Customer Information 

Another kind of module is needed, describing the customer and his accounts. 

Such a module might record details of the customer, e.g. name and address, date 

                                           
258

  Timor offers facilities for code re-use which are independent of subtyping [8]. This 

makes it relatively straightforward to re-use some parts of the code for different kinds of 

account, without affecting the semantics of the objects. 
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of birth, marital status, nationalities and passport numbers, bank card numbers, 

tax identification numbers, the customer's unique SPEEDOS identification num-

ber and other relevant information (e.g. taxation information on his annual inter-

est, details of authorised representatives). This customer information module 

will also hold a list of the customer’s account numbers and capabilities for them. 

It will be set up when the customer registers as a customer and will be modified 

as his requirements change (e.g. when he opens a new account). 

5 Online Banking 

In conventional Internet banking systems it is standard that data is processed by 

the banking system on its own computers and data is returned to users and dis-

played on the user's screen, possibly with the help of HTML or similar. As past 

experience has shown, this technique, as used in conventional computers, has 

often led to security breaches and theft of funds. 

5.1 A SPEEDOS Online Banking Architecture 

The most obvious and certainly the best way to organise an online banking sys-

tem using SPEEDOS is to take advantage of its in-process philosophy and the 

availability of remote inter-module calls with call-back calls (see chapters 28 

and 35). In this case the interactions between the customer and the bank begin 

by the user at his computer activating one of his threads which invokes a call-

back module at his own node. 

5.2 The Call-Back Module 

The call-back module will have previously been supplied by the bank and is a 

module which must be installed on the bank customer's computer
259

. In view of 

the very high level of security needed by the bank, this module must not contain 

information which could be problematic for the bank in the case of failure at the 

customer node. Hence all security relevant information must be stored on the 

bank's own computer(s), including the customer's registration details (see sec-

tion 4.7). However, the call-back module can contain some initial security 

checks, which can be supplemented by further checks in the banking module on 

the bank's own computer. 

5.3 The Relationship between Bank Modules and Call-Back Modules 

In many conventional systems HTML serves as a medium between a remote 

                                           
259

  The call-back module could previously have been installed on the user's computer via 

mechanism described in chapter 35 section 2.2, or it might for example have been made 

available on an installation CD (see chapter 27 section 2.5), etc. For smartphones it can 

be supplied to the customer as an "app", i.e. the bank's call-back module can be regard-

ed as a smartphone application module if the smartphone has a SPEEDOS architecture. 
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computer and its displays on the user's local computer, HTML interpreters (in 

particular browsers) have often proved to open up major security loopholes. For 

this reason the SPEEDOS design has attempted, as far as possible, to avoid the 

use of browsers (see chapter 34 section 2). This applies especially to websites 

which are used in systems that need a very high level of security, such as bank-

ing systems. Hence we recommend that HTML is not used for online banking. 

Instead we encourage the use of the SPEEDOS call-back mechanism. In the case 

of highly secure systems we recommend that call backs are used in a particular 

way, applying a rule that the call-back modules do not persistently store secure 

information (such as registration information) on the user's computer. Instead, 

when such information is requested from the user it is transferred from the call-

back module to the website module (in this case a module on the bank's comput-

er) for checking and/or for storing persistently, and when sensitive information 

has to be supplied back to the user this is held persistently by a website module 

and only transferred (temporarily) to the call-back module on demand. In this 

way secure information is placed only in temporary segments except at the web-

site, and is therefore less vulnerable to thieves and hackers. 

5.4 Starting Online Banking 

The call-back module is activated (on the customer's computer) via a local inter-

module call to it in one of the customer's persistent threads. 

When activated the call-back module displays the bank's website start page, 

which allows the user to select from a number of options, including a page 

showing information about the bank or a page which allows the user to log in to 

his accounts (see Figure 37.5). 

In the following subsections we assume that the user selects the latter. This 

then uses a capability which the bank has stored in the call-back module to make 

a remote inter-module call to an appropriate login entry point of the customer 

information module described in section 4.7. In a perfect world no further 

checks would need to be made, since in theory the capability used to make the 

call is evidence of the right to call the customer information module. However, 

this capability might have been secretly obtained by a hacker and so in practice 

further checks are appropriate. 

5.5 Implicit Checks 

Some of these checks can be carried out implicitly, i.e. without the user being 

directly involved. The kernel's environmental checking instructions (see chapter 

26 section 1) are especially useful for this purpose. For example, as an initial 

check the call-back module can use the kernel instruction target_code_owner 

in a call-out bracket routine to ensure that the capability used to make the remote 
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inter-module call is actually the bank's software. If this check fails the call to the 

bank is abandoned. 

 

Similarly the bank module which is called by the call-back module can 

check (against the customer information stored at the bank) that the owner of the 

calling module is its own call-back module, using the kernel's calling_code 

instruction. It can also check that the calling_file_owner and the current_

thread_owner are authorised to access the accounts (either as account owner 

or as authorised representative). 

5.6 Explicit Checks: Identifying the Customer 

In order to be sure that the online banking customer is really who he claims to be 

(e.g. rather than another person who has illicitly gained access to his computer), 

it is appropriate to adopt a logging in strategy in two steps. The initial remote 

IMC to the bank will be made before these checks are carried out and call-back 

calls to the bank's call-back module (on the customer computer) can be used to 

obtain the information from the user (after first using the implicit checks to en-

sure that the call-back module is genuine). 

5.6.1 The Bank's Identification Procedure 

In this first stage the bank carries out checks of its own devising, which have 

been agreed with the customer. These might, for example, include a password or 

Figure 37.5: The Basic Architecture of SPEEDOS Online Banking 
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follow a PhotoTAN procedure
260

, etc. The aim is to convince the bank that it is 

dealing with a genuine customer entitled to access his own accounts
261

. 

5.6.2 The Customer Checks 

If the first stage is successfully completed, the bank module then activates the 

second stage, the purpose of which is to convince the genuine customer that no-

one is trying to impersonate him. 

This stage uses an authentication module similar to that provided for users 

as they log their persistent threads into a SPEEDOS system (see vol. 1 chapter 

15 section 3.4 and chapter 22 section 11.4). In this case the user's identification 

module should not be stored in the call-back module but rather on the bank's 

own computer. Such checks are carried out as defined in the user's authentica-

tion module, which challenges him to provide evidence that he is the valid user, 

as was previously defined by the user, not by the bank. A capability for this 

module will be stored at the bank as part of the customer information (section 

4.7) and the bank will also store the module itself. This may, but need not, be a 

copy of the authentication module used to log the user into his current thread
262

. 

The bank computer activates this module (on the bank's computer) as its 

next step after carrying out its own checks. The bank's code can locate the au-

thentication module by using the kernel's environmental instruction current_

thread_owner. This allows it to locate the user's customer information and 

therefore obtain a capability for the authentication module. In order to carry out 

the identity checks it uses the call-back module to display the questions and to 

return the answers
263

 (see Figure 37.6). The authentication module may make 

provision for an inter-module call to an "alarm" module in the bank, thus allow-

ing a fraudulent user to think that he is logged in successfully, while the bank 

takes special precautions to prevent the fraudster from doing damage and per-

haps attempts to locate/identify him. 

If the final authentication step succeeds the call-back module then works in 

step with the bank module to display and carry out the user's transactions. When 

the customer has completed these he signals this via the call-back module, 

which then advises the bank module to log the user out of its system. This could 

include a provision to allow the user to indicate that the bank should use a dif-

                                           
260

  see for example https://www.youtube.com/watch?v=Ivuodu8plV0.  
261

  Nothing is absolutely safe, since smartphones, PhotoTAN devices, etc., just like credit 

cards, can be stolen. For this reason it is best not to rely on the bank's tests alone. 
262

  It may have to be provided in a standard source format and re-compiled at the bank if 

the computer instruction set used by the customer's computer differs from that used by 

the bank. 
263

  Note that the authentication module can directly use the call-back mechanism, see chap-

ter 28 section 7.2.2. 
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ferent authentication module when he next logs in online. 

 

NOTE: The bank should of course treat the user's authentication module with 

suspicion and take steps to ensure that it is does not contain a trojan horse! To 

do this it could for example use 

(a) the module call confinement rights (which it can unset in the capability 

used to call the authentication module and/or in the thread security register) 

and 

(b) the thread control rights (which it can unset in the thread security register). 

5.7 Displaying the Information 

At first sight using the call-back arrangement over an entire banking session 

might appear to have the disadvantage that a potentially large amount of infor-

mation might have to be transferred backwards and forwards over the Internet. 

But in fact this is not the case, assuming that the structural information of web 

pages is maintained at the call-back module, e.g. as formatted pages. For exam-

ple in the case of banking the formats of the individual web pages are normally 

fixed. If the call-back module receives display requests from the website module 

in the form: <webpage number, parameter list>, all it needs to do is to insert the 

parameters (i.e. the actual values, e.g. of the user's account) into the pre-

prepared web page formats and display the page. This is not only more efficient 

than sending the entire information over the Internet to display the page but it is 

more secure, since a hacker would have to understand the page numbers, the or-

der and meaning of the parameters, etc. before he could use the information sen-

Figure 37.6: Customer Identification via his Authentication Module 
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sibly, and intercepting the call-back information would not help him to access 

the persistent information held at the website. The only exception to this might 

be the authentication page, since this might be user-defined. However, if the 

bank chooses, instead of offering complete freedom with respect to the use of 

authentication modules it might offer, say, ten standard alternatives. 

When the user chooses to log out, the call-back module deletes the infor-

mation held in its temporary segments then advises the bank module in the call-

back call's return parameters. This results in the bank module finalising its activ-

ity and returning in the RIMC thread back to the call-back module and thence 

back to the user. 

6 Online Shopping and Services 

It has now become common practice to visit websites which offer goods and 

services for which the customer can immediately pay online. Payment methods 

can vary (and may involve risks, e.g. in the case of providing a credit card num-

ber
264

). However, in their morbid fascination for investment banking and their 

corresponding neglect of private customer banking, many banks have overseen 

the opportunities offered by online shopping and left the field to others. Here we 

show how the banks themselves could gain back some of the custom which they 

have lost. 

6.1 The Basic Scenario 

The scenario here envisaged is that a bank account holder goes online to shop 

for goods (or for services such as airline tickets). He begins by visiting the web-

site of a business (the vendor) offering items of interest. To do this from his 

home computer (or from a smartphone) with a SPEEDOS system he activates a 

vendor call-back module on his own system (which he will have obtained in one 

of the ways described in chapter 35). The vendor call-back module, which has 

an embedded capability for its associated website, makes a remote inter-module 

call to the website, which then eventually makes a call-back call to the potential 

purchaser offering goods or services for sale. This process is repeated until the 

customer has selected an item or items which he wishes to purchase (see Figure 

37.7). He signals this by pressing a "request payment details" button. 

The call-back module then displays for him a price list. If the customer de-

cides to purchase the item(s), he then presses a "pay" button. This causes the 

vendor's call-back module to display an invoice, which the customer can down-

load if he wishes. 
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  see section 8 below. 
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6.2 Activating the Bank's Online Purchase Mechanism 

At this point it is appropriate for the vendor's website module, still acting in the 

customer's thread, to call the purchaser's bank to allow the payment to be author-

ised. But to do this the vendor needs access to a capability and the appropriate 

semantic routine number for the bank. This raises the question: how can the pur-

chaser safely make an appropriate capability and semantic routine number avail-

able to the vendor? 

On the one hand such a capability should be made available to the vendor 

only after the purchaser has decided to go ahead with the transaction, but on the 

other hand the flow of the transaction should not be disturbed. To achieve this, 

the purchaser activates a second thread (T3) which activates the bank's call-back 

module, using an online_purchase semantic routine, not the routine normally 

used for straightforward online banking. 

Thread T3, executing in the bank's call-back module, opens a window 

which allows the user to select the capability for the vendor's call-back module 

from a directory in which he has previously stored it (e.g. as a bookmark). Using 

this (and a semantic routine number also provided in the window) the thread 

calls a payment interface routine of the vendor's call-back module, passing to it 

a capability for the bank and the number of the entry point in the bank module 

which handles payments (online_purchase), see Figure 37.8. 

Figure 37.7: Online Interactions between Purchaser and Vendor 
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Now executing in the vendor's call-back module, thread T3 must somehow 

pass the bank capability and the entry point number to thread T1, which is cur-

rently suspended in the vendor's call-back module, so that this can return the 

bank's capability and routine number back to thread T2 in the vendor's website 

module, to enable it to call the online_purchase routine of the bank's main 

module. 

The technique which I suggest is that the transfer is carried out using a 

simplified version of the producer-consumer algorithm
265

, in which there is a 

single producer (T3) which "produces" a capability and a single consumer (T1) 

which is waiting to "consume" this. 

This requires a single "buffer" (which in this case is simply a single slot in 

the capability partition of a segment of the call-back module and space for an 

integer in the data partition). The empty semaphore is initialised to 1 and the full 

semaphore to 0. T1 executes the P(full) protocol, which causes it to suspend un-

til the buffer is full. When thread T3 arrives in the vendor's call-back module it 

executes the P(empty) protocol and moves the capability and integer into the 

buffer segment. The nextfull and nextempty variables are not needed. The 

V(empty) and V(full) operations are carried out as appropriate to ensure that 

both threads can continue. At this point T3 can exit from the vendor's call-back 
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  see volume 2 chapter 8 section 12.1. Producer-consumer routines should be available in 

the privileged synchronisation library routines, see chapter 21. 

Figure 37.8: Passing a Bank Module Capability to the Vendor (Step 1) 
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module. Figure 37.9 illustrates these operations. 

 

Thread T1, operating in the vendor's call-back module, is now in a position 

to pass the bank module capability and routine number as return parameters 

from the call-back call to the vendor's website module and await further call-

back calls or a final return from the website module. 

6.3 Making the Payment 

On receiving the capability and routine number, the vendor website module, ex-

ecuting in the surrogate RIMC thread T2, uses this to make a remote inter-

module call to the purchaser's bank module (see Figure 37.10). 

In addition to using the capability and semantic routine number to make the 

call, it passes the following (or similar) information from the invoice as parame-

ters: 

a) the account details of the vendor (e.g. in Europe the IBAN and BIC num-

bers); 

b) the name of the payee (i.e. the vendor); 

c) invoice number (or similar) and date; 

d) the name of the purchaser. 

This takes it to the semantic routine online_purchase of the main bank mod-

ule, which now receives the payment details that it requires to make the pay-

ment, but to go ahead the bank module still needs the authority of the purchaser 

(i.e. the bank customer). 

VENDOR'S CALL-BACK MODULE 

STEP 1: Thread T1 recognises that the 

purchaser has activated a "pay" button. 

STEP 2: Thread T1 requests details of 

the payer's bank capability and 

semantic routine using P(full) request. 

This causes T1 to be suspended. 

STEP 3: On being reactivated after 

waiting, it copies the information into 

its return parameters, issues a V(empty) 

and returns back to the Vendor Module. 

User Thread T1 at purchaser's node 

(active in a call-back call in vendor's 

call-back module) 

Thread T3 at purchaser's node calls 

"payment" routine of vendor's call-back 

module, passing a capability for the 

bank module and a semantic routine 

number as parameters. 

STEP 1: Thread T3 claims the buffer 

using a P(empty) request. 

STEP 2: Thread T3 places the 

parameters which it has received into 

the shared buffer segment. 

STEP 3: Thread T3 issues a V(full) 

request, thus releasing the shared 

buffer segment. 

STEP 4: Thread T3 exits from the 

Vendor's call-back module. 

Figure 37.9: Passing a Bank Module Capability to the Vendor (Step 2) 
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The simplest way to organise this is for the bank module to prepare a pay-

ment order and display this to the customer. This can be done via a call-back call 

to the bank's call-back module. However this must first contact the bank mod-

ule, and the user must be authenticated. 

6.3.1 Establishing Contact between the Bank and its Call-Back Module 

We left thread T3 exiting from the vendor's call-back module, and returning to 

the bank's call-back module. This now makes a remote IMC to the bank module 

at the bank node (see Figure 37.11). The latter can then use call-backs to display 

information. 

The resultant RIMC thread T5, executing in the bank module, can follow-

ing similar authentication procedures to those described in sections 5.4 to 5.6. 

Once authenticated, the bank module can make a call-back call to its partner 

thread T3 in the bank call-back module, allowing the purchaser (i.e. the bank 

customer) to select an online purchasing page which displays the invoice to be 

paid. Assuming that this is correct, the user can then click a "confirm payment" 

Figure 37.10: The Vendor's Website Module calls the Bank Module 
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button. T3 can then return from the call-back call, indicating whether the user 

has logged out from the bank session or wants to continue with other online 

banking. 

 

6.3.2 Coordinating with the Vendor in the Bank Module 

From the vendor's viewpoint the transaction is not complete until the vendor re-

ceives a confirmation that the payment has been made. Thread T4 provided the 

details needed to pay but before he can get the necessary confirmation T5 must 

confirm the payment. We now have a similar situation in the bank module to 

that which occurred in the vendor's call back module (see Figure 37.9), where 

the two threads (T1 and T3) needed to pass information in a synchronised man-

ner. In the present case the information is a simple confirmation/reject message 

regarding which the two threads T4 and T5 must be synchronised, but this time 

in the bank module. The same basic solution as shown in Figure 37.9 can be 

used. In this case T5 is the producer (it produces a confirmation) while T4 is the 

consumer waiting for the confirmation. Hence T5, after it has confirmed the 

payment, executes a P(empty) request and places an evidence of payment in the 

single buffer then executes a V(full) statement. Meanwhile T4 executes a P(full) 

request, removes the confirmation from the buffer and issues a V(empty) state-

ment. T4 can then place the confirmation into a return parameter before exiting 

from the bank module back to T2 in the vendor's module. This can exit back to 

T1 at the purchaser's node. T5 can either carry on banking or can exit to T3 and 

return. 

6.3.3 Comments on the Online Shopping Approach 

The user must have a SPEEDOS online banking facility on a home computer, a 

smartphone or other computing device, but the solution described above does 

Figure 37.11: The Bank's Call-Back Module calls the Bank Module 
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not require registration with an outside authority or company. Nor does it re-

quire either the purchaser or the vendor to pay any "middleman" fees over and 

above the normal cost associated with online banking. The only requirements 

are that (a) the vendor provides two standardised interfaces for his website call-

back module, and that the bank provides a special interface routine in the main 

bank module which allows vendors to present invoices for payment. 

Notice also that the scheme is not limited to payments by banks. Any fi-

nancial company (e.g. a company offering a credit scheme) can use the same 

model to allow its customers to make online payments to businesses (without the 

necessity for passing credit card numbers around). 

This example provides a good illustration of how the in-process system 

works in practice in SPEEDOS. All the threads described are owned by the pur-

chaser (who is also the bank customer). On the one hand the websites visited 

have the advantage from this that they can easily check the identity of the user 

on whose behalf they are working. But on the other hand the user can retain con-

siderable control via the thread security register, the settings of which can be 

determined by the user. 

7 Direct Debit Facilities for Recurring Payments 

Direct debit facilities allow payees to withdraw money directly from payers' 

bank accounts. This usually means that the payer has previously provided an 

authorisation which specifies a number of rules that might define the frequency, 

a maximum amount per withdrawal, what happens when the payer's account 

does not have sufficient funds, what fees are involved, whether and within what 

time limit a the payer can re-claim an incorrect withdrawal, etc. In some systems 

the payer can object to a withdrawal and can reclaim the amount withdrawn 

within a specified period from the date of the withdrawal (e.g. 6 weeks in Ger-

many). 

Such facilities are widely used in financial systems, especially in situations 

where regular payments which vary in amount from month to month (e.g. tele-

phone bills, heating bills) must be made by private individuals to companies. 

The permitted rules are usually defined by the country in which the transac-

tions are planned to take place, and transactions are normally restricted to that 

country. These rules vary very substantially from country to country
266

. In view 

of this and the fact that end-users are not directly involved online once the sys-

tem has been set up, I make no attempt present how a system might look in 

SPEEDOS, except to say that it will obviously involve accesses to user accounts 

and online transactions between banks, which can obviously be implemented in 
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SPEEDOS, and such implementations can of course take advantage of the 

SPEEDOS security mechanisms. 

8 Banking Cards and Mobile Banking 

The conventional solution for most mobile banking activities before the advent 

of smartphones was the use of debit or credit cards (which I shall refer to collec-

tively as banking cards), and these still have an established place in current 

banking practice, e.g. for using at ATMs and for paying bills. Not all banking 

card systems work in the same way and in some cases they are country specif-

ic
267

, so I will make some general assumptions. 

A debit card is linked directly to a bank account, and it can only be used for 

making payments which can immediately be fully paid from the bank account's 

current credit value (including in some cases a small overdraft limit). Payments 

are made immediately from the bank account, using a radio or other link to the 

bank. Debit cards are usually protected by a short (mostly four digit) personal 

identification number (PIN). 

A credit card is linked to a credit institution, to an account which is recog-

nised from a credit card number, and payments are also operated using a radio or 

other link to the credit institution
268

. The credit card holder usually receives a 

monthly statement but has a credit limit, so that instead of paying the full 

amount he has the option of paying a part of the debt and carrying over the rest 

of the debt (on which he pays interest and fees) successively to the following 

month(s). 

Some credit cards have an associated 3 digit security code on the credit 

card, which is known to the merchants and can be used to ensure (e.g. over the 

telephone) that the user actually has the card which he claims to have. 

Banking cards can be a source of problems, as we now discuss. 

8.1 Some Problems with Paying by Card 

One very significant issue is that cards store information needed by the bank or 

credit institution to carry out the banking operations which the customer wishes 

to make. On earlier cards this information (e.g. account number, withdrawal lim-

it, etc.) was recorded on a magnetic strip, which could be read by a payee with 

the appropriate device. If the payer and payee were physically in the same place, 

there was the added security that the card also held a visible signature of the 

payer, so that the payee could convince himself of the payer's identity by com-
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paring this with his signature on the payment order which he signs. In later ver-

sions of banking cards the magnetic strip was replaced by a microchip. Encryp-

tion was introduced to make the process more secure. 

One fundamental weakness of banking cards is that to be useful the infor-

mation on the card can be read by a device provided by banks to payees (e.g. 

merchants). But if the payee's device can read the information on the card it is 

clear that enterprising thieves could also find ways to read or copy the card and 

use this information to steal money from the card holder's bank or credit ac-

count. Since in many cases such theft takes place without face-to-face interac-

tion, the signature on the card is also no help, and even in face-to-face interac-

tions some thieves are good forgers! 

Even less secure are transfers where the payee simply provides (e.g. over 

the Internet or by telephone) a credit card number. And in this case the problem 

arises that when a payee receives a credit card number, he can store it for future 

use. This then leads to a problem that when a business, a club, or other organisa-

tion stores credit card numbers on its computers, these become a tempting target 

for thieves. Over the last decades there have been numerous examples of break-

ins to the computers of organisations which hold vast files of credit card num-

bers of their members or customers and the theft of these card numbers. 

The addition of a radio facility to banking cards (contactless smart cards
269

) 

is even less secure, since a clever thief can obtain the card details by holding his 

reading device within distance of the radio waves, e.g. by reading the infor-

mation from the pocket of a user in a crowd or in a supermarket queue. It would 

obviously be desirable therefore completely to eliminate the need for debit and 

credit cards. 

9 Automatic Teller Machines 

When a bank customer wishes to withdraw cash from his account, it has become 

the universal practice (because banks want to save on staff salaries) to use auto-

matic teller machines (ATMs). To do this the customer inserts a card into the 

ATM and typically provides a four digit PIN number as verification of his iden-

tity. 

As its name implies, an ATM has more or less the same functionality as a 

human bank teller. Probably its most important function is to allow customers to 

withdraw money but it can also be used for other functions such as transferring 

money from one account to another (of the same or a different person). Hence 
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logically it can be viewed as being similar to online banking, except that while 

online banking allows a customer to transfer funds between users and also be-

tween the accounts of a user it does not provide a mechanism which allows the 

customer to obtain real cash. That is perhaps the key difference from ATMs, 

which have a mechanical mechanism that allows a customer to withdraw money. 

The question therefore arises to what extent ATMs could follow a similar im-

plementation pattern to online banking, but with an extra cash mechanism add-

ed. 

9.1 An Approach Using Cards designed for SPEEDOS Systems 

There are some interesting similarities. An ATM has a display screen and a key-

board (i.e. a limited set of input keys) via which the user can input his transac-

tion requests and see the results; this is in principle similar to the online user at 

his home computer or his smartphone. Is it therefore possible to envisage that 

the ATM's software can have more or less the same functionality as a bank call-

back module and that the customer's transactions are managed by remote inter-

module calls from an ATM's local call-back module and the central bank mod-

ule? 

In this case the software in the ATM is comparable with the call-back 

module described for online banking. It can store the structural information re-

quired for display and the bank's central module can be reached via a remote 

inter-module call, which returns information as a <page number, parameter list> 

for display on the ATM screen. 

We therefore assume that the ATM software includes a (rudimentary) 

SPEEDOS system with a call-back module which is used in a similar manner to 

that for online banking. However, there is a fundamental difference. Because the 

ATM uses the bank's own device, the implicit checks as described in section 5.5 

cannot be carried out, and the kernel's environmental instruction current_

thread_owner, which allows the online version to locate the correct customer 

information, cannot be used to identify the customer. (It could however be used 

to identify the ATM.) 

One possibility for identifying the customer would be to fall back on a cur-

rently used mechanism (e.g. a card with a PIN number – but preferably with a 

much wider choice of PIN values!) and to use the information stored in the 

card's microchip (which could include the customer's unique SPEEDOS identifi-

er). I regard this as a fallback solution, for the case that banks are unhappy about 

the following alternative proposal. 

9.2 An Approach without the Use of Cards 

A better alternative, in my view, is simply to drop the implicit checks described 
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in section 5.5 but to carry out (a) a check that the request is from a recognised 

ATM and (b) to follow similar procedures to those described in sections 5.6.1 

and 5.6.2. The aim is still to satisfy both the bank and the customer about the 

validity of the ATM user's identity and in this case to allow the bank to discover 

the customer's unique SPEEDOS identification, which can then be used to ac-

cess his accounts, etc. 

Notice that the apparent alternative of initially requesting the ATM user to 

provide his unique identifier alone at the start of an ATM session is not ade-

quate, because this is not kept secret. It can be used as part of the identification 

process to locate the (alleged) user's records (see section 4.7) but further proof is 

needed for the bank to be sure that the ATM user is who he claims to be. The 

bank can then devise its own identity tests, which can vary from customer to 

customer and might, for example, include a PhotoTAN or similar procedure. 

After the bank checks have succeeded it is desirable that the bank software 

should also use the customer's own authentication module to ensure that the user 

is really who he claims to be. In this way the user of the ATM cannot gain ac-

cess to the bank accounts without passing the real checks provided by the user 

himself. This should make the use of ATMs more secure than is presently the 

case with checks which simply rely on a card that uses only a short PIN number. 

10 Conclusion 

This chapter has illustrated how a secure banking system might be organised, 

specifically with respect to bank accounts and to online transactions. Many other 

file modules would be needed (e.g. to list the customers who have safe deposit 

boxes, to organise telephone banking, to pay staff salaries, etc.) to complete the 

system. 

I have restricted the discussion largely to online mechanisms using home 

computers and smartphones, because this is where I see the future of banking 

systems. In most situations smartphones will probably largely replace the use of 

card based payment systems, which, as I have indicated in section 8.1, are inher-

ently insecure. It would of course be possible for card based payment methods to 

be integrated into SPEEDOS, along similar lines to those proposed for ATMs. 

This could perhaps be organised by providing merchants who want to use pay-

ment cards with a device into which cards are inserted which, as I suggested for 

ATMs, would in effect have an in-built rudimentary SPEEDOS call-back mech-

anism in which the card user identifies himself using a PIN in combination with 

a unique user identifier, or preferably a mechanism whereby a simple user au-

thentication module (e.g. with a dynamically changeable PIN) could play a role. 

Our purpose, as in the entire book, has not been to provide a complete and 
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detailed specification of a system, but rather to indicate the main facilities avail-

able to a software designer in a SPEEDOS system and to show how they can be 

used in practice. It would be the function of the designer of a specific system to 

consider how the SPEEDOS protection mechanisms (including for example 

module capabilities, the thread security register, bracket routines, call-back 

module, the environmental checks, etc.) can best be used in his system design, 

whether in a banking system or some other system. Finally it is worth recalling 

in the banking and other contexts that all Internet communication between 

SPEEDOS computers is automatically encrypted by the kernel, and that all 

SPEEDOS discs are also automatically encrypted. 
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Chapter 38 

Making Life Difficult 

for Hackers 

 

In this concluding chapter we recall some of the key ideas in SPEEDOS which 

are not found in other operating systems/kernels. These are the main ideas which 

help to explain why I consider that SPEEDOS systems will be considerably 

more secure than operating systems which are based on conventional computer 

designs. 

1 The Hardware and Related Features 

As the first volume explained in considerable detail, the hardware modifications 

required to support a SPEEDOS kernel appear to be fairly trivial but are abso-

lutely essential. The key difference is in the way that the virtual memory is or-

ganised and addressed. Without this, it would be extremely difficult to have an 

efficient SPEEDOS system. 

1.1 The Orthogonal Segmentation and Paging Model 

Chapter 11 of volume 1 explains this model, which combines logical segments 

and physical pages in such a way that these two units for implementing virtual 

memory are almost completely independent of each other. From the efficiency 

viewpoint all accesses to the memory are paged, but from the viewpoint of the 

user (and of the compiler) all information is held in segments, without the one 

being dependent in a direct way on the other. Page boundaries do not determine 

where segment boundaries are placed, and segment boundaries do not determine 

where page boundaries occur. 

This may at first sight appear to be just a matter of efficiency – and it does 

imply that in this respect SPEEDOS will be more efficient than systems which 

use a conventional paging or paged segmentation scheme. But that is not the key 

issue. This scheme makes it possible in practice to support both very short seg-

ments and very long segments not only efficiently but also in such a way that 
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memory protection can be equally well applied to both, since the memory pro-

tection scheme works at the level of segmentation – regardless of segment size. 

This crucial factor means that small segments can contain significant protection 

information, including capabilities, and that access to these can be controlled 

exclusively by the kernel, thus laying the fundamental basis for security, protec-

tion and privacy. Conventional schemes for segmentation and/or paging are not 

able to do this. 

1.2 Segment Registers 

A crucial further step is the introduction segment registers. Segments can be ac-

cessed only via segment registers. These are hardware-based addressing regis-

ters which allow the hardware to check a program's right to access a segment 

and the mode of this access during program execution. In conventional systems 

such checks normally use information stored in page tables, thus restricting the 

minimum size on which protection can be applied to an entire physical page. In 

SPEEDOS this restriction does not exist, making it much easier to apply protec-

tion to logical segments, regardless of their size. 

Segment registers can only be loaded and manipulated by the kernel, thus 

making it possible in SPEEDOS to eliminate conventional segment tables com-

pletely. Instead SPEEDOS uses protected pointers to organise the logical struc-

ture of programs and data, e.g. as linked lists. This simplifies both the address 

translation hardware and the structuring of software. And above all it allows the 

kernel to support protected capabilities, as will be discussed shortly. 

1.3 Persistent Virtual Memory 

SPEEDOS realises the concept of direct addressability, which was an aim of the 

Multics project, and extends the idea such that a separate file system is entirely 

eliminated; all information, whether persistent or temporary, is held in the virtu-

al memory. Once again this increases the efficiency of the system, because only 

one set of mechanisms is required to manage the persistent memory, for which 

the main memory is simply seen as a "cache". Apart from the efficiency ad-

vantage of this approach, a single uniform set of security mechanisms applies, in 

contrast with conventional systems, where separate mechanisms are needed in 

the conventional virtual memory and in the file system. 

1.4 Distributed Persistent Virtual Memory 

The next significant step is the application of the same persistent virtual memory 

concept to all SPEEDOS computers throughout a network (including the Inter-

net). This is achieved in practice primarily by allowing inter-module calls – 

which are the heart of the SPEEDOS protection mechanisms – to be made to 

modules at remote SPEEDOS nodes in a network. This has the effect that a sin-
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gle set of mechanisms applies for SPEEDOS computers throughout an entire 

network. 

1.5 Encryption of the Virtual Memory 

The final unusual aspect of the virtual memory is that all information transferred 

between SPEEDOS computers across a network is automatically encrypted, and 

similarly all information stored on disc is likewise encrypted. Thus unencrypted 

information appears only in the main memory. 

2 Some Key Kernel and Operating System Features 

The next step is to review how the SPEEDOS kernel makes life very difficult for 

would be hackers. 

2.1 The Information Hiding Module Structure 

All software units in SPEEDOS are constructed as modules. These consist of a 

code part, which has multiple entry points, and (optionally) a data structure part. 

Together these can model any software structure in conventional systems. 

The most common form of module is a file module, i.e. a module consist-

ing of (a) a persistent data structure and (b) a number of routines which provide 

semantic services for the data structure. The only way of accessing the data 

structure from outside the module is via its semantic routines, which have prede-

fined functionality. This alone is a hindrance to hackers, as we now show. 

In conventional systems a capable hacker can write a program which di-

rectly accesses the information of interest to him stored in a file in the file sys-

tem as Figure 38.1 illustrates. 

 

This is not possible in SPEEDOS because the file data can only be accessed via 

its semantic routines, as Figure 38.2 shows. 

At a more technical level, what prevents direct access to the file is that this 

nowhere appears in a directory, in contrast with conventional systems. The issue 

then becomes: How can a hacker attempt to find the data which he wishes to ac-

cess. This issue is discussed in section 2.3, but first we must consider a special 

potential risk. 

Figure 38.1: Hacking a File in Conventional Systems 
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2.2 Free Capabilities 

In section 2.1 we ignored one possibility which a hacker might attempt to use in 

his attempts to by-pass the security of a system, viz. free capabilities. These al-

low a thread to call a module which is given read access to the root data struc-

ture of a different module (see chapter 18 section 8, chapter 19 sections 13.5 and 

14) and this will undoubtedly be a mechanism which hackers try to use to their 

advantage. However, the misuse of free capabilities can easily be prevented by 

the owner of a file unsetting the capability use right "Free Cap") as is described 

in chapter 26 section 2. Once a right has been unset, the kernel will under no 

circumstances permit it to be reset. An aid for programmers which helps them 

not to forget this issue is described in section 2.7. 

2.3 Directories and their Structures 

In conventional systems directories are part of the file system and as such have a 

predefined structure which is certainly known to hackers and helps them to lo-

cate the information to which they seek access. But this is not necessarily the 

case in SPEEDOS. 

As is described in chapter 30, directories in SPEEDOS are simply modules 

which can be designed and implemented like any other module. One implication 

of this is that a SPEEDOS node which is likely to become a target for hackers 

can design and implement its own directory modules in any way that it chooses. 

These need not contain the same entry structures nor offer the same services in 

their semantic routines nor even use a standard set of entry point numbers for 

obtaining these services. 

This alone makes life difficult for a hacker, but even more security is of-

fered by the fact that the semantic routines of user-written directories can them-

selves contain checks to ensure that hackers cannot reach the information for 

which they are searching. For example they might contain environmental checks 

(see chapter 26) which examine the unique identities of the owners of the 

threads calling them against a list of users permitted to access them (which 

might also list the individual entries which these users are permitted to access). 

Alternatively – and more flexibly – they can place such checks in bracket rou-

Figure 38.2: The File Information is protected by the Semantic Routines 
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tines (to be discussed later). 

Perhaps most significantly, a careful user can embed the capabilities for his 

more sensitive data in segments of his normal user programs (e.g. those which 

need access to the sensitive files). This makes them virtually unfindable for a 

hacker who does not have insider information. 

2.4 Capabilities 

Capabilities are the fundamental key for accessing information in a SPEEDOS 

system. This means that protecting them is a very important issue. As we have 

just seen, directly protecting capabilities held in directories can make life very 

difficult for hackers. But this does not mean that they are entirely safe. 

The biggest insider risk is that a user who has legitimate access to a capa-

bility either carelessly or knowingly passes copies of this to unauthorised per-

sons. The system has a number of mechanisms which can help to prevent this 

from happening. For example the capability itself contains a substantial number 

of metarights which can be used to prevent or limit the further distribution of 

capabilities, including restrictions which prevent the passing of capabilities be-

tween users, between different kinds of segments of a user and/or between dif-

ferent nodes. A restriction can also be applied that a capability can only be used 

once (and is then invalidated). A special mode is also provided to restrict a di-

rectory from accessing the capabilities stored in it. These are just a sample of the 

available controls over capabilities, which are described in detail in chapter 26. 

If a hacker does somehow obtain a capability, the kernel ensures that he 

cannot increase the rights to allow him greater access than the capabilities al-

ready contain, since this is a general rule for all rights. 

But the hacker who has gained access to a capability can read the unique 

module number of the module addressed by the capability (by copying the capa-

bility to a data segment). From this he could then try to find the file module be-

hind the capability. On an inter-module or similar call the kernel finds the mod-

ule (which it recognises as a file module from the type field in the capability) by 

first establishing the number of the container in which the module is located, 

and reading in its page 0. From this he obtains the start address of the module's 

data root by examining the container's Co-Module Table. These are all internal 

kernel operations which cannot be imitated by a hacker unless he can turn on 

privileged mode and thus access the kernel's tables (including making a disc ac-

cess). There is no way that a hacker could achieve this under normal circum-

stances and so we conclude that even a knowledge of the capability's content 

will probably not help him.
270

 

                                           
270

  Kernel security is discussed in section 3. 
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2.5 Controlling Access and Confining Information and Capabilities 

Even if a hacker manages to gain access the system his access can be severely 

restricted (and he may be detected before he can steal data) by means of bracket 

routines (see chapter 24). These are a very flexible tool for use against hackers. 

For example call-in brackets can be used to record information about the callers 

of a bracketed module, to reject calls and even to serve as decoys which feed 

false information back to hackers calling the module. They can also monitor the 

information (including capabilities) which is being passed back to a calling 

module and either deliberately falsify this information or invalidate the capabili-

ties (and even replace them with capabilities for decoy modules). Similarly call-

out modules can examine the information (including capabilities) which a mod-

ule is illegitimately passing on to a further module. Thus bracket routines (of 

both types) can easily be used to confine information. 

2.6 The Process Structure 

In order to execute code on a SPEEDOS system a hacker needs a thread which 

executes his code. But before this is even possible he must develop and install a 

code module which the thread can call. And then he needs a process module. All 

these stages present him with difficulties if he is not an accredited user at the 

node concerned, since the process and thread creation mechanism only works on 

a local node. SPEEDOS provides no mechanisms for simply writing code which 

can then be executed. 

If in a multi-user system a hacker tries to highjack a persistent thread be-

longing to another user, he will have great difficulties in logging in (provided of 

course that the user has taken the trouble to use some carefully designed authen-

tication modules, which are tailor-made to suit his needs, see chapter 22 section 

11). His first problem is that there is no central repository of authorisation in-

formation which he can target (in contrast with conventional systems) and these 

is no standard procedure to be followed when logging in (again in contrast with 

conventional systems). Consequently he has no standard starting point for carry-

ing his hacking operations. 

And even if he succeeds in hijacking one thread, the user can protect each 

of his threads in a different way. 

2.7 Environmental Information 

A fundamental difference between SPEEDOS and conventional systems is that 

SPEEDOS requires each user to have a worldwide unique identity. This is stored 

in a place accessible only to the kernel in each container which a user creates 

(including process containers). Software in normal modules, including bracket 

routines, can check this (provided that they have an appropriate kernel capabil-
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ity) and so identify the user executing the current thread or the owner of the cur-

rently active module (or of the module which called this, or the module about to 

be called, etc.). This mechanism can be used in a straightforward way to check 

access permissions, but it can also be used to identify hackers (or discover 

whose threads they have hijacked) and to identify spammers, etc. 

2.8 Simplifying the Setting of Rights 

One of the risks which might face users is that they make a mistake in the unset-

ting of rights, e.g. in capabilities and in the Thread Security Register. This could 

lead to serious problems, for example if a user forgets to unset the "Free Cap" 

right (see section 2.2 above) in a capability which falls into the hands of a hack-

er. 

Although the following solution is not a part of the kernel it is strongly ad-

vised that the developers of a SPEEDOS operating system should provide a 

carefully thought out set of template masks, i.e. bit patterns which can be used to 

"and out" access rights in capabilities and in the Thread Security Register. These 

should represent typical patterns of usage in common situations and be given 

easily understandable names. They could be stored in a module which is public-

ly accessible via a set of semantic routines which accepts a capability (or a bit 

string representing the TSR) as an input parameter, and return this capabil-

ity/TSR string) with appropriately reduced rights as a returned value. The name 

of each routine should reflect that of the mask which it uses (e.g. unsetFreeCap 

or setFreeCapOnly). Such a mechanism, which is carefully designed, would 

not only be of assistance to users
271

 but would also make the system more se-

cure. 

3 Securing the Kernel 

The discussion so far has assumed that the kernel at a node being attacked by 

hackers is completely secure. Under what conditions can this assumption be re-

alised? 

3.1 Correct and Accurate Code 

So far we have assumed that the kernel code is both correct and accurate. Since 

no formal specification exists for the kernel there can be no formal proof that it 

correctly fulfils a specification. It would of course be good if such a specifica-

tion and proof were to exist, and I would certainly welcome any attempt to 

achieve this. 

However, I consider it more important that the code is accurate, i.e. it does 

                                           
271

  This is my response to Lampson's rather negative comments in [29], where he points out 

that users see the management of security as a "pain" (see chapter 5, section 7.2). 
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what it is intended to do, nothing more and nothing less. Formalists will argue 

that this is impossible without a specification. However, the whole purpose of 

this book has been to explain the intention behind SPEEDOS. Parts of the de-

scription may be unclear and some details have not been completely stated, but I 

feel confident that readers who carefully study the text will understand my inten-

tions, and although some details will have to be filled in by implementers, I am 

confident that an accurate implementation can be achieved. 

Of course an implementation of the kernel code must be exhaustively tested 

and only released when the results of tests are repeatedly positive, and after a 

professional hacker team has attempted to discover errors. 

3.2 Secure Installation of the Code 

It would be problematic if at a node which claims to be a SPEEDOS node the 

code is not a true version of the SPEEDOS kernel. In order to prevent this from 

happening (to the MONADS-PC, forerunner of SPEEDOS) a technique was de-

vised which uses public key encryption to ensure that a system can be safely 

booted by the correct kernel [24]. 

3.3 Human Aspects 

The least secure part of any operating system, including a SPEEDOS system, 

will almost certainly be the human element. Users can accidentally or deliberate-

ly introduce errors in the settings for the capabilities which they distribute to 

others or in their settings for the Thread Security Register, etc., and these might 

lead to security breaches. 

Companies, public utilities, government espionage agencies, etc. might de-

liberately place their own employees in positions of trust at target nodes, so that 

they can provide these with insider information. Thus there can be no guarantee 

that any system is totally secure. 

But SPEEDOS at least provides tools which can be used to minimise any 

damage, e.g. by extensive use of bracket routines to log activity on sensitive 

modules and to inhibit the transfer of information using confinement techniques 

described in Part 6, including the use of settings in capabilities, the Thread Secu-

rity Register and the container confinement rights which can, for example, pro-

hibit the sending of information and the use of remote inter-module calls to oth-

er SPEEDOS nodes. 
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 APPENDIX 

Formats of Some 

SPEEDOS Structures 

1 A Worldwide Unique Virtual Address 

 

The main fields are subdivided into subfields as is indicated below. Some bits 

are spare. 

2 Subfields of a Node Number 

 

3 Subfields in a Disc Number 

 

A physical disc can have up to 15 partitions (logical discs). If the partition field 

is all zeros, the disc number refers to the disc as a whole or to its initial "parti-

tion".   

4 Subfields in a Container Number 

The index field in a SPEEDOS container number indicates a data or code mod-

ule number or a thread number within the container, as indicated by the type 

field of a capability. 

The type field uses three bits, with the following meanings: 

{kernel, data, code, thread, process, disc, container} 

Node Number Disc # in Node Address in Container 
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A SPEEDOS Node Number 

56 bits 

64 bits 

8 bits 

Disc # in Node 

A SPEEDOS Disc Number 

64 bits 

Partition 

in Disc 

4 bits 60 bits 



Appendix FORMATS OF SOME SPEEDOS STRUCTURES 380 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

A further bit indicates whether the capability is INVALID. 

The status bits consist of two bit pairs (the capability origin bits and the copy 

restriction bits), as described in chapter 26 section 3.4. 

5 Subfields in a Within Container Address 

 

This allows for a container to be up to 4 TB in length, which would allow an 

entire 4 TB disc to be viewed as a single container. 

6 A Virtual Page Number used by the ATU to Translate Short Container 

Addresses 

To enable a conventional address translation unit to be used, the page number 

presented to the ATU is a 32 bit "page number", consisting of a 3 bit SCID 

(Short Container Identifier) and the Page Number within Container: 

 

The proposed values for the SCID are as follows. 

 

7 The Main Memory Page Table 

In view of the size of modern main memories the hardware TLB (Translation 

Lookaside Buffer) will probably not be large enough to hold an entry for each 

page currently in main memory, so that this is supplemented by a Main Memory 

A SPEEDOS Container Number 

Container # in Disc 
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48 bits 8 bits 

Index 

8 bits 

Type and 
Status bits 

A SPEEDOS Within Container Byte Address 

13 bits 

64 bits 

29 bits 

Page# in Container Byte Offset in Page Spare 
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Page# in Container SCID 

29 bits 3 bits 

000 identifies the process address space of the currently active thread. 

001 to 011 identify the currently active code address spaces, i.e. for the  

 main code address space and up to two active code libraries. 

100 to 111 identify up to four data address spaces. 

A Possible Allocation of Short Container Identifiers 



Appendix FORMATS OF SOME SPEEDOS STRUCTURES 381 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy 

Page Table (MMPT) held in the kernel. 

 

8 Segment Structure 

A segment holds user information in 3 segment partitions: a data area, a list of 

pointers to other segments in the same container and a list of module capabili-

ties. It is addressed via a (protected) segment register, which addresses the base 

of the data area. The data area is directly addressed via a segment register. 

 

Immediately below the data area is a red tape area, which can only be accessed 

by the kernel, using negative addresses from the base of the data area. It consists 

of two 64-bit words:  

 

Each entry in the segment pointer list consists of a  63 bit pointer and a one bit 

'read only' indicator (NOTE: a segment must begin on a 2 word boundary and 

the 'read only' bit is set to 0 when loaded into a segment register.) 

The kernel provides special instructions (a) to load and store segment pointers in 
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the segment pointer list, and (b) to access, store and use module capabilities in 

the module capability list. 

9 Data Segment Registers 

 

Users can only address memory segments via segment registers. 16 such regis-

ters exist for addressing data. 

SCID: short container identifier. 

Start Offset in Container: Because segments begin on a word boundary, the 42 

bit byte address defining the start address of the container can each be reduced 

to 39 bits. The hardware treats these as word addresses. 

Segment Length: Similarly the length of a segment is also rounded up to a full 

word. 

Access Rights: One bit is used to mark the segment register as invalid, one to 

mark the register as read only (or read-write) and one indicates whether the reg-

ister values can be stored (see for example chapter 20 section 6.2.1) 

10 Code Segment Register 

A single code segment register is used to address code segments. 

 

Access Rights: One bit is used to mark the segment register as invalid, one to 

mark the register as execute only or execute and read and one is spare. The latter 

might be used for example to indicate kernel use or main memory addresses. 

11 Capabilities 

 

The full container identifier consists of the first three 64-bit words defined in 

sections 1 to 4 above. 
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The remaining fields are based on the discussion of security mechanisms in 

chapters 24 to 26. They can be implemented in three 64-bit words as follows: 

 

Thus the Full Container Identifier field and the Access Rights field in a capabil-

ity are each 3 words long and the entire capability is 6 words long. Note: It 

would be possible to move the index field and the type and status bits from the 

container number into the access rights of the capability, and still leave a few 

bits spare. 

12 Semantic Rights 

These rights indicate on an individual basis which entry points to a module can 

be called using the capability. The first sixty two bits define up to 62 semantic 

routines which can be called. In addition there are two bits which allow the list 

to be overridden by the following special bit settings: 

00 = none, i.e. no semantic routine can be called; 

01 = all, i.e. all the semantic rights can be called; 

10 = read only, i.e. only enquiries can be called; 

11 = use the list of 62 semantic rights. 

The first three of these are useful shortcuts for users. For modules which have 

less than 62 semantic rights the unused bits are set to 0. 

 

Bracket routines are not considered to be semantic routines and can never be 

invoked directly. However, if an executing bracket routine presents a capability 

to call a module, the above rules apply as normal to the call which it is attempt-

ing to make. 
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13 Metarights 

 

The metarights in capabilities are explained in chapter 26 section 3.3. 

14 Generic Rights 

 

The generic rights are explained in chapter 26 section 3.2. 

 

The principles underlying these confinement rights the subject of chapter 25. 
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The capability accessibility and use rights are described in chapter 26 section 2. 

The capability accessibility rights define which capabilities can be obtained by a 

thread via kernel instructions (see chapter 19 section 5 and chapter 26 section 2. 

It is not sufficient for a thread to execute capability accessibility instruction on 

the basis of the rights in a capability. The appropriate right must also be set in 

the Thread Security Register (see below) and a kernel capability must also be 

presented with this right set. 

The rights conferred in the final three use bits can only be used if they are set in 

the capability. 

16 Environmental Rights 

 

This is a bit list with 26 permissions. These indicate which of the kernel's envi-

ronmental instructions can be executed from within the module by threads exe-

cuting in it. As in the case of the capability accessibility rights a it is not suffi-

cient for a thread to execute an environmental instruction (see the list in chapter 

26 section 1) on the basis of the rights in a capability. The appropriate right must 

also be set in the Thread Security Register (see below) and a kernel capability 

must also be presented with this right set. 
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The confinement rights are in two parts. The first of these is concerned with 

confining information which is available in a module to that module. The second 

is concerned with restricting the kinds of calls available to a thread while it is 

active in a module, based on the type of the origin segment of the capability be-

ing used to make the call. 

 

18 The Thread Security Register (TSR) 

The TSR is a register (normally implemented in software at the base of a 

thread's stack) which is part of the state of an active thread and therefore, like 

the container registers, is copied into and retrieved from the stack linkage seg-

ments on an inter-module call and similar calls and on thread switches. It is only 

available for kernel access and is used to restrict the activities of a thread. 

The TSR has four groups of rights, each of which has a primary section and a 

secondary section containing the same rights fields. The principles on which it 

works are described in chapter 26 section 4. 

 

The TSR is implemented in two 64 bit words. 
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tems which allow communication with and access to non-SPEEDOS nodes (see 

chapter 34 section 7.3.2). 

20 The Confinement Rights 

These are the same as those listed in section 17. There are twelve individual 

rights in each section. 

21 The Environment Rights 

These are the same as those listed in section 16. There are eleven individual 

rights in each section. 

22 The Capability Accessibility and Use Rights 

These are the same as those listed in section 15. There are eight individual rights 

in each section. 

23 The Container Confinement Rights 

The container confinement rights determine whether information in a container 

can be transferred to another node via a download or upload, whether they can 

be used by a thread the owner of which is not the owner of the container and 

whether they can be used by a thread belonging to another node which has been 

transferred temporarily to the current node following a remote inter-module call. 

 

These rights are held in page 0 of each container, but neither in module capabili-

ties nor the Thread Security Register. 

 

 

Container Confinement Rights 

Foreign 

Upload 
Foreign 

Thread 
Imported 

Thread 
Foreign 

Download 
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