

To

my wife Ulla

for helping me through difficult times

and for all the support and encouragement

which she has given me.

SPEEDOS:

Making Computers Secure

volume 2

James Leslie Keedy

 i

Table of Contents

Table of Contents.. i

List of Figures .. xv

Preface ... xviii

Part 5 The Basic Kernel Design ... 1

Chapter 17 A Modular Kernel Design .. 2

1 Kernel Support for In-Process Design at the Application Level 2

2 Modularity via Co-Modules ... 3

3 Kernel Use of Co-Modules ... 4

4 Composite Modules .. 5

5 Functions Delegated to Co-Modules .. 6

5.1 Co-Module Management .. 6

5.2 Segment Management .. 6

5.3 Virtual Page Table Management .. 7

5.4 Qualifier List Management ... 7

5.5 Debugging Modules ... 7

6 The Kernel User Interface .. 7

7 Kernel Modules and Processes ... 8

8 Cut, Copy and Paste .. 8

9 Conclusion .. 9

Chapter 18 Module Variants and their Invocation .. 10

1 Kinds of Data Associated with a Module ... 10

1.1 Inter-Module Linkage Data and Parameters 10

1.2 Persistent Data .. 10

1.3 Temporary Data .. 11

1.4 Retained Data.. 11

2 Kinds of Module ... 12

2.1 File .. 12

2.2 Openable File .. 12

2.3 Program ... 12

3 Types and Implementations .. 13

4 Implementing Programs .. 13

5 Creating the Different Kinds of Data ... 14

5.1 Creating Temporary Data ... 14

5.2 Creating Persistent (File) Data ... 14

5.3 Creating and Deleting Retained Data ... 15

6 Library Modules ... 15

 ii

6.1 Libraries in Hierarchical Systems .. 16

6.2 Library Routines as Information Hiding Modules 16

6.3 Library Calls: Espenlaub's Solution ... 17

6.4 The New SPEEDOS Solution: Library Calls 17

6.5 Evaluation ... 18

7 Cooperating Co-Modules .. 19

7.1 Application Co-Modules .. 19

7.2 Passing Segments as Parameters .. 19

7.3 Kernel Co-Modules .. 20

7.4 Co-Module Calls, Library Calls and White Box Functionality 20

8 Free Capabilities ... 20

8.1 N-ary Operations on Files... 20

8.2 File Conversion ... 22

8.3 Precautionary Measures with Free Capabilities 22

9 Call Back Calls ... 23

9.1 Inter-Module Call Back Calls ... 23

9.2 Library Call Back Calls .. 23

10 Conclusion .. 23

Chapter 19 Containers and their Contents ... 24

1 Container Identifiers ... 24

2 Container Red Tape .. 25

3 Using Containers for Multiple Purposes .. 26

4 Segment Management .. 26

4.1 Segment Structure ... 27

5 Distributing Standard Capabilities .. 28

6 Virtual Page Table Manager ... 29

7 Data Files, the Co-Module Manager and the Co-Module Table 30

8 Creating File and Program Modules ... 31

9 Organising Code Files .. 32

9.1 Entry Point Lists ... 34

9.2 Inter Module Calls, Co-Module Calls and Library Calls 35

9.3 Bracket Entry Point Lists .. 35

9.4 Internal Entry Point Lists .. 35

9.5 Subthread Entry Point Lists .. 36

9.6 Return Instructions ... 36

10 Organising Process Files ... 36

11 Multiple types in a Single Container .. 37

12 Creating a New Container .. 37

12.1 Preparing the Security-Sensitive Co-Modules 38

12.2 Protecting the Code Capabilities for Security-Sensitive

Modules .. 38

12.3 Constructing the Initial Data .. 38

12.4 The Container Manager newContainer Routine 39

12.5 The Disc Directory Manager .. 39

 iii

12.6 Installing the Co-Module Manager .. 39

12.7 Installing the Remaining Security Sensitive Modules 40

12.8 Creating Normal Modules .. 41

13 Copying Containers .. 41

13.1 Fundamental Copying Issues in a SPEEDOS Environment 42

13.2 Temporary Backup of a Container (e.g. while Editing a File) 43

13.3 "Simple" File-to-File Copying.. 44

13.4 Page by Page Copying .. 44

13.5 N-ary Copying of a Container .. 45

13.6 Archival Backup ... 45

13.7 Other "Copying" Requirements .. 46

14 Converting Modules to a Different Format .. 46

15 Deleting Containers .. 46

16 Renaming Containers and Modules .. 47

17 Changing the Ownership of a Container .. 47

Chapter 20 Managing User Processes ... 48

1 Processes and Threads .. 48

2 Process Containers and Co-Modules .. 49

3 Thread States ... 49

4 The Thread Manager Co-Module ... 50

4.1 Thread Stacks.. 51

5 Application Level Multithreading .. 52

6 Parameter Passing Strategy... 53

6.1 Espenlaub's Attempt to Adapt a RISC Strategy 53

6.2 The New SPEEDOS Strategy ... 54

6.3 Library Calls and Co-Module Calls ... 56

7 Storing/Restoring Registers on Calls .. 56

7.1 Segment Registers .. 57

7.2 General Purpose Registers .. 58

7.3 Floating Point Registers.. 59

7.4 Code Registers .. 59

8 Kernel Call Instructions .. 59

8.1 Inter-Module Calls .. 59

8.2 New Thread Calls ... 60

8.3 Library Calls ... 61

8.4 Co-Module Calls ... 62

8.5 Inter-Module Call-Back Calls .. 63

8.6 Inter-Module and Other Returns .. 65

9 Linkage Information Stored on an IMC ... 65

9.1 Calling Programs .. 66

9.2 Library Calls and Co-Module Calls ... 66

9.3 Inter-Module Call Message Blocks .. 68

9.4 Library Module Call Backs .. 68

10 Internal Calls ... 68

 iv

Chapter 21 Synchronisation ... 69

1 Implementing Mutual Exclusion .. 69

1.1 Suspending and Activating Threads ... 70

1.2 Organising Thread Capabilities .. 71

1.3 Implementing Semaphores with Thread Capabilities 72

1.4 Creating Queues ... 73

1.5 Informing the TCM of the Activation of its Thread? 74

1.6 Delegating Queuing to the Library Module? 75

1.7 The Final Solution .. 77

1.8 Summarising the Queuing Operations ... 79

2 Applying DECT/TINC to Other Problems ... 80

3 Semaphores for Different Classes of User Threads 81

3.1 Reader-Writer Semaphores... 81

3.2 Priority semaphores .. 83

4 Set Semaphores ... 84

4.1 Resource Sets .. 85

4.2 Waiting Thread Sets ... 85

4.3 Applying Set Semaphores in SPEEDOS .. 86

5 Summary ... 87

Chapter 22 Thread and Process Scheduling ... 89

1 The Kernel's Role in User Thread Scheduling ... 89

2 The User Thread Scheduler .. 91

2.1 Interrupt Handling at the UTS Level .. 92

3 Scheduling Parameters .. 93

4 Managing Real Interrupts in the Kernel ... 93

4.1 Synchronous Interrupts ... 94

4.2 Asynchronous Interrupts... 95

5 Kernel Instructions .. 95

6 Kernel Processes ... 96

6.1 Rosenberg's MONADS Approach .. 96

6.2 Espenlaub's SPEEDOS Approach .. 98

6.3 The New SPEEDOS Solution .. 98

7 Scheduling Kernel Processes Automatically .. 100

7.1 The Automatic Scheduling Mechanism ... 100

7.2 The Scheduling Algorithm ... 103

7.3 Managing the Buffers ... 103

7.4 Passing Interrupts to the User Thread Scheduler 104

8 Kernel Interactions with Co-modules ... 105

8.1 Sharing Co-module Data .. 105

8.2 Surrogate Threads ... 106

9 Handling Synchronous Interrupts ... 108

9.1 Page Faults and Related Interrupts ... 108

9.2 User Errors and Security Violations ... 108

10 Handling Asynchronous Interrupts ... 109

 v

10.1 Espenlaub's Proposal for Handling Asynchronous I/O Interrupts . 109

10.2 Handling Input-Output Operations In-Process 110

10.3 Device Management ... 112

10.4 Handling Interactive Interrupts ... 112

11 User Commands to the Kernel .. 113

12 Long Suspending Processes .. 113

12.1 Logging Out .. 114

12.2 Logging In in a Multi-User System .. 116

12.3 Logging In in a Single User System ... 117

12.4 Logging In (the User Thread Level) ... 117

13 Scheduling Real Time Systems .. 118

Chapter 23 Virtual Memory Management at a Single Node 119

1 Hardware Translation of Virtual Addresses ... 119

1.1 Managing the Number of Main Memory Page Table Entries 121

1.2 Managing the Width of TLB Entries .. 123

1.3 The Main Memory Page Table ... 124

1.4 Mapping SPEEDOS Container Numbers onto SCIDs 126

2 The Local Virtual Memory ... 127

2.1 Virtual Memory Message Blocks ... 127

2.2 The Layout of Information on Disc .. 128

2.3 Organising the Page Tables .. 128

2.4 Security Sensitive Co-modules and the Virtual Page Tables 129

3 Structuring the Page Tables of a Container .. 129

3.1 Small Files .. 130

3.2 Large Files .. 130

3.3 Page Tables for a Process Container .. 131

3.4 Which Page Tables are Needed in a Particular Container? 132

3.5 Organising the Page Tables .. 132

3.6 Page Table Code ... 133

3.7 The Disc Directory ... 133

4 Resolving TLB Faults and Page Faults .. 136

4.1 Handling a TLB Fault ... 136

4.2 Handling Page Faults .. 137

4.3 Locking Down Page 0 of a Disc Directory 137

4.4 Page Faults Arising on an Inter-Module (or Similar) Call 138

4.5 Locking Page 0 for the Process Container 140

4.6 The Page Fault Interrupt Process .. 140

4.7 The Virtual Memory Process and the Disc Processes 141

5 Allocating Space on Discs and Segment Management 144

5.1 Creating Segments .. 145

5.2 Deleting Segments .. 145

5.3 Segment Manager Requirements .. 145

6 Creating a Container ... 146

6.1 The Kernel's new_container Instruction 146

 vi

6.2 Preparing the New Container for Use .. 148

7 Copying a Container ... 148

7.1 The Kernel's copy Instruction ... 149

7.2 The Page by Page Copy Mechanism .. 149

Part 6 Security Mechanisms ... 151

Chapter 24 Qualifiers with Bracket Routines .. 152

1 Basic Principles of SPEEDOS Qualifiers ... 152

1.1 Timor Qualifiers ... 152

1.2 Call-in and Call-out Brackets in SPEEDOS 153

1.3 Multiple Qualifications ... 154

1.4 Sequencing of Bracket Routines with Qualifier List Modules 154

1.5 Qualifier List Modules .. 155

1.6 Bracket Routines and Parameters ... 155

2 An Overview of the Execution of Bracket Routines 156

3 Managing Bracket Parameters: ... 157

3.1 Managing Input Parameters in Bracket Routines 158

3.2 Return Parameters ... 160

3.3 Access to Parameters in Routines which are not Specifically

Named ... 161

4 Implementing Bracket Routines ... 162

4.1 Handling Inter-Module Calls .. 162

4.2 Summarising the Handling of Brackets .. 163

4.3 How the Kernel Obtains Bracket Information from QLMs 164

4.4 Acquiring General Bracket Routine Info from a QLM Thread 164

4.5 Controlling the Execution of the Bracket Routines........................ 165

4.6 Managing the Linkage .. 165

4.7 The QLM Thread Provides Information about a Bracket

Routine .. 166

4.8 Executing a Bracket Routine .. 167

4.9 Executing Body and Call Instructions .. 168

4.10 The Postlude Phase ... 168

4.11 Executing an Inter-Module Call in a Bracket Routine 169

4.12 A Bracket Routine Executes a Bracket Return in its Prelude 169

5 Bracket Routines and Free Capabilities .. 169

5.1 Free Capability Brackets .. 170

5.2 Effects of Free Parameter Bracket Routines on a User Thread

Stack ... 171

Chapter 25 The Confinement Problem: Some Principles 173

1 Information Channels ... 175

1.1 Persistent Data Segments.. 175

1.2 Temporary Data Segments ... 175

1.3 Code Segments ... 176

 vii

1.4 Communication Channels Relevant to the Confinement

Problem ... 176

2 Bracket Routines ... 176

2.1 Call-Out Brackets ... 176

2.2 Call-In Brackets .. 177

3 Information Confinement Rights .. 177

3.1 Restricting the Use of Parameters .. 178

3.2 Controlling Access to Persistent Information 180

4 Module Call Confinement Rights ... 181

4.1 The Permit Calls Right ... 182

4.2 The Permit Constant Calls Right .. 183

4.3 The Permit Non-Parameter Calls Right .. 184

4.4 The Permit Parameter Calls Right .. 184

4.5 The Permit Co-Module Calls Right .. 185

4.6 The Permit Synchronisation Calls Right .. 186

4.7 Note on Library Calls ... 187

5 Conclusion .. 187

Chapter 26 Some Confinement and Access Controls 188

1 Environmental Checks .. 189

1.1 Checking Application Modules .. 189

1.2 Checking Bracket Routines .. 191

1.3 Rights for Environmental Checking ... 191

2 Capability Accessibility and Use Rights ... 192

3 Rights in Capabilities .. 194

3.1 Semantic Rights .. 194

3.2 Generic Rights .. 194

3.3 Metarights and the 'Copy Cap' Kernel instruction 196

3.4 Status Bits ... 200

3.5 Confinement Rights and Environmental Rights 200

3.6 The Capability Accessibility Rights ... 201

4 The Thread Security Register ... 201

4.1 The Thread Control Rights ... 202

4.2 Understanding the Rights in the TSR ... 204

4.3 Primary and Secondary Confinement Rights 204

4.4 Distinguishing Controlled from Uncontrolled Capabilities 205

4.5 Examining and Reducing Rights in the TSR 205

5 Container Confinement ... 206

6 Utility Programs .. 207

6.1 Examining New Code Files for Hidden Capabilities 207

6.2 Assistance in Setting Rights in Capabilities 207

Part 7 Basic Networking ... 209

Chapter 27 Partitioning and Relocating Discs ... 210

1 Partitioning Discs .. 210

 viii

2 Moving Discs from one Computer to Another 211

2.1 Preventing Unauthorised Access to Information on Disc 212

2.2 How Authorised Users can Access the Content of a Moved

Disk ... 215

2.3 Resolving Page Faults on a Locally Mounted Foreign Disc 216

2.4 Accessing Moved Discs which were Created at the Current

Node .. 216

Chapter 28 Accessing the Internet ... 218

1 Accessing the Internet ... 218

2 Remote Paging .. 218

3 Remote Inter-Module Calls .. 219

3.1 An Overview of RIMC Handling at the Client Node 220

3.2 An Overview of RIMC Handling at the Server Node 221

4 Decisions Affecting the Interface between Client and Server Nodes 222

4.1 The Thread Control Manager and the Synchronisation Library 222

4.2 Handling an IMC called by an RIMC (Surrogate) Thread 223

4.3 Handling an RIMC made by an RIMC (Surrogate) Thread 223

4.4 What About the Thread Security Register? 223

5 Communication between the Client and Server Nodes 224

5.1 The Request to make an RIMC .. 224

5.2 The Confirmation ... 224

5.3 The Completion .. 224

6 Surrogate Threads for Advising the Thread Control Manager 225

7 Remote Call-Back Modules .. 226

7.1 Remote Call-Back Calls ... 226

7.2 Handling the CBC at the Calling Node (Node B) 227

7.3 Handling the CBC at the Called Node (Node A) 227

7.4 Bracket Routines ... 228

7.5 Application of Call-Back Routines .. 228

7.6 Call-Backs at a Single Node ... 228

8 The Network Process .. 229

9 A Note on Remote Login .. 230

10 Further Networking Activities Relevant to the Kernel 230

Chapter 29 Locating and Transferring Objects in the Internet 231

1 Locating Moved Discs .. 231

2 Moving and Locating Containers ... 232

2.1 The Revocation Option ... 232

2.2 The Re-Use Option ... 233

2.3 A Possible Optimisation ... 233

3 Downloading and Uploading of Containers ... 234

3.1 Downloading... 234

3.2 Uploading ... 236

3.3 Encryption ... 238

 ix

3.4 Website Assistance ... 238

Part 8 A Secure Operating System .. 240

Chapter 30 Capabilities and Directories ... 241

1 Handling Capabilities ... 241

1.1 Examining Capabilities ... 241

1.2 Creating Capabilities for New Containers and Modules 241

1.3 Distributing Capabilities ... 241

1.4 Changing the Ownership of a Container .. 242

1.5 Restricting Capability Distribution ... 242

1.6 Deleting Capabilities .. 243

1.7 Administering Capabilities ... 243

1.8 Revoking Capabilities ... 244

1.9 Reducing Access Rights ... 246

2 Directories ... 246

3 A Basic Directory ... 247

3.1 A Directory Module .. 247

3.2 A Directory Entry ... 249

3.3 Extending a Basic Directory ... 249

4 Hierarchical Directory Structures ... 249

Chapter 31 Users and Processes .. 251

1 Creating a New User ... 251

2 Creating a New Process and its Threads .. 251

2.1 Creating the Process ... 251

2.2 Installing the New Process as a New User 252

2.3 Creating the Initial Thread for the New User 252

2.4 Creating Further Threads .. 253

2.5 Creating Subthreads .. 253

2.6 Passing Parameters to Subthreads .. 254

2.7 Deleting Threads and Subthreads ... 254

3 The Initial Capabilities of a New User ... 254

3.1 Root Modules which are not Directories .. 254

3.2 Root Modules which are Directories .. 255

4 Different Kinds of Processes and Threads ... 256

4.1 Interactive Threads ... 256

4.2 Multiple Processes .. 256

5 Communication between Processes .. 257

5.1 Sending Capabilities ... 257

5.2 Receiving Capabilities .. 258

5.3 Deleting Capabilities Already Placed in a Foreign Directory 259

5.4 Receiving a Copy of the Capability's Content 259

6 Is the Communication Secure? ... 259

7 Mutually Suspicious Users ... 260

8 Further Mail Refinements ... 261

 x

9 Distributed Email and File Systems ... 262

9.1 A Distributed Email System Using Remote Inter-Module Calls ... 262

9.2 Retrieving Emails from other Nodes .. 263

9.3 An Advantage of the Above Design ... 263

Chapter 32 Command Languages, Name Management and Graphical

Interfaces .. 264

1 Command Languages ... 265

1.1 Ad Hoc Commands .. 265

1.2 The SPEEDOS Solution ... 266

1.3 SPEEDOS Command Language Interpreters 267

2 Translating Numbers into Symbolic Names ... 267

2.1 The Module Capability ... 267

2.2 The Names of Semantic Routines .. 268

2.3 Passing Parameters to Semantic Routines 269

2.4 Alternative Template Managers ... 269

2.5 The CLI as a Module Tester ... 269

3 Other Naming Modules .. 270

4 Graphical User Interfaces ... 270

4.1 The Graphical Devices ... 271

4.2 Graphical Libraries ... 272

4.3 A Possible SPEEDOS Graphical Interface 272

4.4 Some Technical Aspects ... 276

4.5 An Example: Directory Windows .. 280

5 Concluding Remarks .. 283

Chapter 33 I/O Devices and Spooling .. 284

1 Device Drivers .. 284

2 Device Allocation ... 285

2.1 Deadlocks ... 285

3 Spooling – The Basic Principle .. 286

4 Spooling – The SPEEDOS Approach .. 288

4.1 Spooling Files, Interfaces and Drivers ... 288

4.2 An In-Process Spooling Architecture ... 289

4.3 The Print Request Module .. 291

4.4 After the Print File has been printed ... 293

4.5 Scheduling Equivalent Printers .. 294

4.6 The Print Request Module .. 294

4.7 Simplifications for Single-User Systems 294

4.8 Additional User Facilities ... 295

5 Security Aspects of Spooling in SPEEDOS ... 295

5.1 Checking the Right to Print .. 295

5.2 Securing the User's Information ... 296

5.3 Securing Print File Capabilities .. 297

5.4 Securing the Capability for the Print Request Module 298

 xi

5.5 Securing the Capability for the Print Scheduler Module 298

5.6 Securing the Confinement of Information and Preventing

Unauthorised Access by the Spooler Software 299

5.7 A Concluding Note on Security Settings 301

6 Other Devices ... 301

Chapter 34 A Secure Internet? .. 302

1 The Basic Functionality of the Internet .. 302

1.1 Transmission Control Protocol/Internet Protocol 302

1.2 Ports .. 303

1.3 Secure Transfers ... 303

1.4 Email Protocols ... 304

1.5 HyperText Transfer Protocol .. 305

1.6 Domain Name System .. 305

1.7 World Wide Web .. 305

1.8 Hypertext Markup Language .. 306

1.9 The Cloud ... 306

2 Browsers ... 307

2.1 Browsers and Malware ... 307

2.2 Browsers and SPEEDOS .. 308

3 Implementing SPEEDOS Websites .. 309

4 Email in SPEEDOS .. 310

4.1 Delivering S-Mail ... 310

4.2 S-mail by Remote Inter-Module Call or by Content 311

4.3 Appearance of S-Mails ... 311

4.4 S-Mail Security ... 312

4.5 S-mail Attachments .. 312

5 A SPEEDOS Architecture for Managing Conventional Internet

Activities ... 312

6 Accessing non-SPEEDOS Websites .. 314

6.1 Cookies ... 315

7 Email Programs... 316

7.1 Current Email Programs in Current Systems 316

7.2 Using Conventional Email in SPEEDOS Systems 316

8 Kernel Mechanisms for Accessing the Internet 318

8.1 Handling Requests from the Network Process 318

8.2 Listening for Messages from another SPEEDOS Node 318

8.3 The Listener Mechanism .. 318

9 Protecting SPEEDOS and Its Users from the Internet 318

9.1 Kernel Instructions ... 319

9.2 Managing the Lengths of Messages Received over the Internet 319

9.3 Security Measures ... 320

10 Search Machines and Similar ... 322

11 Concluding Remarks .. 323

 xii

Chapter 35 Secure Website Applications .. 324

1 The Basic SPEEDOS Networking Mechanisms 324

2 How a SPEEDOS Website Operates .. 325

2.1 Using Custom-Built SPEEDOS Call Back Modules 325

2.2 Using Standard Call-Back Modules with Library Routines 326

2.3 SPEEDOS Bookmarks ... 328

2.4 Must a Search Machine crawl? ... 329

3 Conclusion .. 329

Chapter 36 Mandatory Access, Rule Based Systems and Computer

Administration ... 330

1 A Bell-LaPadula System... 331

1.1 The Bell-LaPadula Rules .. 331

1.2 The Subjects File .. 332

1.3 The Objects Qualifier Modules .. 333

1.4 Conclusion .. 334

2 Retaining Control of a System .. 334

2.1 Retaining Control in a Business System .. 335

2.2 Retaining Control in a Multi-User Discretionary System 336

2.3 Managing Forgotten Passwords ... 338

3 Resource Management and Exceeding Rations 338

3.1 Disc Usage .. 338

3.2 CPU Time Usage .. 339

3.3 Printer Usage .. 340

3.4 Internet Usage ... 340

3.5 Remote Inter-Module Call Resource Usage 340

3.6 Charging for Resource Usage ... 340

3.7 Run-Time Monitoring ... 340

4 Initialising a New System ... 341

5 Closing Down and Restarting a System ... 341

6 Handling a System Crash .. 342

Chapter 37 An Example – Online Banking .. 344

1 Software Structures ... 344

2 The Framework of a Conventional Design... 346

3 The Effects of Technological Changes on the Conventional

Approach ... 347

3.1 Batch Processing Systems .. 347

3.2 Online Terminals for Bank Staff .. 348

3.3 Automatic Teller Machines .. 349

3.4 Online Customer Banking .. 349

3.5 Online Banking from Smartphones .. 349

3.6 The Fundamental Problem.. 349

4 Using the SPEEDOS Approach .. 350

4.1 A Bank Account File .. 350

 xiii

4.2 Protecting Access to the Semantic Routines 351

4.3 How Many Bank Account Files? ... 352

4.4 Collections of Bank Accounts .. 353

4.5 Using the More Traditional Approach ... 353

4.6 Different Kinds of Bank Accounts ... 353

4.7 Customer Information ... 353

5 Online Banking ... 354

5.1 A SPEEDOS Online Banking Architecture 354

5.2 The Call-Back Module ... 354

5.3 The Relationship between Bank Modules and Call-Back

Modules .. 354

5.4 Starting Online Banking ... 355

5.5 Implicit Checks ... 355

5.6 Explicit Checks: Identifying the Customer 356

5.7 Displaying the Information ... 358

6 Online Shopping and Services .. 359

6.1 The Basic Scenario ... 359

6.2 Activating the Bank's Online Purchase Mechanism 360

6.3 Making the Payment ... 362

7 Direct Debit Facilities for Recurring Payments 365

8 Banking Cards and Mobile Banking .. 366

8.1 Some Problems with Paying by Card ... 366

9 Automatic Teller Machines .. 367

9.1 An Approach Using Cards designed for SPEEDOS Systems 368

9.2 An Approach without the Use of Cards ... 368

10 Conclusion .. 369

Chapter 38 Making Life Difficult for Hackers ... 371

1 The Hardware and Related Features ... 371

1.1 The Orthogonal Segmentation and Paging Model 371

1.2 Segment Registers .. 372

1.3 Persistent Virtual Memory.. 372

1.4 Distributed Persistent Virtual Memory .. 372

1.5 Encryption of the Virtual Memory ... 373

2 Some Key Kernel and Operating System Features 373

2.1 The Information Hiding Module Structure 373

2.2 Free Capabilities ... 374

2.3 Directories and their Structures .. 374

2.4 Capabilities ... 375

2.5 Controlling Access and Confining Information and Capabilities .. 376

2.6 The Process Structure ... 376

2.7 Environmental Information .. 376

2.8 Simplifying the Setting of Rights ... 377

3 Securing the Kernel .. 377

3.1 Correct and Accurate Code... 377

 xiv

3.2 Secure Installation of the Code ... 378

3.3 Human Aspects ... 378

APPENDIX Formats of Some SPEEDOS Structures 379

1 A Worldwide Unique Virtual Address ... 379

2 Subfields of a Node Number .. 379

3 Subfields in a Disc Number .. 379

4 Subfields in a Container Number .. 379

5 Subfields in a Within Container Address ... 380

6 A Virtual Page Number used by the ATU to Translate Short

Container Addresses ... 380

7 The Main Memory Page Table .. 380

8 Segment Structure .. 381

9 Data Segment Registers .. 382

10 Code Segment Register ... 382

11 Capabilities .. 382

12 Semantic Rights... 383

13 Metarights .. 384

14 Generic Rights ... 384

15 Capability Accessibility and Use Rights ... 384

16 Environmental Rights .. 385

17 Confinement Rights .. 385

18 The Thread Security Register (TSR) .. 386

19 The Thread Control Rights.. 386

20 The Confinement Rights .. 387

21 The Environment Rights .. 387

22 The Capability Accessibility and Use Rights 387

23 The Container Confinement Rights .. 387

References .. 388

Bibliography ... 390

Acknowledgements .. 392

 xv

 List of Figures

Figure 17.1: Data of the Co-modules in a Container 3

Figure 17.2: The Basic Structure of a File Capability 6

Figure 18.1: Kinds of Data 12

Figure 18.2: Calling a Program Module 13

Figure 19.1: A SPEEDOS Container Identifier 24

Figure 19.2: Identification Fields of a Container 25

Figure 19.3: The Basic Structure of a Container Capability 26

Figure 19.4: SPEEDOS Partitioned Segments 27

Figure 19.5: The Basic Structure of a File Capability 30

Figure 19.6: The Co-Module Table (CMT) 30

Figure 19.7: The Basic Structure of a Code Capability 33

Figure 19.8: The Code Table 33

Figure 19.9: An Entry Point List 34

Figure 19.10: The Basic Structure of a Thread Capability 36

Figure 20.1: A Thread Table in a Process Container 50

Figure 20.2: A Thread Stack 51

Figure 20.3: Dedicated Parameter Segment Registers 54

Figure 20.4: Call Back Modules 64

Figure 20.5: An IMC Linkage Segment 65

Figure 21.1: The Basic Structure of a Thread Capability 71

Figure 21.2: The Structure of a Reader-Writer Semaphore 81

Figure 22.1: The MONADS Kernel Process Table 97

Figure 22.2: The SPEEDOS Kernel Process Table 99

Figure 22.3: Entry in the Login Service Module's Logged Out List 114

Figure 23.1: A SPEEDOS Virtual Address 119

Figure 23.2: A SPEEDOS Address for Virtual Memory Management 120

Figure 23.3: A SPEEDOS Virtual Page Number 121

Figure 23.4: The TLB as the entire ATU 122

Figure 23.5 The Page Number Presented to the ATU 124

Figure 23.6 A Possible Allocation of Short Container Identifiers 124

Figure 23.7 Structure of the MMPT 125

Figure 23.8 Structure of a Disc Directory 128

Figure 23.9 An Index of Page Tables for a Container 133

Figure 23.10: The TLB Fault Information 136

Figure 23.11: Identification Fields of a Container 147

Figure 24.1: A Thread Call Stack with Bracket Routines which

modify the Caller's Input Parameters 159

Figure 24.2: A Thread Call Stack with Bracket Routines which

modify the Callee's Return Parameters 161

Figure 24.3: A Thread Call Stack with Bracket Routines 163

Figure 24.4: General Bracket Info from QLM Threads to Kernel 165

 xvi

Figure 24.5: A Bracket Routine Linkage Segment 166

Figure 24.6: Information Flow from QLM to User Thread Stack 167

Figure 25.1: Information Confinement Rights 178

Figure 25.2: The permit_cap_out Confinement Right 179

Figure 25.3: The permit_return_params Confinement Right 179

Figure 25.4: The permit_return_cap Confinement Right 180

Figure 25.5: The permit_file_write Confinement Right 180

Figure 25.6: The permit_file Confinement Right 181

Figure 25.7: Module Call Confinement Rights 182

Figure 25.8: The permit_calls Confinement Right 183

Figure 25.9: The permit_const_calls Confinement Right 183

Figure 25.10: The permit_nonparam_calls Confinement Right 184

Figure 25.11: The permit_param_calls Confinement Right 185

Figure 25.12: The permit_comod_calls Confinement Right 185

Figure 25.13: The permit_sync_calls Confinement Right 186

Figure 26.1: Environmental Rights 192

Figure 26.2: Capability Accessibility and Use Rights: An Overview 193

Figure 26.3: Semantic Rights in Capabilities 194

Figure 26.4: Generic Access Rights in Capabilities 195

Figure 26.5: Metarights in Capabilities 197

Figure 26.6: Thread Security Register 202

Figure 26.7: Thread Control Rights: An Overview 202

Figure 26.8: Container Confinement Rights: An Overview 206

Figure 27.1: A SPEEDOS Partition Number 210

Figure 27.2: A Disc Authorisation List (DAL) [Version 1] 212

Figure 27.3: Protecting Entries in the Disc Authorisation List (DAL)

[Version 2] 214

Figure 27.4: The Local Mount Table 216

Figure 28.1: Call Back Modules 226

Figure 28.2: The Network Address Table 230

Figure 29.1: An Overview of Downloading a Container 235

Figure 29.2: An Overview of Uploading a Container 237

Figure 30.1: A Testing Bracket Method 245

Figure 30.2: Using a Revocation List in a Call-in Qualifier 246

Figure 30.3: A Basic Directory Module 248

Figure 31.1: A Simple Mail System for a Single Node 258

Figure 31.2: Three Unconnected Single Node Mail Systems 262

Figure 33.1: The Final Stage of Printing a File in a Spooler Thread 289

Figure 33.2: Printing a File in a Spooler Thread 291

Figure 33.3: Receiving a Print Request 292

Figure 33.4: Three Print Requests Active in the Spooler Threads of a

Single User 293

Figure 34.1: A SPEEDOS Internet Architecture 313

Figure 35.1: Custom-Built Call Back Modules 326

 xvii

Figure 35.2: A Search Machine Environment 328

Figure 36.1: A Subjects File with Semantic Operations 332

Figure 36.2: A Bell-LaPadula Rule Controller 333

Figure 36.3: Superuser Control over Capabilities 336

Figure 37.1: Accessing a Conventional Bank Accounts File 346

Figure 37.2: Bank Programs in a Batch Processing System 348

Figure 37.3: A Bank Account with Semantic Operations 351

Figure 37.4: Authorisations based on Semantic Routines 352

Figure 37.5: The Basic Architecture of SPEEDOS Online Banking 356

Figure 37.6: Customer Identification via his Authentication Module 358

Figure 37.7: Online Interactions between Purchaser and Vendor 360

Figure 37.8: Passing a Bank Module Capability to the Vendor (Step

1) 361

Figure 37.9: Passing a Bank Module Capability to the Vendor (Step

2) 362

Figure 37.10: The Vendor's Website Module calls the Bank Module 363

Figure 37.11: The Bank's Call-Back Module calls the Bank Module 364

Figure 38.1: Hacking a File in Conventional Systems 373

Figure 38.2: The File Information is protected by the Semantic

Routines 374

 xviii

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2019 J. L. Keedy

 Preface

Clarification: We first clarify what is meant in this book by computer security.

When used in the context of computer systems, and in particular computer operat-

ing systems, the word "security" can have (at least) three quite different meanings.

It can mean that the operating system code has been proven "correct", in the quasi

mathematical sense that a specification exists and that the code of the operating

system has been proven to conform to the specification. This is the sense in which

the word "secure" is sometimes used, for example, in association with the claim

that Sel4 (https://sel4.systems/) is the "world's most highly assured OS kernel".

This is not the meaning of "secure" when we describe SPEEDOS as secure.

Similarly the reliance on encryption techniques to guarantee security is not the

sense in which the word security is used here, although SPEEDOS actually uses

such techniques for transferring information over the Internet and for accessing

discs.

In this book and in other documents on SPEEDOS the word security is used in the

architectural sense, i.e. with respect to the hardware instruction set design and the

operating system design (especially but not exclusively the design of the kernel).

As will become evident, the SPEEDOS architecture is radically different from that

of conventional systems.

This book records the main results of an Odyssey which has lasted for more

than fifty years of my life, beginning with my work in the design team of the

VME operating system for the ICL 2900 Series of computers in Kidsgrove, Eng-

land. This was followed by my founding the MONADS operating system group

at Monash University in Melbourne Australia, with follow up work on MON-

ADS in the groups which I later led at the University of Darmstadt in Germany,

the University of Newcastle, N.S.W., Australia and the University of Bremen in

Germany. My final professional move was to the University of Ulm in Germa-

ny, where I founded the SPEEDOS project and the Timor project
1
 in the De-

partment of Computer Structures. Since my retirement I have continued to de-

velop the SPEEDOS ideas, considerably extending and improving on the origi-

nal version and working out how to implement some of the wilder concepts,

such as the world-wide unique virtual memory and addressing incorporated into

SPEEDOS.

1
 Timor is an object-oriented and component-oriented programming language designed to

accompany SPEEDOS, see the Timor website https://www.timor-programming.org/

 xix

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2019 J. L. Keedy

Whereas my team at Monash actually built several prototypes for the

MONADS-PC system which were then used later in Newcastle, Bremen and

Ulm, there is no prototype implementation of SPEEDOS, partly due to a lack of

funding. Nevertheless I have formulated a plan which I believe will convince

computer manufacturers to make a small modification to their RISC computer

designs which will both (a) enable SPEEDOS systems to be built and (b) at the

same time allow existing RISC applications to execute without modification ex-

cept a re-compilation. This hardware modification is particularly significant

since it allows capability systems (such as SPEEDOS) to be built which not only

improve the way that access rights can be formulated and controlled but also can

provide a solution for the confinement problem, thus making computers far

more secure than conventional systems. This modification is described in detail

in [1], which can be downloaded from the SPEEDOS website
2
.

It need hardly be said that current systems are riddled with security loop-

holes and that attempts to close these are usually only partially successful. This

is a nuisance for normal users (to say the least), but it is far more serious in some

areas, especially national security, where espionage and cyber warfare could at

any time lead to a total disaster, and in hospital systems, in electricity supply

systems and similar public utilities which are vulnerable to attack. For this rea-

son I would recommend that the first SPEEDOS systems are built with such ap-

plications in mind.

The book is in two volumes. The first volume is an introductory walk-

through of most of the fundamental technical ideas that form the basis upon

which the SPEEDOS design is built. Some of the ideas are well known and a

few are less well known. What makes them interesting is that almost none of the

best of them are to be found in the major operating systems in current use. I ex-

plain a concept, e.g. virtual memory, which is in use but where several decisions

are possible. I explain why one choice is better for security than the others, and

yet almost invariably a worse alternative has been chosen for implementation in

current systems. And it also turns out, almost without exception, that the good

choice for security is the most efficient solution!

For this reason volume 1 can have a dual purpose. It serves first as my ex-

planation why I chose particular ideas to form the basis for SPEEDOS. In this

sense it serves as an important introduction to SPEEDOS. But second, it can

provide additional material for a first computer science course in computer ar-

chitecture and operating system design. In fact it is to a considerable extent

based on undergraduate courses which I have given in the past.

2
 https://www.speedos-security.org/

 xx

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2019 J. L. Keedy

The tenor of the second volume is quite different. Relying on the infor-

mation in the first volume, it provides a technical introduction to the SPEEDOS

kernel and an operating system built on the kernel, explaining in some detail

how a real SPEEDOS system can be designed and built. The second volume is

suitable for graduate courses in the same area, and will certainly give good stu-

dents ideas for writing their own PhD theses in this area.

At the outset I would like to make clear that the emphasis in the book is

largely on the design of computers and their basic software. There are some are-

as, in particular those concerned with computer graphics and with the function-

ality of the Internet, where my expertise is limited to that gained as a user of

such systems. Although I have attempted to show the relationship between these

fields and SPEEDOS in the second volume, the main emphasis in the book is

concerned with the design of the computers themselves and on the basic struc-

ture of the operating systems which control them. I believe that this is the best

basis on which to improve Internet security.

Volume 1 can be read independently of volume 2, but the reverse is not the

case, even for computer scientists and programmers.

In order to simplify cross references between the volumes, the chapters for

both volumes are numbered as a single sequence, but each volume uses separate

page numbers.

Readers who already have experience in operating systems and in computer

architecture will probably be familiar with Parts 1 and 2 in volume 1. I suggest

that such readers can skim through these two parts, but Parts 3 and beyond con-

tain much new material which is essential for an understanding of the SPEEDOS

ideas. Among the highlights of these chapters I draw special attention to chapter

13, which explains how the confinement problem can be solved.

Finally, I should mention that this work would never have existed except

for a piece of advice given to me by the late Professor Chris Wallace, former

Head of the Department of Computer Science at Monash University. When I

first arrived at Monash I mentioned to him that it would be nice for me to do

some research in natural language systems. But he wisely said that it would be

sad for me to throw away the experience I had gained at ICL. He was right!

I hope that someday a SPEEDOS system will be built, and I would very

much like to lead a project to do so, but that depend whether I will be successful

in convincing computer manufacturers to modify the designs of their RISC sys-

tems. Meanwhile, I hope that you will enjoy reading both volumes.

 Leslie Keedy

 BREMEN 2023

 xxi

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2019 J. L. Keedy

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Part 5

The Basic Kernel Design

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 17

A Modular Kernel Design

Around the turn of the millennium I decided that it would be worthwhile to clar-

ify how we might design a successor for the Monads systems. In principle Mon-

ads had solved one of the key security problems, viz. how to control access

rights such that Lampson's matrix [2] could be fully implemented, allowing in-

dividual users to determine for each of their files (individually in a finely

grained manner) what access rights could be granted to other users. But I was

concerned that a further serious security problem, known as the confinement

problem, remained unsolved (see volume 1 chapter 3 section 1). I had already

found a starting point for such a solution at the programming language level in a

paper published in 1997 [3], so the time seemed ripe to initiate a new project

under the name SPEEDOS
3
 together with my Ph.D. student Klaus Espenlaub.

The first task was to determine how to structure a kernel for SPEEDOS.

As Espenlaub points out in his thesis [4]
4
, security kernels in the past have

not been very successful, largely for two reasons. First, they have usually sup-

ported the out-of-process model for their clients. Second, they have been im-

plemented monolithically. We now look at these issues in turn.

1 Kernel Support for In-Process Design at the Application Level

We need say little about this first point, because the in-process model has al-

ready been described in detail in volume 1 and was shown to be superior to the

out-of-process model from various viewpoints, including security and charging
5

[4]. The SPEEDOS kernel and thread scheduler therefore provide a rigorously

3
 SPEEDOS is an acronym for 'Secure Persistent Execution Environment for Distributed

Operating Systems'.
4
 Espenlaub's thesis can be downloaded at http://vts.uni-ulm.de/doc.asp?id=5333); it de-

scribes our first attempt at designing a SPEEDOS kernel. Many of the ideas reappear,

often in a modified form, in this and the following chapters, but some significant ideas

have radically changed.
5
 See chapters 8 and 15 in volume 1.

Chapter 17 A MODULAR KERNEL DESIGN 3

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

in-process model for the user threads which it supports.

Espenlaub also proposed an early kernel design which itself was in-process. This

was partly accepted (see below), but some of Espenlaub's idea proved to be ex-

tremely difficult to implement, as was will be explained in chapters 20 to 22.

Consequently there remains a central core of kernel activities which might be

regarded as out-of-process, though their design by no means follows the stand-

ard out-of-process model. The SPEEDOS kernel in fact adopts the basic idea

developed for the MONADS systems, as originally developed by John Rosen-

berg [5], which proved to be very efficient to implement, as will be shown in

chapter 22. These are handled in a structured manner via separate kernel pro-

cesses.

2 Modularity via Co-Modules

In order to avoid the need for a monolithic kernel, a strategy has been adopted

whereby some activities usually considered to be kernel activities have been

outsourced to individual user-level modules which are trusted by the kernel, thus

allowing these functions to be handled in-process.

The SPEEDOS kernel adopts a policy with respect to modularity which differs

quite substantially from those found in other kernels. The only static modular

structure which the kernel provides for its users is based on information-hiding

(as was described in volume 1 chapter 14).

In order to provide greater flexibility, and in order to keep the basic kernel

code as small as possible, the core code of SPEEDOS concentrates on executing

only the most essential security code. Ancillary functions associated with partic-

ular applications, including the organisation of the persistent data structures

which are needed to carry out security-related functions, are delegated to co-

modules. These are placed in the same container as that which holds the infor-

mation-hiding application module for which they are needed (see Figure 17.1).

The organisation of co-modules is described in detail in chapter 19.

Figure 17.1: Data of the Co-modules in a Container

Data for Co-module 1

Data for Co-module 2

Data for Co-module 3

Data for Co-module n

Chapter 17 A MODULAR KERNEL DESIGN 4

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

This organisation has a number of advantages. First it permits the kernel's

most essential functions which are executed with special privileges (e.g. the

right to load segment registers) to be implemented in the core kernel. These can

be separated from other security activities which do not (and should not) need

such privileges. This contrasts with many operating system designs, in which far

too much code is executed in privileged mode, thus increasing the risk of misuse

and therefore potentially opening up security loopholes.

Second, it supports the idea, first formulated as a design principle for the

Hydra capability system [6], of separating mechanism and policy. The core code

of the SPEEDOS kernel provides the security mechanisms (which remain fixed),

while its co-modules support policy decisions reflected in the persistent data

structures which the core kernel uses. These can be varied by those users re-

sponsible for security policy.

Third, it means that large sections of security relevant code (which do not

have special kernel privileges) can be protected using the basic SPEEDOS secu-

rity mechanisms (e.g. module capabilities, inter-module calls). To achieve this,

kernel co-modules (but not the core kernel) are subject to the rules of normal

modules, which were outlined in volume 1 Chapter 14.

Fourth, as a result of the kernel's use of persistent information stored in co-

modules, the core kernel code does not need to create persistent data structures.

Any information which it generates while carrying out its duties is temporary. In

the case of a kernel failure a restart can therefore be achieved much more easily.

Fifth, although the core kernel code cannot be qualified by bracket rou-

tines
6
, its co-modules can. This means that further measures can be taken to pro-

tect them, as will be discussed in chapter 24.

Finally, this design technique avoids the need for a large monolithic kernel.

3 Kernel Use of Co-Modules

Espenlaub proposed that the kernel should access the information held in its co-

modules in two different ways. His preferred way (because it conforms better to

the information hiding principle) is to invoke predefined routines of its security-

related co-modules in order to take advantage of their functionality. For this

purpose it does not store capabilities in its own (non-persistent) memory, but

obtains the information needed to make such calls from information which is

directly accessible when needed. He referred to such calls as forced method calls

[4, p. 156]; their return values are inspected and acted upon by the kernel. How-

ever, he did not describe how such calls could be implemented, and it has be-

come clear that such forced calls are difficult and inefficient to implement. The

6
 see Volume 1 Chapter 13.

Chapter 17 A MODULAR KERNEL DESIGN 5

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

author therefore reached the conclusion that, despite their aesthetic appeal, a

much simpler and more flexible mechanism should be provided to handle the

kernel's need to execute modules at the user level. I have called this mechanism

"surrogate threads", which are described in more detail in chapter 22.

There are some circumstances in which it is desirable, or even necessary,

for the kernel directly to access the pre-defined persistent data structures of its

co-modules. This allows the co-modules which set up the data structures to base

the information in these data structures on policy decisions made outside the

core kernel code, though the data structures themselves have a predefined for-

mat.

It can be argued that direct access to data is a violation of the information

hiding principle. However, it is important in this context to remember that this is

the mechanism via which the information hiding principle is established for all

other modules in the system. The kernel's core code is not a module.

4 Composite Modules

In accordance with the description in Volume 1 Chapter 14, a module is imple-

mented using two containers, a data container (for its persistent data) and a code

container (for its code). This concept is now extended to encompass the idea of

composite modules, i.e. units which consist of a number of co-modules stored in

a single container. In fact all modules in SPEEDOS are composite modules. Alt-

hough the co-modules often provide ancillary security functions to assist the

kernel, they usually perform tasks which are closely associated with a particular

application module. Their persistent data is stored in the same container as that

used for the data of the application module (which is itself considered to be a co-

module). In other words, what we have so far called a module is in fact a cluster

of related information hiding modules with their persistent data stored in a single

container, which is owned by the user who created the application module.

However the code of these co-modules can be distributed over different code

containers, which provide the algorithms relevant to the purpose of the specific

co-module. An important reason for this arrangement is to allow co-modules to

provide functionality (often security sensitive functionality) associated with spe-

cific application modules.

Since individual kernel co-modules have all the properties previously de-

scribed in connection with normal modules they are accessed via their own sepa-

rate module capabilities. In volume 1 chapter 14 the impression was given that a

container holds only one module and that the unique identifier in a module ca-

pability is the unique module container number. It now becomes necessary to

distinguish between the persistent data of different co-modules within a single

container. Hence the unique identifier in a module capability is in fact defined as

Chapter 17 A MODULAR KERNEL DESIGN 6

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

a unique container number and a small index number. The kernel uses this to

select the required co-module (see Figure 17.2).

The indices of those co-modules which the kernel needs to use are fixed,

thus enabling the latter to access them without having to possess a capability for

them. Additional user modules have higher indices which are determined dy-

namically.

A subfield in the status bits, hereafter called the type field, is set to "data" in

capabilities which provide access to co-modules. The rights fields are described

in more detail in Chapter 26.

5 Functions Delegated to Co-Modules

In this section a few (but not necessarily all) examples of security-sensitive co-

modules are briefly described.

5.1 Co-Module Management

The creation and management of co-modules in a container is clearly a sensitive

activity. As we shall see shortly, different policies can be associated with differ-

ent containers. The management activity is itself carried out in a co-module, the

Co-Module Manager
7
. This maintains a central table of co-modules (including

the main application module) for the container in which it resides, known as the

Co-Module Table (CMT). For each co-module this has an entry which contains

information such as a pointer to the persistent state data of the module, a capa-

bility for the code module which is bound to the co-module and a module capa-

bility for the list of qualifiers which bracket the co-module, as well as some sta-

tus information. This information enables the kernel to execute inter-module

calls to co-modules.

5.2 Segment Management

The creation and further management of individual segments in a container is a

very sensitive activity, because it is necessary, for example to guarantee that dif-

ferent segments do not overlap in the container memory space. In each container

7
 The names of specific individual modules are capitalised for clarity.

Figure 17.2: The Basic Structure of a File Capability

Type =

data

Unique

Container #

Status

Bits

Index

Semantic

Rights

Environmental

Rights

Meta-

rights

Confinement

Rights

Chapter 17 A MODULAR KERNEL DESIGN 7

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

there is a Segment Manager. Segment Managers associated with different con-

tainers can, at least in part, be programmed differently. They create and delete

segments in the container for its other co-modules and may be responsible for

garbage collection in the container.

5.3 Virtual Page Table Management

The mapping from virtual page numbers to disc addresses for the pages of a con-

tainer is held in a co-module of the same container, and the code for this deter-

mines how the table is organised. The core kernel accesses data prepared by the

Virtual Page Table Manager co-module to obtain the information which it

needs, for example, for managing the TLB. Different containers can have differ-

ent page table structures and paging strategies.

5.4 Qualifier List Management

The SPEEDOS kernel supports the use of qualifiers with bracket routines (cf.

volume 1 chapter 13), but delegates the management of the qualifier lists, etc. to

a co-module associated with the qualified co-module, the Qualifier List Manag-

er. Each co-module in a composite module can be separately qualified and can

have multiple qualifiers associated with it.

5.5 Debugging Modules

Debugging is the activity of finding and correcting errors in programs. For this

purpose a Debugger co-module needs access to the data structures which the

program has created and used in an attempt to establish the cause of an error.

For this purpose it needs to have white-box access to a module.

The information hiding principle is sometimes described as a black-box

model, because the clients of such a module are unable to see how the module

works. This is normally one of the strengths of the information hiding principle,

but there are some tasks, especially system tasks such as debugging, which re-

quire special code to access the internal structure of a module. Allowing this to

happen is called white-box functionality. We shall see shortly how this can be

organised for some co-modules.

6 The Kernel User Interface

The interface presented to the users by the core kernel is relatively simple, and is

best regarded as an extension of the hardware instruction set. No special privi-

lege is required to call some kernel instructions, but the kernel carries out checks

in order to establish whether the user request can be validly carried out.

There are some cases (e.g. the Segment Manager) where the kernel needs to

be sure that certain of its instructions are being called only by its own security-

Chapter 17 A MODULAR KERNEL DESIGN 8

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

sensitive co-modules, and for this purpose special kernel capabilities (with type

field set to "kernel" and access rights showing which kernel instructions are

permitted by the holder) must be presented as operands. For such instructions

any module can attempt to execute the instruction, but if an appropriate kernel

capability is not provided as an operand the instruction generates an interrupt.

Examples of this will become evident in later chapters.

Since the operands of kernel instructions must be separated from the pa-

rameters for inter-module calls, the user sets up a segment containing the oper-

ands for a kernel instruction addressable via segment register 15 before execut-

ing the instruction. The kernel then uses segment register 15 while carrying out

the instruction. The segment itself is a normal segment which can hold capabili-

ties (e.g. kernel capabilities, pointers and data) in which the kernel can also re-

turn results on completion of the instruction.

7 Kernel Modules and Processes
8

Not all modules associated with the kernel can be directly identified with partic-

ular application modules, e.g. device drivers, spooler modules, resource alloca-

tion modules, the thread scheduler. These modules are stored in containers

which are typically owned by the system manager. Like application modules,

they are implemented as composite modules with their own co-modules, and

they can be invoked in-process by user level threads.

Similarly some activities not associated with particular applications may

need to be executed in separate threads not belonging to a particular application.

Kernel processes are discussed in more detail in chapters 20 to 22.

8 Cut, Copy and Paste

Many operating systems provide a very useful clipboard
9
 to support a general

cut, copy and paste facility
10

. When used to transfer information from one mod-

ule to another, this provides users with a potential way to avoid privacy checks.

Consequently the SPEEDOS kernel does not provide such a mechanism. How-

ever, individual applications can easily support such a facility for use within the

program, and where appropriate a buffer can be organised in a sharable file to

allow users who have a capability for the file to use this as a clipboard.

8
 To distinguish activity in the core kernel from user activities, we use the term process

for each kernel activity (see chapter 20) while the term thread is used in the case of user

level activity outside the kernel. However the term process is also used in SPEEDOS to

signify a collection of threads designed to co-operate with each other, see chapter 20.
9
 see https://en.wikipedia.org/wiki/Clipboard_(computing)

10
 see https://en.wikipedia.org/wiki/Cut,_copy,_and_paste#Origins

Chapter 17 A MODULAR KERNEL DESIGN 9

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

9 Conclusion

SPEEDOS has introduced a significant new kernel structuring principle, the use

of co-modules in a composite module [4], chapter 5. Notice that this is unrelated

to the hierarchical operating system structuring techniques described in volume

1 chapter 9. The flexibility of this technique will become more evident in the

following chapters, which discuss various aspects of the kernel design.

It can be argued that as a consequence of this technique, the core kernel

does not manage all the security features of a system directly and therefore,

strictly speaking, that it cannot be considered as a security kernel. However, the

classification as a security kernel or not is not as such important. It is important

however that through this structure a minimum amount of code is actually exe-

cuted in privileged mode, reducing the risks of misuse, and on the other hand

that security-sensitive co-modules can support different policies.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 Chapter 18

Module Variants

and their Invocation

In previous chapters the impression was given that all modules
11

 have a uniform

structure and are invoked in an identical way. However, there are good reasons

for introducing variations, while keeping the information-hiding principle intact.

This chapter introduces some additional details regarding the organisation and

invocation of modules. In order to do this it is necessary to have a basic under-

standing of the kinds of data which are associated with a module, both statically

and dynamically.

1 Kinds of Data Associated with a Module

1.1 Inter-Module Linkage Data and Parameters

These data items are dynamically created and deleted on a (kernel) thread stack

in a process container by the kernel as part of the inter-module call/return mech-

anism, which was introduced in chapters 14 and 15, as well as similar call

mechanisms which are described later in the chapter.

1.2 Persistent Data

The lifetime of persistent data is independent of the threads which use it. It

comes into existence as a result of a request to create an information–hiding file,

and it ceases to exist when this is explicitly deleted
12

 or can be garbage collect-

ed. It is held as a heap in a file container.

11

 In principle all modules are co-modules, as was described in the previous chapter. How-

ever, where nothing is to be gained from emphasizing the significance of co-modules

we frequently revert to the simpler and more conventional word "module".
12

 Prof. Roger Needham [27] argued that in a capability-based system an object should

persist until capabilities for it no longer exist, but that view is unrealistic in a system

where capabilities can be distributed worldwide.

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 11

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.3 Temporary Data

For subroutine and similar calls within a module the kernel thread stack is not

used. This decision, which differs from Espenlaub's design [4, pp. 167-8 and

182] and most in-process systems, was necessary partly because of the problem

of creating persistent segments by linking a temporary segment into a persistent

structure (which is the way compilers typically create the code for this purpose)

and partly because of garbage collection issues. This approach also gives com-

pilers freedom to implement languages with varying scoping strategies and at

the same time it simplifies the kernel.

A semantic routine, when activated in a module, calls the Segment Manag-

er co-module in its own container to set up a separate root segment for its tem-

porary data (i.e. the data which the thread creates for this call and which is de-

leted when the thread exits from the routine). This can be used to build an inter-

nal subroutine call stack, a temporary heap and/or for any other purpose for

which it might need temporary data. When the semantic routine exits, this tem-

porary data is deleted (either explicitly by the routine calling the Segment Man-

ager or implicitly via a garbage collector).

In the case of a call to a file module the temporary data is stored in the

same heap as the file's persistent data. In the case of a call to a program module

(i.e. a module without persistent data) a single heap is used by all threads for this

purpose. This is permanently associated with the program at the current node.

1.4 Retained Data

This is data which allows a thread to retain information relating to a sequence of

calls between an open call and a close call (see below). This data might be use-

ful for example to keep a note of the next record to be read, thus allowing a file

to have a (very useful) semantic routine get_next, etc. This is stored in the

heap associated with the called module, i.e. alongside the file data.

In summary, all forms of data for a file module (persistent data shared by all

threads using the file, retained data for those threads which require non-

persistent information to be retained between their inter-module calls, and tem-

porary data for all the calls on semantic routines of the file) are held in the con-

tainer for the file module. The associated code module should contain instruc-

tions which synchronise access to the persistent data. Since retained data seg-

ments are separately rooted for each thread, and temporary data segments have

no saved root (except the segment register via which they are addressed) differ-

ent threads cannot interfere with each other's retained or temporary data seg-

ments, although they are held in the same container.

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 12

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The data for a program module (temporary data for all the calls on semantic

routines of the program) are held in the single container associated with the pro-

gram module, for all the routines which are (possibly concurrently) active within

it. Protection between the segments of different threads is guaranteed in that

they cannot load segment registers to address the segments of other threads.

2 Kinds of Module

The above overview of kinds of data supported by SPEEDOS allows us now to

consider how these data kinds can be combined to produce various different pat-

terns for SPEEDOS information hiding modules. Figure 18.1 shows and names

the various combinations.

All these module variants need temporary data in which the code can carry out

its calculations.

2.1 File

The semantic routines of a file which does not require retained data can only be

invoked using inter-module calls. Each call is completely independent of other

calls (except that access to the persistent data may need to be synchronised).

This form would be useful, for example, to access routines from a library of

mathematical functions which look up their results in a table (such as a table of

trigonometrical functions of the type which students might use in schools).

2.2 Openable File

This corresponds, for example, to conventional commercial data processing file,

where a user may need to make a series of calls in sequence. For example a pay-

roll file may be called multiple times in order for the payroll clerk (either human

or another module) to calculate the weekly or monthly pay of employees.

2.3 Program

This serves a function similar to the file, except that it needs no persistent data.

For example it may have semantic routines for calculating trigonometrical func-

tions.

Figure 18.1: Kinds of Data

File √

x √

Openable File

Program

√

x

√

x

√

√

Persistent Retained Temporary

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 13

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3 Types and Implementations

In programming languages such as Timor [7] a distinction is drawn between a

type, which has a defined behaviour with respect to its users, and individual im-

plementations of the type, which may use different techniques to implement this

behaviour (see for example [8]). If two or more implementations can achieve the

same behaviour, then from the user's viewpoint they are equivalent (except for

performance).

In the examples of a trigonometrical library above, the same behaviour

(from the user's viewpoint) might be achieved by a file module and by a pro-

gram module, provided that they also offer the same set of semantic routines. In

other words they might be considered to be modules of the same type (in the

sense of programming language types). However, SPEEDOS (and other operat-

ing systems) do not offer a type concept, but merely implementations. The type

issue is considered to be a matter purely for the programming language level,

not the operating system level. Nevertheless one small concession will be made

below to respect this concept (see section 5.2).

4 Implementing Programs

Given the protection provided by the SPEEDOS segmentation scheme, there is

no problem in storing the temporary data of multiple programs in a single con-

tainer associated with the code module of the program, which serves as a shared

heap. This has the advantage that instead of creating a new container each time a

thread activates a program a new container must be created only once, when the

program is created. But more importantly it unifies the mechanisms for files and

programs.

A module capability for a program identifies the shared program heap, not the

code module, while the latter is reached from a code capability stored in the

program heap, as is illustrated in Figure 18.2. A comparison with Figure 14.8 (in

volume 1) confirms that programs and files can be handled uniformly, also with

respect to inter-module calls.

Figure 18.2: Calling a Program Module

Unique Module Identifier Semantic Rights

A Module Capability for a Program

Container Holding

Temporary/

Retained Data

Code Capability
Container

Holding

Code

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 14

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

5 Creating the Different Kinds of Data

The precondition for creating the various kinds of data is that a heap container

(i.e. a container in which all the various kinds of data except inter-module link-

age and inter-module call and return parameters can be stored) exists which con-

tains a capability for the associated code module. How this precondition is ful-

filled will be described in later chapters in connection with the management of

containers and the management of co-modules.

5.1 Creating Temporary Data

Whenever a thread becomes active in a semantic routine it needs a root segment

for temporary data. For this purpose it calls the Segment Manager co-module to

create a new segment and makes this addressable (by convention) via segment

register 4. When the thread exits from the semantic routine the temporary data

which it has created can be deleted.

5.2 Creating Persistent (File) Data

In order to create a root segment for persistent data a thread must make an inter-

module call to a constructor routine of the module in question. This is always

the semantic routine numbered 0. Its function is to initialise the persistent data of

the file module.

The constructor routine calls the Segment Manager to request the creation

of a segment and calls the Co-Module Manager to enter the address of this root

segment in its co-module table (see chapter 19). It can then initialise this and

create further segments linked to it.

When the file module is subsequently called by another module, the kernel

automatically loads the address of this root segment into Segment Register 5.

However, this segment register can be reloaded with other values by the mod-

ule's code; Segment Register 5 can be reinitialised to address the persistent root

segment using the kernel instruction reload_persistent_root, which has no

parameters.

In modules without file data (i.e. program modules) there is no semantic

routine 0 and module capabilities for program modules have the access right 0

set to 0 (corresponding to no access for a semantic routine 0, i.e. the call is inva-

lid). When a program module is invoked, Segment Register 5 is invalidated, but

can be used by the program.

If for a program module an attempt is made to call routine 0, the kernel will

simply ignore the instruction and return to the next instruction of the caller. This

allows different implementations of a type to function correctly regardless

whether they use persistent data or not (see section 3 above).

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 15

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

5.3 Creating and Deleting Retained Data

Before a root segment for retained data can be created a thread must make an

inter-module call to an open routine of the module in question. This is always

semantic routine 1
13

. For openable modules other semantic routines (apart from

a constructor) cannot be called until the module has been opened.

The open routine should call the Segment Manager's create retained rou-

tine, providing it with specifications for the retained root segment. The Segment

Manager checks
14

 that the module is an openable module and that this call is

from an open routine. It then returns to the caller a pointer for the new retained

segment and an identifier (the time of creation of the segment in milliseconds).

After the open routine has initialised the retained segment (by convention ad-

dressed via Segment Register 6) it returns the identifier to its caller.

Once an openable module has been opened, further semantic routines can

access the retained segment by calling the Segment Manager's get retained rou-

tine, providing the identifier of the retained segment. If the identifier is valid the

Segment Manager returns a pointer to the retained segment. By convention the

module loads this into Segment Register 6.

When a thread wishes to close a module it calls semantic routine 2 (the

close routine), which deletes the retained segment and prevents further invoca-

tions of the module via the retained segment identified in the close call.

In modules without retained data (i.e. modules which cannot be opened)

there are no semantic routines numbered 1 and 2, and module capabilities for

program modules have the access rights 1 and 2 (corresponding to semantic rou-

tine 1 and 2) set to 0. Thus if for a non-openable module an attempt is made to

call routine 1 or routine 2, the instruction will be ignored by the kernel.

6 Library Modules

One structural issue which has been difficult to manage elegantly in most oper-

ating systems is that of library routines/modules. In this context a library module

is defined as a body of code (usually with multiple entry points) which performs

useful related tasks for an application, e.g.

– a set of mathematical functions,

– a set of routines for manipulating strings,

– a library of routines for organising items within a program into collections

such as automatically ordered lists (e.g. alphabetically), unordered lists, us-

13

 From the SPEEDOS viewpoint symbolic names such as "open" and "close" are not im-

portant.
14

 To do this it calls the Co-Module Manager, which checks the status word associated

with the module (see chapter 19).

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 16

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

er ordered lists, sets (without duplicates),

– separately compiled user defined classes for use in different object-oriented

programs,

– routines for synchronising access to data,

– a graphics library which draws and colours shapes, etc.

Some library routines, for example mathematical function libraries, can in fact

be handled within the framework already discussed. The real difficulty occurs

when a library routine is intended to perform tasks on the existing data of their

client module. These are the kinds of library modules which are of interest in

this section.

6.1 Libraries in Hierarchical Systems

One reason why library modules have caused problems is that they can be used

by many programs which have different protection requirements. This leads to

problems for example in connection with the hierarchical (ring) model for pro-

tection described briefly in Volume 1 Chapter 9. In order to conform to the hier-

archical calling rules – all calls should normally be inwards, i.e. to a lower level

in the hierarchical structure – library routines might appear to belong to the in-

nermost layer. But that is the kernel layer where highest privilege applies; it is

obviously not a good idea from the viewpoint of protection (or of flexibility) to

place library routines there. Thus in hierarchical protection systems quite com-

plicated rules were introduced to avoid this situation.

6.2 Library Routines as Information Hiding Modules

Libraries can normally easily be defined as independent information hiding

modules but for many library modules (e.g. string libraries, collection libraries,

independently developed OO libraries) that would create a problem, because it

would prevent them from directly manipulating the data structures of their call-

ing module. If they were invoked as normal SPEEDOS inter-module calls,

which may not pass pointers as parameters, this would imply that the data which

the library routines manipulate would have to be passed to them as values and

then copied back to the application as return values. This would lead to much

inefficient copying.
15

15

 At this point we note that some library modules can have a dual role in a persistent sys-

tem such as SPEEDOS. For example typical collection modules such as lists, sets, bags,

etc. can be useful for organising data within a SPEEDOS module (and thus correspond

to typical collection modules within an application module). But in a persistent system

they can also be used as independent information-hiding modules corresponding to files

in the file systems of conventional non-persistent systems.

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 17

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

6.3 Library Calls: Espenlaub's Solution

To solve this problem Espenlaub defined a library call (LC) instruction in his

design for a SPEEDOS kernel. This allows a routine of a library module to re-

ceive a pointer as a parameter (in practice a segment register referring to a seg-

ment in the application module). Otherwise he described the library module as a

normal module (which might for example have its own persistent data). This

could theoretically introduce the risk that the pointer passed by the client module

to the library module be stored in the latter's own persistent data. However, in

practice this cannot occur, because the pointer parameter is defined to be passed

simply as a valid segment register, which can only be stored in the container

which it addresses.

Nevertheless Espenlaub's solution envisages that such a module can ma-

nipulate persistent data of two different modules in two different file containers,

which raises protection issues that are not easy to anticipate and to solve. Fur-

thermore the consequence would be that at the programming language and com-

pilation level library modules would have to be treated differently from normal

modules. (For example, in object-oriented libraries some segment of the calling

module's data should be treated as the root segment of the library module, not as

a parameter.) For such reasons we now define a safer alternative for SPEEDOS.

6.4 The New SPEEDOS Solution: Library Calls

It therefore appears to be more appropriate to view library code which is de-

signed to operate within an application module simply as an extension of the

application's code, and the library call as a simplified call which leaves the cur-

rent data container active, but which switches the code to the appropriate entry

point in the library module, based on a code capability (not to be confused with

a program capability) provided as the main parameter.

We consider first the case of "library file" modules. These modules create

new data structures for their client modules and view this as their persistent data

(e.g. a collection library). From the viewpoint of the library module they need a

constructor. Instead of an inter-module call (IMC) being used for this purpose

the host module calls a library file constructor (semantic routine 0) using a new

kernel library call (LC) instruction. The operands of this instruction are a code

module capability for the library module, an entry point number and an optional

root segment address (which is initially a null pointer). Like a normal file con-

structor this creates a root segment for what it regards as its persistent data. But

instead of calling the Co-Module Manager to set up a pointer for this root seg-

ment in a CMT entry (see chapter 17 section 5.1), it returns the pointer to the

constructor's caller. The reasons for this are that such a library module has no

CMT entry, and more significantly, it has actually constructed an abstract data

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 18

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

structure for its caller (in the same container) and the calling module can then

root this into its own (persistent, retained or temporary) data structures (which

might for example include several collections).

Thereafter further calls from the host module to the individual semantic

routines (in Timor parlance, to the methods) of the library instance are also

made by invoking the kernel's LC instruction, passing to it the appropriate code

module capability, an entry point number and a pointer to the root segment li-

brary module instance's root module
16

.

If the library module requires retained data, its host module must first use a

kernel library call instruction (LC) to invoke the open routine (semantic routine

1) of the library module in question. For openable library modules other seman-

tic routines (apart from a constructor) cannot be called until the module has been

opened.

The open routine calls the Segment Manager's create retained routine (as

for normal modules), providing it with specifications for the retained root seg-

ment. The Segment Manager returns to the caller a pointer for the new retained

segment and an identifier (e.g. the time of creation of the segment in millisec-

onds). The open routine returns this to its client module which can store it in one

of its own data structures for use in subsequent calls to the library module.

Once an openable library module is open, further semantic routines gain

access to the retained segment by calling the Segment Manager's get retained

routine, providing the identifier of the retained segment. If the identifier is valid

the Segment Manager returns a pointer to the retained segment.

6.5 Evaluation

One aim of the design of library modules is to allow them to be programmed

and compiled (almost) like normal modules. With this approach to libraries, the

software for these can be written by programmers (e.g. in Timor) exactly like

normal modules. They have to be compiled slightly differently, but provided

that the compiler knows it is compiling a library module, it can easily hide these

differences from the programmer.

One basic difference is that instead of finding the required code capability
17

in the CMT, the kernel receives it as part of the LC instruction. Such capabilities

16

 In chapter 22 a special feature will be described allowing library methods also to be

invoked via the kernel.
17

 The evaluation of the code capability is via a Code Table (to be described in Chapter

19). Since this holds a qualifier list, the code of library routines can be bracketed sepa-

rately. Since the data produced/manipulated by a library module is considered to be part

of the client module, its methods can be bracketed using the qualifier list in the CMT

(see chapter 19).

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 19

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

can be provided to the host module as parameters (either to its constructor or

even individually with each independent library call or sequence of library file

calls). This makes the use of libraries very flexible.

In contrast with inter-module calls, library calls can pass pointers to addi-

tional segments, thus enabling the library module to address several of its seg-

ments (e.g. if its function is to merge two lists into a third). These may also be

set to "read-only".

7 Cooperating Co-Modules

While the information hiding principle is basically a very sound concept, there

are some circumstances in which a limited amount of sharing of data between

separate modules may be justified at the application level. For example, a central

organisation (e.g. the headquarters of a company), with a central database of in-

formation, might have subsidiary organisations (e.g. franchisees, local branches)

which have a legitimate need to share some (but not necessarily all) of the cen-

tral information. Each sub-organisation may also have its own additional infor-

mation in a further database, to which the central organisation may need (partial)

access. In such a situation a strict adherence to the information hiding principle

would result in an extremely inefficient design, with considerable copying of

data (and the creation of duplicate copies which risk becoming out of step with

each other).

7.1 Application Co-Modules

To facilitate such environments SPEEDOS allows related application modules

to be implemented as co-modules in the same container. In this situation the in-

dividual co-modules can have separate databases and separate semantic routines

with separate capabilities, thus providing them with individual control over their

data and access rights. At the same time, by allowing them to make calls to each

other which relax the normal calling rule forbidding the passing of pointers, they

can share access to selected parts of each other's databases in a controlled way.

For this purpose a further call instruction, a co-module call (CMC) is supported

by SPEEDOS. This is like an IMC, except that pointers may be passed as pa-

rameters. The kernel checks that such calls only take place between co-modules

in the same container. Because they are in the same container there is no formal

problem with passing segments as parameters.

7.2 Passing Segments as Parameters

The following rules are used to ensure that segment pointers, passed as parame-

ters via LCs and CMCs, are not misused.

a) The entry points of a module which expect to receive segment pointers as

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 20

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

parameters are marked as such in the entry point list of the code of the

module. The destination of the call must be either library code or a co-

module in the same container. Other entry points may not accept pointer

calls.

b) A pointer can only be stored in the container which holds the referenced

segment.

c) A bit in a pointer indicates whether it can be loaded into a segment register

in "read-write" or "read-only" mode. The latter indicates that the contents of

the addressed segment can be read but not modified
18

.

d) The bit in a pointer which indicates whether it is "read only" must always

be stored when the pointer is copied. This bit is also copied to segment reg-

isters, indicating that the content of the addressed segment may not be mod-

ified.

The interface routines of co-modules which can pass pointers can be qualified

with bracket routines.

7.3 Kernel Co-Modules

Co-module calls (CMCs) can of course also facilitate calls from application

modules to kernel co-modules in the same container (e.g. when an application

wishes to create a new segment or delete a segment it can use a CMC to call the

Segment Manager for this purpose. Similarly one kernel co-module (e.g. the

Segment Manager) may also need to call another kernel co-module (e.g. the Vir-

tual Page Manager) in the same container and uses a CMC to achieve this.

7.4 Co-Module Calls, Library Calls and White Box Functionality

Finally, neither of these kinds of call provides normal white box functionality,

i.e. access to the entire data of a module is not permitted, unless the pointer

passed is the root segment of the caller. Otherwise white box functionality is

only achieved by an inter-module call to a module which the Co-Module Man-

ager has organised to share a root pointer with another module. How it does this

will become clear in the next chapter.

8 Free Capabilities

There are two further situations in which the strict use of information hiding can

lead to inefficiencies.

8.1 N-ary Operations on Files

The word n-ary is built on the pattern of words such as unary (for one), binary

18

 Module capabilities in the addressed segment can be copied, unless the generic access

rights in the module capability itself prevent this.

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 21

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(for two), etc.; it means "for n", where n is a number whose value is not fixed.

The n-ary problem arises when a method wants to manipulate two or more simi-

lar objects together. For very small objects (e.g. integers) most operations are n-

ary and they are built into the computer's basic instruction set. For example the

addition operation takes two objects and produces a third object as a result. At

the segment level, library modules which provide n-ary services (e.g. for merg-

ing or comparing two segments in the same container) solve the problem.

Most file operations are not n-ary, because their semantic routines normally

involve accesses to a single file; consequently the information hiding principle is

normally unproblematic and, as we have seen, brings many security and soft-

ware engineering benefits. But it is nevertheless inconvenient in cases such as

that of a routine which merges two files or compares their contents. This can

theoretically be achieved in an information-hiding framework by using a routine

of a third module, which reads from and/or writes to them individually, using

their semantic routines. However, such an approach can be very inefficient be-

cause of the overhead of the many inter-module calls required. If all the objects

concerned were created by the same code module, this restriction is not even

necessary to preserve the information hiding principle! Furthermore, it is virtual-

ly impossible in situations where the content of a file is long and is not easily

decomposed into small segments, as is the case for example with video files.

The passing of capabilities for such files as parameters is not a problem – a

parameter segment for an inter-module call can always contain module capabili-

ties. The issue is how the content of the corresponding files can be addressed.

All that is needed in the module carrying out the n-ary operation is access to the

root segment of each of the parameter files' root segments. For this purpose the

kernel provides an instruction load_free_cap which takes as parameters the

file capability passed and the number of the segment register which the n-ary

routine chooses to use to address the file's segments.

We refer to capabilities which can be passed in this way as "free capabili-

ties". These must have the metaright "permit free capability" set (see chapter

26). Their use can be further restricted to "read only" as defined in a further sta-

tus bit in the capability. Using this feature an n-ary routine to merge two files

into a third can for example be implemented by passing two read only parame-

ters to a further module which creates a new file.

It is tempting to suggest that the kernel should also check that the code file

of the parameter file is the same as that of the called module. But that would rule

out a solution for the next problem.

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 22

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

8.2 File Conversion

Suppose that some file type can be implemented in two quite different ways. For

example bank accounts files might be implemented using a B-tree technique or

an indexed sequential (IS) technique, and a banking company might from time

to time convert particular files from one implementation into another, e.g. be-

cause one of the techniques provides faster access or uses less space. Similarly

video files can have different internal formats and conversion between these is

quite common. After such a conversion users of a converted file could continue

to use it as if nothing had happened, assuming that both implementations sup-

port the same type definition
19

. In that sense the possibility of making such con-

versions could be said to encourage the information hiding principle.

To implement this, a conversion module might for example take one mod-

ule capability in read-only mode as the source of the conversion and create a

second, in the new format, as the new file.

Such examples make it tempting to introduce the idea of file types
20

 at the

kernel level, and to allow only files of the same type to be attached to other files.

But not only would that be extremely complicated (e.g. because of inheritance),

it would also exclude more general conversions. For example it would virtually

rule out in practice an efficient form of conversion from normal text to com-

pressed text or encrypted text, etc. Consequently it is better not to enforce any

information hiding rules in the matter of passing files as parameters to modules.

8.3 Precautionary Measures with Free Capabilities

To ensure that this feature is not misused (for example by a user with a restricted

set of access rights for a file) the instruction which the kernel provides to make a

free parameter capability for a file checks that the capability from which the free

capability is copied, is an owner capability, thus ensuring that only the owner of

a file can make free capabilities, marking them as such in the free capability's

metarights field.

Input parameters can only be loaded into segment registers in read-only

mode, and the segment register is marked as non-storable, thus guaranteeing that

confinement measures cannot be avoided by using free capabilities. One impli-

cation of this is that if files are to be merged or converted, the module carrying

this out must be the output module (or must call a further module to carry out

the output operations).

There is one final security risk to be avoided: this facility should not be al-

19

 In a later chapter we discuss how they might obtain a capability for the new version.
20

 A file type here means a file module interface which can be implemented in different

ways but provides the same functionality.

Chapter 18 MODULE VARIANTS AND THEIR INVOCATION 23

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

lowed to circumvent bracket routines associated with a module. This is dis-

cussed in Chapter 24 section 5.

9 Call Back Calls

There are situations in which a normal module may have a need to call its call-

ing module back. This can happen at two levels, at the inter-module level and at

the library level. These require different but similar SPEEDOS kernel instruc-

tions.

9.1 Inter-Module Call Back Calls

The SPEEDOS kernel supports a 'call back call' (CBC) instruction. This acti-

vates a call back routine in the application module by nominating an entry point

number in a special call back entrypoint list. In contrast with normal inter-

module calls, the caller does not provide a capability for the call back call; in-

stead the kernel discovers the details of the CBC destination by examining

which module called the currently active module and activates the nominated

call back routine. When the call back routine terminates it returns back to its

caller, which resumes execution at the instruction following the CBC instruc-

tion. There is no limit on the number of call back calls a module can make.

9.2 Library Call Back Calls

For this case the kernel provides a 'library call back' (LCB) instruction which

discovers the destination routine by examining which internal module invoked

the original library call (LC), see section 6.4.

10 Conclusion

This and the previous chapter have provided a basis for the kernel's structure and

some of the kernel's most significant security functions. With this as background

information we are now in a position to delve more deeply into the functionality

of key kernel co-modules and how they interface with the kernel.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 19

Containers and their Contents

Containers play a central role in SPEEDOS. They serve as discrete address

spaces for the persistent distributed virtual memory. They hold persistent data

which might be used, for example, as databases for user applications. They can

be used to hold executable code. Hence they serve a similar role in SPEEDOS to

that of files in conventional systems. However, that is only part of the story.

They can also hold information (persistently) about user processes and their

threads, which in conventional systems is a function of the (non-persistent) vir-

tual memory.

This chapter describes how containers are organised and provides an over-

view of their functionality, beginning with the way they are identified.

1 Container Identifiers

Section 2 of volume 1 chapter 16 described the SPEEDOS technique for sup-

porting world-wide unique virtual addressing. Logically a world-wide unique

virtual address consists of a unique container identifier concatenated with a

within-container offset. The unique container number is expressed as three con-

tiguous entities, as is shown in Figure 19.1 (which is a repeat of Figure 16.2).

The actual sizes and further subdivisions of these fields are discussed in chapter

23 and Appendix 1.

Concatenating this identifier with a within container address results in a world-

wide unique virtual memory address which is far too large to allow an ATU to

be built cost-effectively. To avoid this we suggested in volume 1 chapter 16

(section 3.3) the use of 3 bit SCIDs (short container identifiers).

SPEEDOS Node Number Disc # in Node Container # in Disc

Figure 19.1: A SPEEDOS Container Identifier

Chapter 19 CONTAINERS AND THEIR CONTENTS 25

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2 Container Red Tape

The Container Manager at each node is a security-sensitive co-module which

performs node-wide functions and is therefore itself located in a container which

is not associated with a particular application co-module. It is responsible for

providing the functionality necessary to create other containers, as will be dis-

cussed in section 12 below.

When a new container is created several unique identifiers are stored in

fixed locations within it which are known to the core kernel. These uniquely

identify:

a) the user who created the container,

b) the container itself,

c) the thread which created the container,

d) the code module via which the container was created,

e) the co-module via which the container was created,

f) the user who currently owns the container,

g) the date and time of creation, and

h) its activity status (e.g. the count of currently open co-modules in the con-

tainer).

This information is set up in page 0 of the container by the kernel's new_

container instruction.

When a new container is created, the semantic routine responsible for this

returns a container capability, which entitles its possessors to load co-modules

into the container (see Figure 19.3). The index field is set to -1.

Figure 19.2: Identification Fields of a Container

Container number identifying creator

Container number of this container

Rest of container contents

Creating thread number

Creating code module number

Creating co-module number

Container number of current owner

Date and Time of Creation

Activity status

Chapter 19 CONTAINERS AND THEIR CONTENTS 26

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3 Using Containers for Multiple Purposes

There are two senses in which containers are used for multiple purposes. First,

as was described in the volume 1 chapter 18, a container can hold several co-

modules; the kernel relies on some of these to carry out its privileged activities.

Second, as foreshadowed above, containers can be used for three different pri-

mary purposes: as repositories for persistent data (henceforth called data files
21

),

for code (code files) and for processes (process files). In fact, all modules are

initially created and start their life as data files. The type field in a capability de-

termines how the container should be viewed when accessed via that capability.

Notice that when the type field is set to 'container' the rights fields indicate what

actions are possible when the container is being viewed as an entire container

(e.g. whether the entire container can be copied, etc.) The Container Manager is

not a component of every container, unlike the co-modules about to be dis-

cussed.

4 Segment Management

Each container must have a Segment Manager co-module, and each Segment

Manager must provide certain standard routines. These are provided as part of

the SPEEDOS system, but this module can be extended in different ways (e.g.

using the Timor inheritance and code re-use techniques) allowing different con-

tainers to manage segments differently, e.g. with respect to garbage collection.

When a new container is created the Segment Manager, like the Co-Module

Manager, is pre-installed in the Co-Module Table (see section 7). An important

part of the segment manager's work is to ensure that the segments in a container

do not overlap.

All modules in the container may need to create temporary segments and

can access the appropriate Segment Manager routines using CMC calls (thus

allowing pointers to be passed as parameters), provided that they can obtain a

capability for the container's Segment Manager. Only the operations of file

21

 In this sense each co-module is a data file consisting of a persistent data structure point-

ing to a code file containing its associated semantic routines.

Figure 19.3: The Basic Structure of a Container Capability

Type =

container

Unique

Container #

Status

Bits

Index

Semantic

Rights

Environmental

Rights

Meta-

rights

Confinement

Rights

Chapter 19 CONTAINERS AND THEIR CONTENTS 27

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

modules need to create file segments and to re-link temporary segments into ex-

isting persistent segments.

4.1 Segment Structure

SPEEDOS segmentation is based on the idea of partitioned segments, which was

first proposed by Anita Jones [9]. Because SPEEDOS has two kinds of capabili-

ties (i.e. segment pointers and module capabilities) the original structure pro-

posed by Jones (see Figure 10.7) has been modified to that shown in Figure

19.4.

They have four basic areas: a data area, a red tape area, a segment pointer list

and a module capability list. The content of a segment can only be accessed via

a segment register.

The user can address the data area directly using normal (non-privileged)

CPU instructions, which contain (non-negative) offsets from the base address in

the segment register. Because the segment register contains a length field the

hardware can ensure that the user cannot address information outside the data

area without causing an address violation interrupt.

Below the data area is a "red tape" area which can only be accessed by the

kernel. Attempts by users to access this area via negative offsets cause an ad-

dress violation interrupt. The red tape consists of a length field for the data area,

a count of pointers, a count of capabilities and unique (within container) seg-

ment identifier. The red tape area can only be addressed by the kernel. Segment

pointers and module capabilities can only be addressed indirectly via (separate

subsets of) kernel instructions, using non-negative integers as offsets. The first

negative offsets into pointer list

(adjusted for red tape)

Partitioned Segment
positive

offsets Segment Register

Data Area

Data Length

Count of Capabilities

Capability List

Figure 19.4: SPEEDOS Partitioned Segments

Count of Pointers

Segment Pointer List

negative offsets into capability list

(adjusted for red tape and length of pointer list)

Red Tape Area

Unique Segment Identifier

Chapter 19 CONTAINERS AND THEIR CONTENTS 28

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

pointer is numbered 0, the second is 1, etc. Module capabilities are also ad-

dressed in the same way, i.e. capability 0 is the first, capability 1 is the second,

etc.

A pointer is a single word offset in the current container, which refers to

the red tape area of a different segment in the same container. There is no way

that pointers can refer to addresses in other containers. Pointers cannot be direct-

ly accessed by applications; they can only be manipulated via kernel instruc-

tions. One of the pointer instructions allows a segment register to be loaded from

a pointer. In this case the kernel loads the address of the referenced segment into

the specified segment register, using the current segment register's details to

complete the address. It then follows the pointer to locate the addressed seg-

ment, and uses the information in the referenced segment's red tape to load the

length field into the segment register. If the current segment register access

rights are set to read-only, it copies this also into the referenced segment regis-

ter. The user also has the option to set the referenced segment register to read

only, regardless of the setting in the current segment register. If access is set to

read only then the user can only read the information in the data part of the seg-

ment.

Since several pointers can be associated with a segment, the mechanism al-

lows arbitrary linked lists, tree structures, etc. to be created. Alternatively a

compiler can choose to store all the necessary persistent information in a single

segment and manage this itself.

Module capabilities are always stored in the protected area of segments. All

the instructions which use them are kernel instructions which have operands that

specify a segment register and module capability number. A capability can be

copied into the data area of a segment, but only if the corresponding metaright

(permit read) in the capability permits this. Such a copy cannot be used as a

capability.

5 Distributing Standard Capabilities

There are at least five cases in which a module executing in a particular thread

may legitimately need a capability for the thread itself or for another module,

where the normal distribution methods for capabilities would lead to clumsy,

complicated and inefficient solutions. These are capabilities for the

• Segment Manager associated with the container of the current module, in

order to create and delete segments in that module's container, on behalf of

the module;

• current thread, i.e. the thread which is currently executing, needed by some

modules for synchronisation purposes;

Chapter 19 CONTAINERS AND THEIR CONTENTS 29

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

• Thread Manager for the current thread, to allow sub-threads to be created

by an application module;

• standard input and output modules (if any) currently associated with the

thread, to allow appropriate modules to communicate with the user, e.g.

current keyboard and screen devices;

• Print Request Manager, i.e. the module which accepts print requests from

other modules executing in a thread (see chapter 33).

These are stored at the base of each user thread stack in an area known as the

capability accessibility area and are set up by the Thread Manager when it cre-

ates a thread.

The kernel provides instructions which allow the code of an executing

module to obtain them. However, simply to make capabilities for the Thread

Manager, the current thread (i.e. its thread capability) and/or the standard input

and output modules available for all modules executing in a thread would poten-

tially be very dangerous from a security point of view. To ensure that only the

modules which really need these capabilities are provided with them, the kernel

provides a mechanism which allows it to check whether the request made by a

module should be honoured. This mechanism is described in Chapter 26.

The kernel provides two different capabilities for the Segment Manager

with different access rights. These permit the possessor of the capability to cre-

ate either

– persistent segments for operations of file modules
22

 and to link temporary

segments to persistent segments, or

– temporary and retained segments for enquiries and to link them to other

temporary and retained segments.

Since the kernel can recognise whether a request comes from an operation or an

enquiry, the appropriate capability can be issued without reference to any con-

finement permissions. For this purpose constructors are regarded as operations

while open routines are regarded as enquiries.

6 Virtual Page Table Manager

Each container has a Virtual Page Table Manager, which is responsible for

translating virtual addresses into disc addresses. It is one of the first co-modules

to be loaded into a container, and its mode of activity can vary from container to

container, depending on the planned content to be located in the container. Its

role is described in more detail in chapter 23.

22

 Operations in Timor and SPEEDOS are semantic routines which can create and/or mod-

ify persistent information. Enquiries can only read persistent information.

Chapter 19 CONTAINERS AND THEIR CONTENTS 30

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

7 Data Files, the Co-Module Manager and the Co-Module Table

As we saw in chapter 18, access to co-modules, when they are viewed as data

files, is achieved via a file capability which is passed as an operand to a kernel

call instruction (see Figure 19.5). The kernel interprets this capability via the

Co-Module Table (CMT), which is set up and managed by a Co-Module Man-

ager in each container.

The structure of the CMT is fixed because it is one of the data structures

accessed directly by the kernel
23

. The Co-Module Table is an array (i.e. a direct-

ly indexed list) of entries, one for each co-module in the container. Figure 19.6

illustrates the basic format of the table. Each entry is logically structured as a

segment.

Since each data file is one of several co-modules in a container the contain-

er number part of the capability is modified by an 8-bit index value to designate

which co-module in the container is intended.

The Co-Module Manager itself occupies the first entry in the CMT. The

kernel can locate the CMT from a pointer (at a fixed position) in the red tape of

the container.

The state data pointer contains the start address of the root segment of the

persistent data of the co-module. (In the case of a program module this is a

pointer to the single heap permanently associated with the program, see chapter

18, section 1.3.) When a constructor creates a root segment (using the Segment

Manager's create_persistent_root routine) the Segment Manager advises the Co-

Module Manager, which sets up the pointer in the CMT.

23

 This is necessary because inter-module calls are interpreted via the table.

Type

= file

Unique

Container #

Status

Bits

Index

Semantic

Rights

Environmental

Rights

Meta-

rights

Confinement

Rights

Figure 19.5: The Basic Structure of a File Capability

Figure 19.6: The Co-Module Table (CMT)

Code Module

Modcap

Qualifier List

Modcap

State Data

Pointer

Status

Word

Call-back

QL Modcap

Free Cap

QL Modcap

Template

Modcap
Code Module

Modcap

Qualifier List

Modcap

State Data

Pointer

Status

Word

Call-back

QL Modcap

Free Cap

QL Modcap

Template

Modcap

Code Module

Modcap

Qualifier List

Modcap

State Data

Pointer

Status

Word

Call-back

QL Modcap

Free Cap

QL Modcap

Template

Modcap

Chapter 19 CONTAINERS AND THEIR CONTENTS 31

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

White-box sharing of an application's data structures (e.g. for use by a de-

bugger) can be achieved by setting the sharing co-module's State Data Segment

Pointer to the same value as that of the application co-module. However, this

can only occur when the application is not active. Special permission is required

for a co-module which needs white-box functionality.

The code module modcap entry is used by the kernel to locate the code con-

tainer of the module on file, program and cooperating co-module calls. (For li-

brary calls a code module is passed as a parameter to the library call.) Code

modules are described in more detail section 9.

The qualifier list modcap provides the kernel with access to a further co-

module which provides a list of the qualifiers for this co-module (cf. volume 1

chapter 13). Its routines are called by the kernel to control the sequencing of

bracket routines associated with the module (see chapter 24).

The free cap QL modcap provides the kernel with access to a further quali-

fier list module which is used to bracket the module when it is being accessed

via a free capability (cf. section 13.3 below).

The call-back QL modcap indicates the qualifier list module which is used

to bracket call-back calls (see chapter 28).

The template modcap is explained in chapter 32 section 2.2.

Each co-module in a composite module can be separately qualified and can

have multiple qualifiers associated with it. The kernel can locate the qualifier list

for a co-module from the module capability in the CMT.

Each co-module in a container has a status word in the CMT indicating

whether it requires a constructor call to initialise persistent data, whether it re-

quires open and close calls (which can create and delete retained data), and fur-

ther information about the status and current activity of the module.

There is also an open status for the entire container (not illustrated above),

which is maintained by the kernel. This is not associated with a particular

open/close call, but provides the kernel and its co-modules with the global sta-

tus, e.g. whether a co-module is open at all and if so how many threads are ac-

tive in the module as readers or writers. This is relevant, for example, to deter-

mine whether an external disc can be safely removed from the node to which it

is currently attached.

8 Creating File and Program Modules

In order to create a (co-)module, an entry must be made in the co-module table

of the container in which the module will be placed. The functionality for doing

this is provided by the Co-Module Manager's semantic routine create_module,

Chapter 19 CONTAINERS AND THEIR CONTENTS 32

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

It has four parameters:

– a code capability for the code file to be associated with the data file or pro-

gram, which it places in the new entry;

– a file capability for a qualifier list (may be null);

– a boolean value indicating whether the new module is a program module

(i.e. without persistent data) or a file module;

– a boolean value indicating whether the new module is openable.

The "pointer to root data" field in the CMT entry is set to null
24

. The Co-Module

Manager routine then organises the manufacture of a file or program capability,

which inter alia holds the container number, the file index used for the new ta-

ble entry and access rights copied from the code capability; all rights and per-

missions
25

 and the owner bit are set. The routine checks that the access rights for

semantic routines 0 (constructor), 1 and 2 (open and close routines) are correctly

set then returns this capability to the caller.

9 Organising Code Files

Code files (as in conventional systems) start life as data files – usually created as

the output of compilers and/or linkers. They organise the code in normal seg-

ments, i.e. with data, pointer and capability partitions.

The code itself is stored in the data partitions, which can also be used to

hold constant data segments.

The pointer partitions can be used to link code segments together (e.g. for

different subroutines) and provide access to constant segments. Thus the com-

piler can organise the code such that individual code and constant segments are

separately protected (e.g. with separate bounds checks).

The capability partitions can hold module capabilities, which can for ex-

ample provide the code with access to library and other ancillary modules (e.g. a

spelling checker module for editor code). The capability partitions of security-

sensitive kernel co-modules can also be used to hold kernel capabilities which

provide them with special privileges.

In SPEEDOS a data file can be converted into a code file by calls on the

semantic routines of a Code Manager co-module, which must reside in the same

container as the code of the new code file. Thus possession of a capability for a

Code Manager is a prerequisite for creating code files. System administrators

can therefore use the distribution of Code Manager capabilities to control the

24

 For a file module the persistent root is subsequently set up in the CMT when the Seg-

ment Manager's create_persistent_root routine is invoked, see section 7.
25

 The permissions are described in Chapter 26.

Chapter 19 CONTAINERS AND THEIR CONTENTS 33

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

right to introduce executable code into a system. When the Code Manager has

completed a conversion operation it returns a code capability to the caller, as

illustrated in Figure 19.7.

A code capability has the same structure as a data capability except that (a)

the index field is used to select one of several potential code files held in the

same container and (b) the type field in the capability is set to "code".

The primary purpose of a Code Manager is to organise a Code Table in the

container in which it resides. Since the core kernel relies on the correctness of

this table, the Code Manager, like the Co-Module Manager, plays a central role

in maintaining the integrity and the security of a system. (In order to establish its

right to create the Code Table, the Code Manager must present a kernel capabil-

ity with the appropriate access rights.)

As in the case of a Co-Module Manager, there is only one Code Manager in

a container. This has a separate entry for each code file module. The structure of

a Code Table, which differs substantially from that described by Espenlaub, is

illustrated in Figure 19.8.

Each entry contains

– a pointer to the code module's external entry point list (i.e. the entry points

used by the kernel to locate the appropriate semantic routines of the code

file on inter-module calls);

– a pointer to an entry point list for the module's own bracket routines (if the

code is for a qualifier module), to be discussed in Chapter 23;

– a pointer to an entry point list for internal calls (see below);

– a module capability for the list of qualifiers currently associated with the

Type =

code

Unique

Container #

Status

Bits

Index

Semantic

Rights

Environmental

Rights

Meta-

rights

Confinement

Rights

Figure 19.7: The Basic Structure of a Code Capability

Figure 19.8: The Code Table

↑ External EPL Qualifier List Modcap

↑ Bracket EPL

↑ External EPL

Qualifier List Modcap

↑ Bracket EPL

↑ External EPL

Qualifier List Modcap

↑ Bracket EPL

↑ Internal EPL

↑ Internal EPL

↑ Internal EPL

Free Cap QL Modcap

Free Cap QL Modcap

Free Cap QL Modcap

Chapter 19 CONTAINERS AND THEIR CONTENTS 34

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

semantic routines of the module, to be discussed in Chapter 24.

Each entry in the Code Table provides information about one code file in a con-

tainer.

9.1 Entry Point Lists

An entry point list pointer in a Code Table entry refers to a segment which de-

scribes the information needed by the kernel to activate the various entry points

(semantic routines, bracket routines and internal calls) of the code. An Entry

Point List (EPL) consists of a single segment containing in its pointer partition

an array of pointers to segments in the container holding executable code, and in

the data partition an array of integers which serve as offsets into the correspond-

ing code segment pointer, each indicating the start address within the code seg-

ment for that routine
26

 (see Figure 19.9).

For each entry point there is a status bit indicating whether the entry point's rou-

tine is an enquiry or an operation. When an enquiry is activated the segment reg-

ister which addresses the module's root data node is set to read-only access. For

an operation it is set to read-write access. A further status bit indicates whether

the routine can receive pointers as parameters.

Since some or all of the code segment pointers can point to the same seg-

ment, it is possible, for example, for a compiler to compile the code of all the

routines into a single segment, or to have a separate segment for each routine.

EPLs are created by the compiler/linker as part of normal compilation, but the

Code Table is created by the Code Manager.

Within the same code container the structure allows different code modules

to share code. This can be used for example to create a new code file which cor-

rects errors in some segments of an earlier version, or to allow code re-use, e.g.

between a queue module and a double ended queue module. For further ad-

vantages of this organisation of code modules see Espenlaub [4] chapter 7.3.

Based on the information in the appropriate EPL the kernel loads the in-

26

 In accordance with the RISC philosophy the SPEEDOS EPLs, in contrast with those

used in the MONADS-PC, do not hold information about the parameters. Parameter

checking is left to software.

Figure 19.9: An Entry Point List

Pointer to Code Segment Start Address in Segment

 Pointer to Code Segment

Start Address in Segment

Pointer to Code Segment

Start Address in Segment

Entry Point 0

Entry Point 1

Entry Point n

status

status

status

Chapter 19 CONTAINERS AND THEIR CONTENTS 35

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

formation from the appropriate code segment into the Code Segment Register.

(This is a dedicated segment register which always refers to the currently active

code segment.) The corresponding Start Address is loaded into the Program

Counter register PC, which serves as an index into the code segment and is au-

tomatically incremented to the next instruction on the execution of normal in-

structions and modified on jump instructions. The hardware always checks that

the PC remains within the bounds of the segment.

9.2 Inter Module Calls, Co-Module Calls and Library Calls

When an IMC or CMC instruction is executed, the kernel uses the appropriate

entry in the Co-Module Table to locate the relevant code capability associated

with the data or program file (see Figure 19.6). For LC instructions the capabil-

ity is passed as a parameter to the kernel. With this capability the kernel can use

(a) the container number in the code capability to locate the container holding

the code and (b) the index field to locate the appropriate Code Table. The ap-

propriate semantic routine is found by indexing into the code module's external

entry point list. A more complete description of these and the following calls

appears in Chapter 20.

9.3 Bracket Entry Point Lists

The second entry in a Code Table points to a further entry point list with the

same format. This contains information about the code module's own bracket

methods. These are not directly activated by inter-module and similar calls; the

kernel activates them in the course of a call to another module, when it detects in

the latter's Co-Module Table or Code Table that there is a module capability for

a Qualifier List. The activation of bracket routines is described in more detail in

Chapter 24.

9.4 Internal Entry Point Lists

An internal call (IC)
27

 pushes the current value of the Code Segment Register

and the Program Counter to the top of the current kernel thread stack and loads

the details of the new code segment into these registers. The destination of the

call is specified as an entry point number into a second entry point list, called the

Internal EPL or IEPL. The IC instruction has an integer operand which serves as

an index into the IEPL.

The kernel provides no support for passing parameters or return values, nor

does it provide support for any particular high level programming language

scope rules. These issues are best left to the compilers of the various languages.

27

 This is not described in Espenlaub's thesis.

Chapter 19 CONTAINERS AND THEIR CONTENTS 36

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Note: Internal calls are only needed when a subroutine is located in a dif-

ferent code segment from the calling subroutine. The compiler can completely

take care of internal calls within the same segment, provided that it has condi-

tional and unconditional jump instructions and a jump subroutine instruction, all

of which use within container offsets for code addresses.

9.5 Subthread Entry Point Lists

Creating a new subthread (see chapter 20 section 8.2, chapter 31 section 2.5)

requires that the kernel has access to a Subthread Entry Point List. This has the

same structure as other EPLs, see Figure 19.8. How this is used is explained in

chapter 31 section 2.5. Subthreads have no explicit parameters. Like other rou-

tines they can be given read-only or read-write access to the state data of a mod-

ule. They can make calls (e.g. inter-module calls, internal calls). They are brack-

eted in the same way as the module in which they are activated.

9.6 Return Instructions

The same return instruction is used for all calls except for bracket routines; the

latter are activated by the kernel, and must use a bracket_return instruction).

These reload the stored values from the corresponding call. They can behave

differently (see chapter 31 section 2.7), depending on the corresponding call and

on whether they reach a backstop, i.e. a special marker on the thread stack which

indicates the logical stack bottom.

10 Organising Process Files

Like code files, user process files start life as data files, which in this case con-

tain a Thread Manager co-module. The latter creates a Thread Table (analogous

to a Co-Module Table and a Code Table) with one entry for each thread within a

process container. When a new thread is created (by invoking a further semantic

routine of the Thread Manager) it returns a thread capability (Figure 19.10) to

the caller.

The semantic methods permitted in a thread capability can be used to con-

trol the thread (e.g. to suspend it or activate it). These differ from data capabili-

ties and code capabilities in that the index number is used as an index into the

Type =

thread

Unique

Container #

Status

Bits

Thread

Semantic

Rights

Environmental

Rights

Meta-

rights

Confinement

Rights

Figure 19.10: The Basic Structure of a Thread Capability

Chapter 19 CONTAINERS AND THEIR CONTENTS 37

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Thread Table (i.e. it is a thread number) and the type field indicates that the ca-

pability is a thread capability.

The thread table itself is simply a segment containing an array of pointers

(one per thread of the process), which the kernel accesses to locate further in-

formation about each thread. This includes a linkage stack for the thread and the

contents of all the CPU registers used by the thread, as well as some pseudo-

registers which will be explained in later sections. The register values and other

status information are stored when a further kernel co-module decides that a

thread should no longer actively execute on a CPU, and are re-loaded when it

decides to schedule the thread.

The linkage stack contains the linkage information which is extended when

the thread executes a kernel call instruction and is contracted when the thread

exits from the currently active module. The parameters and return values of in-

ter-module calls are passed via an input segment and an output segment on the

thread stack. The kernel ensures that pointers cannot be passed. The passing of

parameters is described in more detail in Chapter 20.

11 Multiple types in a Single Container

The above discussion perhaps leaves the reader with the impression that file

containers, code containers and thread containers (after the last two have been

established in a data container) are quite separate container types, the functional-

ity of which does not overlap. This is how the SPEEDOS operating system nor-

mally uses these containers. But such usage need not have this exclusive charac-

ter in all operating systems which run under the SPEEDOS kernel. For example

in an operating system which uses the out-of-process model (see volume 1 chap-

ter 8) it is conceivable that a single container might hold the data and the code of

a module and at the same time one or more threads which are dedicated to exe-

cuting this module. Thus the coexistence of a Co-Module Table, a Code Table

and a Thread Table within a single container is possible. Even in a SPEEDOS

operating system environment it might, for example, be sensible to place the da-

ta and the code of a singleton module (a module where the code has only a sin-

gle instance of the data) in a single container.

12 Creating a New Container

A new container is created at the request of a user with a capability for the Con-

tainer Manager which includes the appropriate access right. One of its functions

is to allocate a world-wide unique identifier for the new container.

In the course of creating a usable container a number of security sensitive

co-modules (e.g. instances of the Co-Module Manager, the Segment Manager

and the Virtual Page Table Manager) must be installed and instantiated.

Chapter 19 CONTAINERS AND THEIR CONTENTS 38

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

12.1 Preparing the Security-Sensitive Co-Modules

Such modules typically consist of (a) a core part, which provides mechanisms

that are vital for the kernel's correct functioning, and (b) a more flexible support

part which can be tailored to suit the needs of particular environments and user

requirements.

To maintain this flexibility without risking the danger that sensitive mecha-

nisms are implemented either maliciously or erroneously by individual pro-

grammers, the core kernel distribution includes a rudimentary set of pre-

prepared modules which can be extended in different ways at different nodes

using the Timor type derivation and code re-use techniques. For this reason,

most of what follows can be viewed as examples of how these co-modules

might be extended, rather than as a definitive version of a SPEEDOS operating

system.

12.2 Protecting the Code Capabilities for Security-Sensitive Modules

Because the code capabilities which are needed to construct these modules are

themselves very sensitive, they should not be made generally available. A tech-

nique for restricting their circulation to the modules which need them is to store

them in the constant segments of the modules which use them (e.g. a capability

for the Co-Module Manager in the constant segments of the Container Man-

ager's code). Hence when the Container Manager is called to create a new con-

tainer, it already has a code capability for a Co-Module Manager, which it can

use to construct an instance of the latter for the container. Similarly the Co-

Module Manager already has at hand capabilities allowing it to create a Segment

Manager and a Virtual Page Table Manager for a new container.

12.3 Constructing the Initial Data

Some of the kernel co-modules constructed in the course of creating a new con-

tainer need to have a persistent data root in page 0 of the new container, in some

cases at specific addresses known to the kernel. To allow them to set up their

persistent roots, their constructors (invoked by calling routine 0 via the respec-

tive code capability) need direct access to page 0 of the new container. For this

reason a special kernel instruction
28

 (load_page0) requests the kernel to load

segment register 5 (used normally to address the persistent root segment of a

module
29

) such that it has read-write access to the new container's first page
30

.

28

 This is one of several new kernel instructions, not mentioned and in some cases not en-

visaged by Espenlaub.
29

 see Chapter 18.
30

 It will become clear in chapter 23 how the first page of a container is physically allocat-

ed space on disc.

Chapter 19 CONTAINERS AND THEIR CONTENTS 39

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

To ensure that this instruction cannot be misused by other modules, a kernel ca-

pability must be presented as an operand. This also is stored in the constant data

of the respective code module. The remaining operands are passed in the general

purpose registers. (At this stage in the construction procedure the module has no

persistent data except in these constant segments.)

12.4 The Container Manager newContainer Routine

Like other sensitive routines, an interface routine of the Container Manager

which creates a new container can only be called by modules which have a Con-

tainer Manager capability in which the appropriate semantic right is set. The

caller passes to the container creation routine

– an integer parameter, which is passed on to the constructor for the Co-

Module Manager, defining the maximum number of co-modules to be cre-

ated in the container (to determine the length of the Co-Module Table), and

– a file capability for a Disc Directory Manager, which determines the disc on

which the new container is to be placed. If a null parameter is passed this

may imply placement on a standard disc (e.g. the node's main system disc).

The container creation routine returns two capabilities to its caller:

– an owner capability for the container and

– a file capability with appropriately reduced rights for its Co-Module Man-

ager.

The kernel's role in this activity is described in chapter 23 section 6.

12.5 The Disc Directory Manager

The capability for the Disc Directory Manager provides evidence that the caller

can create a container on the appropriate disc. The container creation routine

uses the capability to call the Disc Directory Manager's container creation rou-

tine, which allocates a new container number (within disc), enters the new con-

tainer into its disc directory and allocates to the container a single page on disc

which becomes its virtual page 0. This suffices to allow the Co-Module Manag-

er to create a Co-module Table (CMT). If at a later stage page 0 is not in the

main memory, the Disc Directory Manager resolves this page fault without ref-

erence to the Virtual Page Table Manager for the container. Hence the following

steps can be carried out without requiring the intervention of the VPT Manager.

12.6 Installing the Co-Module Manager

The main function of the Co-Module Manager is to create and manage the CMT

of the container. When the Container Manager calls the Co-Module Manager's

constructor, this initialises the CMT for the container; the latter has a fixed posi-

Chapter 19 CONTAINERS AND THEIR CONTENTS 40

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tion in page 0, which is known to and used by the kernel.

When the Container Manager's create routine (still executing in the new

owner's thread) invokes routine 0 (the constructor) of the Co-Module Manager

code capability, the latter gains access to page 0 of the new container, as de-

scribed above. At this stage there is no physical memory behind virtual page 0.

Hence the first attempt to access page 0 will cause a page fault interrupt, which

can be handled by the Disc Directory Manager module without reference to a

(still non-existent) Virtual Page Table Manager.

Thereafter the Co-Module Manager can access the page to create and set up

the Co-Module Table (CMT). It creates a reference to its own file data (entirely

contained in page 0) in the first entry (i.e. entry 0), such that the "Pointer to State

Data Segment" field actually points to its own root segment31.

It places a copy of its own code module capability in the appropriate field

in the CMT of entry 0 (the "Modcap for Code Module" field). It can obtain this

in a parameter to its constructor, since the Container Manager already has this

capability. The semantic right to call routine 0 is removed from this capability,

since the constructor should not be called a second time. Thereafter it is possible

for other modules to call the Co-Module Manager instance for the new contain-

er, provided that they have a capability allowing this.

12.7 Installing the Remaining Security Sensitive Modules

At this point normal calls to the Co-Module Manager can take over the task of

initialising the new container. At least the following additional security-sensitive

modules need to be installed:

– a Segment Manager, and

– a Virtual Page Table Manager.

Further co-modules which may need to be created include a debugger module, a

Code Manager, a Thread Manager and a Thread Control Manager, depending on

the purpose of the container.

As these are all security-sensitive co-modules related to kernel activity,

they must also be pre-approved modules. In order to install the required mod-

ules, a new container owner can make a selection from a pre-existing list of code

capabilities (held in the Co-Module Manager's constant segments), using the

createSecureMod routine. This returns a capability for the newly created mod-

ule, which is typically not the owner capability, but a capability with reduced

rights corresponding to the actions which normal users can invoke. The owner

31

 Espenlaub assumes that the CMT is the root segment, but this is not actually necessary,

provided that the CMT is located where the kernel expects to find it.

Chapter 19 CONTAINERS AND THEIR CONTENTS 41

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

capability is either retained by the Co-Module Manager or deposited in a special

directory holding owner capabilities for all the security-sensitive modules asso-

ciated with the container).

A modType parameter indicates which type of secure module is to be creat-

ed (e.g. Segment Manager, Virtual Page Table Manager, debugger, etc.), and a

selector parameter indicates which of the available alternatives for this type of

module is to be installed.

For each relevant new co-module, the Co-Module Manager activates rou-

tine 0 (the constructor) of the corresponding secure code module, which in ap-

propriate cases executes the kernel's load_page0 instruction to gain access to

page 0 of the container, using a similar pattern to that described above.

12.8 Creating Normal Modules

It is the Co-Module Manager's responsibility to ensure that the security sensitive

modules required in the container are installed before its owner can create nor-

mal co-modules in the container.

In this case a modType parameter indicates whether the new module is a

normal file module, a cooperating co-module or a library module which requires

a persistent root.

Converting a normal data file into a code module is not an activity of the

Co-Module Manager but of a separate Code Manager module (which must have

been installed as a security sensitive co-module before the compiled data file can

be converted into a code module).

13 Copying Containers

The copying of containers in SPEEDOS is a more complex issue than at first

meets the eye. There are two reasons for this.

i) A SPEEDOS container does not simply hold data or code, but it also in-

cludes security-sensitive co-modules which cannot simply be copied. An obvi-

ous example is the Virtual Page Table Manager, which holds disc addresses rel-

evant only to the current container. For this reason there are always two phases

in copying a container. The first is to create a new file (for the copy), as de-

scribed above in section 12. The second is to copy the required user information

into this container. Relevant security related co-module information, in particu-

lar the Virtual Page Table Manager information, must be created anew for the

copied module.

ii) The second reason for the complexity is that different operations must be

provided for different purposes. For example a user's aim might be

– to make a temporary backup of changes as they are being made (e.g. when

Chapter 19 CONTAINERS AND THEIR CONTENTS 42

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

editing files), such that the file retains the same identifier, i.e. can continue

to be accessed by the same capability).

– to make a copy which the owner, or some other user, can use independently

of the original.

– to archive the container for use as a backup in case of failure in the original.

– to distribute software to purchasers.

– to replicate the container for use in parallel on different nodes at geograph-

ically distant locations (e.g. to reduce internet traffic).

– to replicate the container for immediate use on a backup machine when the

main machine encounters a problem requiring it to close down.

Such different purposes can lead to copy operations acting differently, especially

with respect to the handling of capabilities embedded in the container to be cop-

ied. Not all such copy operations need to be provided on every SPEEDOS sys-

tem or for every container on the same system. The first three aims are likely to

be needed on a regular basis for many containers on many systems and imple-

mentations of these are therefore now briefly discussed. Before doing so we dis-

cuss some fundamental issues relating to the copying of containers. Discussion

of other aims, e.g. which involve the use of a network of computers, is post-

poned to later chapters.

13.1 Fundamental Copying Issues in a SPEEDOS Environment

In some systems copying is problematic because of the pointers which may be

contained in a file. Some of the problems which these raise in other systems

were discussed in volume 1 chapter 9.

In SPEEDOS there are two kinds of pointers

• internal pointers between the segments in a container, and

• capabilities (i.e. external pointers between different files).

Internal pointers in SPEEDOS would not be a problem if an entire container

were to be copied page by page. The reason for this is that "short" pointers (i.e.

within container addresses) used to provide the cross-references between the

different segments in a container are relative pointers within the container.

However, the indiscriminate copying of capabilities can create protection

problems. Capabilities are discussed in more detail in chapter 26 but at this stage

it is essential to know that

a) only one owner capability can exist for each container and for each module

within a container;

b) other capabilities can include restrictions which do not allow the capability

Chapter 19 CONTAINERS AND THEIR CONTENTS 43

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

to be copied.

To assist in controlling such situations, the Segment Manager provides a seman-

tic routine which indicates how many owner capabilities exist in the user module

segments of a container and how many other restricted capabilities exist. It also

provides a semantic routine which locates them.

13.2 Temporary Backup of a Container (e.g. while Editing a File)

In conventional systems it is normal practice for text editors and similar pro-

grams to create a second copy of a file or to record changes, thus allowing the

user the option to restore the original file content if he so decides when bringing

his editing session to completion. Such programs often also have a facility

which allows the programmer to return to the last state of the file recorded in the

file system.

This raises two issues for SPEEDOS systems. First, because the virtual

memory is persistent and no separate file system is provided, everything is au-

tomatically "saved" by the virtual memory system. Second, if the file is simply

copied it will have a new identity and consequently capabilities for the file held

by other users would be implicitly revoked. There are several ways to handle

these issues. Here is just one of them.

When the editor is activated, it copies the file's segments and thereafter

makes the user's modifications to this copy. But the copying of the existing file

does not entail creating a new file. Instead both "files" are held together in the

same co-module. This is achieved by the editor, when first creating the file, by

attaching to the root node two new segments. The first of these is then actually

used as if it were the root node. Then when the file has to be edited, it first

makes a fully copy of the existing file to the second node and edits this version.

The user can subsequently use an editor-supplied "save" command, which

causes the editor to write the second "root" to the main "root", leaving the file in

the edited state. Whether it deletes the earlier version of the file or simply leaves

it as a backup, thus allowing the user to revert to the unedited version if he

wishes, is a decision for the editor design.

This solution also suggests how previous versions can be maintained. The

persistent secondary root simply needs to maintain a series of pointers allowing

access to previous versions of the file. At the start of an editing session the edi-

tor can then allow the user to select which version he wishes to open.

The approach described above has the advantage that a single file container

is used throughout, and no new capabilities need be created and distributed.

No attempt has been made to optimise this solution, since this lies within

the realms of normal application programming, and no additional system func-

Chapter 19 CONTAINERS AND THEIR CONTENTS 44

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tionality is required.

13.3 "Simple" File-to-File Copying

There are two fundamentally different ways of approaching the task of copying

a container or an individual file (which is addressed via a new capability). The

simplest (but not necessarily the most efficient) way is to create a new container

and then use a loop, which continuously reads a record (or other logical unit)

from the file to be copied (via its semantic routines) and writes this to the new

container which it has created, until the file has been completely copied. This

requires no special precautions in the very simple case and all the usual safe-

guards for protecting files apply.

But what is the "simple case"? The following conditions must apply:

i) The file to be copied either (a) contains no pointers, or (b) where internal

pointers are used these should be hidden via semantic routines.

ii) The copying program must either contain no owner capabilities or non-

copyable capabilities or the program must know how these are to be hand-

led.

Condition i)(a) will only be fulfilled in the simplest of cases (e.g. a small

unstructured file, or one where the internal structure does not use pointers).

However, there are many cases where condition i)(b) can be fulfilled (e.g. where

the file is a sequential file with a semantic routine "get next" (and a correspond-

ing "put next"), whereby internally the records may (or may not) be linked by

pointers.

Condition ii) will often be met. The best way of course will be for the user

to avoid such problems entirely by ensuring that all capabilities in the file are

copyable
32

. While this is a secure way of copying files, it is not the most effi-

cient, and it will not easily work for all kinds of file. For example long video

files cannot usually be broken down into "records", and although they will rarely

contain capabilities, using this method involves copying the file three times, i.e.

once into the parameters for the copy routine, once from its input parameters to

its output parameters and once into the final file! Clearly an alternative tech-

nique is needed.

13.4 Page by Page Copying

Such an operation cannot be trusted to unprivileged user level software since it

implies direct access to the page tables of the container. This requires that the

32

 In a later part of the book, in a discussion of user-level activities, it will be suggested

that users should in any case organise their capabilities in such a way that normal copy-

ing of most files will avoid these capability issues.

Chapter 19 CONTAINERS AND THEIR CONTENTS 45

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Virtual Page Manager's pages (including the page tables) can be distinguished

from the rest of the container's content, and will also be dependent on the capa-

bilities contained in the container; this implies that the Segment Manager must

also be involved in the operation. For these reasons such a copy operation is a

privileged operation, and must be provided by the system. Hence the Container

Manager provides an operation, which gives the user a choice of actions to be

taken with respect to "problematic" capabilities in the container. This method is

explained in more detail in chapter 23 section 7.

13.5 N-ary Copying of a Container

N-ary operations are operations involving two or more files, often of the same

type (see chapter 18 section 9). In SPEEDOS these are handled as operations in

which files passed as capability parameters can be accessed via their root seg-

ment. The capability for an n-ary parameter, known as a free capability, must

have a special access right set which allows this (see chapter 26). Further re-

strictions are that n-ary parameters allow only read access to the file data and

that a module may not be used concurrently as a free capability and via a normal

inter-module call, unless the inter-module call claims read access only to the

file. For this purpose the status word in the Co-Module table (see Figure 19.6

above) holds a count of readers.

This copying method allows users to avoid the rule which forbids the pass-

ing of pointers between modules, but the rules regarding owner capabilities and

non-copyable capabilities are strictly followed. This method is suitable, for ex-

ample, for copying video files (and thereby sidesteps the need to copy such a file

three times). But it is not reserved for video files; it can be used also for other

files, e.g. those with complex internal segment structures, but also for simple

files.

The actual copy procedure requires that a new file first be created as de-

scribed in section 12 then when this is activated it calls the kernel instruction

load_free_cap (see chapter 18 section 8) in order to gain access to the data of

the file to be copied. If it contains "forbidden" capabilities then the operation

will fail unless the copy operation (which must be a semantic routine of the file

type being copied) knows how to deal with them.

13.6 Archival Backup

The issues involved here include recovery of an entire system after failure,

which is a quite complex issue that cannot be considered without also consider-

ing other issues such as system start-up. A discussion of system backups is

therefore postponed to a later chapter.

Chapter 19 CONTAINERS AND THEIR CONTENTS 46

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

13.7 Other "Copying" Requirements

The remaining themes mentioned above (distribution of software to purchasers,

replicating containers for use in parallel on different nodes at geographically dis-

tant locations and replicating a container for immediate use on a backup ma-

chine) are also advanced issues which cannot be dealt with at this point.

14 Converting Modules to a Different Format

The conversion of user data from one format to another can of course be under-

taken internally, provided that the related code manager is also designed to cope

with the new format, but the more challenging issue arises when the result of a

conversion is to be accompanied by a change in the code manager.

In such cases the actual conversion operation requires a code manager

which understands both the old and the new formats for the data. The best way

to achieve this is to create an empty container for the new format and pass to its

conversion routine a free capability for the file to be converted. Alternatively if

the new module is to be placed in the same container as the old module, the file

root for the old module could be passed as a parameter to a CMC call (see chap-

ter 17 section 7), assuming that the code module also supports this facility.

15 Deleting Containers

The container manager provides a basic deletion interface routine which deletes

an entire container. Its first parameter is a capability for the container to be de-

leted, which must include the generic right delete. This routine only deletes the

container if the latter has no active co-modules.

A further parameter to the container manager's delete routine indicates

whether deletion is to proceed if it contains owner capabilities. This is signifi-

cant because if an owner capability is deleted, the basic SPEEDOS system pro-

vides no further way of controlling the container (including deleting it). Howev-

er, individual systems could add a further routine in the container manager

which manufactures and returns a new owner capability to replace those in the

deleted module, returning this to the caller. In this case it is important that the

extension (a) checks that the container still exists, (b) checks that the owner of

the calling thread is in fact the owner of the container, (c) notes in the appropri-

ate containers details indicating when the new capability was created and (d)

provides a further interface routine providing the owner of the container with

access to this information, to ensure that the interface has not been misused.

If a user attempts to use a capability for a deleted container or any item in

it, this results in an error (signalled as a result of a failure to resolve container

identifier in the capability).

Chapter 19 CONTAINERS AND THEIR CONTENTS 47

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Since the main purpose of a container is to hold a single application module

and its related co-modules the system does not provide a mechanism for deleting

a single module within a container. However, such a service could be added by

extending the co-module manager and related modules.

16 Renaming Containers and Modules

One simple but drastic way of revoking capabilities is to have them renamed

(i.e. provide them with a new virtual memory identifier). This automatically

makes capabilities containing the old identifier unusable. From the viewpoint of

a user owning such capabilities, it is as if the container or modules within it had

been deleted.

To rename a container basically involves the Container Manager in invok-

ing the disc manager of the disc on which the container resides, in conjunction

with the Virtual Page Manager of the container concerned to allocate a new

"Container # in Disc", then returning a new owner capability to the caller. As in

the case of deleting a container, the activity can only be carried out if the con-

tainer is inactive. No facility is provided to rename individual modules.

Notice that renaming, although it involves issuing a new container number,

does not mean that the entire data must be moved. Instead it can be implemented

by indirection, i.e. the disc directory entry for the new container number can be

made to refer to the existing container and the disc directory entry for the old

container number can be invalidated.

17 Changing the Ownership of a Container

One of the identification fields of a container (see Figure 19.2 'Container num-

ber of current owner') identifies the current owner of the container. The Con-

tainer Manager provides a semantic routine change_owner, which normally al-

lows the field to be changed. The instruction can only be carried out under the

following circumstances.

a) The caller of the routine is the current owner.

b) The new owner is verified to exist.

If these checks are positive the container manager replaces the old entry with

that of the new owner name in the appropriate identification field. The

change_owner routine has two parameters, a capability for the container and a

capability for the original container of the new owner, used to create him as a

new user. The capabilities must contain a valid change_owner metaright. There

is a protected kernel instruction which the container manager can use to effect

the change.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 20

Managing User Processes

The management of processes and the scheduling of their threads (the active

components of computer systems), are key aspects of a security kernel. The gen-

eral principles governing these activities, including basic scheduling algorithms

and synchronisation techniques, were discussed in volume 1 chapter 8, while

chapter 15 outlined the role played by processes in the general model on which

the SPEEDOS design is based. In this chapter we consider in more detail how

the SPEEDOS kernel manages user processes and organises the calls which a

thread makes as it moves from one module to another. Chapter 21 discusses how

the activity of synchronising using threads is organised; in chapter 22 the sched-

uling of user and kernel threads is described.

1 Processes and Threads

Parallel computation (sometimes known as multiprogramming, multitasking or

multithreading) is a feature of almost all modern computer systems. One of its

aims is to ensure that the CPU is used to best advantage in parallel with the

much slower disc and other input/output devices. For example if a thread
33

 is

executing on a CPU and this initiates a disc access (either explicitly to the file

system in conventional systems or implicitly as a result of a page fault in

SPEEDOS or in conventional systems), rather than let the CPU lie idle until the

disc access has completed (which could result in the loss of millions of CPU in-

struction executions), another thread is selected to use the CPU. The decision

about which SPEEDOS thread will run next is the job of the User Thread

Scheduler, the role of which is discussed in chapter 22. The important thing

about parallel computation is that it is a technique which attempts to optimise

the use of the computer's hardware resources (CPU, discs, I/O devices).

33

 A thread was often called a process in earlier literature and research papers on operating

system design (including the MONADS system).

Chapter 20 MANAGING USER PROCESSES 49

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

A user process in SPEEDOS can be decomposed into multiple threads. The

intention is to allow such optimisation to take place within what the user sees as

a single computation. However the way this might happen is not determined by

the system; the user decomposes his task into multiple threads as is most con-

venient for him. This is not unusual in modern operating systems, but the way it

is organised in SPEEDOS is somewhat unconventional.

In the operating system literature a thread is usually considered to be a

lightweight process because parts of its process state are shared with other

threads of the same application, thus allowing scheduling switches between

threads of the same application to be optimised. This is not how threads in

SPEEDOS are defined. While they may indeed cooperate to achieve a single

application aim, in the SPEEDOS architecture they are not restricted to being

executed in a single module but can invoke other modules independently of each

other, as part of the in-process model.

2 Process Containers and Co-Modules

A process, like other major entities in SPEEDOS, is created in a container,

which already holds a Co-Module Manager, a Segment Manager and a Virtual

Page Table Manager co-module. What makes the container into a process con-

tainer is that two further co-modules, a Thread Manager and a Thread Control

Manager
34

, are also loaded into it. The purpose of the Thread Manager is to cre-

ate and manage one or more threads comprising the process; the Thread Control

Manager is responsible for organising their dynamic execution, in association

with the User Thread Scheduler.

There is no defined limit on the number of process containers which may

be owned by a single user. But since each container always has a single owner,

all the threads of a particular process belong to the same user. A process con-

tainer can have up to 255 threads (and subthreads), which are distinguished in

thread capabilities by their index number (see Figure 19.10).

3 Thread States

At any point in its execution a thread has a state, which progresses with each

instruction that it executes. From the viewpoint of the User Thread Scheduler,

the state of a particular thread is defined primarily in terms of the values in its

CPU registers (e.g. the general purpose and the segment registers) and in its ker-

nel's pseudo-registers (e.g. its container registers) while it is executing.

When the User Thread Scheduler decides that a thread should no longer ex-

34

 These modules, which appear in process containers, should not be confused with the

User Thread Scheduler mentioned earlier.

Chapter 20 MANAGING USER PROCESSES 50

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ecute on the CPU, the state of its CPU registers and pseudo-registers must be

saved for restoration when it later continues, and the state of the newly selected

thread must be loaded into the CPU registers from the memory locations where

they were saved. This is part of the activity of thread scheduling, which is dis-

cussed in more detail in the chapter 22.

4 The Thread Manager Co-Module

A Thread Manager co-module is created in a new process container as a result of

some other thread invoking the constructor of the Co-Module Manager in the

new container
35

. When the constructor of the Thread Manager is invoked, this

creates a Thread Table (Figure 20.1), which is managed by the Thread Manager

and is used by the core kernel, which has a pointer to the thread table in page 0

of the container.

A Thread Table consists of an array of pointers to the information describing

each individual thread of the process
36

. The segment referenced by a thread table

pointer, called a Thread Stack, holds the current state of the corresponding

thread (its current register values when it is inactive, the addressing environment

of the current module in which it is/was active) and its inter-module linkage

(Figure 20.2). The thread number in a thread capability (see Figure 19.7) serves

as an index into the Thread Table.

35

 When a Co-Module Manager creates a Thread Manager instance it prepares a thread

capability for the latter which confers the rights to create and delete subthreads (and, as

we shall shortly see, to make limited calls to the Thread Control Manager). It passes the

thread capability to the kernel and the latter places it in the red-tape area of the contain-

er, whence modules with the appropriate permissions set can obtain a copy (see chapter

19 section 5).
36

 In reality it is a segment containing a pointer for each thread stack in the pointer section

and an indication of which threads exist in the data section.

Pointer to Stack Segment

Pointer to Stack Segment

Pointer to Stack Segment

...

Pointer to Stack Segment

Thread Number

Thread Table

Stack of

Thread 0

Stack of

Thread 1

Stack of

Thread 2

Stack of

Thread n

Figure 20.1: A Thread Table in a Process Container

0

1

2

3

n

Chapter 20 MANAGING USER PROCESSES 51

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The Thread Manager offers, inter alia, an interface routine createThread,

which expects as parameters a capability for a start module, an integer defining

the semantic routine to be called, a string defining a name by which the thread is

to be known and a capability which defines its root module. It creates a kernel

stack for the thread, placing a 'thread backstop' at the bottom of the stack and

prepares it to make its first inter-module call (including a parameter segment

which provides access to the root module).

This routine invokes the Thread Control Manager to advise the existence of

the thread and to activate it before it calls the User Thread Scheduler, which

then calls the kernel (see section 8.2).

4.1 Thread Stacks

Each thread stack is a single segment and the information in it is held in the data

section of the segment. Although this holds much security-sensitive data which

would normally be held in separate segments (e.g. each linkage section could in

principle be a separate segment, with pointers to parameter segments, etc.), this

would be quite inefficient for the kernel to manage, and so it is simply treated as

data by the kernel. This is not a security risk, since only the kernel can address

information on a thread stack
37

.

The kernel maintains two private registers for each thread stack: a Top of

Stack Pointer and Current Local Base Pointer. The rest of the thread stack con-

sists of linkage information and parameters relevant to the kernel's role in sup-

porting inter-module and similar calls.

Chapter 31 describes in more detail how users and their processes, threads

and subthreads are created.

37

 As we shall see in section 6, the kernel provides user threads with access to parameters

for inter-module and similar privileged calls via segment registers, which are held on

the thread stack.

Figure 20.2: A Thread Stack

Thread State Information

Top Linkage Section

First Linkage Section

Chapter 20 MANAGING USER PROCESSES 52

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

5 Application Level Multithreading

Normally a user creates one or more main threads in a process container and

provides them with a capability or capabilities via which they can make inter-

module calls to application modules
38

. It is usually the application module's code

(not necessarily the initial module of a thread) which decides how the computa-

tion should be further decomposed into parallel subthreads (more equivalent to

threads in conventional systems), as often only the programmer of a module

knows how to decompose a particular computation into subtasks.

Espenlaub's thesis does not discuss how a module can create parallel sub-

threads dynamically from within the code of the module itself. In order to do

that, a semantic routine of the Thread Manager for the active thread must be

called, and this requires a module capability for the appropriate Thread Manag-

er. The difficulty is that threads of different processes which call the module

each have a different Thread Manager instance, so that different capabilities are

potentially required for different threads.

To make such capabilities accessible to application modules, the Co-

Module Manager, as part of its Thread Manager creation activity, passes a capa-

bility for this to the kernel, which places it at the base of the container holding

the process's Thread Manager. This can be made available to application mod-

ules as described in chapter 19 section 5, using the kernel instruction

get_subthread_cap , which returns a capability for the Thread Manager to the

requesting module, in which only the semantic right create_subthread is set,

provided that the corresponding permission is set in the Thread Security Regis-

ter (see chapter 26).

To create a subthread the application module can then invoke the Thread

Manager's interface routine createSubthread. This routine expects as a pa-

rameter the number of an entry point in the Subthread Entry Point list (see chap-

ter 19 section 9.5) for the currently active module. The Thread Manager then

creates a thread stack for the new subthread, places a 'subthread' backstop on the

stack and sets up a thread state for the subthread. It then calls the Thread Control

Manager, which in turn calls the User Thread Scheduler to schedule the sub-

thread.

Subthreads, like main threads, can have local call stacks, make inter-

module calls, etc. If subthreads create further subthreads the rules above are ap-

plied as if the creating subthread were the main thread. Otherwise no special re-

lationships are defined between main threads and subthreads, thus allowing dif-

ferent compilers to adopt different strategies. Any special rules concerning sub-

38

 This will be more fully described in chapter 31.

Chapter 20 MANAGING USER PROCESSES 53

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

threads (e.g. that the thread which creates a subthread must be informed when a

subthread is deleted, or that subthreads must be automatically deleted if their

creating thread is deleted), are the responsibility of the application module. Ex-

tensions to the Thread Control Manager might be added in Timor to assist in

this.

Creating threads and subthreads is described in more detail in chapter 31

section 2.

6 Parameter Passing Strategy

The RISC movement developed various strategies regarding the passing of pa-

rameters on procedure calls. However these strategies were concerned with the

optimisation of procedure calls within a single program and were therefore not

motivated by security concerns, unlike the SPEEDOS protected calls. Further-

more the RISC movement did not base protection on segment registers. Conse-

quently the RISC techniques do not provide an adequate model which can simp-

ly be adopted for SPEEDOS calls.

6.1 Espenlaub's Attempt to Adapt a RISC Strategy

In Section 6.6.2 of his thesis Espenlaub defines a strategy for parameter passing

and register management for inter-module calls in SPEEDOS based as far as

possible on RISC ideas. This allows general purpose registers to be used for

passing normal data values, and in theory for segments to be passed via segment

registers, and for module capabilities to be passed via "module capability regis-

ters". However, the uncontrolled passing of valid segment registers (which in

Espenlaub's design have full 256-bit virtual addresses) presents a potential threat

to the strategy of ensuring that pointers do not escape from a module (as this

would make garbage collection – and synchronisation of data accesses – impos-

sible). Espenlaub goes on to say that "it is explicitly permitted by the SPEEDOS

kernel design to omit the module capability registers completely and reference

module capabilities with memory operands" [4, p. 167]. In the new SPEEDOS

design module capability registers are not supported, as this would add consid-

erable cost to a hardware design without offering commensurate benefits.

Espenlaub continues that "since the number of registers is in some cases

not sufficient to pass the parameters and/or return values, it is also possible to

pass exactly one segment register to the called module and/or to the calling

module". In the new SPEEDOS strategy (which for example includes the deci-

sion to use addresses with SCIDs rather than full 256 bit virtual addresses) a var-

iant of this becomes the rule rather than an option for inter-module and other

kernel organised calls. Furthermore, the segments addressed are held on the

thread stack, as will be described below. Consequently the difficulties men-

Chapter 20 MANAGING USER PROCESSES 54

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tioned above no longer exist. Furthermore this approach solves a potential prob-

lem which Espenlaub does not discuss, viz. that under certain circumstances – to

be discussed in chapter 26 – bracket routines (which were introduced in chapter

13) may need to examine parameters
39

. If these can be passed in arbitrary regis-

ters it would be impossible to implement bracket routines.

6.2 The New SPEEDOS Strategy

There is only one way of passing all parameters for an IMC and other secure call

instructions, i.e. via a stack-based "parameter segment", addressed by a dedicat-

ed segment register controlled by the kernel. (A thread's call stack, it will be re-

called, is organised entirely by the kernel as a single segment, but the kernel cre-

ates for applications the impression that the parameters are passed in a separate

segment accessed via a segment register.)

The access rights in the segment register for the input parameters are set to

"read only" access by the kernel as part of the IMC instruction, because return

parameters are passed in a separate segment, which is accessible to the caller via

a further segment register after the return.

This strategy applies only to the kernel call instructions, and does not pre-

vent compilers from using a RISC strategy for parameter passing between the

internal procedure calls of a module.

6.2.1 Parameter Segment Registers

Four segment registers are used for the passing of parameters and cannot be

used for any other purpose. They can only be set and invalidated by the kernel.

Their uses are shown in Figure 20.3.

The following kernel instruction creates two "segments" at the top of the

thread stack (with the return segment above the input segment
40

).

create_imc_params (int in_data_length, int in_modcap_count,

 int return_data_length, int return_modcap_count)

39

 On the other hand Espenlaub discusses the need to protect access to parameter lists from

unauthorised bracket routines, which could be a threat to security (see Espenlaub sec-

tion 4.3.2). This issue is discussed in chapter 24.
40

 The reason for this will become clear in chapter 24.

Figure 20.3: Dedicated Parameter Segment Registers

the module's own input parameters (read-only access)

parameters to be returned by the module to its caller (read-write)

parameters being prepared for a module which it will call (read-write)

the parameters from the last call which it made (read-only).

Register 0

Register 1

Register 2

Register 3

Chapter 20 MANAGING USER PROCESSES 55

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

It is executed by a calling module in preparation for making an inter-module (or

similar) call. The in_data and in_modcap items describe those parameters

which a caller wishes to pass to the called module, while the return_data and

return_modcap parameters define those which it expects to receive on the re-

turn.

The instruction is implemented directly by the kernel without reference to a

Segment Manager. The kernel creates both segments on the current thread stack

(with the return segment below the input segment) and initially loads Segment

Register 2 to access the segment intended for the module to be called, with

"read-write" access rights. The instruction invalidates Segment Register 3, but as

part of the return instruction the latter is set to address the return segment (with

"read-only" access). On return to the module Segment Register 2 is invalidated

by the kernel.

If parameter segments already exist when this instruction is executed, these

are deleted and a new pair of segments is created at the top of the kernel's thread

stack.

When a calling module has set up its parameters it can execute the kernel's

inter-module call instruction. The called module can read its parameters via

Segment Register 0 (which the kernel sets to read-only mode) and can prepare

its return values via Segment Register 1 (which the kernel sets to read-write

mode).

Segment Registers 0 to 3 cannot be stored into the pointer partition of other

segments, nor can they be copied into other segment registers. This check is car-

ried out in the kernel store_pointer instruction, since the segment registers

used to hold parameters have the "can be stored" access right unset.

6.2.2 Restrictions on Parameters for Inter-Module Calls and Returns

It has already been emphasized several times that pointer parameters may not be

passed on inter-module calls and returns. But that is not the only restriction.

More complex parameters (e.g. objects of user defined types in object oriented

languages) should not be passed (also not by value), as this contravenes the in-

formation hiding principle. Although this cannot be fully controlled (e.g. if the

programmer reverts to the use of integers as pointers) such parameters (between

modules) are unnecessary since they are better handled by using library routines

(see chapter 18 section 6.4).

Conventional programming languages are usually designed in such a way

that they support only one return value. This restriction does not exist in the

SPEEDOS architecture.

In general the standard types supported by higher level programming lan-

Chapter 20 MANAGING USER PROCESSES 56

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

guages have a fixed length, the only common exception being character strings.

When these are passed as parameters to another module, the caller generally

knows the length and may need to indicate this (if the instruction set does not

take care of this situation) in the data partition of the input parameters. Similarly

programming languages must take care of the character strings for return param-

eters. In this case the caller determines the size of return parameters and may

have to make allowance for a string of maximum length to be returned.

6.3 Library Calls and Co-Module Calls

The question arises whether parameters passed to library routines should be

handled in a similar manner to those of inter-module calls. One difference is that

there is no obvious problem in passing segments as parameters since these are

held in the same container for client and library routine. This might suggest that

the compiler should handle the parameters internally. A similar argument might

be used for co-module calls.

However, in both cases the code is switched to a new code module, which

might define that a qualifier list (i.e. bracket routines) be used in association

with the code execution
41

. Qualifiers in this list may need to examine the param-

eters (especially the outgoing parameters) or might even totally prevent outgoing

calls for security reasons. To make this possible the parameters must be availa-

ble to the kernel. Consequently a modified form of the inter-module parameter

passing technique is applied, the only difference being that segment pointers

may also be passed as parameters. The corresponding kernel instruction is as

follows:

create_pc_params (int in_data_length, int in_pointer_count,

 int in_modcap_count, int return_data_length,

 int return_pointer_count, int return_modcap_count)

(The abbreviation pc in the name refers to a pointer call, i.e. a library call or a

co-module call.) When it receives a request to create parameters the kernel notes

which kind of call to expect and raises an error if create_pc_params is fol-

lowed by an inter-module call or if create_imc_params is followed by a point-

er call.

7 Storing/Restoring Registers on Calls

Decisions regarding the conventions for storing and loading registers as part of

the execution of procedure calls can dramatically affect the efficiency of sys-

tems. But in this respect some RISC strategies which were developed regarding

the saving of registers (e.g. the SPARC register window mechanism [10, pp. 2-3

41

 Qualifiers, their lists and their bracket routines were introduced in chapter 13 and are

discussed in detail in chapter 24.

Chapter 20 MANAGING USER PROCESSES 57

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

– 2-6]) cannot economically be applied directly to the storing of registers for the

security-sensitive SPEEDOS calls. The strategy which can be used, at least in

part, is that the system should not save registers on calls, since the compil-

er/application has a better knowledge of the registers which it needs after a re-

turn and therefore the number to be stored can be minimised if this is the com-

piler's responsibility. The following rules apply mutatis mutandis to all kinds of

kernel calls.

7.1 Segment Registers

The most costly registers to store in SPEEDOS are the segment registers, which

because of their protection function are considerably larger than the general pur-

pose registers used for addressing in normal RISC architectures. It is therefore

appropriate to adopt an efficient strategy, but one which does not endanger the

security of the system and its applications.

The simplest strategy would be to require the calling module to store its

own segment registers before initiating the call; in this case at least one segment

register would have to be loaded by the kernel on the return to enable it to ad-

dress the location at which they were stored. However this strategy creates a

problem, because it would require the application thread to be able to store pa-

rameter segment registers and those loaded from free capabilities, which the ap-

plication thread is normally not allowed to store, since they address data in con-

tainers other than that of the current data container.

The strategy suggested by Espenlaub [4, p. 168 paragraph 1] is that the

kernel stores all the segment registers (except one) in the linkage. This works

correctly, but is inefficient if at the point of the call (or after the return) the ap-

plication thread does not use all the registers.

The following convention is therefore used.

a) The kernel, which is the only software that can load and invalidate segment

registers, maintains a bit list indicating which segment registers are current-

ly valid.

b) When the kernel executes a call it saves in the linkage the currently valid

registers, and it also saves the valid bit list.

c) When the thread executes a return back to the caller, it restores those seg-

ment registers, invalidating the rest.

Notice that when the kernel stores segment registers, it stores their entire con-

tents, i.e. it does not use its store_pointer code, because this in effect stores a

register as a single word pointer and uses the red tape at the pointer destination

to recover the remaining information.

When the kernel reloads the segment registers after a return, it must ensure

Chapter 20 MANAGING USER PROCESSES 58

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

that each referenced segment still exists; otherwise malicious hackers could use

this as a security loophole. The reason why a segment might no longer exist is

that another thread may be (or may have been) active in the calling module and

have deleted the segment (either deliberately or as a result of erroneous syn-

chronisation operations). To prevent this potential security loophole the Segment

Manager provides a unique identifier for each segment which it creates in a con-

tainer in a protected area not accessible to applications. When the kernel stores a

segment register it notes this identifier in the linkage, and on reloading it checks

that the segment register actually addresses a segment correctly and that this has

the correct identifier.

7.2 General Purpose Registers

The compiler knows better than the kernel which general purpose register values

should be saved on kernel supported calls, and is responsible for saving and re-

loading them.

The question arises whether the kernel should also invalidate these regis-

ters, which would be an unusual step. However, if security is taken very serious-

ly, this is necessary, not least because they could otherwise be used for secretly

passing information to the called module, i.e. they offer an easy to use covert

channel for passing a substantial amount of information to the module which

they are calling and conversely back to their caller on a return (see chapter 3).

The only way to avoid this is by also invalidating the general purpose registers.

But thereby lies a further problem: usually general purpose registers do not

have a valid bit. There are two possible solutions for this.

i) A bit list could be implemented in hardware, whereby each bit represents a

general purpose register by position. It would be a fast operation for the

kernel simply to unset all the bits as part of a call. (A bit list held only by

the kernel is not feasible, since the kernel is not aware of individual loads

and stores on general purpose registers.)

 However, each time a general purpose register is then loaded, the hardware

would have to set the corresponding bit, and each time it is read, the hard-

ware would have to check whether the bit is set (and if not raise an inter-

rupt).

ii) Alternatively, a perhaps less efficient solution, but one which is simpler to

implement, is for the kernel to write a standard value to each such register

on inter-module calls and returns (e.g. by zeroing each register).

The decision between these depends on the hardware design. Notice that this is

not necessary for library calls since a library module can only get information

out of a module via an inter-module call or a co-module call.

Chapter 20 MANAGING USER PROCESSES 59

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

7.3 Floating Point Registers

If the system has additional register for floating point arithmetic, these can be

managed like the general purpose registers. In general we have ignored the ex-

istence of floating point registers, since these can be viewed simply as optional

extra hardware for improving speed, which may affect performance but not the

security of a system.

7.4 Code Registers

The code segment register (which addresses a code segment) and the program

counter (which is an offset in the code segment) must in any case be stored by

the kernel to allow the code of the calling module to be resumed on the return.

8 Kernel Call Instructions

Having established the general conventions and rules associated with inter-

module and related calls, we can now describe the actual calls and returns in

more detail.

8.1 Inter-Module Calls

Before a module calls another module, it will typically prepare for the call by

calling the kernel's create_imc_params instruction (see section 6.2.1) and then

using SR2 to prepare the parameters for the call. It might also invalidate those

currently valid segment registers which it does not need after the call, to make

the return from the IMC faster. The instruction also provides space for return

parameters, which the kernel makes addressable by SR3, which is then invali-

dated. (It is made valid in read-only mode by the inter-module return instruction

exiting back to the module.)

It then passes three operands to the kernel's IMC instruction:

a) the module capability for the module to be called;

b) an integer indicating the entry point number of the routine to be called;

c) a boolean parameter indicating whether the caller is requesting read-only or

read-write access to the module's file data (used for synchronising with free

capability use of the file).

After storing the linkage segment on the stack, these parameters are stored on

the stack in an IMC stack record, which allows the further progress of the thread

to be recorded. For a simple call this is useful for debugging and for recording

whether the page 0s for the data and code containers have already been locked

down (see chapter 23 section 4.4), but in more complicated cases (e.g. in IMCs

Chapter 20 MANAGING USER PROCESSES 60

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

involving brackets or remote calls
42

) it plays a more significant role.

When the IMC has been executed, the called module initially needs access

to the following segments:

i) the root data segment of its own persistent data (in its own co-module data

container). The kernel finds and locates this from the Co-Module Table and

makes it accessible to the called module via SR5.

ii) the incoming parameter segment, as discussed above. The kernel makes this

accessible to the called module in SR0 and sets the content to read only ac-

cess (see above).

iii) the segment via which it can return parameters to its caller, which is made

addressable in SR1 in read-write mode.

All the general purpose registers and the segment registers 2 and higher (except

5) are invalidated by the kernel, thus ensuring that access to the data segments of

the caller are not possible.

If a caller requests read-only access the access rights field in segment regis-

ter 5 is set to read only. Hence all further segment registers loaded to access a

file segment are also set to read-only.

A module capability needed for gaining access to free capability parameters

(see chapter 17) can be passed as an input parameter in the module capability

partition of the caller's input parameters. However, the kernel does not automati-

cally load a segment register for this. Instead, it provides an instruction

load_file_root, which takes as parameters the file capability passed and the

number of the segment register which the n-ary routine chooses to use to address

the file's segments. The segment register is always set to read-only access. If the

module capability does not have free capability access then the instruction gen-

erates a security error.

8.2 New Thread Calls

Starting a new (first level) thread is a little tricky, because in the design pro-

posed a new thread should start executing in a new module, but there is no mod-

ule which can make a normal inter-module call to the first module! To avoid

complicated solutions at the operating system level, we simply introduce a

new_thread kernel instruction. This is a privileged instruction which can only

be called via a protected kernel capability. Its only additional parameter is a

thread capability for the new thread, thus allowing the kernel to locate the new

thread's pre-prepared stack
43

. It carries out the minimal necessary to activate a

42

 For bracket routine implementations see chapter 24, for remote IMCs see chapter 27.
43

 Setting up a new thread is an operating system activity, see chapter 31 section 2.3.

Chapter 20 MANAGING USER PROCESSES 61

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

new thread. It presupposes (and checks) that a thread stack already exists which

has been pre-prepared to make an inter-module call (including parameters for

the call). It checks that a 'thread' backstop marker has been placed at the base of

the stack (to stop it attempting to return back below the beginning of the stack).

When all the checks have been satisfactorily completed it activates the thread in

its first module, after invalidating the segment registers except the input parame-

ter register.

A similar problem arises with the creation of subthreads, but since these are

activated dynamically in the module which needs them, the mechanism is differ-

ent. A subthread is activated in a routine of the active module via the kernel call

new_subthread in a routine of the module's Subthread Entry Point List (see

chapter 19 section 9.5). The parameters for the kernel instruction are an entry

point number in the module's Subthread EPL, the unique module number of the

module in which the subthread is to be activated and a thread capability for the

new subthread. As in the new_thread case the stack has been pre-prepared and

all segment registers except the input parameter segment register and in this case

the host module's value for segment register 5 are invalidated. The kernel checks

that a 'subthread' backstop marker has been placed at the base of the stack (to

stop it attempting to return back below the beginning of the stack).

8.3 Library Calls

To call a library module, the client module executes the kernel's create_pc_

params instruction (see section 6.3) and then uses SR2 to prepare the parameters

for the call. It might also invalidate those currently valid segment registers

which it does not need after the call, to make the LC faster. The instruction also

provides space for return parameters, which the kernel sets to be addressable by

SR3, which is then invalidated. (It is made valid in read-only mode by the inter-

module return instruction exiting back to the module.)

It then passes the following operands to the kernel's LC instruction:

a) the code capability for the module to be called;

b) an integer indicating the entry point number of the routine to be called;

c) the number of the caller's segment register currently addressing what is to

become the library routine's root segment, addressable via Segment Regis-

ter 5. A value of zero indicates that no root segment is being passed.

NOTE: if the caller wishes to restrict the library routine to read only access to its

data, it sets the segment register which it passes (see (c) above) to read only.

Library routines are not separately bracketed (since they can only call other li-

brary routines and the segment manager) and they cannot be invoked as a re-

mote call. Nevertheless a record of their operands (an LC record) is stored on

Chapter 20 MANAGING USER PROCESSES 62

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the stack since this can be useful for debugging.

When an LC instruction is executed, the called module initially needs ac-

cess to the following segments:

i) the incoming parameter segment. The kernel makes this accessible to the

called module in SR0 and sets the content to read only access (see above).

ii) the segment via which it can return parameters to its caller, which is made

addressable in SR1 in read-write mode.

The general purpose registers are left untouched. (The caller can zero these if he

chooses, and store the values which he will need on the return in a segment not

reachable by the library routine.) The segment registers 2 and higher (except 5)

are invalidated by the kernel, thus ensuring that access to the data segments of

the caller are not possible, except via the pointers passed in the input parameter.

Free capability parameters cannot be passed as input parameters for a li-

brary call. If for example the intention is to carry out n-ary operations on the in-

ternal data of the caller, references to the n-ary data can be passed as pointers in

the input parameters.

8.4 Co-Module Calls

Before a module calls another co-module in the same container, it will typically

prepare for the call by calling the kernel's create_pc_params instruction and

then using SR2 to prepare the parameters for the call. It might also invalidate

those currently valid segment registers which it does not need after the call, to

make the CMC faster. The instruction also provides space for return parameters,

which the kernel sets to be addressable by SR3, which is then invalidated. (It is

made valid in read-only mode by the inter-module return instruction exiting

back to the module.)

It then passes three operands to the kernel's CMC instruction:

a) a module capability for the module to be called;

b) an integer indicating the entry point number of the routine to be called:

c) a boolean parameter indicating whether the caller is requesting read-only or

read-write access to the module's file data (used for synchronising with free

capability use of the file).

These parameters are stored on the thread stack in a CMC record, which allows

the further progress of the thread to be recorded. For a simple call this is useful

for debugging, but in more complicated cases, e.g. in CMCs involving brackets

(see chapter 24) or remote calls (see chapter 27), it plays a more significant role.

When a CMC is made, the called module initially needs access to the fol-

lowing segments:

Chapter 20 MANAGING USER PROCESSES 63

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

i) the root data segment of its own persistent data as indicated in the module's

Co-Module Table entry, i.e. it does not automatically share access to the

caller's root persistent data but has its own persistent root in the same con-

tainer. The kernel makes the called co-module's root segment accessible via

SR5.

ii) the incoming parameter segment. The kernel makes this accessible to the

called module in SR0 and sets the content to read only access. This can in-

clude short pointer parameters (i.e. offsets within the container) which can

be set to read only if appropriate. Notice that the persistent root segment of

the caller can (but need not) be passed as a pointer parameter in appropriate

cases.

iii) the segment via which it can return parameters to its caller, which is made

addressable in SR1 in read-write mode.

All the general purpose registers and the segment registers 2 and higher (except

4) are invalidated by the kernel, thus ensuring that access to the data segments of

the caller are not possible except via the pointers which it receives as input.

Free capability parameters cannot be passed as input parameters to a CMC.

If for example it carries out n-ary operations on the internal data of the caller,

these can be passed as pointers in the input parameters.

There is no defined hierarchy between cooperating co-modules. Each can

call the other in so far as it has a module capability which allows this.

8.5 Inter-Module Call-Back Calls

These are special calls (CBC) which allow a module to call back the module

which invoked it. Since the rules for passing parameters in a call-back are the

same as those for an inter-module call the caller will typically prepare for the

call by calling the kernel's create_imc_params instruction (see section 6.2.1)

and then using SR2 to prepare the parameters for the call. It might also invali-

date those currently valid segment registers which it does not need after the call,

to make the return from the CBC faster. The instruction also provides space for

return parameters, which the kernel makes addressable by SR3, which is then

invalidated. (It is made valid in read-only mode by the inter-module return in-

struction exiting back to the module.)

Call back calls use a separate "call back entrypoint list" to locate the desti-

nation routine in the call back module. Two operands are passed to the kernel's

CBC instruction:

a) an integer indicating the entry point number in the call back entrypoint list

of the call back routine to be called;

b) a boolean parameter indicating whether the caller is requesting read-only or

Chapter 20 MANAGING USER PROCESSES 64

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

read-write access to the module's file data.

The kernel establishes the destination module of a CBC by examining the link-

age stack of the currently active thread to determine which module called it. The

relationship between a call-back module and the application module which ini-

tially called it (via an IMC) is illustrated in Figure 20.4.

A CBC can only be executed if the 'permit callbacks' right is set in the

Thread Control Register (see chapter 26 section 4.1). If this permission is not

set, the kernel raises a synchronous interrupt.

After storing an appropriate linkage segment on the stack, the parameters

are stored on the stack in an IMC stack record, which allows the further progress

of the thread to be recorded. For a simple call this is useful for debugging and

for recording whether the page 0s for the data and code containers have already

been locked down (see chapter 23 section 4.4), but in more complicated cases

(e.g. in CBCs involving brackets or remote calls
44

) it plays a more significant

role.

When the CBC has been executed, the call back routine initially needs ac-

cess to the following segments:

i) the root data segment of its own persistent data (in its own co-module data

container). The kernel finds and locates this from the Co-Module Table and

makes it accessible to the called module via SR5.

ii) the incoming parameter segment, accessible in SR0 which is set to read on-

ly access.

iii) the segment via which it can return parameters to the caller of the CBC,

addressable in SR1 in read-write mode.

All the general purpose registers and the segment registers 2 and higher (except

44

 For bracket routine implementations see chapter 24, for remote IMCs see chapter 28.

Figure 20.4: Call Back Modules

Application Module

in user Thread T1

Service Module

called by the appli-

cation module (e.g.

a database module)

in user Thread T1
Inter-Module Call

Call Back Calls

(unlimited number)

Application Module

called back in user

Thread T1

Chapter 20 MANAGING USER PROCESSES 65

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

5) are invalidated by the kernel, thus ensuring that access to the data segments of

the caller are not possible.

If a caller requests read-only access the access rights field in segment regis-

ter 5 is set to read only. Hence all further segment registers loaded to access a

file segment are also set to read-only.

8.6 Inter-Module and Other Returns

To prepare for a return from IMCs and other calls, the return parameters are

passed back via SR1. There is only one return instruction (which has no oper-

ands); this returns from the highest call currently on the kernel's thread stack.

However there is a separate return instruction for bracket routines (see chapter

24.)

On a return a calling module has access to all its previously valid segment

registers, except Segment Register 2, which is invalidated. The kernel sets SR3

(the segment register addressing the return parameters from the caller) to read-

only access, and deletes the previously called module's input segment, which is

no longer needed).

9 Linkage Information Stored on an IMC

The first item in the Inter-Module Call Linkage Segment (see Figure 20.5) is

information about the linkage itself, e.g. what kind of call was made.

The kernel's pseudo-registers which are stored in the linkage segment in-

clude the Container Registers
45

 (except the Container Register for SCID 000 –

which identifies the current process container), and further pseudo registers to be

described in chapter 26.

Likewise the current Code Segment Register and the Program Counter are

stored, to enable thread execution to return to the next instruction after the IMC

45

 Container Registers were briefly described in volume 1 chapter 16, section 3.3 and are

more fully discussed in chapter 23.

Linkage Type

Kernel Pseudo-Register Values

Code Segment Register and Program Counter

Parameter Segment Registers 0 – 3

Saved Segment Registers

Bit List of valid Segment Registers

Caller's Local Base on Kernel's Linkage Stack

Previous Top of Stack

Figure 20.5: An IMC Linkage Segment

Chapter 20 MANAGING USER PROCESSES 66

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

when the called module returns. The parameter segment registers and the valid

segment registers are stored in the linkage segment because these cannot be

stored by the application.

Figure 20.6 shows a kernel thread stack with two modules, where Module

A has called Module B and the latter is preparing to call a further module C.

When Module C is called, a further linkage segment is created above its input

parameters. When it returns, this linkage and the input parameters for module C

are deleted, leaving its return parameters at the stack top. The kernel's own Top

of Stack Pointer and Current Local Base Pointer are modified accordingly.

9.1 Calling Programs

As described in chapter 18, the only difference between a program module and a

file module is that the former does not have persistent data, but nevertheless has

an associated container in which temporary segments can be created. Hence the

only difference in the IMC is that no persistent root segment exists. The kernel

therefore invalidates Segment Register 5 on a call. However the module can use

this for other purposes.

9.2 Library Calls and Co-Module Calls

Because library calls and co-module calls (which together are called pointer

calls) can pass pointers as parameters, the caller must first prepare for the call by

Previous Module(s)

Input Parameters for Module C

Return Parameters from Module C

Linkage Segment:

Module A calls Module B

Input Parameters for Module B

Return Parameters from Module B

Input Parameters for Module A

Return Parameters from Module A

Figure 20.6: An Example of a Thread Call Stack

Linkage Segment:

Previous calls Module A

Segment Register 2

of Module B

Segment Register 3

of Module B

Segment Register 0

of Module B

Segment Register 1

of Module B

Top of Stack Pointer

Current Local Base Pointer

Chapter 20 MANAGING USER PROCESSES 67

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

invoking the kernel instruction create_pc_params to create its parameter seg-

ments (see section 6.3).

As with an IMC, the parameters of a pointer call are made addressable to

the called module via Segment Register 0. The pointers passed as parameters

can be set by the caller to read-only or read-write, and when they are loaded the

appropriate access right is set in the corresponding segment register. On execu-

tion of a LC or CMC the parameter segment registers are placed on the kernel's

call-stack as in the case of an IMC.

Pointer calls are similar to IMCs in the sense that the called module may

receive a single root data segment which is set up in Segment Register 5 for the

called module. In the case of a CMC the called module its normal root segment

is loaded. In the case of an LC the root segment may be provided by its caller

and is loaded by the kernel into Segment Register 5, allowing compilers to treat

library modules exactly like other modules. (To allow the kernel to set this up

the LC includes an integer parameter which indicates the caller's segment regis-

ter currently addressing what is to become the library routine's root segment.

The kernel copies its content to Segment Register 5 for the caller, if it is valid. If

not it sets up Segment Register 5 as invalid.)

As in the case of the inter-module call the kernel saves the valid segment

registers in the linkage and invalidates the remaining segment registers and the

general purpose registers.

Normally the kernel need not store the container register values in a Pointer

Call linkage segment. There are however two cases where this may be neces-

sary:

a) If the code container of the called module (e.g. a library module) is not cur-

rently addressable via one of the currently valid SCIDs (i.e. SCIDs 001 to

011) then the current value of the container register corresponding to SCID

011 is stored in the linkage segment and is then reloaded by the kernel to al-

low the new code container needed for the called library module to be ad-

dressed. As for an IMC, the segment register value for the current code

segment and the current program counter register are stored.

b) If SCIDs higher than 100 are currently in use (i.e. for free capability param-

eters in the calling module), the corresponding container numbers are stored

in the linkage and they are invalidated for the called module.

To return from a PC the application thread executes a kernel return in-

struction, so that here also the compiler sees no difference between a library

module and a normal module.

Chapter 20 MANAGING USER PROCESSES 68

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

9.3 Inter-Module Call Message Blocks

For each inter-module call the kernel creates an IMC message block which

serves as a record of the progress of an inter-module call. All the active IMC

message blocks for an active user thread are linked together. Each contains a

summary of the call parameters (see section 8.1 above) together with infor-

mation acquired from the Co-Module and Call Table entries for the call and fur-

ther information generated as a result of the call. The call block for an IMC is

deleted when a return from the call is made. These blocks allow kernel processes

to communicate with each other, as will become clearer when we describe the

mechanism for executing bracket routines in chapter 26 and the idea of remote

IMCs in chapter 27. The general idea of message blocks for inter-process com-

munication within in the kernel is discussed in chapter 22.

Similar blocks are chained into the same lists when CMCs and library calls

are executed, thus providing the kernel with a convenient overview of the pro-

gress of user threads.

9.4 Library Module Call Backs

As described in chapter 18, during the execution of a library call, the library rou-

tine can call its caller back using the LCB instruction. This call has only a single

parameter, an integer indicating the entry point number in the main module's

call-back entry point list.

To make an LCB call the library routine needs to pass parameters to its

caller and expects to receive a result from the caller. To do this it needs to call

create_pc_params before making the call.

The LCB uses the same parameter registers as other calls but it invalidates Seg-

ment Register 5. A return from an LCB call uses a normal return instruction.

10 Internal Calls

These calls, introduced in chapter 19, are very simple, allowing the compiler to

structure the code of a module into multiple segments (thus allowing separate

bounds checking on each). The kernel instruction internal_call has two op-

erands. The first addresses the code segment in question. The second provides a

new offset value for the program counter, indicating where execution should

begin. Other registers are not stored or modified.

The instruction stores the current value of the code segment register and the

program counter and reloads these with the values signified in the operands.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 21

Synchronisation

This chapter tackles the issue of how application threads (of the same process

and of differing processes) can cooperate with each other, especially in the shar-

ing of data structures within a module (which is the natural form of sharing in an

in-process system). It describes how SPEEDOS applies standard techniques and

introduces some further techniques which are less widely known and used.

1 Implementing Mutual Exclusion

In volume 1 chapter 8 the general concept of synchronising processes/threads

was introduced. In particular that chapter described basic standard techniques,

including the use of semaphores, to solve synchronisation problems such as mu-

tual exclusion, producers and consumers using a shared bounded buffer, readers

and writers, and private semaphores (used to control the sequencing of pro-

cess/thread execution).

It is important, on the grounds of efficiency, to have two uninterruptable

basic semaphore instructions, such as the DECT (decrement and test) and the

TINC (test and increment) instructions described in chapter 8, because these al-

low a module to handle its own synchronisation situations in those cases where

the suspending and reactivating of threads is not necessary. Such situations arise

frequently, e.g. when no other thread is contending with the current thread for

the use of a critical region; in combination with DECT/TINT instructions the

overhead associated with unnecessary calls to a central User Thread Scheduler

(UTS) can then be avoided.

DECT and TINC are needed as hardware instructions or uninterruptable

kernel instructions (which must be coordinated to function correctly in a multi-

ple CPU system). These must nevertheless be complemented by commutative

suspend and activate routines similar to those which in conventional systems are

provided by a central process/thread scheduler, to handle the cases in which

clashes for the use of resources arise. It is assumed that the reader is familiar

Chapter 21 SYNCHRONISATION 70

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

with these instructions, or refreshes his knowledge of them by re-reading vol-

ume 1 chapter 8.

1.1 Suspending and Activating Threads

In a secure system such as SPEEDOS it is important that the code of arbitrary

modules cannot simply suspend a thread at will, since this may be a deliberate

attempt to disrupt a user or the entire system. As was mentioned in chapter 20,

there is a Thread Control Manager module (known as a TCM) in each process

container, which controls the run-time activities of a thread. Since this is partial-

ly user-programmable and can vary from node to node, and even from process to

process at the same node, it is impossible here to define all its potential func-

tions. But the facilities which it offers in conjunction with the suspension and

activation of threads must be standardised to the extent that threads of different

users and processes working in a common environment can cooperate correctly.

It is not the function of a particular TCM to schedule all the threads in a

system (i.e. to determine which may use the CPU(s) at a particular point in

time); that is the function of the central UTS module. But it should be involved

in decisions regarding the suspension and activation of its own threads. There

are two good reasons for this.

First, if the code of any arbitrary module called by a thread could suspend

that thread, a devious user could take advantage of this to bring threads to a halt

without good reason, and thus cause chaos.

The second is that if all operations involving the suspension and activation

of the threads of a process are channelled through its TCM, it can keep an over-

view of what is happening to them in scheduling matters. This can provide the

TCM with information which is helpful in recovering from exceptional circum-

stances, such as the failure of a printer for which threads are waiting in a sus-

pended state, or a failure of other threads which might otherwise leave them

suspended "for ever". How such control is exercised in detail need not concern

us here. The important issue in the present context is how the system can be or-

ganised such that TCMs are in a position to exercise an appropriate measure of

control over their own threads.

Each TCM must provide the appropriate semantic routines to achieve this.

It is initially assumed (a) that each TCM provides its own suspend and

activate routines, although this will actually be discussed further below, and

(b) that these are commutative
46

. This does not preclude a TCM from providing

other routines for suspending and activating threads, nor from waking up a

commutatively suspended thread in order to recover from errors, etc.

46

 See the discussion in volume 1 chapter 8 about commutative scheduling operations.

Chapter 21 SYNCHRONISATION 71

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.2 Organising Thread Capabilities

The next step is to limit calls on these routines to modules which are legitimate-

ly entitled to do so. The SPEEDOS solution in all such cases is to require that

the caller has a capability. But where do these capabilities come from, and how

are they distributed to the right recipients?

The capability needed to access the routines of a TCM for a particular

thread is a thread capability for that thread, see Figure 21.1 (repeated from Fig-

ure 19.7).

A thread capability is returned (with full access rights set) by the Thread

Manager when the corresponding thread is created. A copy of this capability

(preferably with the access rights limited to those needed to allow the thread to

synchronise with other threads) must be available to any module entitled to carry

out synchronising operations on the thread. Whether it will be provided with a

permanent copy or a reduced use copy will depend on the circumstances.

TCMs have a capability for calling the central UTS, and are normally the

only modules with this privilege (but see section 1.4). In this way, other modules

can only call the UTS indirectly via the executing thread's own TCM, while oth-

er modules, which should not be calling the UTS at all, cannot do so, thus pre-

venting arbitrary modules from creating chaos.

When a Thread Manager creates a new thread it places a thread capability

for it at the base of the new thread's stack at a location known to the kernel. The

latter makes such capabilities available on request to executing threads (see

chapter 19 section 5), subject to the corresponding permission being set (see

chapter 26 section 2).

A thread capability can be used in an inter-module call to activate the

methods of the corresponding thread's TCM routines. This is special in that a

thread capability is not the same as a module capability for the TCM. The reason

for this is that some semantic routines of the TCM can be used to control any

thread of the process, but in the synchronisation situation under discussion it

would be unsafe to allow a synchronising caller to activate or suspend any

thread of the process. Unlike a normal capability for a TCM, a thread capability

Type =

thread

Unique

Container #

Status

Bits

Thread

Semantic

Rights

Environmental

Rights

Meta-

rights

Confinement

Rights

Figure 21.1: The Basic Structure of a Thread Capability

Chapter 21 SYNCHRONISATION 72

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

limits the synchronising process to a single thread defined in the capability. This

is achieved in that the unique container number in the capability identifies the

container of the process, the thread number field indicates which thread can be

synchronised (by the TCM) and the access rights correspond to the semantic ac-

cess rights provided by the TCM. Hence when the kernel receives an inter-

module call which presents a thread capability (recognisable from its type field)

it in fact calls the TCM
47

 responsible for the corresponding thread, passing to it

an integer parameter (a copy of the thread number in the thread capability).

1.3 Implementing Semaphores with Thread Capabilities

An important consequence of this arrangement is that a thread capability is

needed in semaphore operations in order that the code which carries out these

operations can arrange for the activation and suspension of threads which are

required to wait for a resource.

At first glance it may appear to be a simple task to modify conventional

semaphore operations to take the thread capability into account. In SPEEDOS

basic operations DECT and TINC are provided as kernel instructions. In con-

ventional systems, these are combined with two central UTS routines (sus-

pend_me and activate) to create P and V operations, which can be (provision-

ally) defined as follows.

P (sem) =>

 DECT (sem.counter, local);

 if local < 0 then scheduler.suspend_me(sem.queue);

V (sem) =>

 TINC (sem.counter, local);

 if local < 0 then scheduler.activate(sem.queue);

Notes on conventional P and V operations:

1. The semaphore variables and the related code sequences are located in user

modules, which invoke the central scheduler's activate and suspend_me

routines only when necessary.

2. The parameter sem.counter is the shared integer value of the semaphore

(a positive value indicates the number of resources still available, a nega-

tive value the number of suspended threads waiting for a resource, and a

value of 0 that the resource or resources are currently in use but no thread is

waiting). (If the resource is a critical region requiring mutual exclusion, the

value is initialised to 1.)

3. The value of the returned parameter local is a thread-local copy of the

semaphore variable's integer value as defined in DECT and TINC (see vol-

ume 1 chapter 8). The executing thread can be interrupted at any point in

47

 The TCM has a fixed position in the Co-Module Table in process containers

Chapter 21 SYNCHRONISATION 73

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the code, though the scheduler routines themselves must be indivisible and

commutative.

4. The routines suspend_me and activate are calls to a central UTS and the

parameter which they pass to the scheduler (sem.queue) identifies the

queue associated with the semaphore. The queue itself is held in the sched-

uler's persistent data.

5. To create such a queue the module which contains the semaphore must in-

voke a scheduler routine; after setting up the queue, this returns an identifi-

er for it. The queue must be created before the suspend and activate rou-

tines can be used. Later the scheduler manages this queue in the code of

these routines.

The following code represents an intuitive (but incorrect) first attempt to incor-

porate the use of thread capabilities into the normal semaphore scheme, in order

to include the TCM in the picture.

P (sem, thread_cap) =>

 DECT (sem.counter, local);

 if local < 0 then thread_cap.suspend(sem.queue);

V (sem, thread_cap) =>

 TINC (sem.counter, local);

 if local < 0 then TCM[thread_cap].activate(sem.queue);

This code contains deliberate problems and errors, a discussion of which helps

to illustrate the real nature of the task at hand.

1.4 Creating Queues

The appropriate time to create a queue variable for a semaphore is when the

semaphore itself is created. This typically occurs in a module which contains

critical sections that need to be synchronised, which is neither normally a TCM

nor should it have direct access to the central UTS.
48

One possibility would be to make a UTS capability freely available to all

modules with access rights limited to the creation and deletion of queues. While

this would allow queues to be created, it would open up the possibility that a

malicious user might hinder the work of the UTS by creating many unnecessary

queues.

The alternative here proposed is to introduce the idea of privileged library

modules. These are basically normal library modules (see chapter 18 section 6.4)

that are delivered as part of the SPEEDOS system which have certain privileges.

In this case the synchronisation library module is trusted to have a UTS capabil-

48

 This is an issue not discussed in Espenlaub's thesis, since he viewed the design of the

Thread Scheduler and of TCMs as a matter for the operating system design, not the ker-

nel design.

Chapter 21 SYNCHRONISATION 74

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ity which allows it to call the UTS to create thread queues. It obtains the (non-

copyable
49

) capability from one of its own constant segments. This is placed

there as part of the installation of a SPEEDOS system.

Any SPEEDOS module can access this library module if it has access to

the appropriate code capability, which provides a high level interface for creat-

ing and using semaphores. Its semantic routines include a constructor (i.e. an

initialisation routine) to create a semaphore variable, a claim method and a re-

lease method.

At the point in the code where a semaphore is needed, the initialisation rou-

tine of the main module executes a kernel library call instruction (LC), passing

to the kernel the following parameters: a code module capability for the selected

library routine, the entry point number 0 (i.e. for the constructor) and a pointer

address (via which the root segment of the library module can later be used to

make further library calls to the claim and release routines).

The constructor creates an instance of a semaphore, which includes not on-

ly the semaphore itself but also the UTS's queue identifier for the semaphore.

This routine carries out some checks. For example it ensures that the host mod-

ule is on the current node; it might also have a list of modules which are permit-

ted to create semaphores together with the number of semaphores permitted, etc.

(This saves the UTS from carrying out such checks.) Provided that the request is

valid, it calls the UTS to create a queue, notes the identifier of the queue in its

own root segment. It then creates and initialises the semaphore variable.

The claim method carries out the entire P operation, including the DECT

operation and if necessary calls the queuing operation of the UTS). For this pur-

pose it must have access to the thread capability for the currently executing

thread; this is obtained via a kernel instruction (see chapter 19 section 5). Since

thread capabilities can be dangerous if they fall into the wrong hands, the kernel

can test whether the request is issued from the code of the synchronisation li-

brary module.

The release method carries out the entire V operation, including the

TINC operation and if necessary the de-queuing operation).

1.5 Informing the TCM of the Activation of its Thread?

The deliberately erroneous program snippet for the V operation at the end of

section 1.3 suggests that a thread capability for a thread being activated in the V

operation is needed, in order to invoke an activate routine of its TCM. To obtain

such a thread capability would in fact be a rather difficult task, since the thread

49

 for access rights in capabilities see chapter 26.

Chapter 21 SYNCHRONISATION 75

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

executing the V operation is not the thread to be activated.

Fortunately this is not necessary, for the following reason. The thread to be

activated is currently suspended in the UTS, which was called by the thread's

own TCM, and so after the UTS reactivates the thread it will exit from the UTS

back to its TCM. When this point is reached, the TCM code can recognise any-

way that the activation has occurred and can, if appropriate, record this in its

own data. Hence what could have been a troublesome problem simply disap-

pears!

If this were the final solution, the library module would have claim and

release methods with the following skeleton code (which is not correct Timor

but merely illustrates the principle):

claim(sem){// sem identifies the semaphore (integer) variable

 // sem.counter is held in the library routine

 // the P operation

 theCapability thread_cap;

 DECT(sem.counter, local);

 if local < 0

 {thread_cap = kernel.get_current_thread_cap(kernelCap);

 thread_cap.suspend_me(sem.queue);

 // inform TCM of delay

 // TCM calls UTS to queue the thread

 }

 }

release(sem){/* sem identifies the semaphore (integer) varia

 ble */

 // sem.counter is held in the library routine

 // the V operation

 TINC (sem.counter, local);

 if local < 0 {Thread_Scheduler.activate(sem.queue)};

 // after the UTS selects and activates

 // a queued thread. This will return to its TCM

 // and then continue to use the resource.

1.6 Delegating Queuing to the Library Module?

At this point we note that the semaphore counter and the semaphore queue have

been separated; the counter is in the library module and the queue is in the UTS.

This raises an interesting question. If the main semaphore activity is placed in a

trusted synchronisation library module, then why not do the same with the queu-

ing operations? In this case one could envisage that at the appropriate time the

library module carries out the queuing operations in its own space
50

 and simply

calls the central UTS to suspend or activate a thread. At first sight this idea

seems to have a number of advantages:

50

 In reality a library routine shares the file (or program) space of its host module, but the

host is not explicitly aware of this.

Chapter 21 SYNCHRONISATION 76

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

a) This would allow different queuing strategies to be used for different sema-

phores (e.g. using priority or FIFO techniques).

b) It would very considerably reduce the work of the UTS, which is the most

frequently activated module in a system, and the most crucial from an effi-

ciency viewpoint. All the scheduler would need to do in this context is to

provide a "ready list" of threads, from which it selects a thread to run on

each CPU according to its scheduling algorithm and the scheduling parame-

ters supplied to it by the TCM. Of course the UTS must also be called (by

the TCM) to remove the current thread from the ready list after it has been

placed on a waiting queue by the library module.

c) The scheduling queues are distributed through the system rather than all

being stored in the UTS. Consequently an attempt by hackers to manipulate

or destroy the system by interfering with these queues becomes much more

difficult.

These advantages sound very tempting, but one must also consider the implica-

tions of this solution. If the organisation of scheduling queues is delegated to the

library modules, this does not eliminate the need to synchronise them, e.g. to

avoid problems when several threads want to place entries onto or remove them

from the queue in parallel, i.e. a scheduling queue is a critical section. But unlike

other critical sections it cannot be synchronised using semaphores, because this

queue is part of the technique to implement semaphores!

This does not rule out the solution entirely. The alternative is to use a more

primitive synchronisation mechanism to synchronise this queue. In volume 1

chapter 8 a number of such mechanisms were mentioned, including some which

use busy waiting (e.g. turning off interrupts, busy waiting instructions such as

test-and-set or compare-and-swap). As a general mechanism for providing mu-

tual exclusion these are all less efficient than semaphores, as was explained in

chapter 8, but nevertheless the semaphore queuing operations must be imple-

mented using one of these techniques in the UTS, so it is not entirely out of the

question that these be used for precisely the same purpose in library modules,

provided that the use of these modules can be well protected.

The low-level synchronisation mechanism preferred for the SPEEDOS

UTS by Espenlaub is turning off interrupts, but he does not provide a kernel in-

struction to achieve this, instead treating the scheduler routines as a special case,

without indicating his reason for this [4, pp. 169-170]. It is therefore tempting to

consider whether a general mechanism for turning interrupts off (and back on)
51

could be made available by the kernel for use by both the UTS and the synchro-

51

 An instruction pair for turning on/off interrupts at the user level was provided in the

MONADS systems, see [5, p. 125].

Chapter 21 SYNCHRONISATION 77

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

nising library routines. The standard SPEEDOS technique to do this would be

kernel instructions for turning interrupts on and off, protected by means of a

kernel capability, as will be described in the next chapter.

If such a mechanism were really to turn off interrupts it would not solve the

problem at hand, because (a) only the kernel itself is privileged to turn off inter-

rupts, and (b) if it were to do this for non-privileged code the latter could then

neither turn interrupts back on itself nor could it activate the kernel to do so,

since kernel instructions are recognised as a result of handling an interrupt! Now

we see why Espenlaub treated the UTS as a special case.

However, this objection is not a serious as it may appear, since all that is

required is that any interrupts which actually occur should not be visible at the

user system level. What happens at the kernel level is, or should be, invisible to

the user system (including the UTS and the synchronisation library module(s)).

This was not possible in Espenlaub's SPEEDOS design, because threads which

handle real interrupts are scheduled by the UTS. However, as we shall see later,

there are good reasons (apart from this) to prefer the MONADS thread schedul-

ing solution, in which turning off and on interrupts at the user level does not af-

fect the kernel's ability to react to real interrupts (including a kernel instruction

requesting interrupts to be turned on again).

The kernel instructions for turning interrupts off and on are very simple and

are based on Rosenberg's proposal for MONADS:

disable_interrupts(modcap kernel_cap)

enable_interrupts(modcap kernel_cap)

In SPEEDOS the instructions require a kernel capability to ensure that they are

not misused. This capability can also be provided as a constant in the code of the

library module (and of the UTS).

1.7 The Final Solution

It is easy to think that the problem has been solved, but to make sure we look

again at the code of the library module. Remember now that both parts of the

semaphore variable – sem.counter and sem.queue – are implemented together

in the privileged library routine.

The entries in scheduling queues consist primarily of thread capabilities for

suspended threads. It may be sensible to add other information (e.g. the time at

which the thread was placed on the queue, which may turn out to be helpful in

detecting and correcting errors (such as the death of the thread which is queued

on a semaphore), but such additional features are ignored here.

However, by using thread capabilities as entries in the queue a further ad-

vantage is gained. When these were hidden within the user UTS the thread ca-

Chapter 21 SYNCHRONISATION 78

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

pabilities also remained hidden, but now they are used as queue entries outside

the user UTS more flexibility (and efficiency) has been gained. It now becomes

possible to simplify the release routine by bypassing the TCM and calling the

user UTS's activate routine directly. We have already seen earlier that the

TCM can be informed of an activation of one of a suspended thread when it ex-

its from the user scheduler after the thread has been re-activated. So nothing is

gained (and efficiency is lost) by calling the TCM of a suspended thread when it

needs to be activated. In other words, it is sufficient to suspend the thread in a

claim operation and rely on its return from the user UTS, in the second half of

the suspend_me routine, to inform its TCM. Hence the library module can now

be defined as follows.

Library Synchronisation {

MutualExclusion {

 semaphore sem; // sem identifies the semaphore variable.

 // sem.counter and sem.queue are both held

 // in the library module

claim(sem){

 // the P operation

 DECT(sem.counter, local);

 if local < 0 // i.e. if the current thread must wait

 {// obtain capability for current thread from kernel */

 threadCapability currentThreadCap =

 kernel.get_current_threadCap(kernelCap);

 // disable (pseudo-)interrupts

 kernel.disable_interrupts(kernelCap);

 // add current thread to queue

 sem.queue.enqueue(currentThreadCap);

 // the claiming thread is still executing

 // turn interrupts back on

 kernel.enable_interrupts();

 // inform TCM of delay;

 currentThreadCap.suspend_me();

 // TCM notes the suspension and calls the

 // UTS to remove the thread from its ready list

 }

 // NOTE: when the current thread is later activated

 // by the UTS it will return to the TCM.

 // It will then return to this point

 // and can access the resource.

 // The thread then returns from the

 // library module to continue its normal code.

 }

release(sem){

 // the V operation

 TINC (sem.counter, local);

 if local < 0 // i.e. if a thread must be activated

 {// disable (pseudo-)interrupts

 kernel.disable_interrupts(kernelCap);

 // select and remove a thread capability from sem.queue

Chapter 21 SYNCHRONISATION 79

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 threadCapability newThreadCap =

 sem.queue.dequeue();

 kernel.enable_interrupts();

 /* informs TCM to activate thread by passing

 it to UTS's ready queue */

 user_thread_scheduler.activate(newThreadCap)

 }

 }

 // The selected thread will then be scheduled

 // and continue to use the resource (e.g.critical region)

 // The current thread continues by exiting

 // from the release routine

} // end MutualExclusion

... // other synchronisation mechanisms

} // end of library module

There remains one final issue with respect to this solution. What has in effect

been done is to outsource some decisions about when threads can be activated

and suspended from the UTS to the Library module and the Thread Control

Managers. So far one important aspect of this activity has been left unmen-

tioned, viz. the saving and restoring of the state of the thread states which are

delayed and restarted. Put simply, the register states of the threads involved must

be stored and reloaded to enable other threads to use them. However, the way

this has been organised as an in-process mechanism
52

 does not affect the im-

portant point that the UTS alone makes the final decision about when a thread is

actually delayed or activated. For example if a thread has to wait as a result of a

semaphore P operation it actually continues to execute until it arrives at the

UTS, which suspends it. Similarly if as a result of a V operation a new thread

has to be activated, the thread releasing the resource continues to execute until it

reaches the UTS and advises the latter that the new thread can be activated.

Hence no special action is needed in the library module nor in the TCM with

regard to thread switching. How the UTS actually switches threads will be de-

scribed in the next chapter.

1.8 Summarising the Queuing Operations

Since the queuing operations will turn out to be useful in the implementation of

other more specialised semaphores discussed later in the chapter, it will be use-

ful to summarise these here, without comments.

1.8.1 The Suspend Operation

Here is the suspend operation in essence.

if (current thread must suspend)

 {threadCapability currentThreadCap =

52

 For programmers familiar with out-of-process systems this may at first be a little diffi-

cult to understand, which is why I have attempted to spell it out in detail here.

Chapter 21 SYNCHRONISATION 80

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 kernel.get_current_threadCap(kernelCap);

 kernel.disable_interrupts(kernelCap);

 sem.queue.enqueue(currentThreadCap);

 kernel.enable_interrupts();

 currentThreadCap.suspend_me();

 }

1.8.2 The Activate Operation

Here is the activate operation in essence.

if (a thread must be activated)

 {kernel.disable_interrupts(kernelCap);

 threadCapability newThreadCap = sem.queue.dequeue();

 kernel.enable_interrupts();

 user_thread_scheduler.activate(newThreadCap);

 }

This initially concludes the discussion of how mutual exclusion can be imple-

mented in SPEEDOS. I have described this in a number of steps in order to give

readers with little experience of synchronisation some idea of how complex this

can be and therefore how easy it is to make mistakes, since without explanation

the implications of the above steps would probably not be clear, possibly not

even to experienced programmers.

In the following sections we describe some extensions of the semaphore

idea. These too can, where appropriate, use the same or similar synchronisation

modules.

2 Applying DECT/TINC to Other Problems

In this and the following sections we describe some extensions of the semaphore

idea. These too can, where appropriate, use the same synchronisation modules.

One of my former PhD students, Prof. Bernd Freisleben, illustrated in his

PhD thesis [11, 12] how the basic DECT and TINC instructions can be com-

bined with commutative scheduler routines not only to achieve mutual exclu-

sion, but also for many other synchronisation purposes, including useful opera-

tions for user scheduling of threads and Conradi's P* operation [13], synchroni-

sation involving thread counting operations, Campbell and Habermann's path

expressions [14], critical block exit in block structured programming situations

such as is found in the B6700, and simultaneous P operations (a modified P op-

eration which allows multiple resources to be claimed together, with the aim of

avoiding deadlocks). Freisleben goes on to show that with an extension to

DECT/TINC operations all synchronisation problems which can be solved by

eventcounts and sequencers [15] can be solved efficiently with an extension.

These operations could be implemented in an analogous way to mutual ex-

clusion, with the help of library modules.

Chapter 21 SYNCHRONISATION 81

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Unfortunately for English readers, Freisleben's thesis is in German, but the

essential aspects of these solutions have been described in English [16].

3 Semaphores for Different Classes of User Threads

This section begins by describing a special technique developed specifically for

handling the reader-writer synchronisation problem. It then goes on to describe a

generalisation of this solution for a wider class of problems.

3.1 Reader-Writer Semaphores

Since reader/writer situations occur very frequently in the design of operating

systems and database systems, and the protocols to achieve this form of syn-

chronisation using normal semaphores are neither trivial nor particularly effi-

cient (see volume 1 chapter 8), SPEEDOS supports specialised reader-writer

semaphores. These were first developed in the context of the MONADS project

[17]. Whereas the structure of a normal semaphore consists of an integer and a

related queue, a reader-writer semaphore consists of three integers and a boolean

variable (see Figure 21.2) together with separate queues for waiting readers and

waiting writers.

The first three fields respectively hold counts indicating the numbers of

current readers, waiting readers and waiting writers while the fourth (boolean)

field indicates whether a writer is currently active. This structure will easily fit

into a 64 bit word. The initial values of these fields are zero or false.

There are four primary instructions which operate on this structure, as it

was developed for use in the MONADS systems:

READ-P is used by a thread to attempt to claim reader access to the critical re-

gion. This returns a thread-local boolean result indicating whether the

thread should suspend itself on the reader queue.

READ-V signals that a current reader thread is now relinquishing access to the

critical region. This returns a thread-local boolean result indicating whether

a writer must be activated.

WRITE-P is used by a thread attempting to claim writer access to the critical

region. This returns a thread-local boolean result indicating whether the

writer should suspend itself on the writer queue.

WRITE-V signals that the current writer thread is now relinquishing access to

the critical region. This returns a thread-local boolean result indicating

Figure 21.2: The Structure of a Reader-Writer Semaphore

Waiting Readers Waiting Writers Current Readers Current Writer

Chapter 21 SYNCHRONISATION 82

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

whether a thread should be activated, and a thread-local integer result

which indicates whether a further writer should be activated (if the integer

= 0) or how many readers should be activated (if the integer > 0).

The published description of this technique provides further details, includ-

ing the simple algorithms for the four instructions, which can be formulated with

a small difference in terms of reader priority or writer priority. It is also shown

that this approach is considerably more efficient than implementing reader-

writer algorithms using only normal semaphores.

Like DECT and TINC these instructions were designed for use in conjunc-

tion with commutative UTS operations. The suspend interface remains un-

changed from that described in association with DECT, but the activate interface

requires not only the naming of a queue but also an additional integer parameter

defining exactly how many threads need to be activated. This modification can

be used in cases involving the TINC instruction simply by setting this parameter

to 1.

To adapt this to the SPEEDOS environment requires that

a) the SPEEDOS kernel supports the four instructions described above as in-

divisible kernel instructions, which are then used as appropriate in the

module's code in a similar manner to DECT and TINC.

b) the library modules described in connection with mutual exclusion above

be used to organise the queuing operations, but appropriately modified by

adding an additional integer parameter to the WRITE-V activate routine

in order to allow it to activate several reader threads if necessary.

c) thread capability parameters are added to suspend operations as appropri-

ate.

We illustrate here how these semaphores would appear in a library routine using

a similar pattern to that used for mutual exclusion in section 1.8 above.

ReaderWriter {

rwSemaphore rwSem;

 readClaim(rwSem)

 {READ-P (rwSem, local);

 if local // i.e. if the reader must wait

 {threadCapability currentThreadCap =

 kernel.get_current_threadCap(kernelCap);

 kernel.disable_interrupts(kernelCap);

 rwSem.readerQueue.enqueue(currentThreadCap);

 kernel.enable_interrupts();

 currentThreadCap.suspend_me();

 }

 }

 readRelease(rwsem){

 READ-V (rwSem, local);

 if local // i.e. if a writer must be activated

Chapter 21 SYNCHRONISATION 83

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 {kernel.disable_interrupts(kernelCap);

 threadCapability newThreadCap =

 rwSem.writerQueue.dequeue();

 kernel.enable_interrupts();

 user_thread_scheduler.activate(newThreadCap);
 }

 }

 writeClaim(rwSem){

 WRITE-P (rwSem, local);

 if local // i.e. if the writer must wait

 {threadCapability currentThreadCap =

 kernel.get_current_threadCap(kernelCap);

 kernel.disable_interrupts(kernelCap);

 rwSem.writerQueue.enqueue(currentThreadCap);

 kernel.enable_interrupts();

 currentThreadCap.suspend_me();

 }

 }

writeRelease(rwSem){

 WRITE-V (rwSem, local, readerCount);

 if (local & readerCount == 0) // a writer to be activated

 {kernel.disable_interrupts(kernelCap);

 threadCapability newThreadCap =

 rwSem.writerQueue.dequeue();

 kernel.enable_interrupts();

 user_thread_scheduler.activate(newThreadCap);

 else

 if (local & readerCount > 0) // readers to be activated

 {kernel.disable_interrupts(kernelCap);

 for i in {1 .. readerCount}

 // activate a reader each time through for loop

 {threadCapability newThreadCap =

 rwSem.readerQueue.dequeue();

 user_thread_scheduler.activate(newThreadCap);

 }

 kernel.enable_interrupts();

 }

} // end ReaderWriter

3.2 Priority semaphores

This semaphore variant [18] was proposed by Freisleben and myself as a gener-

alisation of the semaphore concept to allow for claims on a resource (e.g. a criti-

cal section) being made by different classes of threads with different priorities,

whereby the use of the resource by different classes can be determined to be ei-

ther mutually exclusive or shared within a class. From the application viewpoint

there are only two simple instructions at the machine level, PRIORITY-P and

PRIORITY-V for requesting and releasing resources respectively. PRIORITY-P

nominates a priority semaphore (implemented in the library routine) together

with an integer indicating its priority class and a thread-local boolean variable.

Chapter 21 SYNCHRONISATION 84

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

PRIORITY-V releases the semaphore and has four operands: the priority sema-

phore, the priority class, a count of threads and a thread-local boolean variable.

Like the earlier cases, the instructions are used in association with library mod-

ule queues, whereby the activate routine, as in the case of reader-writer sema-

phores, has an additional parameter indicating how many threads need to be ac-

tivated.

In principle priority semaphores eliminate the need for reader-writer sema-

phores, since the latter are a special case of the former more general solution.

But since the reader-writer problem is such a common problem and the imple-

mentation of reader-writer semaphores is more efficient than that of priority

semaphores, there is a strong case for implementing reader-writer semaphores in

SPEEDOS as described above. On the other hand the relative complexity of pri-

ority semaphores and the fewer synchronising problems for which they are rele-

vant suggests that they should not necessarily be implemented as kernel instruc-

tions in SPEEDOS
53

.

4 Set Semaphores

In Chapter 8 it was explained that the value of the integer associated with a gen-

eral semaphore can be understood as follows:

> 0: the number of resources currently available

= 0: no resources free and no waiting threads

< 0: the number of threads waiting for a resource.

What the integer fails to indicate is which resources, if any, are currently availa-

ble, or which threads, if any, are currently waiting. For this reason my former

students and I proposed an extension, called set semaphores, which supplements

the integer with a set (implemented as a bit list), whereby each bit in the list rep-

resents one of the set of available resources (if the integer value is positive) or

one of the set of waiting threads (if the integer value is negative) [19]. Assuming

that the bits are numbered from left to right (starting at zero) and the bit list has

the value 0010110... then depending whether the integer part is positive or nega-

tive, this means that resources numbered 2, 4 and 5... are available, or that

threads numbered 2, 4 and 5... are waiting to acquire a resource. Typically the

set semaphore will be initialised by setting the number of available resources in

the integer part and the set part will have bits set indicating which resources are

free.

The two meanings of the bit list need not be used together, i.e. it is possible

53

 If a decision were made to implement priority semaphores as kernel instructions, the

pattern for doing this would follow a similar pattern to that used for reader-writer sema-

phores.

Chapter 21 SYNCHRONISATION 85

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

to work only with resource sets or only with thread sets. First we describe re-

source sets in more detail.

4.1 Resource Sets

For resource sets the following two basic instructions (similar to DECT and

TINC) are needed.

RSETP claims a resource. This has three operands. The first addresses the set

semaphore (which is implemented as an integer and a bit list). In the sec-

ond, an integer, the instruction indicates which resource, if any, has been al-

located. The third, a thread-local boolean value (e.g. a condition code), in-

dicates whether a resource has been allocated.

 The instruction decrements the semaphore's integer value by one. If the re-

sult is greater than or equal to zero, the boolean result indicates that a re-

source has been allocated. If so the application discovers from the integer

result which resource has been allocated (and the instruction removes the

corresponding resource from the bit list).

 If a resource was not allocated the thread suspends itself on the associated

scheduling queue. When it is activated (see below) the resource which has

been allocated is indicated in a result from the suspend routine.

RSETV releases a resource. It also has three operands. The first addresses the

set semaphore; the second, an integer, indicates which resource, if any, is

being released; the third, a thread-local boolean value (e.g. a condition

code), indicates whether a thread should be activated. The instruction in-

crements the semaphore integer by one and if the result is greater than zero

(i.e. a resource is now available) it sets the thread-local boolean variable to

indicate that a thread should be activated from the corresponding schedul-

ing queue. The releasing thread then causes a thread to be activated from

the corresponding scheduling queue, indicating which resource it has re-

leased in an integer operand.

4.2 Waiting Thread Sets

Waiting thread sets are organised in a similar fashion to resource sets, although

they are less relevant to synchronisation and more relevant to thread scheduling.

We now describe how waiting thread sets function and then we examine their

advantages and disadvantages. Although it will become clear that they cannot

sensibly applied to normal user thread scheduling, it will be shown in the next

chapter how they can create an excellent basis for scheduling kernel threads de-

signed to manage interrupt handling.

4.2.1 How Waiting Thread Sets Work

Just as resource sets can be implemented without waiting thread sets, so also

Chapter 21 SYNCHRONISATION 86

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

waiting thread sets can be implemented without resource sets. We now describe

how they can function in association with normal scheduling queues for imple-

menting the wait operation. In this case, two instructions (WSETP and WSETV)

are required.

WSETP has three operands. The first addresses the set semaphore. The second,

an integer, identifies the currently active thread. The third, a thread-local

boolean value (such as a condition code value), indicates whether the thread

must suspend itself on a scheduling queue until a resource becomes availa-

ble.

 The instruction decrements the semaphore integer and if the result is greater

than or equal to zero, a resource is available and the thread-local variable

indicates that the thread can proceed without invoking a scheduler routine.

(Unless it is combined with a resource set it must by some other means es-

tablish which resource it has now acquired, unless only a single resource,

e.g. a critical section, is involved.)

 If a resource could not be allocated, the thread-local variable indicates that

the thread should call a scheduler to suspend itself, and the thread number

corresponding to the calling thread is set to one in the waiting thread set.

WSETV releases a resource; it has three operands. The first addresses the set

semaphore. The second, an integer, returns the identity of a thread to be ac-

tivated from the scheduling queue. The third, a thread-local boolean value,

indicates whether a waiting thread should be activated.

 The instruction increments the integer part of the semaphore by one and

tests whether the result is greater than zero. If so the thread-local variable is

set to indicate that the resource has been successfully deallocated and that

no further action is required. If the result is less than or equal to zero (thus

indicating that the thread must activate a waiting thread) the thread-local

boolean operand is set to indicate that another thread must be activated. It

selects a new thread from the thread set and clears the corresponding bit.

The thread is advised in the second operand which thread must now be ac-

tivated by calling the scheduler.

4.3 Applying Set Semaphores in SPEEDOS

At the level of synchronising user threads, only the resource sets are relevant.

Waiting process sets would have the following problems at the level of user

synchronisation.

a) At his level in the system there is an unspecified number of user threads

which cannot be uniquely identified simply by integers.

b) The selection criterion for selecting a thread to execute is in effect a priority

Chapter 21 SYNCHRONISATION 87

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

mechanism, which could lead to unfair starvation of some threads
54

.

c) Waiting process sets cannot easily be adapted to the principle that TCMs

should be kept up to date.

As we shall see shortly, this does not imply that waiting process sets are entirely

irrelevant for the design of SPEEDOS.

However, such restrictions do not apply to resource sets. These can be im-

plemented for use by normal SPEEDOS user threads in a manner similar to the

above description of mutual exclusion. The differences are as follows.

a) The SPEEDOS kernel supports the two instructions RSETP and RSETV as

indivisible kernel instructions (for use by user-level threads), which are

then used as appropriate in the module's code in a similar manner to DECT

and TINC.

b) An additional integer parameter is required in the library module activate

routine, allowing this to return the number of the free resource;

c) A thread capability parameter is added to suspend operations as appropri-

ate. This does not affect the kernel's RSETP instruction.

5 Summary

In the first section of this chapter it was shown how the normal queuing opera-

tions for semaphores can be extended to allow for the SPEEDOS use of thread

capabilities which allow Thread Control modules to be kept informed of the sta-

tus of their threads. It was further shown how the work of the central UTS can

be reduced by placing the responsibility for the synchronisation queues associat-

ed with semaphores with a privileged synchronisation library module, thus re-

ducing the work of the central UTS and increasing its efficiency (which is im-

portant because this is normally the most activated routine in an operating sys-

tem).

This technique can also be applied to the extended semaphore types dis-

cussed above. These should form the basis for a number of synchronisation li-

brary modules which made are available to all SPEEDOS users. Such library

modules should at least include:

a) normal mutual exclusion based on TINC and DECT instructions, which can

also be used, for example, to implement scheduling control via private sem-

aphores
55

;

b) reader-writer synchronisation based on READ-P, READ-V, WRITE-P and

WRITE-V instructions;

54

 A round robin algorithm could be implemented with a little more overhead.
55

 see chapter 8 section 12.3.

Chapter 21 SYNCHRONISATION 88

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

c) the allocation of resources based on RSETP and RSETV instructions.

The implementation should be based on non-interruptible kernel instructions and

non-interruptible commutative queuing routines, managed in synchronisation

library modules based on the pattern described in section 1.

In the next chapter it will become clear how waiting thread sets can make

an extremely useful contribution in the scheduling of kernel processes.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 22

Thread and Process Scheduling

This chapter discusses thread scheduling in SPEEDOS. The key issues here are

what role the kernel plays in this activity, which thread is active on a CPU at a

particular time, how CPU interrupts are handled and finally, how a persistent

process and its threads are logged out and back in. The important theme of syn-

chronisation, i.e. how threads sharing the same data can synchronise their activi-

ties with each other, was described in Chapter 21.

1 The Kernel's Role in User Thread Scheduling

Since thread scheduling algorithms can be quite complex, and different algo-

rithms can be appropriate depending on the kinds of applications which are exe-

cuted at a node (see volume 1 chapter 8), it is appropriate that the user level

scheduling algorithm itself should not be built into the core kernel, but should be

provided in a security sensitive co-module, viz. the (central) User Thread

Scheduler (UTS), thus allowing different SPEEDOS nodes to have different

scheduling policies. However, this is not an activity which belongs in each con-

tainer (in contrast with many other security sensitive co-modules), but is best

placed in a separate container.
56

Here it is only important that the scheduling activity exists outside the core

kernel, and that it can cooperate and communicate with the core kernel, which

56

 The previous chapter discussed the activities of the UTS in the context of synchronising

user-level critical regions via semaphores, and the conclusion was reached that much of

the code for handling this difficult issue can be outsourced to a privileged library rou-

tine. This both reduces the work to be carried out by the UTS (which is important since

this is usually the most invoked module outside the kernel) and increases the security of

the system. What remains for the UTS to do is to maintain lists of user level threads

waiting for input-output operations to terminate and a list of user level threads which are

ready to run. From its ready list it selects the thread(s) to which the CPU(s) should be

allocated at any given point in time, i.e. to schedule the use of the CPU(s) at the user

level.

Chapter 22 THREAD AND PROCESS SCHEDULING 90

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

must be responsible for the crucial security aspects of thread scheduling. When

the UTS communicates with the core kernel (by executing kernel instructions), it

always presents a kernel capability to identify itself.

While the UTS decides which user threads should run on a CPU it does not

carry out the actual (highly sensitive) thread switching activity itself. Instead it

signals to the kernel that a thread switch is necessary by executing the kernel

instruction thread_switch. This has three parameters. The first, as indicated

above, is an appropriate kernel capability demonstrating its right to call this ker-

nel instruction. The second is the unique thread identifier of the thread to be ac-

tivated. This consists of a process container identifier in combination with the

thread index number. The third parameter 'sleep' indicates to the kernel that the

currently active thread is being suspended (without activating a further thread).

When the thread_switch instruction is invoked, the process container must be

a local container, since the thread switch must be immediately effective in order

to guarantee that the CPU(s) at the node are used to best advantage. Thus a UTS

only schedules threads residing at its own node.

When it is called to make a thread switch, the first task of the core kernel is

of course to check the authorisation of the caller (by examining the kernel capa-

bility passed to it) and then, assuming that this is in order, it must store the state

of the current thread (i.e. the thread which is about to lose the CPU). It does this

by storing its current register values in a save area at the base of its [the thread's]

thread stack. Having stored the state of the current thread, the core kernel must

then restore into the CPU registers the previously stored state of the thread now

selected to run. The full thread identifier of the new thread allows the kernel to

locate its container and, using the thread number as an index into the container's

Thread Table, to locate the base of its thread stack, where the current state of the

selected thread was previously stored. Having reloaded this state, the new thread

can continue.

In Espenlaub's version of SPEEDOS the kernel supports a further thread

switching instruction, return_thread_switch, which, in addition to the pa-

rameters supplied with the normal thread_switch instruction, expects as an

additional parameter the number of a segment register containing return param-

eters (as in an inter-module return instruction). Espenlaub described this instruc-

tion as:

"... a combination of the inter_module_return instruction and the thread_

switch instruction. Its purpose is to avoid blocking threads in the context of the

UTS. Since each node has a different UTS and it is generally not possible to in-

voke methods of a particular UTS on a node other than that for which it is respon-

sible, this would prevent the straightforward migration of threads to another

node..." (Espenlaub, p.240)

Chapter 22 THREAD AND PROCESS SCHEDULING 91

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

In the new SPEEDOS approach to parameter passing (described in chapter 20

section 6), this additional parameter would be unnecessary, because by defini-

tion segment register 1 holds the parameters returned from an inter-module call.

In SPEEDOS threads are not migrated as Espenlaub envisaged, but the kernel

instruction may nevertheless still be useful to combine an inter-module return

with a thread switch to the chosen thread.

When a new thread is first activated, the thread's TCM passes it to the UTS

interface routine start_new_thread(kernel_cap, new_thread_cap)and the

UTS uses the kernel instruction new_thread (see chapter 20 section 8.2) to ac-

tivate the new thread.

In order to allow a thread to delete itself the UTS provides an interface rou-

tine kill_me() which can obtain a thread capability for the thread in the usual

way. As the final instruction executed (by the UTS) in this thread the kernel in-

struction switch_delete is executed, which nominates a new thread to be exe-

cuted and deletes the current thread. This is normally called on the advice of the

thread's TCM, but may also be called by a surrogate thread (cf. section 11.2 be-

low).

A further kernel instruction which can be called by the UTS is the idle in-

struction, which indicates to the kernel that there are currently no user-level

threads to be scheduled.

Finally there is a kernel instruction shutdown, which has as its only param-

eter a kernel capability authorising the caller to execute the instruction. The ker-

nel then immediately closes down the system. (It is the responsibility of the as-

sociated security co-modules to write the content of all active pages to disc be-

fore the instruction is executed.)

2 The User Thread Scheduler

It is important that the various nodes in a SPEEDOS network can have different

scheduling algorithms tailored to their specific needs. This is one reason why the

UTS is implemented as a security sensitive co-module rather than as an integral

part of the core kernel. This approach supports the principle of separating mech-

anisms from policies. It is also important in that it keeps the fully privileged ac-

tivities of the core kernel to a minimum.

The UTS has no special privileges except that it has access to a kernel ca-

pability which allows it to call the kernel's thread_switch and related instruc-

tions, including the disabling and enabling of (pseudo) interrupts (enable_

interrupts, disable_interrupts).

Chapter 22 THREAD AND PROCESS SCHEDULING 92

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2.1 Interrupt Handling at the UTS Level

User threads often need to wait for the occurrence of some event, e.g. that a par-

ticular time has been reached, that a number of milliseconds has expired, that an

input-output operation which the thread has initiated has now completed, etc.

Such occurrences are initially known to the kernel as a result of an interrupt, and

the kernel must then advise the UTS when such an event occurs. This is

achieved by means of a pseudo-interrupt mechanism, whereby the kernel can

place a message for the UTS into a buffer which is accessible to both the kernel

and the UTS. The kernel can then activate the UTS to handle the pseudo-

interrupt. However this activity must be co-ordinated, because the UTS might

otherwise be interrupted in the middle of a critical section.

To avoid such a situation the UTS can use the kernel instructions ena-

ble_interrupts and disable_interrupts to indicate when it can/cannot be

safely interrupted by the kernel. If the kernel is ready to activate a pseudo-

interrupt but the UTS has turned off interrupts, the kernel buffers the interrupt

until interrupts are turned back on. If it meanwhile wants to activate further in-

terrupts, these are also added to the buffer, and when interrupts are turned on by

the UTS, the kernel immediately turns off interrupts again for the UTS and pass-

es to it the first pseudo-interrupt, etc.

This mechanism has a further advantage. The normal semantic routines of

the UTS are called by normal user threads (e.g. to request that they be suspend-

ed), i.e. the Scheduler itself is a critical section and it is therefore necessary to

prevent multiple users from being active concurrently in the UTS. By turning off

interrupts the UTS also prevents other threads from being active
57

, and hence

provides a mutual exclusion mechanism for the UTS (which cannot use the

normal mechanism, since its function is partly to implement the mechanism

which others use, and attempting to use the same mechanism would become a

recursive problem.)

As we saw in chapter 21 section 1.6, the same mechanism can be used by

the privileged synchronisation library module, since it also ensures that a re-

schedule cannot take place in the UTS, and therefore can be guaranteed (in a

single CPU node) not to lose the CPU at the user level. The fact that real inter-

rupts can still be serviced by the kernel does not affect this, since relevant inter-

rupts will simply be buffered by the kernel until interrupts are turned back on by

the library module.

One final point: the description above envisages a simple interrupt mecha-

57

 This is the case only in a single CPU system. To keep the issue simple we consider only

single-CPU systems in this chapter. The measures to be taken in a multiple CPU system

depend on the design of the co-ordination facilities available in such a system.

Chapter 22 THREAD AND PROCESS SCHEDULING 93

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

nism, but in fact it would be possible to simulate an interrupt system for the UTS

in which interrupts could be selectively turned off, in which different classes of

interrupts have different priorities, etc.

3 Scheduling Parameters

The example thread scheduling algorithm described in volume 1 chapter 8 illus-

trates the need for threads to have scheduling parameters (e.g. a priority, a time

slice). This aspect of a thread is not considered to be part of the thread's state (in

the sense of register values, etc.), but it is a significant factor in optimising the

throughput of a system and in guaranteeing the performance of particular

threads (e.g. for real-time process control purposes).

SPEEDOS provides for the management of such scheduling parameters

(which might not merely involve the setting of static values but also their auto-

matic re-calculation based on past performance, for example) by including in

each process container a Thread Control Manager (TCM) as a further co-

module. What this actually does depends on the nature of the process.

As was described in Chapter 19 section 10, when a Thread Manager creates

a new thread, a thread capability is returned to the caller. This can be used in

inter-module calls to invoke semantic routines of the TCM. In the simple case,

for example, the latter might provide operations for suspending and resuming

the thread in question. The TCM is privileged in that it can directly invoke

methods of the UTS. But since the UTS can vary from node to node and since

TCMs can be programmed differently for different processes, it is impossible to

define all the possibilities in more detail. The important point, however, is that

this design leaves open considerable flexibility for managing processes and their

threads. Furthermore, it is important that at the interface level a standard set of

routines (e.g. for use by the synchronisation library and TCMs) is provided. The

relationship between the TCM and synchronisation mechanisms was discussed

in the previous chapter.

4 Managing Real Interrupts in the Kernel

Various CPU (hardware) designs can include a variety of support mechanisms

for assisting in the management of interrupts from the hardware into the kernel,

with various levels of complexity. Here we take the simplest approach, viz. that

all local interrupts cause the CPU to start executing at the same location in the

main memory and that they provide the details necessary to process the inter-

rupt. The UTS does not see these (real) interrupts, as they are initially handled

by the kernel.

Chapter 22 THREAD AND PROCESS SCHEDULING 94

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Following Rosenberg's approach in MONADS I (see [5, pp. 154-155])
58

,

interrupt handling in SPEEDOS is performed by a short section of code (in

SPEEDOS called the interrupt analysis routine). The kernel immediately turns

off (real) interrupts (if the hardware does not already do this) then stores into a

memory area in kernel space the values currently held in the registers (i.e. the

register values of the interrupted user thread or kernel process)
59

. Kernel pro-

cesses
60

 have access to the stored registers and may further copy them to an ap-

propriate place (e.g. into the stack of the interrupted thread).

Normally an interrupt leads to the activation of a kernel process (see sec-

tion 6) and an immediate reschedule of these processes to ensure that their prior-

ities are respected. They synchronise with each other using a variant of set sem-

aphores which leads to the efficient "automatic" scheduling technique described

in section 7 below.

Immediately an interrupt occurs the working registers are stored, and can

then be used by kernel processes to carry out their work.

At the kernel level there are two interrupt categories, known as synchro-

nous and asynchronous interrupts.

4.1 Synchronous Interrupts

Synchronous interrupts occur as a result of some event or action caused by the

executing user thread or kernel process. Along with asynchronous interrupts

they are initially analysed by the kernel's interrupt analysis routine, which classi-

fies synchronous interrupts into the following four groups:

a) kernel instructions (e.g. inter-module calls). The kernel's interrupt analysis

routine passes these interrupts to a kernel process called the User Request

Process, which has a relatively low priority (compared to other kernel pro-

cesses).

b) interrupts which require direct action by the kernel and have one or more

associated kernel processes. The kernel's interrupt analysis routine passes

such interrupts to an appropriate kernel process. (Virtual Memory page

58

 Rosenberg's thesis describes the kernel for the initial MONADS system, based on a

modified HP2100A system, later known as MONADS I. This thesis has unfortunately

not been widely published. Rosenberg and other members of the MONADS team later

developed the MONADS-PC system. F. A. Henskens has documented parts of the

MONADS-PC kernel in his own thesis [20] (see esp. Chapter 4 and 8), which is availa-

ble at www.speedos-security.org.
59

 In a multiple CPU system there is such an area for each CPU if both can take interrupts.
60

 Since kernel processes are organised quite differently from user processes and their

threads, we use the term process to distinguish the former from user level threads.

(From the context it should be clear that these should not be confused with user level

processes, see chapter 19 section 10 and chapter 20 section 2.)

Chapter 22 THREAD AND PROCESS SCHEDULING 95

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

fault interrupts fall into this category. In this special case the actions taken

by the page fault kernel process are described in chapter 23.)

c) security sensitive error interrupts, regardless whether they are caused by

programming errors or deliberate attempts to break the system. Attempts to

violate the restrictions imposed by segment registers (e.g. attempts to ac-

cess memory outside the range of a segment's data partition or to violate the

access mode defined by the segment register) fall into this category.

d) non-sensitive program errors (e.g. divide by zero, arithmetic overflow, etc.)

Cases c) and d) are handled as forced inter-module calls on the top of the fault-

ing thread, as described in section 9.

4.2 Asynchronous Interrupts

Asynchronous interrupts (e.g. an I/O or clock interrupt) occur independently of

the currently running user thread. Usually the handling of such interrupts leads

initially to the unblocking of a kernel process (e.g. an I/O interrupt process),

which may then cause a pseudo-interrupt into the UTS to advise it that a user

thread waiting for the interrupt can be unblocked. The latter is then moved to the

ready state (see volume 1 chapter 8). Whether it is immediately selected to run is

determined by the UTS's algorithm. Some asynchronous interrupts are handled

internally in the kernel (e.g. by a disc process when a disc interrupts).

5 Kernel Instructions

The kernel never executes its instructions as a genuine in-process call, because

the kernel is neither a normal module nor a library module. Instead it supports a

number of kernel processes which are activated as described below.

The stacks for these processes, like other purely internal temporary kernel

data structures, are held in a non-persistent memory which is logically separate

from the persistent memory which the kernel and its co-modules create and

manage for the user level. The use of non-persistent memory by the kernel is

important in order to allow a kernel to be fully or partially replaced (e.g. to cor-

rect errors, provide more facilities or improve performance) when the system

has been shut down, without concern for the state of internal data structures.

Protection of those kernel instructions which are not intended for general

use is achieved in that a kernel capability must be passed as an operand of the

instruction. This contains an identification of the node on which it can be used

(because a kernel instruction cannot be executed on a node other than the node

on which the active thread is currently executing) and a set of access rights cor-

responding to the kernel instructions which the holder of the capability may val-

idly call.

Chapter 22 THREAD AND PROCESS SCHEDULING 96

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

In order to avoid many problems which have arisen in earlier kernels
61

,

kernel instructions in SPEEDOS are implemented atomically on a kernel stack

(per CPU) in the non-persistent main memory. In this context atomically means

that a kernel instruction always either completes without blocking or "fails" (be-

cause it cannot immediately complete the requested action). If it fails, for exam-

ple if during the execution of an inter-module call a page fault occurs, the kernel

resets the state of the thread to a position immediately before the execution of

the kernel instruction. Consequently when the thread is later reactivated (e.g.

after the missing page has been brought to the node and can be accessed by the

thread) it will repeat the instruction.

In this environment the kernel needs only one kernel instruction stack per

CPU in order to process kernel instructions. This can be re-used for each kernel

instruction executed on that CPU without losing parallelism. Espenlaub points

out the considerable advantages of this approach in comparison with the mecha-

nisms used in other kernels [4, p. 170].

Throughout the book the simplifying assumption is made that the node un-

der discussion has only a single CPU, since the handling of multiple CPUs de-

pends heavily on the nature of the hardware itself.

6 Kernel Processes

The approach adopted for the management of kernel processes differs in Espen-

laub's suggestions for SPEEDOS from Rosenberg's original MONADS design.

It is instructive to compare both approaches.

6.1 Rosenberg's MONADS Approach

Although an ardent supporter of the in-process approach to process structuring

at the user level, Rosenberg adopted an out-of-process structure for MONADS

kernel processes. In his solution there are a fixed number of threads which have

different (defined) tasks to perform. These threads are organised as a priority

hierarchy. Higher priority threads execute before lower priority threads. Inter-

rupts are transformed into messages. Each thread has its own buffer into which

other kernel processes place messages. Reschedules take place when a new in-

terrupt arrives and when a thread completes the processing of a message. Kernel

processes can pass messages to other kernel processes and activate them. Typi-

cally the messages are passed between related processes in a standard message

block. These can not only serve as a vehicle for new messages but can contain a

record of progress so far in dealing with a request. One such message block type

is the virtual memory message block, which will be introduced in chapter 23 to

61

 For a comprehensive description of kernels in other research systems see [4], chapter 3.

Chapter 22 THREAD AND PROCESS SCHEDULING 97

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

record the progress of page faults
62

.

The highest priority kernel code is the interrupt analysis routine. In contrast

with the remaining kernel processes this has no standard input buffer, as its in-

puts are interrupts. It is activated as a result of a (real) interrupt, and immediate-

ly turns off (real) interrupts until it completes, when it turns (real) interrupts on

again. It handles trivial interrupts directly (e.g. buffering of characters for an un-

buffered device, requests for the date and time). Where appropriate it places

messages in the buffers of the lower priority threads. These are used, for exam-

ple, to handle disc interrupts and page faults.

The lowest level priority processes are for handling the requirements of us-

er level processing. User level threads execute within a single kernel process
63

,

the User System Process, which is the second lowest priority process (see Figure

22.1). The MONADS user thread scheduler (UTS)
64

 executes in this slot; it

manages all user level threads, including decisions to switch threads (which are

actually carried out by a kernel instruction, cf. thread_switch described in sec-

tion 2 above).

The third lowest priority thread is the User Interrupt Process, which re-

ceives relevant requests from other kernel processes (in the form of interrupt

message blocks) and transforms these into pseudo-interrupts for the UTS in a

62

 An example which will play an important role in SPEEDOS is the IMC message block,

which will be introduced in chapter 24 to record the progress of inter-module calls.
63

 All the MONADS systems were single processor systems. In a tightly coupled multi-

processor system there would be one such thread per CPU. (Other modifications would

also be necessary to the system as described here in order to synchronise multiple

CPUs. The details would depend on the nature of the hardware in question.)
64

 This is called the process scheduler in MONADS literature.

Figure 22.1: The MONADS Kernel Process Table

0

1

2 to n-4

n-1

n

n

n

Interrupt Analysis Routine

Kernel Process

Number

Second Kernel Process

User Request Process

User Interrupt Process

Idle Process

User System Process

n-2

n

n-3

n

Chapter 22 THREAD AND PROCESS SCHEDULING 98

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

shared buffer. (From the viewpoint of the user level scheduler these appear to be

real interrupts but in fact they are simulated pseudo-interrupts. To achieve this,

the User Interrupt Process saves the current state of the User System Process at a

fixed location available to the UTS and replaces this with a state which imitates

an interrupt handler.)

The fourth lowest priority process is the User Request Process, which is

used to execute kernel instructions for user threads. The very lowest priority

process is an 'idle' process, which in the absence of an IDLE instruction simply

loops doing nothing useful. This can run when the UTS issues a kernel idle in-

struction once the kernel also is inactive.

As will be explained in section 7 below, the actual kernel process schedul-

ing mechanism in MONADS was based on an efficient microcoded implementa-

tion of set semaphores, where resource sets were used to access the message

buffers and an extension of waiting process sets were used "automatically" to

schedule the kernel processes [5, p. 155ff].

6.2 Espenlaub's SPEEDOS Approach

In his proposal for the SPEEDOS kernel, Espenlaub abandoned some aspects of

the MONADS scheme, but retained the idea of supporting a separate thread or

group of threads for each potential interrupt source [4, p. 171] (which might be a

single device or a group of devices, depending on the hardware design). The

fundamental difference between Espenlaub's and Rosenberg's schemes is that in

the former the threads for handling asynchronous interrupts are persistent and

are managed as normal threads scheduled by the user UTS, whereas in the

MONADS approach interrupt processes are scheduled directly by the kernel and

automatically have higher priority than application threads.

Espenlaub's design introduces more flexibility (e.g. by allowing new inter-

rupt threads to be introduced at a later point into a system as a result of users

introducing new devices into the system) but the cost of this flexibility is a time

penalty in the thread scheduling activity (e.g. because the core kernel must inter-

act with the UTS to activate the interrupt threads and because of the need to in-

teract with Thread Control Managers).

6.3 The New SPEEDOS Solution

The differences between the two approaches introduce a dilemma into the final

design of SPEEDOS, because in modern general purpose systems (including

desktop and laptop computers) it is important to be able to introduce new devic-

es (e.g. new external discs or printers), which could be supported in Espenlaub's

concept by creating new persistent threads outside the kernel for handling addi-

tional asynchronous interrupts. However, in section 10 we introduce an alterna-

Chapter 22 THREAD AND PROCESS SCHEDULING 99

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tive design which allows new device drivers to be introduced into a running sys-

tem while following the MONADS approach. Furthermore, efficiency must also

be a key criterion when making decisions about thread scheduling, since the

UTS may be activated many thousand times per second. Not only is MONADS

more efficient, as described above, but an extremely efficient implementation is

possible using the concept of waiting process sets [19] (see chapter 21 section

4.2.) This implementation is described in more detail below.

A compromise between the two can be achieved by implementing asyn-

chronous interrupt processes as a MONADS-style priority list (known in

SPEEDOS as the Kernel Process Table (KPT) (see Figure 22.2), but also provid-

ing a security-sensitive co-module outside the core kernel, the Kernel Process

Manager (KPM), which manages information relating to the kernel processes.

The KPT has a similar structure to that of the MONADS kernel process table

(cf. Figure 22.1).

Each entry in the KPT holds the information needed to activate and sched-

ule its process. In particular it contains a pointer to the code which the process

executes, and storage space for its registers, as well as a pointer to its input buff-

er and the semaphore which regulates its access to the buffer.

The Kernel Process Manager (a privileged co-module held in a container

for kernel modules) is responsible for creating processes to handle interrupts (for

the kernel) and for entering these in the KPT. But the core kernel schedules

these and they are invisible to all other software above the kernel. This solution

retains the flexibility of Espenlaub's proposal but also the run-time efficiency of

Rosenberg's MONADS design.

The Kernel Process Manager also maintains further information needed by

Figure 22.2: The SPEEDOS Kernel Process Table

0

1

2 to n-4

n-1

n

n

n

User Request Process

User Interrupt Process

Interrupt Analysis Routine

Kernel Process

Number

Idle Process

Second Kernel Process

User System Process

n-2

n

n-3

n

Chapter 22 THREAD AND PROCESS SCHEDULING 100

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

kernel processes, known as the Kernel Process Information (KPI), as will be dis-

cussed later in the chapter.

7 Scheduling Kernel Processes Automatically

Waiting process sets provide a technique for scheduling a set of processes which

use enhanced semaphore operations to claim a resource or to schedule a set of

resources. The basic principles behind both resource sets and waiting process

sets were already described in chapter 21, section 4.

7.1 The Automatic Scheduling Mechanism

Waiting process sets can be taken a step further, as is described in Rosenberg's

PhD thesis [5, pp. 155-162, 19, pp. 146-150] and was successfully implemented

in the MONADS systems. By combining waiting process sets and resource sets

and using them in conjunction with a system-wide "ready process set" (RPS, a

bit list identifying all kernel processes which are waiting for a CPU) and an in-

teger "current process" (CP), it becomes possible to schedule threads "automati-

cally". In this context "automatically" means controlling the synchronisation and

scheduling of threads entirely by semaphore instructions, which were imple-

mented in MONADS in microcode
65

.

This is achieved via a modified implementation of WSetP/RSetP and

WSetV/RSetV instructions (called ASetP and ASetV, where A indicates "auto-

matic"). The ASetP and ASetV instructions combine modified WSetP and WSetV

operations with resource set instructions. Each instruction has two operands. The

first is the address of a semaphore (here called SEM) which controls one of the

kernel's process buffers. The second is an integer (here called R) which contains

information about the appropriate resource. We refer to the integer part of the

semaphores as SEMINT and the set part as SEMSET. Two global variables are

required:

i) RPS (Ready process set) is a set containing a bit for each kernel process. If

the bit is set it indicates that the corresponding thread is ready to execute, if

unset that it is not ready.

ii) CP (Current Process) is an integer identifying the currently executing pro-

cess.

A flowchart of these operations appears as Figure 14 in the published paper [19,

p. 149]. However, this does not include the use of resource sets to enable the

thread to discover which resource has been allocated or deallocated. We add this

information in the following program snippets, where R is an integer operand

65

 It would be feasible in more modern systems to implement the semaphore operations

efficiently in a combination of hardware and kernel software.

Chapter 22 THREAD AND PROCESS SCHEDULING 101

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

which is used to indicate the number of a message in a bounded buffer.

(ASetP)

SEMINT = SEMINT - 1; // claim a message to be processed

if SEMINT ≥ 0 // if message(s) available in buffer

 {R = findbit(SEMSET);// find position of message and

 // return it in the operand

 SEMSET = SEMSET – {R};}

 // make message unavailable

 // and continue executing

else {SEMSET = SEMSET + {CP}; // add waiting process

 // to the set of waiting processes

 RPS = RPS - {CP}; // remove current process

 // from ready set i.e. wait

 reschedule;} // reschedule selects another thread

 // from RPS to run and activates thread

(ASetV)

SEMINT = SEMINT + 1; // release a message position in buffer

if SEMINT > 0 {SEMSET = SEMSET + {R};}

 // if no processes waiting, free released message position

 // in buffer and continue executing

else {chosen = findbit(SEMSET); // find a waiting process

 RPS = RPS + {chosen}; // add it to ready threads

 copy R into register of chosen;

 reschedule;}

The findbit operation searches a SEMSET bit list and returns the integer position

of the selected bit. In other words in this context it either selects a message to be

processed (ASetP) or it selects a process to be activated (ASetV).

The reschedule operation selects a process from the RPS and activates it. It is

defined as follows.

(reschedule)

integer selected = findbit(RPS);

if selected ≠ CP {switchRegisters(selected); CP = selected;}

Each kernel process uses a set of registers to carry out its defined activities.

However the switching of processes would be an expensive activity if all the

segment registers and general purpose registers in SPEEDOS systems were to be

available to these processes. Consequently, with the exception of the User Sys-

tem Process, which is the thread in which the user threads are executed, each

kernel process is restricted to the use of a smaller number of general purpose

registers and a few segment registers. In this way the switching of kernel process

registers can be made more efficient.
66

One further feature needs to be added to the automatic scheduler mecha-

nism to allow it to become fully functional in the SPEEDOS concept, viz. a

66

 A final decision about which registers are available to kernel processes is left open here.

Chapter 22 THREAD AND PROCESS SCHEDULING 102

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

mechanism to allow a kernel process to suspend itself during the execution of its

algorithm. This was already included in the MONADS-PC system, in particular

to allow the disc process to start a disc access (read or write) and suspend until

the access has completed [20, pp. 159-160]. We here call the suspend instruction

AsusP and the corresponding activate instruction AactP. AsusP has no explicit

operand; it always suspends the kernel process executing the instruction and

causes a reschedule. AactP has a single operand defining the number of the

thread to be activated.

These are implemented via an additional word SPS (suspended process

set), in which, like RPS, each bit represents a kernel process number. When a

process issues an AsusP instruction, the bit position corresponding to CP is set

and a reschedule is then started. When some other process (e.g. the Interrupt

Analysis Routine) wishes to activate a suspended process (e.g. a disc process) it

uses AactP (providing the number of the process to be activated). This unsets

the bit in SPS corresponding to the process number and starts a reschedule. The

reschedule instruction itself must be modified to take account of suspended bits

in the SPS. This is most easily achieved by modifying the operand of findbit

in the reschedule operation into an exclusive or of RPS and SPS, i.e.

(reschedule)

integer selected = findbit(RPS xor SPS);

if selected ≠ CP {switchRegisters(selected); CP = selected;}

Notice that a process number in RPS must always be set if the corresponding bit

in SPS is set.

This automatic scheduling mechanism is extremely efficient, eliminating

the need for a kernel process scheduler in software
67

 and at the same time it very

efficiently solves synchronisation problems. Why then is it not widely used?

One reason is the limitations described in section 4.3 of chapter 21, which pro-

vided the reasons for not using waiting process sets at the user synchronisation

level. Furthermore, the operations which it supports are quite primitive (e.g. it is

not possible for a process to wait on the union of several conditions such as a

timer interrupt or an input from a terminal).

Automatic scheduling in this form requires that the number of kernel pro-

cesses should be quite small (e.g. not more than 64 in a system with 64 bit

words) if the set operations are to be kept efficient. Furthermore processes

should be fairly static (i.e. adding and removing processes during a running sys-

tem should be avoided if possible), so that bit positions corresponding to process

67

 The automatic scheduler was implemented in microcode in MONADS, and it might be

feasible to implement some parts of it in hardware as the basis for a priority interrupt

system.

Chapter 22 THREAD AND PROCESS SCHEDULING 103

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

numbers do not become ambiguous.

7.2 The Scheduling Algorithm

The most significant limitation of the automatic scheduling technique is that on-

ly two scheduling policies are easy to implement. If the search for a new process

for execution (i.e. the findbit function) always begins at bit zero in RPS and in

ASetV, choosing the first position where a bit is set, the result is a priority

scheduling algorithm, with the thread corresponding to bit 0 having the highest

priority and the thread corresponding to the last bit having the lowest priority.

Since the synchronisation of the kernel processes relies on a priority system, this

is ideal for the SPEEDOS kernel. But it is far from ideal for user level threads,

which is one reason why these are scheduled by a separate scheduler, i.e. the

UTS.

The only easily implementable alternative would be to have a cyclic pointer

indicating the bit position at which the last search ended, thus providing a FIFO

buffering mechanism. This would be a feasible alternative way of implementing

the findbit algorithm in ASetP, but in view of the added complexity and the

nature of the SPEEDOS kernel the priority version is to be preferred.

In the final SPEEDOS system, as in MONADS, priority scheduling is pre-

ferred not only because of its simplicity but also because this simplifies the de-

sign of the kernel processes with respect to their synchronisation with each oth-

er.

7.3 Managing the Buffers

There are central pools of message blocks, which are passed via pointers be-

tween processes. These both serve as parameters for the kernel processes and

can hold further relevant information which can in effect be stored as long as it

is needed and used by several related threads. The ASetV operation is used by

the sending process when a message is passed from one process to another. A

pointer to the relevant message block is placed in the input buffer of the receiv-

ing process, which in effect is a producer-consumer buffer
68

. The process will

eventually be scheduled and will use the ASetP operation find the first available

message in its buffer. When it has completed the processing of the message it

loops back to the ASetP instruction to process the next message. If there are no

messages in its buffer the ASetP operation causes it to wait until a message ar-

rives. A thread may be temporarily halted as a result of a reschedule (and of

course its register values are preserved until a further reschedule activates it). It

will resume (and its registers reloaded) when a further reschedule selects it as

68

 see Chapter 8 section 12.1 (Bounded Buffers).

Chapter 22 THREAD AND PROCESS SCHEDULING 104

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the currently highest priority thread.

There are two exceptions to this scheme, as follows.

– The interrupt analysis routine has no buffer but is activated by an actual

hardware interrupt, then after analysis it places a message resulting from its

analysis into the buffer of the appropriate thread.

– Disc processes do not simply consume messages passed to them in the or-

der of their arrival but scan the buffer to achieve a more efficient use of the

disc which they are controlling (e.g. to minimise the disc head move-

ments
69

). This is disguised from the rest of the kernel by having a special

form of the ASetV instruction for each disc process.

7.4 Passing Interrupts to the User Thread Scheduler

Kernel processes frequently pass on interrupts to the main operating system,

which in practice means that they advise the User Interrupt Process by passing a

message to it. As this process has a higher priority than the User System Pro-

cess, it cannot be interrupted by the latter, which has the lowest priority except

for the idle process. Several user pseudo-interrupts might gather in its buffer as a

result of interrupts being passed on to it from higher priority kernel processes.

These are serviced one at a time by the User Interrupt Process.

In order that the UTS can manage these in an orderly fashion, a protected

mechanism for enabling and disabling (pseudo) interrupts at the user level, im-

plemented via a binary semaphore, is provided (as in MONADS). This does not

affect real interrupts, but only the interrupts from the kernel to the UTS. The

protection is provided in that the caller must also present an appropriate kernel

capability.

Before passing an interrupt to the UTS the current state of the currently ac-

tive user level thread (i.e. the current state of the User System Process) is saved,

in order that it can be resumed by the UTS later.

In MONADS the User Interrupt Process had three "registers" (which might

be implemented in memory: an Interrupt Target Subsystem
70

 (ITS) register, an

Interrupt Target Address (ITA) and an Interrupt Parameter Pointer (IPP). The

first two defined the module to be interrupted and the address at which the inter-

rupt should be made. IPP points to an area in which the parameters (message)

should be placed.

In SPEEDOS equivalent information, i.e. a module capability (for the UTS)

and an entry point number in the module for the interrupt routine, can be placed

in the KPI, and the current user-level Thread Stack can be used to pass the pa-

69

 e.g. the elevator algorithm, see https://en.wikipedia.org/wiki/Elevator_algorithm
70

 In MONADS modules (in the SPEEDOS sense) were called subsystems.

Chapter 22 THREAD AND PROCESS SCHEDULING 105

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

rameters (message) to the UTS. In this way it becomes a kernel design decision

whether the same interrupt routine is used for all interrupts or whether several

UTS interrupt routines are provided to handle different kinds of interrupts.

When an interrupt routine completes, a reschedule will usually be needed at

the UTS level (e.g. if the pseudo interrupt signalled the completion of an input-

output operation). To achieve this, the interrupt routine ends by executing a re-

schedule operation, which selects the next thread to be run. It then executes a

return_thread_switch kernel call (see section 1 above), which causes the

kernel to combine an inter-module return with a thread switch to the chosen

thread. Of course the kernel had already stored the state of the thread which it

interrupted at the base of its thread stack.

8 Kernel Interactions with Co-modules

The synchronisation mechanisms described in chapter 21 can be used by user-

level threads to synchronise their activities with each other and, as we have seen

above, to co-ordinate the interactions of kernel processes with each other. But

there remains one issue to be answered. How can the kernel synchronise with

those co-modules with which it shares data? And how can it interact with user

level modules? We examine these two issues in this section.

8.1 Sharing Co-module Data

As was described in chapter 17, the kernel makes direct use of data of its co-

modules (e.g. from the Co-module Tables, Code Tables and Thread Tables). It

only reads the information in them
71

. Is it possible that while it is reading infor-

mation from a data structure shared with a co-module that this could interfere

with a user-level thread which also wishes to access the same data?

Recalling that this chapter is only concerned with synchronisation at a sin-

gle-CPU node
72

, we realise that the same CPU cannot at the same time be exe-

cuting both at the user level and at the kernel level. Suppose now that the kernel

attempts to coordinate with the user threads not by actively using shared reader-

writer semaphores but merely by looking at their state, assuming of course that

the kernel knows where these semaphores are (e.g. at the beginning of each

shared co-module data structure). One of the following possibilities arises:

a) The semaphore shows that readers are active. In this case the kernel can

also safely read the data. Since the kernel process involved (i.e. the User

Request Process) is executing at a higher priority than the User System

71

 It writes information (e.g. parameter and linkage segments) on a thread stack but this

does not conflict with actions of the co-modules.
72

 because there are several possibilities for designing synchronisation between multiple

tightly coupled CPUs, which cannot all be discussed here.

Chapter 22 THREAD AND PROCESS SCHEDULING 106

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Process (in which user-level threads run) it can also safely read the data,

without adding itself to the set of current readers. Although it can be inter-

rupted by higher priority kernel processes, it will always resume before a

user-level thread can run; hence in this situation there is no conflict.

b) The semaphore shows no readers and no writers. Here too in a single CPU

system the kernel process, executing safely at a higher priority without reg-

istering itself as a reader.

c) The semaphore shows that a writer is active. In this (seldom occurring)

case, the kernel simply sends a request to the user level UTS, telling it to

reschedule. Since the program counter of the user-level thread has not been

updated the user-level thread would simply re-try the kernel instruction

when it is later selected to run by the user level UTS.

Since the kernel never writes shared co-module data, this possibility simply can-

not arise, and hence we have a trivial solution for the problem in a single CPU

system, without all the complexities created by Espenlaub's solution [4, pp. 172-

173].

8.2 Surrogate Threads

Sometimes the kernel needs to interact with the user system level not simply by

reading data, but by executing an algorithm involving non-kernel code. To

achieve this it can activate a surrogate thread. Such threads are designed to car-

ry out special tasks on behalf of the kernel. In some cases they carry out tasks on

behalf of the kernel, e.g. helping with the login activity (see section 11 below),

but sometimes they assist with the execution of user activities in special situa-

tions such as executing bracket routines (see chapter 24) or assisting with the

execution of remote inter-module calls (see chapter 28).

Surrogate threads are prepared at system initialisation and can be activated

when needed by the kernel. They can be implemented as follows.

a) For each kernel service a pool of threads is set up in its own process con-

tainer as part of the system initialisation. The kernel is then advised how

many such threads (i.e. thread stacks) have been created and in which con-

tainer they are held.

b) The kernel maintains a bit list for each service pool in which each bit corre-

sponds to a thread. It can then treat this as a resource set and so quickly se-

lect a currently unused surrogate thread and determine which thread has

been allocated.

c) The threads are identified in the system via thread capabilities which as

usual contain the node number, the process container number and the thread

number. However the type field in a thread capability for a surrogate thread

is not "thread" but "surrogate thread".

Chapter 22 THREAD AND PROCESS SCHEDULING 107

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

d) As part of the system initialisation the Thread Manager for each surrogate

thread pool creates the corresponding number of threads and in these builds

up an appropriate addressing environment. Typically this involves setting

up values such as the following:

– images of the kernel pseudo-register values and segment registers (e.g.

segment register 5 and if the routine needs parameters, segment regis-

ter 0 as well as other relevant registers such as the Thread Security

Register, as appropriate
73

;

– appropriate values in the capability accessibility area.

– parameter values in the input parameter segment.

e) Not all values can be set up at system initialisation time and some may need

to be set up immediately before the kernel activates a thread (e.g. the code

segment register and program counter to address the code
74

). What can ac-

tually be set up at what time depends on the individual cases. Similarly

some registers may need to be invalidated when a surrogate thread com-

pletes a task.

e) When the addressing environment is fully prepared the kernel can activate

the thread by causing an interrupt into the UTS, passing to it a surrogate

thread capability, as an identifier. The UTS does not keep a complete list of

surrogate threads, but adds them when advised by the kernel and deletes

them when advised by the thread.

f) The UTS schedules them using the normal kernel instruction switch_

thread, providing the thread capability (and the usual kernel capability) as

operands.

g) When a surrogate thread has completed its task it calls the normal UTS rou-

tine (killMe()). This then uses the kernel instruction switch_delete

which advises the kernel that the current (in this case surrogate) thread

should be deleted. The kernel can determine from the type field in the

thread capability that the thread to be deleted is a surrogate thread, in which

case the kernel returns the thread to its deallocated status.

This may sound like a complicated mechanism but it is in fact simpler, more ef-

ficient and more flexible than carrying out a normal inter-module call, for ex-

ample, or trying to implement the forced module calls suggested by Espenlaub

A first example of how surrogate threads are used in practice is provided in the

section 11.

73

 see chapter 26.
74

 These cannot be part of the system initialisation, since they change dynamically as each

thread executes.

Chapter 22 THREAD AND PROCESS SCHEDULING 108

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

9 Handling Synchronous Interrupts

In section 4 four kinds of synchronous interrupts were listed. The first of these

(kernel instructions) is straightforward to handle, as we have seen above, in that

the interrupt analysis routine transforms these into messages placed in the buffer

of the User Request Process. Now follows a brief discussion of the other three

cases.

9.1 Page Faults and Related Interrupts

In chapter 17 section 3 we referred to Espenlaub's suggestion which would al-

low the kernel to make so-called 'forced method calls'
75

 to interface routines of

its co-modules and to examine their returned results in order to obtain infor-

mation which it might need. This suggestion is by no means as simple to imple-

ment as it may sound and has therefore been rejected as a general technique for

the final SPEEDOS system, although it would theoretically be useful, for exam-

ple, to call an interface routine of a container's Virtual Page Table Manager in

the course of resolving a page fault. However, we will see in chapter 23 that

there is a much more efficient way of achieving this particular requirement.

9.2 User Errors and Security Violations

An error in the execution of a user thread (see cases (c) and (d) in section 4.1

above) implies that normal execution of the thread cannot immediately continue.

Hence there is no problem in handling the error via an inter-module call to the

appropriate error handling module on the faulting thread stack.

In this case the kernel's interrupt analysis routine places details of the inter-

rupt into the input buffer of the kernel's User Request Process. This saves the

thread's status (from the kernel analysis routine's register save area) as it would

if the UTS had issued a kernel thread_switch or an inter-module call instruc-

tion. It then creates a new stack frame (including input parameters based on the

interrupt details) at the top of the thread stack. The kernel process then "fakes"

an inter-module call to the required entry point of the co-module to be activated,

which may differ for different errors, but should always be a co-module with a

fixed index number in the current container.

For non-sensitive program errors this could, for example, be a white box

debugger co-module (at a fixed position in the co-module table, thus allowing

the kernel to generate an appropriate module capability to fake the co-module

call).

For protection violations the co-module called is always a system co-

75

 This should not be confused with the mechanism for passing interrupts to the UTS, dis-

cussed in the previous section, nor with the forced inter-module call.

Chapter 22 THREAD AND PROCESS SCHEDULING 109

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

module, which first carries out security related tasks such as logging the error

and might then optionally be programmed to activate a user defined module on

the user thread stack, e.g. to carry out debugging (as described in (c) below).

When the stack has been fully prepared, the kernel then starts its execution

(as for a normal inter-module call). The user level UTS does not need to be in-

formed of this, because it was not informed of the interrupt and so assumes in

any case that the thread is executing.

On completion of the error handling module it might be necessary to advise

the Thread Control Manager to delete the current thread, or if the problem is re-

coverable, the kernel can arrange an exit back to the thread state as it previously

existed.

One potential danger with this approach was mentioned by Espenlaub, re-

calling that the issue of stack overflow might occur as in systems such as the

Burroughs B6700 (see chapter 8 section 8). However, with the availability of

vastly more main memory and much larger virtual addresses, together with the

paging design presented in chapter 23, this issue is no longer relevant, provided

of course that precautions are taken to avoid it.

10 Handling Asynchronous Interrupts

The kernel receives interrupts which are not directly related to the kernel process

or user thread) which is currently executing. The most important of these inter-

rupts fall into two groups: general device interrupts (e.g. from printers, from

keyboards) and disc interrupts.

Of the remaining asynchronous interrupts only normal asynchronous inter-

rupts from hardware devices are now discussed, since in chapter 23 we will dis-

cuss disc interrupts (which are related to the virtual memory).

10.1 Espenlaub's Proposal for Handling Asynchronous I/O Interrupts

For handling asynchronous interrupts arising from device completions and simi-

lar cases Espenlaub suggests handling these almost entirely outside the kernel,

with the cooperation of the UTS in an out-of-process style. This implies that

such user level threads contain device drivers which must often send messages

to other user threads that are using the device, which therefore requires a facility

to do this. My own intuition is that device drivers are best handled in as in-

process modules in the user thread which wants to use them. This means for ex-

ample that module capabilities can be used in the normal way to determine

whether a user thread has the right to activate a device. We therefore now ex-

plore this possibility for handling asynchronous interrupts.

Chapter 22 THREAD AND PROCESS SCHEDULING 110

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

10.2 Handling Input-Output Operations In-Process

The basic idea is based on the fact that asynchronous interrupts usually arise as a

result of a user thread requesting an input/output (I/O) operation. The user

thread may then wait for the I/O request to be completed. This occurs in the

form of an asynchronous interrupt, and the user thread must then be reactivated.

(The only significant exception is the management of memory device (e.g. disc)

interrupts, which are normally part of the SPEEDOS virtual memory and are

therefore a special case, discussed in chapter 23.)

10.2.1 In-Process Device Drivers

The main issue which concerns us at this point is what part the kernel plays in

the above pattern. The most important question is how device drivers fit into the

pattern. These are special hardware modules (usually supplied by device manu-

facturers), which contain the detailed knowledge needed to "drive" the device,

i.e. to make it function correctly.

In conventional computers there are two ways of achieving this, depending

on the hardware design. One is a special hardware instruction (here called 'start

device'), which can only be executed when the computer is currently in a privi-

leged mode (corresponding to SPEEDOS kernel mode). Alternatively, the hard-

ware might use memory mapped I/O. (For more detail see volume 1 chapter 6.)

In SPEEDOS memory mapped I/O is strongly preferred, since in this case the

only special privilege required is that a segment register is loaded to address the

device memory. To achieve this, the device driver is "simply" a module which is

invoked by a normal inter-module call and thus executes in the thread of a user

wishing to use the device. The device driver, when invoked, uses the kernel in-

struction load_devSR in order to gain access to the device in question, specify-

ing as operands the number of the segment register to be loaded, a device capa-

bility which defines the device via a channel number and device number and a

normal kernel capability authorising the caller to call this kernel instruction. The

device capability provides evidence that the current thread/module is authorised

to use the device, and at the same time identifies the device for the kernel.

The main question remaining (in this context
76

) is how the deactivation and

reactivation of the user level thread are organised. A kernel device process first

becomes aware of a user thread's need to use a device when a device driver in a

user thread requests the loading of a segment register via the kernel load_devSR

instruction. This can then be the used to access the device via memory mapped

I/O. When the thread reaches the point at which it needs to wait for the result of

76

 Issues such as organising the use of devices and spooling of printer output are questions

for the operating system design, which will be discussed in chapter 33.

Chapter 22 THREAD AND PROCESS SCHEDULING 111

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

an I/O operation, it calls the Thread Control Manager for the thread in which it

is active, requesting this to call the user level UTS to suspend it pending an in-

terrupt from the corresponding channel and device number. To ensure that the

interrupt will eventually be passed to the correct thread, the UTS executes the

kernel instruction wait_interrupt, which passes a copy of the device capabil-

ity to the kernel. (This enables the kernel's device process to maintain a tempo-

rary list of thread/device combinations waiting to be activated, called the Wait-

ing Thread List.) The UTS then suspends the thread, waiting for the kernel to

interrupt it (using the usual pseudo-interrupt system, see section 7.4).

10.2.2 Handling the Interrupt

Eventually the kernel will receive an asynchronous interrupt from the device,

which it passes to its device process. This must simply check the result from its

Waiting Thread List, delete the matching entry and create an appropriate buffer

entry for the kernel's User Interrupt Process, which will eventually cause the us-

er level UTS to be interrupted. This in turn can reactivate the thread waiting for

the device. The latter can then continue to re-use the device following the same

pattern, until it either invalidates its device segment register or it exits from the

device driver.

10.2.3 Activating Related Threads

There are some asynchronous interrupts which require a small extension to this

scheme, i.e. when a thread that receives an asynchronous interrupt needs to acti-

vate other threads which also have an interest in the interrupt and need further

information about it. In this case there is no problem in activating another thread

which is waiting, but the mechanism for activating threads (see chapter 21 sec-

tion 1) provides no facility for passing on new information to the activated

thread. For this purpose the kernel provides an instruction put_message which

allows the thread receiving the interrupt to pass a short message of one word (8

bytes) to the kernel, and a further instruction get_message, allowing the recipi-

ent to receive the message. To ensure that this cannot be used as a covert chan-

nel, the following precautions are taken:

• both instructions require a kernel capability;

• the put_message instruction requires that the user of this instruction pro-

vides a thread capability for the destination thread;

• the get_message instruction requires that the user of this instruction pro-

vides a thread capability for the sending thread;

• the put_message instruction requires that the user of this instruction pro-

vides a module capability for the destination module;

Chapter 22 THREAD AND PROCESS SCHEDULING 112

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

• the get_message instruction requires the user of this instruction to provide

a module capability for the sending module;

• When the get_message instruction is executed, the kernel not only returns

the message to the destination module, but also clears it to zero.

An example of the need for this mechanism appears in chapter 32 section 4.

10.2.4 Adding New Devices to a Running System

One of Espenlaub's aims was to make it possible to add new devices to a run-

ning system. This is achieved in the above alternative in that device drivers are

still located outside the kernel, but instead of having special threads for this pur-

pose they are simply treated as (in-process) modules in the thread using the de-

vice. Their only special feature from the user's viewpoint is that the user may

need to provide them with a device capability as a parameter.

In this design a kernel process which receives a device interrupt can have a

standard design which simply reacts according to a channel/device number.

When a device driver is installed, this follows the normal rules for in-

stalling a module. It is of course possible to install multiple device drivers in a

single container and it may even be appropriate for them to communicate with

each other or share data. In this case they can be installed as cooperating co-

modules (see chapter 18 section 7). Device capabilities which give them the

privilege to access I/O devices can in principle be stored in the constant seg-

ments of their code. However, since these serve as evidence that a thread has the

right to use the device, it may be better to insist that device capabilities are

passed as parameters to the device drivers, as is discussed in the next subsection.

10.3 Device Management

In order to use an external device a thread needs a device capability. Users must

obtain such device capabilities from a source which has such a capability. This

might for example be from the creating user when a new user is created, or it

might be from an operating system module, or a system manager, or a central

directory of device capabilities, etc. Which user processes and threads obtain the

privilege to use external devices is a policy decision, not a mechanism and is

therefore not part of the kernel.

10.4 Handling Interactive Interrupts

Interactions with modern keyboard-monitor devices are in principle similar to

interactions with other devices, involving a device driver mechanism. In princi-

ple these can be handled like other input-output devices (see previous section),

but there are several unusual issues. First, several (but not all) modules which

are active in the same thread must have easy access to a device capability. Sec-

Chapter 22 THREAD AND PROCESS SCHEDULING 113

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ond, different threads may need access to the same device. Third, the question

arises how the threads with a need to access the same device acquire the re-

quired capability, since there is no guarantee that a user will always log in at the

same device.

If we make the assumption that each user logs into a separate device, and

that this only displays information to which the user should have access, then the

sharing issues are no problem. A mechanism has already been provided in chap-

ter 19 section 5 which allows authorised modules in a thread to gain access to

standard input and output modules for the thread, via a capability accessibility

area
77

. Once a device driver capability is accessible to one thread it can share

this with other threads, like any other capability. The more interesting question,

from our present point of view, is how this device driver capability gets allocat-

ed and placed in the capability accessibility area.
78

 The answer can be found in

the next section.

11 User Commands to the Kernel

Sometimes a user may need to instruct or make requests to the kernel, which are

comparable with operator commands in early systems. For example he may need

to advise the kernel that he wishes to remove an external disc from the node.

Such requests may involve several interactions, which are best organised initial-

ly outside the kernel. These are handled in SPEEDOS via normal threads owned

by the system administrator, or in single-user systems by the owner of the com-

puter. This thread communicates with the kernel by executing privileged kernel

instructions and examining the responses (see chapter 17, section 6). To execute

these instructions the thread needs appropriate kernel capabilities, which are

provided with a new system in segments of the code which the appropriate

thread executes.

12 Long Suspending Processes

Volume 1 chapter 15 section 3 explained how interactive persistent processes

(i.e. threads in SPEEDOS terminology), are not destroyed when they log out (in

contrast with conventional systems) but continue to exist in a "long suspended"

state. Then when the user logs in again they return to the active state, continuing

from the first instruction after the long-suspend call. This will typically be in a

77

 How some modules in a thread can be restricted from obtaining capabilities via the ca-

pability access area of a thread will be described in chapter 26.
78

 For those programmers who are only familiar with the out-of-process model and who

are concerned about how the appearance of a screen can be coordinated for different

threads/processes, the answer is simple. Multiple threads can share a module (with ac-

cess coordinated by semaphores) that holds a representation of what is held on the

screen!

Chapter 22 THREAD AND PROCESS SCHEDULING 114

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

routine of a user module which can then check the authenticity of the person at-

tempting to log in.

The impression was given in volume 1 chapter 15 that the kernel is respon-

sible for managing long suspends. However, that preceded the discussion on the

structure of the SPEEDOS kernel and in particular the possibility of using secu-

rity-sensitive co-modules to carry out kernel-related tasks. In fact, the core ker-

nel plays only a relatively small direct role in managing SPEEDOS long sus-

pends.

This is important because the kernel itself stores no persistent information.

If the kernel is shut down and restarted, it must rely on information in its co-

modules to enable it to re-start threads logged out at the end of an earlier system

session. Hence it cannot rely on maintaining its own list of logged out user

threads. Instead a co-module, the Login Service Module, maintains a list of

logged out threads. A possible format for entries in this list is shown in Figure

22.3.

The User Prefix is a unique "username" of up to 16 bytes. However, this is

not normally used to login. Instead, the user supplies a current login name, also

up to 16 bytes in length, which can be changed whenever he logs out. Hence a

different login name can be used not only for each thread or user process but

also for each session if desired. Since the current login name is not guaranteed to

be unique, in the case of a clash the system can request the user prefix in order

to disambiguate the name. This mechanism has the advantage that the user does

not normally even have to reveal his username when logging in. The user prefix

is supplied to the Login Service Module by a new user when his first process is

created.
79

 If he proposes a prefix which already exists for another user, he must

choose a different one which is not already in use.

12.1 Logging Out

The "logout module" shown in Figure 15.5 and later diagrams of volume 1 chap-

ter 15 can now be equated with the Thread Control Manager responsible for the

process container of the logging out thread. It has a semantic routine, called

logout, which is the logout command for threads in its container. This should

only be called via a thread capability for a thread which wishes to long suspend.

79

 Creating new users is described in Chapter 31.

Figure 22.3: Entry in the Login Service Module's Logged Out List

Current Login Name Thread Capability User Prefix

Chapter 22 THREAD AND PROCESS SCHEDULING 115

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Depending on the parameters of the logout routine the calling thread alone, or a

defined set of threads in the process or all the threads in the process can be sus-

pended (and later re-activated).

Here we describe the case of a logout which involves only the currently ac-

tive thread. Situations involving further threads and subthreads are left to an ac-

tual operating system designer, since they may involve the management of er-

rors (e.g. if a thread has claimed a semaphore or is in a semaphore queue when

its owner issues a logout command), which would by far exceed the scope of

this book.

12.1.1 TCM Actions in Preparation for Long Suspensions

The TCM logout routine performs the following actions:

a) It carries out any necessary housekeeping duties, such as noting the logout

time, etc. Via a parameter to the TCM's logout routine the thread/process

owner is also given the opportunity to change the current login name.
80

b) The TCM's logout routine executes a kernel instruction invalidate_

IO_cap to invalidate the device capabilities for the current keyboard and

screen devices.

c) The TCM invokes the logout routine of the node-wide Login Service

Module, passing to it the old login name and optionally a new login name.

Since it is possible to change the current login name each time the service

module's logout routine is called, a hacker cannot even rely on the

"username" part of a logged out process or thread
81

.

 The Login Service Module's logout routine obtains a thread capability for

the current thread (from the capability accessibility area) and makes an en-

try in its Logged Out List of suspended threads, noting the new login name

in its list if appropriate, and returns to the TCM.

d) The TCM then invokes the UTS's suspend_me routine.

Note: all these actions are taken in the thread which requested the logout.

80

 A login name may include characters such as hyphen, full stop, forward slash, back-

slash, etc. From the viewpoint of the Login Service Module such names are simply

viewed as a string to be matched. Only the character used by the kernel to recognise the

end of a character string cannot appear in a login name.
81

 In case a user forgets the name, he can invoke a different semantic routine of his Thread

Control Manager in a different thread. This can then recover the forgotten name for him

without having to reveal this to a system manager or superuser, see Chapter 5 section

7.1. (In a mandatory protection environment (see Chapter 3) it is possible to provide a

semantic routine for the Login Service Module which gives a 'superuser' access to its

list of logged out users.)

Chapter 22 THREAD AND PROCESS SCHEDULING 116

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

12.1.2 User Thread Scheduler Actions for Long Suspending Threads

The UTS selects a new thread to be scheduled and calls the thread_switch in-

struction of the core kernel
82

. This instruction causes the current state of the

thread to be stored at the base of its stack (as usual). At this point the logout is

effective. From this we see that the core kernel has no direct role in logging out

activities.

12.2 Logging In in a Multi-User System

The most interesting issue from the viewpoint of the kernel is how a logged out

thread is reactivated. Espenlaub's description [4, pp. 200-201] is not detailed. It

simply refers to a "node-wide login service" which is out-of-process and which,

after establishing the login name from the user, calls the corresponding Thread

Control Manager's login routine. This then calls the UTS to reactivate the ap-

propriate thread(s). This sounds very plausible, but it leaves unexplained (a)

how the login service thread(s) can be activated when a user wants to log in and

how it discovers which terminal is active. It also leaves open the efficiency issue

(for the case that in a large system multiple users attempt to log in at the same

time). Here is a more detailed and somewhat modified, largely in-process, alter-

native.

12.2.1 Handling an Unexpected (Asynchronous) Keyboard Interrupt

A user normally signals his intention to log into a system by activating a free

interactive device, which creates an unexpected asynchronous interrupt. The

kernel's interrupt analysis routine will pass the interrupt to its device process.

This detects from its Waiting Thread List that there is no process designated for

handling this case, so the kernel puts a message (consisting of the device source)

into the buffer of the kernel's internal "login" process.

12.2.2 The Kernel's Login Process

The primary purpose of the login process is to activate a surrogate thread in the

privileged Login Service Module. This thread is responsible for obtaining a user

name for the logging in user.

12.2.3 The Login Surrogate Threads

The kernel's login process uses a resource set semaphore to claim a free surro-

gate thread (see section 8.2). After it has prepared for the activation of the surro-

gate thread (including placing a device capability for the interrupting device into

the thread's capability accessibility area), the login process creates an interrupt

82

 A 'sleep' parameter can be used by the kernel as an indication that the stack can be

paged out. It otherwise takes no special actions with respect to logging out.

Chapter 22 THREAD AND PROCESS SCHEDULING 117

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

into the UTS, indicating (by passing its surrogate thread capability) that the

thread is ready to be scheduled.

The UTS then schedules the surrogate thread (using the thread_switch

instruction). The surrogate thread, executing in the Login Service Module, sends

a login request to the device and suspends itself in the UTS awaiting a reply (see

section 10.2). It will then need to synchronise its access to the Logged Out List

via the usual reader-writer semaphore. If a search shows that the name provided

is on the list it will remove the entry, release the semaphore, and execute the

kernel's transfer_terminal instruction. This has three operands: a kernel ca-

pability allowing it to use the instruction, the device capability for its current

thread, and the thread capability for the logged out thread which is to be activat-

ed. The kernel then stores the device capability in the capability accessibility

area for the thread to be logged in.

 The surrogate thread then calls the UTS killMe routine, passing the thread

capability from the matching entry in the list as a parameter and an indication

that this thread should be activated. When the UTS has done this it calls the ker-

nel's switch_delete instruction and the surrogate thread is returned by the ker-

nel to the pool of surrogate threads.

Since the kernel surrogate thread requires only few instructions its job is

done very efficiently.

12.3 Logging In in a Single User System

In a single user system the start-up phase of the devices will cause the system to

be initialised and then can request his log-in details without the above complica-

tions, but carrying out the same security checks.

12.4 Logging In (the User Thread Level)

After the UTS has activated the logging in thread, this returns back to the TCM's

logout routine (which had been called as part of the logging out procedure).

This continues to execute the second part of the logout routine, which can then

carry out the following.

a) It performs housekeeping duties (e.g. note the login time).

b) It next calls the application's authentication module
83

, which then challeng-

es the logging in user to provide some evidence that he is the valid user.

(This is possible because the kernel has already set up a capability for the

interactive input-output device in the thread's capability accessibility area,

see section 11.2.3 above.) There is no restriction on the form this check can

83

 A capability for the authentication module has previously been provided to the Thread

Control Manager by the owner of the thread.

Chapter 22 THREAD AND PROCESS SCHEDULING 118

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

take. If the authentication is successful the Thread Control Manager then

exits back to the calling module, which then continues as normal. It may al-

low repeated login attempts, but if the authentication finally fails it returns

this information to the TCM, which again logs the thread out. The TCM can

also provide a semantic routine which allows the user to change the authen-

tication module by providing a new capability.

13 Scheduling Real Time Systems

Espenlaub argued that his kernel design better supports real time systems "which

cannot tolerate deviations from the schedule", in that the UTS has complete con-

trol of scheduling both normal and interrupt threads [4, p. 171]. This could cer-

tainly be the case in some systems, but in many real time environments handling

interrupts by priority is a satisfactory approach.

In the environment proposed above for SPEEDOS, real time systems which

rely on priority scheduling can be supported effectively by adding the real-time

threads to the list of kernel processes in the KPT, using the Kernel Process Man-

ager to achieve this. Such threads will not be persistent, but like the kernel's own

processes they will usually be "lightweight" processes and, like the kernel's own

processes, they can be initialised by a user level co-module when the system is

loaded.

SPEEDOS was not initially intended for use in real time systems, but there

appears to be no reason why Espenlaub's concept could not be implemented in a

variation of the standard kernel for systems which are schedule-based. Alterna-

tively, and probably more efficiently, a variant of the kernel process scheduling

mechanism described above in sections 6 and 7 could be implemented.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 23

Virtual Memory Management

at a Single Node

This chapter describes one of the SPEEDOS kernel's most significant functions,

the management of the virtual memory. In many respects this differs substantial-

ly from virtual memory management in conventional systems. The main reason

for this is that SPEEDOS adopts a significantly different approach in terms of

both the persistence of the virtual memory and its distribution over the internet.

Several aspects of the SPEEDOS design presented in this chapter are based

on ideas which were successfully implemented in the MONADS kernel [21], the

very substantial difference being that SPEEDOS "outsources" more complex

kernel functions into security-sensitive co-modules.

In this chapter we make the simplifying assumption that all discs compris-

ing the virtual memory at a node are always on-line at that node. In later chap-

ters this restriction will be relaxed.

A small amount of information in this chapter is repeated from chapter 11,

to save the reader from the need to frequently refer back to, or to re-read, that

information, which is very considerably expanded in this chapter.

Appendix 1 of this volume provides a detailed overview and diagrams of

the formats of relevant data structures from this and later chapters.

1 Hardware Translation of Virtual Addresses

So far we have presented a SPEEDOS virtual address as consisting logically of

four 64 bit words, as is illustrated in Figure 23.1.

Node Number Disc # in Node Container # in Disc Offset in Container

Figure 23.1: A SPEEDOS Virtual Address

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 120

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The node number is a unique SPEEDOS identifier of a node. Each SPEEDOS

computer has a distinct node number which is built into its hardware and can be

read (but not modified) by the kernel or other software. In order to simplify the

allocation of node numbers the first 8 bits of the node number represent a manu-

facturer number. However, this does not affect the calculations in this chapter.

The disc
84

 number within a node is allocated by the kernel when it initialis-

es a disc
85

 and is unique within that node. In reality a physical disc can be subdi-

vided into partitions. For this reason the last four bits of the disc number are

used to indicate a partition number on disc (see chapter 27), hence reducing the

number of physical discs which can be created on a node to 2
60

.

The container number within a disc is allocated when a new container is

created on a disc (see chapter 19); this is unique within the disc on which the

container resides. The first 8 bits of a container number are an index field, indi-

cating a module number (within data and code containers) or a thread number

(within process containers)
86

. The next eight bits are also reserved; they hold a 3

bit type field, a one bit "valid" field and four status bits, all of which are only

relevant in the context of capabilities and will be explained in later chapters. The

effect of this is that only 48 bits are used to identify a physical container. This is

significant in the present chapter.

The "offset in container" part of a virtual address itself decomposes into the

pair «page # in container, offset in page», see Figure 23.2. The maximum size of

a container is limited to the maximum size of a disc, since a container must fit in

a single disc. With current technology this suggests a maximum container size

of 2
42

 bytes. Since the page size is assumed to be 8 KB (i.e. 2
13

 bytes
87

), the page

number part requires 29 bits. This allows a container to have a maximum size of

4 TB. Of course most containers will be very much smaller than this.

In view of the above remarks the maximum size of a SPEEDOS address

from the viewpoint of virtual memory management is as shown in Figure 23.2.

84

 The word "disc" is here used generically to describe all devices which can persistently

store information, including read-only media.
85

 It is discussed in a later chapter how a disc can be used on several nodes.
86

 Recall that multiple modules/processes can be held in a single container
87

 It would be possible to implement byte addressing via the instruction set, as in the Al-

pha computers. This would affect some of the calculations in this chapter.

Figure 23.2: A SPEEDOS Address for Virtual Memory Management

Node Number Disc # in Node Container #

in Disc

Page# in

Container

Offset

in Page

64 bits 64 bits 48 bits 29 bits 13 bits

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 121

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

A virtual page number has a unique network-wide structure, shown in Fig-

ure 23.3, where a container identifier consists of <node #, disc #, container #>.

In principle the task of an address translation unit (ATU) at a specific SPEEDOS

node is to map such virtual page numbers onto main memory page frames.

In the MONADS-PC system, which had 60 bit virtual addresses, the ATU

was actually able to handle the equivalent of this. Each virtual address in the

MONADS local area network was unique. David Abramson designed and built

an ATU (with inverted page table functionality), based on a hash table imple-

mented in hardware, which could translate any virtual page number in the net-

work to a page frame number (or cause a page fault interrupt) [22]. That was in

the late 1970s/early 1980s.

Since then the size of main memories has increased enormously, making

such an implementation economically infeasible. But not only that; MONADS

had only 60 bit virtual addresses (including two bits to indicate on which of the

four nodes in the MONADS local area network the container resides), whereas

in SPEEDOS we are discussing worldwide unique 218 bit virtual addresses.

These parameters would create two sets of problems for a SPEEDOS im-

plementation based on the MONADS-PC ATU design. First, the increased size

of main memories means that the number of entries in an ATU based on the

MONADS approach would increase very considerably. Second, because the

width of SPEEDOS virtual addresses is vastly greater than that of MONADS

virtual addresses, the width of entries in a MONADS-style ATU would also be

significantly larger.

The first problem alone makes a MONADS style implementation infeasi-

ble, but the second problem creates substantially greater problems. Hence a dif-

ferent approach is needed in order to translate SPEEDOS virtual page numbers

into main memory page frame numbers. In the next two subsections we consider

these two problems in turn. The aim is to achieve the translation of SPEEDOS

virtual addresses in about the same time as the simpler addresses of current sys-

tems are translated and if possible to resolve page faults more quickly than in

current systems.

1.1 Managing the Number of Main Memory Page Table Entries

In the early 1980s, at the time the RISC idea was becoming popular, the problem

Container Identifier Page # in Container

Figure 23.3: A SPEEDOS Virtual Page Number

29 bits

176 bits

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 122

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

of increasing main memory sizes had already begun to emerge. In Chapter 11 it

was illustrated how RISC designers began to cope with the problem by design-

ing systems in which the entire address translation hardware consists simply of a

translation lookaside buffer (TLB), which did not have enough entries to trans-

late all virtual page numbers in the main memory. Figure 11.7, which for con-

venience is repeated here as Figure 23.4, indicates the task of the software in this

RISC scenario.

Translated into SPEEDOS terms, the core kernel software is responsible for

the mechanism aspects of the software code functionality shown in blue in the

diagram. Because the TLB is too small to provide a mapping for each page

frame in the entire main memory, a complete mapping from page frames to vir-

tual pages (i.e. an inverted page table
88

, in SPEEDOS terminology the Main

Memory Page Table, MMPT) must be maintained in software. The MMPT is

permanently locked into main memory.

When a TLB miss occurs the hardware interrupts into the core kernel code.

This first examines the MMPT to establish whether the miss occurred simply

because the TLB is not large enough to hold an entry for each page. If that is the

case, it updates the TLB using the information in the MMPT and loads the ap-

88

 In this context the use of the name inverted page table is not intended to imply a specif-

ic implementation, merely the principle that the actual data structure implemented can

rapidly translate a virtual page number into a main memory page frame number, without

holding information about virtual pages not currently in the main memory. This might

for example be a software implemented hash table which has similar functionality to

that of the MONADS ATU mentioned above.

Virtual Page Number Offset in page Virtual Address

Figure 23.4: The TLB as the entire ATU

Page Frame Number Offset in page

Translation Lookaside Buffer (TLB)

TLB miss

Access Page Table

If page not present

bring it into main memory

Load Page Table

Entry into TLB

TLB hit

Main Memory Address

Software code

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 123

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

propriate information into the TLB, allowing the process to continue execution

without being suspended.

On the other hand if the TLB miss arises because a genuine page fault has

occurred, the kernel must resolve the fault. This activity cannot take place syn-

chronously, because the effect would be that all other processes would be held

inactive until the page fault is resolved. Espenlaub suggested that the Container

Manager be responsible for resolving page faults [4, p. 159], but this is an ex-

pensive solution, which can be more efficiently handled by kernel processes di-

rectly.

1.2 Managing the Width of TLB Entries

The second ATU problem for SPEEDOS systems is the width of entries, which

arises primarily because a unique logical SPEEDOS address would require very

wide TLB entries. This follows from the decision to support unique worldwide

container numbers. Providing an implementation of this in the TLB would be

especially costly because for each TLB entry a separate comparator is needed in

hardware for each bit in the virtual page number. Hence an alternative solution

is needed.

In practice TLBs can be implemented in different ways. In some conven-

tional systems an address space identifier (ASID) can be associated with virtual

page numbers in each TLB entry, thus making addresses belonging to different

programs unique (within the TLB), with each currently active thread using a dif-

ferent address space identifier. On other systems the TLB restricts access to a

single address space, so that the TLB has to be flushed on each context/thread

switch.

We now describe how SPEEDOS might effectively use a TLB which was

designed to support only a single address space, i.e. without ASIDs.

1.2.1 TLBs Supporting Only a Single Address Space

If the TLB hardware assumes that only one address space is mapped into the

TLB at a time and that on a context switch the TLB is flushed, this raises a spe-

cial problem for SPEEDOS, because a SPEEDOS container is never active

alone. Typically there are at least three active containers: a process container, a

code container and a persistent data container. Under some circumstances, there

may be more concurrently active containers.

– A module may need access to one or more library code containers (whereby

several library code modules can be held in a single container, as was de-

scribed in chapter 19).

– A need for more data containers can arise if a module provides n-ary func-

tionality (e.g. to allow two sets of file data to be merged into a third, or to

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 124

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

compare two sets of file data).

It therefore makes sense to support up to, say, eight containers concurrently in a

TLB which is flushed on each context switch. To achieve this, the three top bits

of a virtual address (as viewed by the TLB) act as a short container identifier

(SCID)
89

. With three bits used in this way up to eight containers can be concur-

rently active. Figure 23.5 shows how a virtual address can be used to address

eight containers simultaneously in what the TLB views as a single address

space.

The actual mapping of the 3 bits might by kernel convention be defined as

is shown in Figure 23.6.

It should be noted that

 (a) the mapping of containers to actual container numbers in SPEEDOS is a

trivial activity which the kernel can organise as part of inter-module calls

and returns, and in association with the loading of segment registers;

(b) on an inter-module call and also on a thread switch between two threads of

the same process, entries in the TLB for the stack container do not need to

be flushed;

(c) it would be a straightforward matter to implement separate TLBs (and main

memory caches) in hardware for stack, data and code addressing in an op-

timised processor design.

1.3 The Main Memory Page Table

Figure 23.7 illustrates the basic structure of the SPEEDOS MMPT. In contrast

with the TLB (which in the above proposal contains entries only for the current-

ly executing module), the MMPT contains a complete view of all the pages in

89

 It is also assumed that "stealing" three bits of an address is acceptable, but this is unlike-

ly to be a problem in 64 bit computers, even if the within container address is restricted

to less than 64 bits.

Page# in Container SCID

29 bits 3 bits

Figure 23.5 The Page Number Presented to the ATU

000 identifies the process container of the currently active thread.

001 to 011 identify the currently active code containers, i.e. for the

 main code container and up to two active code library containers.

100 to 111 identify up to four data containers.

Figure 23.6 A Possible Allocation of Short Container Identifiers

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 125

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the main memory, and must therefore hold the full virtual container number and

of course the page number in container of each page currently held in the main

memory.

The SCID is the short container identifier of the page. It is necessary in or-

der that the kernel can work efficiently with the TLB.

The lock count indicates whether the page is locked into main memory. It is

a count rather than a single bit, indicating how many times (if any) the page is

considered to be locked into the main memory, thus allowing different parts of

the system to lock in the page independently of each other. Only when it has a

zero value can the page be considered for discard from the main memory.

The disc address field holds the current disc address of the page, thus al-

lowing a page to be written back to its location in the virtual memory without

having to access the relevant page table.

The idea behind a use bit is to indicate whether the page corresponding to

this entry in the table has recently been used. This bit is set by hardware in the

TLB each time the page is accessed. It is used by the kernel's discard algorithm

to help determine which page(s) to discard from the main memory when a page

frame is needed for a different page. Such an algorithm usually follows the least

recently used (LRU) strategy [23, pp. 323-333], which is based on the high

probability that a page used very recently is likely to be needed again in the very

near future. (Like people, computers cannot see into the future, but this algo-

rithm provides a good approximation.)

The discard algorithm can also receive advice from other modules. For ex-

ample, when a file module becomes inactive (e.g. as a result of all relevant

threads closing it) this information can be passed from the appropriate Segment

Manager to the MMPT module (possibly via the container's Virtual Page Table

module). Similarly when a persistent thread logs out, its pages can be immedi-

ately discarded.

Figure 23.7 Structure of the MMPT

Virtual Page

Number

Lock

Count

Disc

Address

Use

Bit

Change

Bit

RO

Bit

SCID

EX

Bit

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 126

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

A change bit is set in the TLB to indicate that the hardware has detected

that the page corresponding to the entry has been modified. The advantage of

this bit is that if a decision is made to discard a page which has not been

changed, then the page need not be written back to disc.

The use and the change bits are set by the hardware in the TLB entry for a

particular page. The kernel ensures that they are copied into the MMPT, in order

that the kernel can use them when making decisions about discarding pages.

The read only bit is not really required (at the page level) in SPEEDOS.

However, it is included in the design for compatibility with other systems
90

.

The execute bit is not really necessary, since the execute bit in the code

segment register allows the page to be executed as code. It is added for the case

that the Address Translation Unit can also be used in a more conventional way.

Two kernel processes, the Page Fault Interrupt Process and the Virtual

Memory Process are the main users of the MMPT. Their primary functions are

to maintain this table and to determine which pages should be held in/removed

from the MMPT.

1.4 Mapping SPEEDOS Container Numbers onto SCIDs

The use of SCIDs is sufficient (from the hardware viewpoint) to allow SPEED-

OS addresses to be effectively translated by a TLB which was originally de-

signed to translate addresses within a single address space, provided that the

TLB is flushed on thread switches and on other context switches (e.g. inter-

module calls).

However, that is only part of the story. It is also necessary, from the soft-

ware viewpoint, to maintain some form of mapping between the SCIDs and the

corresponding full 176-bit virtual container identifiers, information which is

needed, as we shall see shortly, by the core kernel. To achieve this, the core ker-

nel maintains this mapping in pseudo (or real) processor registers, called con-

tainer registers. As defined above, 8 such container registers are needed, their

functionality corresponding to that defined in Figure 23.6.

With this scheme the segment registers (which are the vehicle via which

virtual addresses reach the TLB) must be loaded by kernel instructions to con-

tain a 3-bit SCID index followed by a within container address
91

. While the TLB

regards the entire structure as an address, the core kernel can use the SCID pre-

90

 In the MONADS systems a read only bit was essential to implement remote paging, but

in SPEEDOS the use of remote paging was rejected in favour of remote inter-module

calls (see chapter 28).
91

 This also has the advantage that segment registers can be much shorter (and therefore

much cheaper) than they would otherwise be.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 127

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

fix as an index into the bank of 8 container registers which it maintains for the

currently active thread, thus allowing it rapidly to discover the full virtual ad-

dress associated with a short address, e.g. when a genuine page fault occurs.

The container registers form part of a thread's current state, and they must

be stored/reloaded along with the values in the thread's real registers (e.g. its

segment registers) on thread switches (as already described in chapter 20). The

kernel sets them up initially when a thread is first activated. Which container

registers need to be stored and reloaded on various kinds of call instructions is

described in chapter 20.

2 The Local Virtual Memory

The SPEEDOS virtual memory (from the viewpoint of a specific node) consists

of the information on its currently mounted discs (which we refer to as its local

virtual memory) together with the information on other discs at other nodes

which it can reach via remote inter-module calls. The latter aspect is considered

in chapter 28. In the present chapter the description concentrates exclusively on

the local virtual memory of a node, as if it were a stand-alone computer.

The most significant difference between the SPEEDOS virtual memory and

the virtual memories of conventional systems is that the SPEEDOS virtual

memory is persistent, i.e. there is no separate file system in the conventional

sense. The files of a SPEEDOS system are not held as entities outside the virtual

memory but are held in containers which comprise the virtual memory. In such

an environment the main (RAM) memory can be viewed simply as a cache for

the all-encompassing virtual memory
92

.

2.1 Virtual Memory Message Blocks

As in the MONADS design the core kernel maintains a heap of virtual memory

message blocks, which are of fixed size and therefore can be rapidly allocated

and deallocated via a resource set semaphore. They enable those kernel process-

es that manage the virtual memory to coordinate their activities with respect to

the state of the virtual memory. The basic idea is that when the need arises (e.g.

when a page fault occurs) a message block is allocated and set up with the initial

details (e.g. of the page fault). It can then be passed between the kernel process-

es, whereby each process updates the message block as a result of its own activi-

ty then places the message block's address in the input buffer of the next relevant

process. When the reason for creating the message block has been fully handled

(e.g. a page fault has been finally resolved) the message block is deallocated and

becomes available again in the pool of message blocks.

92

 see Chapter 12.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 128

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2.2 The Layout of Information on Disc

A SPEEDOS full virtual address contains both the node number on which a new

disc was first initialised and the disc number allocated by the node to the new

disc. At this stage we assume that a disc is always mounted on the node which

initialised it, but in chapter 27 we consider what happens if the disc is mounted

at a different node.

Container number 0 on a disc is a directory of the remaining containers on

the disc; this is located at a well-known address on the disc. It is otherwise or-

ganised like all other containers from the viewpoint of the virtual memory, with

its own page tables (see sections 2.3 and 3.6). It contains the number of the next

unused container on the disc, information about the free space on the disc, the

length of the directory and the directory itself. The latter provides rapid access to

the disc address of page 0 of each container stored on the disc (see Figure 23.8).

When a disc is mounted at a node the kernel reads page 0 of its container 0

into main memory and locks it down until the disc is dismounted (or the system

shuts down). Thus when a page fault has to be serviced from a container held on

the disc, locating the page table for the directory does not itself cause a page

fault (see section 3). But access to the directory entry and to page 0 of the fault-

ing container may cause page faults.

2.3 Organising the Page Tables

A key aim in organising page tables is to minimise the number of additional

page faults which can arise in the course of resolving a page fault. In the

SPEEDOS environment this in principle involves both finding on disc the con-

tainer holding the faulting page and finding the page within the container.

The organisation of the page tables in the MONADS-PC system provides a

Figure 23.8 Structure of a Disc Directory

Number of Next Container

Free Space Organisation

Directory Length

Directory of Disc Addresses

of each Container's Page 0 on the Disc

Start Address on Disc for Large Files (if any)

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 129

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

good starting point
93

. SPEEDOS follows the same pattern as far as possible, but

must take into account both a number of developments in the SPEEDOS design

(especially the use of security sensitive co-modules) and technological advances

which have taken place since the late 1970s (e.g. the greater capacity of discs,

the use of 64 bit addressing, the prevalence of large removable mass storage de-

vices such as USB discs
94

 and of the Internet).

2.4 Security Sensitive Co-modules and the Virtual Page Tables

The SPEEDOS design has introduced the idea of security sensitive co-modules

to assist the kernel. Some of these modules are located in the containers which

they serve, e.g. the Co-Module Manager, the Code Manager, the Segment Man-

ager, the Thread Manager and the Thread Control Manager and, perhaps most

significantly in this context, the Virtual Page Table Manager. An important

question which this raises is the extent to which this development might conflict

with another significant aspect of MONADS, viz. the idea of implementing in-

ternet (and other network) activity via the transfer of pages between nodes (i.e.

remote paging). This issue is further discussed in chapter 28, where the decision

is taken not to use the remote paging technique, but instead to support the idea

of remote inter-module calls (RIMCs) via a technique akin to remote procedure

calls.

3 Structuring the Page Tables of a Container

Each container has a Virtual Page Table (VPT) Manager. In contrast with Es-

penlaub's approach, the VPT Manager is not invoked via an inter-module call by

the kernel to translate virtual memory addresses into disc addresses. However it

is responsible for organising the page table in its container and for preserving

this during system shutdowns.

Assuming that a page (corresponding to a block or contiguous group of

blocks on disc) is 8 KB (2
13

 bytes) in length and that a page table addresses a

disc block in 32 bits, this allows for a maximum disc size of 2
13

 x 2
32

 bytes = 2
45

bytes = 32 TB
95

. This is more than enough to support the proposed maximum

container size of 2
42

 bytes (see section 1). In principle we might envisage an in-

dexable page table with a separate entry for each 8 KB block on a disc, in the

worst case that a single container consumes a whole large disc. However, such a

page table (with 2 entries per 64 bit word) for a single container (restricted to 4

TB in length) would require 2 K addresses per page, and for a complete 4 TB

93

 For a detailed description see [21].
94

 Solid state devices (SSDs) are organised as discs and are here simply treated as USB

discs.
95

 This assumes byte addressing. If word addressing is used, 256 TB could be addressed.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 130

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

disc it would require about 2 billion (short scale
96

) pages, an obviously ridicu-

lous approach.

3.1 Small Files

Most of the files (i.e. co-modules) in most systems are relatively small (e.g. text

files, code files, emails, presentations, spreadsheets, letters). In fact, every con-

tainer is likely to hold a number of small files, e.g. the kernel co-modules asso-

ciated with a container, such as the Co-Module Manager, the Segment Manager,

etc. Consequently a Small Page Manager (within the Virtual Page Table Man-

ager) must be automatically installed in every container as part of the initialisa-

tion of that container.

This might, for example, provide a total space of up to 4 MB (2
22

 bytes) on

disc for all the small files (user files and kernel co-modules) in a container. With

a page size of 8 KB (2
13

 bytes), and assuming on-demand dynamic allocation of

individual pages on disc, the maximum number of entries required for the Small

Page Manager's page table (i.e. a mapping from virtual page number to disc

block number) is 2
9
. Assuming once again that the blocks of a disk can be ad-

dressed in 32 bits (2
2
 bytes), the maximum page table length for the small files

would be 2
9
 x 2

2
 bytes = 2

11
 bytes, i.e. one quarter of a page for each container.

This could be stored in the first page (page 0) of the container, leaving ¾ of page

0 free for other information. This is a more realistic approach.

3.2 Large Files

Large files need not have massive page tables. Because SPEEDOS decouples

the mapping of virtual page numbers to main memory page frames from the

mapping of virtual page numbers to disc addresses, the ATU hardware need not

be aware of the structure of such page tables (for small or large files). This cre-

ates the opportunity to devise alternative schemes, especially for large files.

For example, if all the pages of a large file are placed contiguously on disc,

then a page table can consist simply of a start address on disc and a length. If

space on a large disc is (partially) allocated in units of say 128 MB (or larger)

then a very large file could consist of several "multi-pages" of 128 MB, where

the addresses within a 128 MB unit, each normal page address within a multi-

page unit only needs a start address and length to find the appropriate page. Us-

ing such methods the location on disc of any of the contiguous pages can be cal-

culated rapidly. Such strategies might be used by a Large Page Manager (hid-

den within the Virtual Page Table Manager) for video files and other contigu-

ously stored files, and pre-paging could in some cases be useful. Another possi-

96

 see https://en.wikipedia.org/wiki/Billion.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 131

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

bility is that large files which start life as small files could be organised initially

as small files which after a certain limit is reached could be extended to become

(or converted into) large files. Alternatively they could use small files to index

into large files. Conventional database techniques and/or "big data" techniques

might be used in the Virtual Page Table Manager's Large Page Manager. Differ-

ent containers can use different techniques.

3.3 Page Tables for a Process Container

Like other containers a process container holds security sensitive co-modules,

including in this case a Thread Manager and a Thread Control Manager. Their

needs can be handled using the same small file organisation proposed for the

other security sensitive co-modules.

Beyond that, the kernel needs a thread stack for each user thread in the con-

tainer. This almost exclusively contains inter-module linkage and parameters
97

,

which we refer to jointly as a stack frame. A rough calculation suggests that a

page frame of 8 KB will typically hold at least 8 such stack frames, and most

threads will probably never require more than 8 nested stack frames, so that, be-

ing very generous in most situations (the content of) an entire thread stack will

easily fit into say four pages, and in most cases into one or two pages.

This situation is not comparable with stacks in other in-process systems

such as Multics, the Burroughs 6700 or the ICL2900, because those systems in-

cluded not only linkage data and parameters but all the process-oriented data of

the user programs themselves, and therefore were more prone to the risk of stack

overflow.

Even allowing for say 256 threads in a process container (the maximum

possible using an 8-bit index number), each using four pages, the total space for

all the thread stacks in a process would be 2
8

threads x 2
2
 pages x 2

13
 bytes = 2

23

bytes, double the proposed size of 2
22

 bytes for a small data file. This suggests

that a different page table organisation for process containers might be used, in

which (a) a small file organisation could be used for the co-modules and (b) the

second page (page 1) of the process container could be used for thread stacks. If

the entire second page were used as a page table this would allow for 256

threads each with a stack frame of up to 8 pages. The actual allocation of space

could be left to a further standard algorithm in the kernel.
98

97

 see chapter 20.
98

 This makes sense because the kernel manages space directly on the thread stacks,

whereas the need for new pages in other circumstances is organised by the Segment

Manager (see section 5 below).

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 132

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3.4 Which Page Tables are Needed in a Particular Container?

From the above discussion it is clear that different page table constellations are

needed (and can be organised differently) in different containers. A simple way

to do this is to let a user creating a new container indicate that the container will

be used by him for small files and/or for large files (and if the latter approxi-

mately how large his file will be) or for a process.

Notice that the form which this choice takes need not be expressed at the

user level simply in the form "large file" or "small file", but rather in terms

which can also provide other useful information (e.g. a video file, a code file,

etc.). In some cases it will not be necessary to demand information at all directly

from the user, since user level software often creates such files (e.g. an email

program usually creates email files, some video programs create video files,

etc.). In such cases the program will usually have much more information about

which Virtual Page Table Manager variant is needed. Similarly, in a copy opera-

tion it should be possible for the software to discover from the Virtual Page Ta-

ble Manager of the file to be copied what is the most suitable constellation.

But from the system's viewpoint it will usually be sufficient to provide

standard configurations. A page management table for serving the kernel's co-

modules will always be necessary, but a decision will usually be necessary re-

garding a large file (or files) and a small user file (or files) or a process. A fur-

ther parameter which will be useful (in all cases) is approximately how large the

required page table should be, and in the case of large files whether the table

should be organised as a number of units of fixed (relatively large) size. It is also

conceivable that special managers imitate database techniques (e.g. using "rec-

ord keys") or Virtual Page Table Managers which pre-page (e.g. when it is

known that the information will be accessed sequentially, as for video files and

some commercial files).

3.5 Organising the Page Tables

From the organisational viewpoint a small file page table can be organised at a

fixed position in page 0 of each container, indicating the virtual address where

the individual page tables can be found, as is illustrated in Figure 23.9. This may

differ from the organisation in a process container, since further information

about the individual stacks may be necessary.

The address of the actual page table for the small (8 KB-paged) files is

fixed in page 0 and is known (see section 2.2.1). The page boundaries in the blue

boxes allow the kernel to determine which of the two page tables applies when a

page fault occurs. In each case the address points to information describing how

the actual page table is organised, its start address, the length of the page table,

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 133

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

etc. This information allows the page fault resolution software quickly to estab-

lish which of the page tables is relevant when a page fault occurs. A null pointer

indicates that the relevant page table does not exist. The orange fields allow the

page management software to discover the last valid entry in each page table.

The green fields are the complete page tables for a large file. This structure al-

lows all the page table information for a container to be held in a single page,

i.e. page 0!

3.6 Page Table Code

The above discussion suggests that a number of virtual page table co-module

configurations should be available in SPEEDOS. To ensure the integrity and

privacy of other users' information on a disc, it would be unsafe to allow normal

users to write such modules. Consequently they must be written and tested as

part of the SPEEDOS software, with users being offered a choice of module.

3.7 The Disc Directory

So far it has been assumed that the start addresses of the containers on the disc

are known, and Figure 23.8 assumes that a directory exists to achieve this pur-

pose.

The main issue to be faced for a SPEEDOS disc directory is that a very

large range of numbers (in principle 2
48

) is used to address the containers on a

disc. Such a large number was chosen to ensure that container numbers remain

unique over the life of the disc (and so never have to be re-used
99

). However,

nobody is suggesting that a disc will ever, over its lifetime contain (or have cre-

ated) such a large number of containers. In fact there are very, very considerably

less bits on even a large disc than there are potential container numbers! Hence

such large numbers cannot simply be used as indices into an array which has an

99

 see volume 1 chapter 2.

Figure 23.9 An Index of Page Tables for a Container

Disc address of first 128 MB unit

Disc address of 3rd 128 MB unit

Page boundary for small user co-

modules

Page boundary for the large user

co-modules

Page count for small user co-

modules

Page count for the large user co-

modules

Disc address of 2nd 128 MB unit

Disc address of 4th 128 MB unit, etc.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 134

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

entry for each possible container number. Consequently an efficient technique

has to be used in order to locate the first page of a container on the disc. Let us

first get a feel for the nature of the problem.

The initial impulse of some computer scientists is probably to use a hash

table
100

 to achieve the necessary mapping from container number to disc ad-

dress. But in the present context this technique has a disadvantage, i.e. the entire

hash table must be created in advance, before it can be used. However, this is an

overkill solution for many discs (especially large discs which contain large files

that are rarely deleted).

In practice it would be more flexible to use a data structure which does not

require us to specify in advance the number of containers to be placed on a disc

but which can dynamically grow to suit the actual need, and which can ideally

locate containers in a single probe. That may sound like a tall order, but in fact it

turns out to be quite simple to implement, at least for discs which contain files

that are rarely deleted. The reason for this is that the hash keys (i.e. the container

numbers) are not allocated randomly (as they typically are in problems to be

solved using hashing), but start at zero and increase by incrementing the previ-

ous highest value by one. In our case the first container to be placed on the disc

is container 0, the second is container 1, the third is container 2, etc. This means

that at least in principle an extensible array would be an appropriate data struc-

ture. Let us now consider this in practice.

a) At the beginning of a disc's life it is possible to use only a single page for

the directory. If the directory entries are 32 bits wide, up to 2
11

 (2048) en-

tries fit into an 8 KB page of the directory.

b) When the next container number allocated reaches 2048, the table can be

extended by a page so that the directory can now hold 2
11

 additional entries,

etc. We see that at any point in time the array need only be large enough (in

pages) to accommodate the largest current container number.

c) If a container is deleted, this involves zeroing the relevant entry (without

changing the length of the array).

d) So long as container numbers are relatively small, each page of the direc-

tory can be locked down in main memory.

But now the question arises whether the table can, if necessary, be extended suf-

ficiently to cope with the maximum number of containers likely to be placed on

the disc. To answer this question we need first to consider how many containers

can fit on a disc, and then to allow a reasonable number of deletions and re-use

their space (but not their container numbers).

100

 https://en.wikipedia.org/wiki/Hash_table#Hashing

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 135

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The minimum size of a container (including its data) for a very small file

(e.g. a simple short text file) is one page. The maximum number of pages, i.e.

small files, which would fit into say a 4 TB (2
42

 byte) disc is 2
42

/2
13

 = 2
29

 pag-

es/small files, and these can be addressed (using 32 bits per address = 2
11

 ad-

dresses per page) in 2
18

 directory pages. Suppose now that each file is replaced

2
4
 = 16 times over the life of the disc, the length of the directory would grow to

2
22

 pages = 2
35

 bytes = 32 GB, which is (arguably) relatively insignificant in a 4

TB disc.

The numbers which we have used are more or less worst case (and apply to

discs which at the time of writing are larger than most discs currently in use): in

reality many files on a large disc will be large files, thus reducing the number of

containers used very considerably. Likewise the likelihood that each file will be

replaced 2
4
 times over the life of a disc is improbable, so we can assume that the

extreme case described above is very unlikely to occur. In fact the situation can

arise where a large disc is never even once completely filled. This is likely to

happen ever more frequently as the size of disc capacities increases and the cost

per byte decreases.

On the other hand there will also be cases where over time discs are filled

and their space re-used multiple times. As the extendable array suggested earlier

grows and its entries become ever sparser, some people will be in favour of a

solution which is less wasteful of space, the more so if a good chunk of the main

memory is locked down to ensure faster directory lookups.

I therefore suggest a compromise solution for such cases. When a new disc

is initialised the extendable array solution is initially used. But if its size reaches

a certain limit
101

, the system warns the system manager, who at a convenient

point requests the system to switch to a hash table solution. (Whereas the size of

the extendable array solution is proportional to the number of containers used,

the size of a hash table is proportional to the size of the disc.)

Such a solution might be as follows. The length is determined for a hash

table; this has entries that include a valid bit, a container number (as key) and

the address of the first page on disc of the relevant container, together with an

overflow mechanism to deal with collisions.
102

 Whether the system continues to

work with the indexable array for the container numbers which it already holds,

or adds them to the hash table, is a system design decision. Of course the current

structure of the directory is held in the first page of the directory. Not only the

101

 This limit will depend on the size of the disc in question, on the availability of main

memory to lock down directory pages). The limit can be immediately recognised when

a defined new container number has been reached.
102

 see e.g. https://en.wikipedia.org/wiki/Hash_table

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 136

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

first page of the directory, but also as much of the directory as is reasonable,

should be locked into main memory.

4 Resolving TLB Faults and Page Faults

This section describes how the SPEEDOS system can handle page faults. This is

one of the most significant activities of the kernel, and it serves as an example of

how the virtual memory approach works. But it also belies the belief of many

computer scientists that protection and privacy can be "bought" only at the cost

of efficiency. Whereas some conventional systems are slowed down quite con-

siderably by the fact that they can only resolve a page fault by creating a number

of further page faults (to access page tables), in SPEEDOS page faults can in

many cases be resolved without creating additional page faults to access page

tables (or often in one probe if the relevant directory entry is not in locked down

main memory).

Several kernel processes are potentially involved in the handling of page

faults. The most important of these is the kernel's Virtual Memory Process (VM

Process) which is responsible for controlling the use of the main memory and

organising the transfer of virtual memory pages between the discs and main

memory. It is activated by all other kernel processes which indirectly need ac-

cess to these services. The kernel processes communicate with each other via

virtual memory message blocks, as was briefly described in section 2.1 above.
103

We begin by describing how a TLB fault is handled. This may or may not

lead to a genuine page fault. We then turn to the handling of the page faults

which initially arise during the handling of an inter-module call. Finally we con-

sider normal page faults.

4.1 Handling a TLB Fault

When a TLB miss occurs, this causes an interrupt which the kernel's interrupt

analysis thread passes to the Page Fault Interrupt Process, handing to it the SCID

and address (page and offset) within container of the faulting page (Figure

23.10).

The Page Fault Interrupt Process then establishes the full virtual page number of

the faulting page (by establishing which thread is currently executing in order to

103

 Much of what follows is based loosely on the MONADS PC design as outlined in chap-

ter 8 of Frans Henskens' thesis [20, pp. 159-181].

Figure 23.10: The TLB Fault Information

SCID Page# in Container Offset in Page

24 001 4030

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 137

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

disambiguate the SCID). For efficiency this is placed in a global variable when

the kernel executes a switch_thread instruction. It then scans the Main

Memory Page Table to check whether the missing page is in the main memory.

If so it replaces some other TLB entry with that formed from the information in

the MMPT and exits, causing a reschedule of the kernel processes. Since the

User System Process, in which user threads execute, has not been disturbed by

the TLB fault, the next user level instruction executed (which was executing the

user thread that caused the TLB fault), is simply repeated
104

 as if nothing had

happened.

4.2 Handling Page Faults

We concentrate on the resolution of local page faults in order to keep the initial

description relatively straightforward, leaving a description of the issues associ-

ated with the mounting of discs on "foreign" nodes
105

 to later. Thus it is assumed

in this section that the missing page is on a locally mounted volume.

An important aim in the design of page fault handling is to minimise the

number of page faults which arise (as a result of page table accesses) when re-

solving a page fault. The issue arises in SPEEDOS because more than one page

table must be consulted. In the following scheme the number of page faults can

often be reduced to one (the minimum possible), i.e. the page fault actually to be

resolved can be handled without a further page fault occurring (or with a single

page fault when accessing the disc directory). This is subject to the disc directo-

ry entry being available in locked down memory.

Since there are only a small number of page table organisations, the code

for all of them is part of the kernel code
106

.

4.3 Locking Down Page 0 of a Disc Directory

This is relevant to the handling of page faults because page 0 of the first block

on a SPEEDOS disc holds the start of its disc directory, see Figure 23.8 and sec-

tion 3.7. It is therefore essential that this page (for each mounted disc, including

fixed discs) is read into the main memory when a disc is mounted (or in the case

of a fixed disc at boot time) and is then locked down until the disc is dismount-

ed. (What happens when a foreign disc is mounted is explained in more detail in

chapter 27.)

104

 Recall that the program counter is only adjusted after an instruction completes.
105

 We refer to a disc mounted on a node which is not the creator node as a "foreign" disc.
106

 This differs very substantially from Espenlaub's solution, which involved a forced

method call to the Container Manager and a further call to the Virtual Page Table Man-

ager (see [4, p. 159]). He argued for flexibility, but here efficiency is more important.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 138

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The VM Process maintains a list of mounted discs
107

 and establishes which

kernel disc process is responsible for the disc (if necessary allocating an extra

kernel process for it) and ensures that the disc can be activated (e.g. by organis-

ing for it an appropriate disc driver and checking whether the disc is authorised

to be mounted on the current node). The VM Process then allocates a message

block, records in it a free page frame number and passes the message block to

the appropriate disc process to read its page 0. On a successful read the disc pro-

cess records this in the message block and returns it to the VM Process. This

then marks the page as locked down in the Main Memory Page Table and deal-

locates the message block. Thereafter page 0 of the disc directory can be ac-

cessed as part of the resolution of page faults for that disc without causing a

page fault.

4.4 Page Faults Arising on an Inter-Module (or Similar) Call

Page 0 of a file (or program) container is normally first used (leaving aside the

initial setting up of the containers) when the kernel receives an inter-module call

or similar call to a module in the container. One of the operands of the call in-

struction is a module capability. From this the kernel (executing in the User Re-

quest Process) forms the address of page 0 of the module in order to access the

"pointer to state data" of the module's root segment, which is held in the con-

tainer's page 0 (see Figure 19.6). This allows the kernel to load the address of

the root segment of the module into segment register 5
108

. From the paging

viewpoint this is fortunate, because page 0 of this container also contains its

page tables, which will be needed to resolve page faults for all further refer-

ences to the state data in that container.

The User Request Process (i.e. the process handling the inter-module call)

claims a new virtual memory message block of the type "request and lock page

0" (containing the virtual memory address of the required page 0) which it pass-

es to the VM Process. As a result of this, a reschedule allows the (higher priori-

ty) VM Process to execute before the User Request Process can continue.

When the VM Process receives this message block it checks the MMPT to

see whether the page is already in the main memory. If so it locks the page (not

necessarily the first lock) and returns the message block to the User Request

Process indicating that page 0 is locked down and waits for its next task. If the

page is not in the main memory it sends a message block to the User Interrupt

Process indicating to the User Thread Scheduler that the current user thread

should be suspended and hence should schedule another user level thread. The

107

 This is known as the Local Mount Table (see chapter 27 section 2.2 and Figure 27.4).
108

 See chapter 20 section 8.1

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 139

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

VM Process next updates the message block and passes it to the disc manager

with a request to read the page. The latter eventually reads the page and passes

the message block back to the VM Process, which locks the page and returns the

message block to the User Request Process with an indication of success.

The User Request Process can now access the information required to set

up the root node of the file module to be called, but still requires the information

needed to set up the code segment and the code start offset for the IMC
109

. It

therefore repeats the same procedure by sending a modified "request and lock

page 0" using the address of the container holding the code (which it obtains by

examining the co-module table in page 0 of the data container). When it has the

assurance that page 0 of both containers are locked into main memory it sets up

the appropriate addresses in the user thread's register save area (including the

values for parameter segment registers 0 and 1 as well as the code segment reg-

ister and the state data register 5). It then creates a message block for the User

Interrupt Process indicating that the user thread can now continue. When the

UTS schedules the thread it will as usual invoke the kernel switch_thread in-

struction causing the kernel to change the global variable indicating which

thread is active, load the registers for the IMC and proceed in the new module.

Without taking further precautions it would be possible for the above

mechanism to result in the page 0 of the data container and/or of the code con-

tainer to be locked multiple times, because if the thread has to be delayed to ser-

vice a page fault, the call instruction is repeated. To avoid this the User Request

Process places the linkage segment and an IMC stack record (see chapter 20 sec-

tion 8.1) on the thread stack at the first attempt to execute the call, and always

checks whether this already exists (i.e. whether this is a repeat attempt) before

carrying out an inter-module call. It records in the IMC stack record whether the

page 0 for the file module and page 0 for the code module have already been

locked, to avoid double locking them.

The page unlock operation must be applied (twice) on inter-module returns.

This simply involves the User Request Process, when processing an inter-

module return, in sending a virtual message block to the VM Process in which it

provides the virtual addresses of the two page 0s to be unlocked. If the lock

counts reduce to zero then the pages can, but need not, be discarded.

Finally it is obvious that other kinds of calls (library calls, co-module calls)

can be treated in a similar way, except that for a library call no persistent data

109

 In view of the decision (see chapter 28) not to support remote paging, the file module

and its code module must be stored at the same node. It might be possible to allow re-

mote paging on code modules, since their pages are never modified, but I have not con-

sidered this idea in detail.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 140

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

container is required, since it shares this with its host module.

4.5 Locking Page 0 for the Process Container

As with other containers the normal page tables of a process container are held

in its page 0. However the page table entries for an individual thread stack are

held in page 1 (see section 3.3 above).

The appropriate time to access and lock down a process container's pages 0

and 1 is when the User Thread Scheduler instigates a context change by execut-

ing the kernel thread_switch instruction (see chapter 22), which has two pa-

rameters: a kernel capability demonstrating the right to call the instruction and

the unique thread identifier of the thread to be activated. The latter contains the

unique identifier of the process container. By appending to this the page num-

bers 0 and 1 it forms the virtual addresses of the pages containing the appropri-

ate page table entries (including those for the thread stack). Using this infor-

mation it can claim a new virtual memory message block of the type "request

and lock page 0" (containing the virtual memory address of the required pages 0

and 1) and pass this to the VM Process. This causes a kernel reschedule such

that the VM Process will execute before the User Request Process can continue.

Thereafter if follows a similar procedure to that described in the previous sec-

tion, including requesting that the process container pages 0 and 1 of the previ-

ously active user thread be unlocked.

Note: If the user thread scheduler has no threads which can be scheduled, it exe-

cutes the kernel thread_switch instruction in which the "unique thread identi-

fier" of the thread to be activated has all zero fields. In this case the kernel takes

appropriate action to allow the kernel's own lowest priority process (the "idle"

process) to be executed when it has no work to do.

4.6 The Page Fault Interrupt Process

If a TLB miss turns out to be a normal page fault, the Page Fault Interrupt Pro-

cess must first establish the full container identifier corresponding to the SCID

of the missing page, which is held in a global variable of the kernel (section 4.1).

Next, as in the MONADS system, the Page Fault Interrupt Process checks

the currently valid virtual memory message blocks to establish whether there is

already an outstanding request for the missing page. If so the new page fault is

linked into the existing message block and then causes a kernel reschedule.

If this is the first request for the page it must then be checked whether the

missing page is an unmodified page still in the main memory after it has been

released to the disc's free list, or whether it is a modified page waiting to be writ-

ten to disc before being released to the free list. In both cases the page can be

removed from the appropriate list and can be treated as if it has just been read

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 141

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

from disc.

If neither case holds, a new message block is obtained from the pool; de-

tails of the page fault are entered into this block, i.e. request type = <new page

fault>, container#, page#, user thread#. The process then sends a message to the

User Interrupt Process to suspend the current user thread and finally places the

message block into the queue of the Virtual Memory Process.

4.7 The Virtual Memory Process and the Disc Processes

The Virtual Memory Process (VM Process) controls the use of the main memory

and organises the transfer of virtual memory pages between the discs and main

memory. Using the page table structures defined above, the handling of a page

fault can logically
110

 be summarised as six basic stages:

1. Request the UTS (via the User Interrupt Process) to suspend the faulting

thread.

2. Ensure that enough page frames are free to resolve the page fault (including

accesses to page tables). If not, free sufficient pages by calling the discard

algorithm. Often only one page frame will normally be required, i.e. for the

page which has faulted.

3. Access the appropriate Disc Directory to discover the disc address of page

zero of the faulting container. (This stage is only necessary if stage 4 fails!

Depending on the structure of the disc directory this may require multiple

probes.) Since the faulting page address can be used to formulate the virtual

address of page 0 of its container, stage 4 can in practice precede (and per-

haps eliminate the need for) stage 3.

4. Access the page tables in page 0 of the faulting container to locate the miss-

ing page's disc address.

5. Read the missing page into main memory and adjust the MMPT.

6. Indicate to the User Thread Scheduler that the faulting user level thread can

now continue.

We consider these steps in turn.

4.7.1 Request the User Thread Scheduler to Suspend the Faulting Thread

This need not be the first step, but it must be carried out before the disc process

is requested to read in the new page. It is achieved by passing a request to the

kernel's User Interrupt Process to suspend the current user level thread. This al-

lows other user level threads to be activated and so use the CPU time while the

page is being read into the main memory.

110

 In an algorithm, stage 4 is carried out before stage 3, and may make stage 3 unneces-

sary.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 142

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.7.2 Availability of a Page Frame for the Faulting Page

Assuming that at most one additional page fault (for the directory) for reading

page tables will normally arise in order to resolve a page fault, then at most two

free page frames are normally required. (This depends on the directory structure

and how much of it is locked down.) The VM Process can check if there are free

page frames by scanning the (locked down) MMPT (or by some optimisation of

this if the MMPT includes a linked list of free page frames).

If none is available the page discard algorithm must be activated. This is

executed in the VM Process. Discard algorithms have been discussed extensive-

ly in the literature and need no further discussion here, except to point out that

SPEEDOS can use information such as the fact that a persistent thread has been

logged out as indications that related pages can possibly be discarded.

When sufficient page frames (normally one or two – see above) have been

freed by the discard algorithm they are temporarily reserved for use in resolving

the page fault.

4.7.3 Accessing the Appropriate Disc Directory

When the system starts up, the associated fixed discs are initialised such that the

disc directory of each disc (page 0 of its container 0) is read into the main

memory and locked down.

When a removable disc (e.g. a USB hard drive) is mounted at a node the

kernel's interrupt analysis routine receives an interrupt which it passes to its disc

process. This then reads its disc directory and, assuming that it is a SPEEDOS

disc (which we temporarily assume was created at the current node) it similarly

reads the first page of its disc directory (page 0 of its container 0) into the main

memory and locks it down. Henceforth page faults for pages on that disc can

access the directory without causing a page fault on its initial page, though de-

pending on the structure of the disc directory and the extent to which its pages

can be locked down, further page faults might occur. (In this respect it will be

sensible, as in MONADS, for the MMPT software to provide a "peek" opera-

tion, which indicates whether a page is in the main memory without causing a

page fault.
111

)

4.7.4 Accessing the First Page of the Faulting Container

In sections 4.3 and 4.4 we have seen how this stage can normally be carried out

without causing a page fault, since a previous inter-module call or user level

thread switch will have resulted in the first page of data, code and stack contain-

ers will already be locked down when a page fault occurs for some random page

111

 see [22] chapter 7 section 7.4.2.9.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 143

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

within a container.

4.7.5 Reading the Missing Page into the Main Memory

When a kernel process (e.g. the VM Process) establishes the need for a page to

be read from disc into the main memory (or written from main memory back to

disc), it modifies the current virtual memory message block to indicate the disc

address of the virtual memory page to be read/written and the main memory

page frame into which/from which a page it is to be written/read, signifying that

the operation is a read or write. It then places the message block onto the queue

of the appropriate disc process and issues an AsetV operation to activate the

process (see chapter 22).

Each disc process operates in two parts. The first part takes an entry from

its input queue, starts a disc transfer then waits for the transfer to complete. The

second part follows its activation on completion of the transfer, checks the result

of the read
112

 (or write), removes the message block from its input queue and

places it on the input queue of the requesting process, indicating that the transfer

was successfully completed.

Following the MONADS technique, a disc process has an algorithm along

the following lines:

repeat {

 modified_AsetP // i.e. scan message blocks and get best

 // entry from queue, see below;

 start transfer on associated hardware device;

 AsusT; {wait for interrupt from h/w device}

 check result;

 finish job;

 update and remove the corresponding item from the queue;

 notify the requesting process of completion (using AsetV)

 }

forever;

It can easily occur that more than one message block accumulates waiting for

the process to continue, i.e. theoretically for its AsetP operation. However, if the

process simply begins with a standard AsetP operation and uses the information

waiting for it in the corresponding virtual memory message block, the result will

be that the process will sequentially access the requests in the order that they

occurred. This may be acceptable for SSDs and for memory sticks, but not for

conventional rotating discs. As is well known, the result of such a course of ac-

tion would be inefficient head movements on traditional discs, and it would be

much more satisfactory to use an efficient algorithm (such as the elevator algo-

rithm in its C-Scan form
113

) for this purpose. But to use such an algorithm im-

112

 Here we assume that there are no errors.
113

 see https://en.wikipedia.org/wiki/Elevator_algorithm.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 144

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

plies that a disc process has an overview of all the currently outstanding requests

for the disc under its control.

This can best be achieved by providing a special modified version of AsetP

(which remains invisible to the clients of the process) in which the process scans

the entire list of waiting input message blocks to select the best request (i.e. that

which is most efficient according to the algorithm chosen). The message block

numbers for all the currently outstanding requests can be discovered by examin-

ing the resource set associated with the disc process's semaphore, in which the

bits correspond to the positions of the relevant virtual memory message blocks

holding the details of the required transfers. When the choice has been made, the

semaphore's integer part and set part must both be modified to reflect that the

chosen message block has been used.

The actual transfer of information can then proceed. When the transfer has

been initiated the process can suspend by using the AsusT
114

 instruction
115

. In

due course, when the transfers have completed, the appropriate kernel process

must then remove the message block from its queue and pass it to the next stage,

using an appropriate AsetV instruction. This is probably the User Interrupt Pro-

cess, advising the UTS that the page fault has now been resolved.

Each disc mounted at a node has its own individual kernel disc process

which is responsible for managing the disc and for accessing (reading and writ-

ing) individual pages between its disc and the main memory.

Processes for fixed discs can be statically allocated at system start-up.

When a removable disc is mounted a free process must be allocated and noted in

a table of discs. Its disc directory is then locked into the main memory.

When the kernel's interrupt analysis routine receives an interrupt for I/O

completions on a disc, it first consults the table of discs to find out which kernel

process is responsible and then executes AactT to de-suspend the appropriate

process.

Finally, the above explanation of page fault resolution illustrates quite

clearly that Espenlaub's suggestion of issuing a forced method call from the ker-

nel to an interface routine of the Virtual Page Table Manager is not necessary

and would be much less efficient (though more flexible) than the above pro-

posal. Also, his concerns about stack overflow can be forgotten.

5 Allocating Space on Discs and Segment Management

Having established how the discs are laid out and how page faults are handled,

114

 See chapter 22 section 7.1.
115

 It may be necessary to use AsusT more than once, e.g. if there is a separate seek opera-

tion (see [5, p. 168]), and in the case of other more complicated devices.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 145

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

we now consider how space is actually allocated to containers and their pages.

5.1 Creating Segments

We first consider the case of small files, where the page tables allow the possi-

bility that pages can be individually allocated on a page/disc block by page/disc

block basis.

The first issue to note is that although the Segment Manager co-module is

primarily concerned with segments in its container it can easily determine where

page boundaries are, assuming that the page allocation for users starts at a new

page boundary which is known to it, since (assuming 8 KB page sizes) each new

user page begins at a virtual address in which the final 13 bits are zero. Hence

given the start addresses and lengths of segments it can, for example easily de-

termine whether they are in a single page, whether they span a number of pages,

etc.

Thus the Segment Manager has an overview of the mapping between seg-

ments and pages, and is therefore in a position to determine (via requests to allo-

cate segments) when new pages should be allocated for the container which it

serves. Hence it can use a protected kernel instruction (request_pages), which

allocates a virtual memory message block and causes the Virtual Memory Man-

ager to be scheduled. This in turn requests the appropriate Disc Directory Man-

ager to allocate space on the appropriate disc and return the disc address(es) of

the page(s). All the additional pages required for the segment (if any) can be al-

located together. While new pages are being allocated, the kernel requests the

User Thread Scheduler to suspend the current thread until the page has been al-

located. When this has been completed the Segment Manager continues.

The disc manager maintains a free list of disc blocks and from this allocates

the required number of small pages, removes these from the free lists, advising

the segment process of their addresses. The segment process adds these address-

es to the appropriate page table.

For large files the procedure is similar, except that it will be quite unusual

(but not impossible) to have a segment that spreads over two or more large allo-

cation units.

5.2 Deleting Segments

Deletion of segments follows a similar pattern except that this is more or less the

reverse procedure. The Segment Manager can use a delete_pages kernel in-

struction to initiate the deletion.

5.3 Segment Manager Requirements

The actual organisation used by a Segment Manager can vary from container to

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 146

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

container, but this must conform to the requirements of the kernel, as follows:

a) It must organise segments into separate groups corresponding to the sepa-

rate page tables and should not allow a segment to cross the page bounda-

ries defining these groups. (It can use information obtained by calling the

Virtual Page Table Manager to learn where the boundaries lie.)

b) When requested to create or delete a segment it also checks whether a new

page is required or a page can be deleted, and calls the Virtual Page Table

Manager advising it of this.

c) The Segment Manager is also responsible for garbage collection, and can of

course use different techniques in different containers.

6 Creating a Container

The Container Manager provides a semantic routine newContainer, which is

responsible for creating new containers. This routine has two main tasks. In the

first phase, after checking the validity of its input parameters and possibly

providing a default disc capability, it activates the kernel instruction new_

container. In the second phase it prepares the container for use.

6.1 The Kernel's new_container Instruction

This instruction has three operands. The first of these is a capability for the disc

on which the container is to be created; the second is a boolean value defining

whether the container is planned to contain a large file and the third is a boolean

value indicating whether the container is for a new user (or simply a further con-

tainer for the user identified in the red tape of the process container containing

the thread stack which executed the new_container instruction).

After carrying out appropriate checks (e.g. that the disc is on-line and is not

full) the kernel then prepares a page-sized buffer in its main memory to act as a

page 0 for the new container, in particular preparing a small file page table and

if appropriate a large file page table.

It then begins to fill out the identification fields of the new container, as de-

fined in Figure 19.2 and is here repeated as Figure 23.11 for convenience.

The container numbers in the identification fields are directly or indirectly

available to the kernel in the red tape of the requesting thread's container or in its

stored registers (as augmented by extending the SCIDs into full addresses). The

only exception is the container number of the new container, which is obtained

in the next step. Depending whether the third operand of the instruction is set to

'new' or 'existing' user the current owner field is set to either the new container

number or the owner of the creating thread.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 147

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The creating thread number is the full thread number of the currently active

thread. The date and time of creation are obtained from the time and date in the

system clock. Finally the activity status field is set to "new container".

After the identification fields have been prepared, the kernel then creates

the new container, which requires the following steps.

i) Obtain and update the next container number. This is held in page 0 of con-

tainer 0 of the chosen disc (see Figure 23.8).

ii) Record the container number in the appropriate identification field in the

buffer being prepared to become page 0 of the new container.

iii) Obtain the disc address of the next available page (8 KB block) on the re-

quested disc.

iv) Add an entry to the disc directory for this container number, mapping con-

tainer number within disc to the disc address.

v) Add the disc address into the (first entry of) the small page table for the

new container.

vi) Prepare a virtual memory message block (see section 2.1) which includes

the virtual page number of the new container and the disc address, and its

own process identifier (allowing the disc process to return to it). Pass this to

the appropriate disc process, requesting a write operation (see section

4.7.5).

The disc process completes the write and returns, without locking the new con-

tainer's page 0 into the main memory.

Finally the instruction prepares an owner capability for the new container

and returns this to the Container Manager, after unlocking its page 0.

Figure 23.11: Identification Fields of a Container

Container number identifying creator

Container number of this container

Rest of container contents

Creating thread number

Creating code module number

Creating co-module number

Container number of current owner

Date and Time of Creation

Activity status

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 148

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

6.2 Preparing the New Container for Use

The Container Manager then sets up the organisation described in chapter 19

section 7 and following sections, i.e. it creates a co-module table (see Figure

19.6) and a code table (Figure 19.8), etc. This stage can involve considerable

dialogue with the user with respect to which Virtual Page Table Manager, which

Segment Manager, which Co-Module Manager, which Code Manager, which

Error Manager(s) should be installed (if a choice is provided), and is primarily

an operating system issue rather than a kernel issue.

When the Container Manager has completed this stage, it returns an owner

capability for the container and a capability (not necessarily an owner capabil-

ity) for each co-module installed in the container. Using these, the user can then

initialise the individual co-modules.

7 Copying a Container

Various techniques for copying containers were discussed in chapter 19, but

without providing a detailed explanation of how an implementation can be

achieved. This chapter has added the necessary additional background know-

ledge to consider how the copying of a container can actually proceed in the

context of the first and certainly most important possibility mentioned in chapter

19 section 13 ("to make a copy which the owner, or some other user, can use

independently of the original"), using the page-by-page method.

The Container Manager provides a copy command for user threads. This

normally requires at least three input parameters:

• a valid capability for the file to be copied,

• a capability for the disc on which the copy is to be located
116

, and

• an indication whether the owner of the original should remain the owner of

the copy or whether the owner of the requesting thread should become the

owner of the new copy.

The copy command first carries out appropriate checks, including establishing

that

• the capability for the file to be copied has the appropriate access rights to

allow the copy to be made (including a copy with owner change, if this is

requested, see chapter 26),

• the disc capability allows the user to create files on the disc, and

116

 If the second parameter is null, this might be interpreted to imply that the boot disc

should be used. But that should be a decision take in the container manager, which

could then maintain a default (such as the boot disc) or even different defaults for dif-

ferent users.

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 149

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

• the container does not contain troublesome capabilities (which can be es-

tablished by calling the container's Segment Manager).

If these tests are passed, the Container Manager then passes the parameters to

the kernel's copy instruction, which actually carries out the copying.

7.1 The Kernel's copy Instruction

The kernel first needs to carry out some further checks, e.g. to ensure (from the

Local Mount Table) that the source and destination discs for the copy operation

are both mounted locally. When this has been clarified, the kernel's copy process

proceeds as follows.

i) It claims a new virtual memory message block of the type "request and lock

page 0" (see section 4.4) and enters into this the virtual memory address of

page 0 of the container to be copied) then passes it to the VM Process. (If

the page is not already in the main memory, the VM Process organises for it

to be paged in and in this case suspends the user thread executing in the

Container Manager's copy routine.)

ii) It examines page 0 of the container to be copied to determine the pages to

be copied and creates a page-sized buffer in the main memory. It copies the

appropriate entries from the old page 0 into this, making a change of own-

ership (if this is permitted in the generic rights of the original capability,

which should have been checked by the Container Manager). It zeros the

page table entries in the new page 0.

iii) It creates a new container for the new copy (see section 6) and writes the

new page 0 into it.

iv) It then carries out a page by page copy of page 1 to the end of the original

container, by calling the disc process(es) in a loop, modifying the new con-

tainer's page table on each loop cycle.

7.2 The Page by Page Copy Mechanism

This mechanism does not use the Segment Manager to create/copy segments,

but works entirely at the page level. This is not problematic, since all the point-

ers in a container are addresses relative to the beginning of the container, and a

page by page copy does not affect the positions of segments. Furthermore, if the

Segment Manager has placed co-module data (its own or that from some other

co-module, including from a user co-module) in page 0 of the original file, this

will be copied automatically into page 0 of the new container. (In this way a

trivial file might be completely copied simply by writing page 0 – as described

above – without a further loop.)

The actual reading of pages of the copied container and writing them to the

new container in a loop is a straightforward procedure which is not here de-

Chapter 23 VIRTUAL MEMORY MANAGEMENT AT A SINGLE NODE 150

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

scribed in detail. For each read and for each write operation the thread request-

ing the copy operation must be suspended in order to allow other kernel pro-

cesses/user threads to be executed, and reactivated on completion of the disc op-

eration. The only complication is that when a thread is reactivated and is sched-

uled by the UTS it must know where the copy operation must be resumed. I

suggest that this is noted in page 0 of the new container (because in a multipro-

cessor system the same container may be copied in parallel to multiple contain-

ers).

If the copy is successful, the kernel creates an owner capability for the new

file and returns it to the Container Manager; this in turn returns the new owner

capability (with all access rights set) to the requesting thread.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Part 6

Security Mechanisms

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 24

Qualifiers with Bracket Routines

A qualifier, or qualifying module, is a module which can be associated with

other modules in order to qualify (modify) the effects of their execution. The

idea, originally called "attribute types" [3], occurred to me in 1996 while on

study leave at the University of Sydney. It was further developed by my research

group at the University of Ulm in the context of modular programming design

methods, and was later incorporated into our object oriented programming lan-

guage Timor, a new language developed to provide programming language sup-

port for the novel features of SPEEDOS which cannot be programmed in normal

programming languages [7]. The most significant features of qualifying types

(the name used in connection with Timor and SPEEDOS) were described to-

wards the end of volume 1 chapter 13. The reader may at this stage find it useful

for understanding the following to re-read the relevant section of Chapter 13 and

to study the related diagrams. This chapter describes how qualifiers can be inte-

grated into the SPEEDOS kernel.

1 Basic Principles of SPEEDOS Qualifiers

A qualifier is in most respects a normal module. It can have normal semantic

methods, it can have persistent data structures, and its normal semantic routines

are explicitly invoked in the usual way via an inter-module call. In addition it

has bracket methods, which cannot be invoked explicitly, but can be associated

with the normal methods of other modules in order to qualify them. Bracket

methods can access the persistent data of their own module and can invoke its

internal routines.

1.1 Timor Qualifiers

In Timor, qualifiers can be statically embedded into other modules. In this case

SPEEDOS is unaware of the bracket methods; it is the responsibility of the

compiler to organise the appropriate code sequencing. Alternatively Timor qual-

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 153

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ifiers can be dynamically associated with small objects in Timor programs. Such

qualifiers are entirely handled by the Timor run-time system. The third possibil-

ity, which is the subject of this section, is the SPEEDOS kernel mechanism

which associates qualifiers with the semantic routines of entire SPEEDOS mod-

ules.

1.2 Call-in and Call-out Brackets in SPEEDOS

What makes a qualifier special is that a normal module (or indeed a qualifier),

here called the qualified module, can be qualified by zero or more qualifiers,

which may have two different kinds of bracket routines (call-in and/or call-out

brackets). Call-in brackets "catch" incoming calls to the qualified module and

can execute their own code as a prelude to executing a body statement, which

causes the qualified module's semantic routine (or the next bracket routine in the

list) to be invoked. When this finally exits it returns not to the client module

which originally called the qualified module's semantic routine but to the call-in

bracket routine at the instruction following the body statement, known as a post-

lude. After the postlude exits, control is returned to the client module (or the

previous bracket routine in the list). If the call-in bracket exits (via a bracket_

return instruction) without executing a body statement the target routine of the

qualified module is not called, and the call-in bracket simply exits back to the

client module (or an earlier bracket routine in the list).

The second kind of bracket routine, call-out brackets, has no influence on

calls into the qualified module, but is activated when the qualified module at-

tempts to make calls out to further modules (here called target modules). Call-

out brackets "catch" such calls and execute a prelude. This can optionally be fol-

lowed by a call statement, which allows the appropriate routine of the destina-

tion module to be entered. When this finally returns, it continues at the postlude

following the call statement, and finally a return is made to the qualified mod-

ule. If a call statement is not executed in the call-out routine, the call never

reaches the intended module but returns to the postlude of the previous bracket.

The same qualifier module can support both call-in and call-out bracket

routines.

These above possibilities are illustrated in Figures 13.2 to 13.7 in volume 1.

The SPEEDOS kernel supports body and call instructions corresponding to the

Timor body and call statements. These statements, along with the bracket_

return instruction, can only be used in bracket routines. Normally such an error

can be detected at compile time and should therefore not arise at run-time. How-

ever, a run-time error occurs if they are executed in normal modules at run-time.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 154

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.3 Multiple Qualifications

A list of call-in and/or call-out qualifiers can be associated with a qualified

module. In this case a body or call statement causes the next bracket in the list

to be executed, or in the case of the last bracket in a list the appropriate semantic

routine of the target module is called. The order of accessing is determined by

the position of the qualifier in the list, which is held in a qualifier list module.

The ordering can be significant in its effect, e.g. if the first bracket method exits

without invoking a body (or call) statement, the second bracket routine in the

list will never be invoked.

1.4 Sequencing of Bracket Routines with Qualifier List Modules

In the case of qualifiers dynamically associated with SPEEDOS modules, the

kernel organises their execution. This is possible because the latter is responsible

for all inter-module and similar call invocations. In SPEEDOS a bracket routine

is not permitted to execute the body instruction or the call instruction more

than once within a single bracket routine. (A synchronous interrupt occurs if a

normal semantic routine issues these instructions, if a call-in bracket issues a

call instruction or if a call-out bracket issues a body instruction.)

The organisation of lists of qualifiers for a qualified module is not a trivial

activity and is therefore not directly undertaken by the kernel. Instead it relies on

privileged co-modules, known as Qualifier List Modules (QLMs), to provide

semantic methods which allow the owners of modules to organise lists (e.g. by

adding and removing entries and changing their sequencing).

Whereas at the programming language level (i.e. internal to a module) it

only makes sense to associate bracket methods with "objects" (in the sense of

object-oriented programming, where an object consists of a fixed combination

of data and code), at the operating system level it is sensible to associate sepa-

rate qualifier lists with the data file and the code file of a module. One reason for

this is that the code module may need to be separately protected (e.g. to guaran-

tee the rights of software providers) while the data file, which may have a dif-

ferent owner, needs to guarantee the latter's protection and security rights.

For a user defining a list of bracket routines, the order in his qualifier list

module is first the call-in brackets then the call-out brackets. This applies both to

QLMs associated with a data file and to QLMs associated with a code file.

Capabilities for data file QLMs are located in the Co-Module Table and

those for code files in the Code Table, where they are accessible to the kernel
117

.

In this way, on receiving an inter-module call the kernel can gain access to the

qualifier list modules.

117

 see volume 1 chapter 19 sections 7 and 9

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 155

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The system applies the brackets in the following order: (for each inter-

module call made to the qualified module) first the call-in brackets for the code

file, then the call-in brackets for the data file
118

, and (for each inter-module call

made from the qualified module) first the call-out brackets for the code file, then

the call-out brackets for the data file. The effect of this is that if a module A calls

a module B in the course of its execution, then the code call-out brackets for A,

followed by the data call-out brackets for A are executed. These are followed by

the code call-in brackets for B then the data call-in brackets for B; subsequently

module B is executed.

1.5 Qualifier List Modules

Qualifier list modules (QLMs), which contain module capabilities for the indi-

vidual qualifier modules with the appropriate bracket routine numbers, have the

following duties:

i) to provide the owner of the module with a convenient interface for manag-

ing the lists (e.g. adding new entries, removing existing entries, reorganis-

ing the order);

ii) to organise the mapping of symbolic names known to the user (e.g. for the

semantic routines, the bracket routines and parameter names) onto the entry

point numbers needed by the kernel. For this purpose it calls a further mod-

ule which will be described in connection with command interpretation (see

Chapter 32 section 2);

iii) to provide the kernel with information via which it can quickly discover the

details it requires to invoke the bracket routines in the correct order;

iv) to indicate to the kernel whether a bracket routine requires no access, read-

only access or read-write access to the qualified module's parameters;

v) to advise the kernel whether a bracket routine can make normal inter-

module calls.

The details of the QLM interface for the kernel are predefined, but the remaining

aspects of qualifier list modules are freely programmable and can differ from

module to module.

Since the kernel relies on these modules in ways which affect system secu-

rity, the Co-Module and Code Managers should take special precautions to en-

sure their trustworthiness, when setting up entries for them.

1.6 Bracket Routines and Parameters

Bracket routines do not have parameters of their own, but can in some cases ac-

118

 The sequence for the call-in brackets differs from that proposed by Espenlaub in his

thesis [4, p. 183].

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 156

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

cess the parameters of the modules which they are qualifying, depending on the

way the way the bracket routines have been defined. They can be defined to be

activated

• when any method of a qualified module is invoked
119

. In this case they have

very limited access to the parameters being passed or returned, since they

have no knowledge of the structure and purpose of the parameters.

• specifically for reader routines (which can be recognised in Timor by the

keyword enq (i.e. enquiries which do not modify the state data of their

module, i.e. readers) or for writer routines by the keyword op (i.e. opera-

tions which can modify their state data)
120

. Also in such cases the bracket

routine has very limited access to the parameters passed by the caller (since

these vary from routine to routine).

• when a specifically named routine is called, in which case they may have

access to the routine's parameters (in read-only or read-write mode, as de-

fined in the qualifier list module).

The limited forms of access available to the first two categories are described in

section 3.3 below.

Permitting read-write mode for parameters gives a bracket routine the op-

portunity to modify the input or return parameters which are passed via a body

or call statement to/from a qualified module.

2 An Overview of the Execution of Bracket Routines

When a module executes an inter-module or similar call, the kernel checks the

Co-Module and Code Tables of the module to ascertain whether there are asso-

ciated qualifiers, and if so it activates the bracket routines in the defined se-

quence (i.e. the call-out brackets of the calling module followed by the call-in

brackets of the called module).

After the call-in brackets have been executed (and assuming that no bracket

routine has issued a bracket_return statement without issuing a call or body

instruction), the target module is activated in the usual way.

If an inter-module call instruction is executed in a qualified module, the

kernel checks whether this is allowed, and if so places the normal IMC linkage

segment on the current thread stack (see Figure 20.6). It then checks whether the

calling module has call-out brackets, and if so executes these one by one on the

user thread's stack, separating them by bracket linkage.

After the last call-out bracket has completed its prelude via a call instruc-

119

 Note that open and close routines are never bracketed.
120

 The rights with respect to accessing state data are set for enq routines to read-only and

for op routines to read-write.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 157

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tion (i.e. assuming that it does not make an early return), the kernel checks

whether the called module has call-in brackets. If so, they are executed after the

last call-out bracket of the calling module (if any). Again these are separated by

bracket linkage segments.

When a module returns, bracket execution resumes in the postlude of the

last called bracket routine, and when this issues a bracket_return instruction

control returns to the postlude of the previous bracket routine, etc. until the call-

ing module is reached. This continues its normal execution and may call further

modules. In this case also, call-out bracket routines might be needed and in

some cases these might differ from those previously used (e.g. if specifically

named modules/semantic routines exist in the call-out list).

A bracket routine may also call a further module (which might or might not

be qualified) while it is executing a postlude, and this is handled in the usual

way.

3 Managing Bracket Parameters:

The handling of parameters in bracket routines is not as straightforward as one

might think. Here are Espenlaub's comments about isolating brackets from each

other. He points out a potential security risk with the straightforward approach:

"The brackets having access to parameter information must be isolated against

each other, i.e. the modifications to the parameter list by an inner bracket must not

be visible to an outer bracket. This requires saving of the received parameter list

and restoring it when the next inner bracket returns. Information leaks through

manipulated parameter lists must be prevented, e.g. by marking parameter lists as

read-only data once body has been invoked." [4, p. 136]

In fact not only the outer brackets are affected, but also the calling module. For

example, if a module passes a capability as a parameter to a further module and

a call-out bracket invalidates this for security reasons, the caller (possibly a

hacker attempting to pass (dis)information via the capability) would be able to

detect that this has happened, thus arousing his suspicion that he is being moni-

tored, whereas the intention of the hacked site may be to continue to document

his hacking efforts.

The above comments are based on the view that the parameters in bracket

routines, when modified by one routine, are visible in the next bracket routine(s)

and later in the postludes of all the bracket routines. However, the design for

parameter passing protocols has changed in the current version of SPEEDOS, as

is described in chapter 20 section 6.2. The key change from the present stand-

point is that after an inter-module call instruction has been executed Segment

Register 2 (which had been used to prepare the parameters for the call which has

now terminated) is always invalidated before the called module returns. Hence

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 158

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

on return to a calling module the code of the module cannot see whether or not

the input parameters which it prepared for the call have since been changed by a

bracket routine.

3.1 Managing Input Parameters in Bracket Routines

We now turn to the actual management of parameter segments for bracket rou-

tines. It is important to note at this point that many (probably most) bracket rou-

tines, including many of those which have the aim of improving security, have

no access to the parameters created by a calling module. And even those which

do have such access often merely read the parameters. Hence only in fairly rare

cases are parameters modified. If they were never modified at all, it would be

sensible simply to allow the preludes of those bracket routines which read the

parameters to do so directly from the parameter segment which the calling mod-

ule has created via Segment Register 2, by pointing Segment Register 0 of each

bracket routine to the same segment on the stack.

So long as no modifications are made, this is a sensible policy. It has the

advantage that parameter segments need not be copied (possibly several times)

on the thread stack. Furthermore new output parameters (normally addressable

by Segment Registers 2 and 3) would never have to be created. Instead, on a

bracket routine invocation the kernel would simply copy the previous caller's

Segment Register 0 value for use in the new routine, but changing the access

rights in conformance with the information which it has received from the quali-

fier list module for the new bracket routine. (Since a routine always at most has

read-only access to its input parameters the access rights will vary between no

access and read-only, but never read-write.)

But if this policy is pursued, what happens when a bracket routine needs to

modify the input parameters? Here is the solution.

Initially when a bracket routine is invoked, the kernel invalidates Segment

Registers 1, 2 and 3. It sets Segment Register 0 to point either to the original in-

put parameter segment or to a modified version of this, now to be described.

 Just as there is a kernel instruction create_imc_params which allows a

module to create an output parameter pair when needed
121

, so also there is a fur-

ther kernel instruction change_bracket_input (with a single operand specify-

ing the length of the data partition
122

). This can only be executed in a bracket

routine, and only in cases where the bracket routine plans to change the input

121

 Bracket routines may not execute the kernel instruction create_imc_params.
122

 The structure of the new segment is based on that of the input parameter segment ad-

dressed via Segment Register 0, but the length of the data can be varied, e.g. in order to

vary the length of a string.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 159

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

parameters which it receives from either the calling module or an earlier bracket

in the list (i.e. those which it addresses via Segment Register 0). On receiving

such an instruction the kernel first checks the information which it has received

from the qualifying list module to ensure that this bracket routine has permission

to make changes. If so, it creates a new input parameter segment at the top of the

thread stack which it makes addressable to the bracket routine via Segment Reg-

ister 2 in read-write mode. The new segment has the same structure (e.g. number

of module capabilities) as that which it received via its Segment Register 0, ex-

cept that the length of the data partition may differ. Into the new segment it can

then write new parameters (which may in part be copied from its own input pa-

rameter segment), see Figure 24.1.

When the bracket routine issues a body or call instruction, the kernel

a) stores Segment Registers 0, 1 and 3 in the bracket linkage segment with the

access rights which they currently have, and stores Segment Register 2 in

the linkage with the access rights set to no access (thus ensuring that it can-

not change this segment in the postlude).

b) stores appropriate other register values of the bracket routine in the bracket

linkage area.

c) sets the called
123

 routine's Segment Register 0 to the values in the previous

routine's Segment Register 2, setting the access rights to read-only or no

access as appropriate. In this way the input parameters for the called mod-

123

 This may be either a bracket routine or the target module's semantic routine.

Bracket 1 Linkage Segment

(Kernel now starts Bracket Routine 2)

Figure 24.1: A Thread Call Stack with Bracket Routines

 which modify the Caller's Input Parameters

IMC Linkage Segment:

Module A calls Module B

(but Kernel starts Bracket Routine 1)

It is irrelevant whether the

bracket routines are call-out

brackets associated with Mod-

ule A or call-in brackets associ-

ated with Module B.

Input Parameters from A to B
Segment Register 0 of Module B

and of Bracket Routines 1 and 2

Input Parameters Modified

by Bracket Routine 2

Segment Register 2 of Bracket 2

after change_bracket_input
then Segment Register 0

of Bracket routine 3 and

Module B.

Bracket 2 Linkage Segment

(Kernel now starts Bracket Routine 3)

Bracket 3 Linkage Segment

(Kernel now starts Module B)

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 160

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ule may be modified more than once, but the called module will see only

the final version.

3.2 Return Parameters

Assuming that the target (called) module is eventually activated
124

, it receives its

input parameters (in read-only mode) as described above, and before returning it

may place some results in its output segment via Segment Register 1 (in read-

write mode). Some bracket routines may wish to examine and possibly change

these (e.g. by invalidating a module capability).

Notice at this point that we cannot simply reverse the technique described

above when dealing with returned parameters, since (unlike the input parameter

case) the return parameter segment would normally be deleted (as part of the

normal stack discipline) when an exit is made to a bracket routine! Instead we

use the original return parameter segment of the caller as the anchor segment.

What this means is that when a called (target) module wishes to return pa-

rameters, it stores these in the segment which the calling module actually creat-

ed for its return parameters, using Segment Register 1 as usual. Notice that this

may be some distance down the stack, with bracket linkage and possibly modi-

fied input parameters separating it from the current stack top, but reachable by

Segment Register 1.

This will work well so long as bracket routines do not modify the result pa-

rameters. However if a bracket routine (with appropriate access rights) wishes to

modify the return parameters, it executes the kernel instruction change_

bracket_result (with a single operand specifying the length of the data parti-

tion) which may reduce the length of the data section while adhering otherwise

to the original segment structure. This instruction first checks that the bracket

routine in question has permission to change the result, and if so creates a new

return segment immediately above the existing return parameter segment. To

make this possible the first bracket linkage segment is placed after a gap on the

stack top which is sufficiently large to hold a copy of the return segment
125

. The

kernel then makes the segment addressable to the bracket routine in the normal

way, via Segment Register 1, which is set to read-write access (only if read-

write access is allowed for the bracket routine). When the bracket routine returns

to its caller (which could be the original calling module or a lower bracket rou-

tine) the kernel makes this segment addressable via Segment Register 3 (in read-

only or no access mode).

124

 This is the case if all the bracket routines issued a call or body statement.
125

 The stack space for a second return segment must have the same structure as that of the

original return parameter segment.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 161

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

If more than one bracket routine exercises its right to modify the return pa-

rameter segment the two return parameter segments are organised by the kernel

to function alternately in a flip-flop manner, simply by clearing the segment

which holds the older information and resetting the segment register values ac-

cordingly. Notice that by using this technique the original information passed as

return parameters can get overwritten. This would be the case anyway if a nor-

mal stack discipline were followed. But if such information is important (e.g. for

debugging purposes) then a bracket routine can make an inter-module call to a

logging module to preserve information which might otherwise be lost.

Figure 24.2 shows the effect of Bracket Routine 2 modifying the return pa-

rameters, using the kernel instruction change_bracket_result.

In this scheme, which ensures high efficiency whilst addressing Espen-

laub's point at the beginning of section 3, the input and return parameters are

decoupled for bracket routines.

3.3 Access to Parameters in Routines which are not Specifically Named

The main reason why bracket routines which are not specifically named have

very limited access to parameters and returned results is because these have no

knowledge of the structure (e.g. number of capabilities, length and purpose of

the data partition and (in the case of co-module calls and library calls) the struc-

ture and purpose of pointers). However, the kernel knows the structure of pa-

Bracket 1 Linkage Segment

Figure 24.2: A Thread Call Stack with Bracket Routines which

 modify the Callee's Return Parameters

IMC Linkage Segment:

Module A calls Module B

It is irrelevant whether the

bracket routines are call-out

brackets associated with Mod-

ule A or call-in brackets associ-

ated with Module B.

Return Parameters written

by Module B
Segment Register 1 of Module B

and of Bracket Routines 3 and 2

and 2

Bracket 2 Linkage Segment

Bracket 3 Linkage Segment

Return Parameters modified by

Bracket Routine 2 postlude

Module B writes return parameters and

exits, kernel starts postlude

of Bracket Routine 3

Segment Register 3 of Bracket

Routine 2 after change_bracket_

result.

 Segment Register 1

of Module A and of Bracket Routine 1

If two or more bracket post-

ludes modify the result parame-

ters the two return parameter

segments are used in flip-flop

fashion

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 162

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

rameter segments, and can therefore carry out simple security tasks on behalf of

such bracket routines. In particular it can invalidate capabilities in the capability

partition, pointers in the pointer partition (if any) and data in the data parti-

tion
126

. Such an action can be useful in general brackets in order to ensure that

no information leaks from a module (e.g. if the owner of the data suspects that

the code of his module is releasing its file information to the manufacturer of the

code). Since such information might be released in calls to modules and in re-

turns from modules, two kernel bracket instructions invalidate_output and

invalidate_input are provided by the kernel. These instructions (which have

operands to further specify the relevant partitions) can only be used in the

bracket routines associated with the data file of a module (i.e. those specified in

the module's Co-Module Table).

4 Implementing Bracket Routines

Having established the basic principles of qualifying types, we now consider in

more detail how the kernel can implement bracket routines and how it acquires

the information needed to do this from qualifier list modules. We begin by con-

sidering what happens when an IMC is received by the kernel for a module

which is qualified by bracket routines.

4.1 Handling Inter-Module Calls

When the user request process receives a request for an inter-module call, it first

creates a new inter-module call linkage segment for the calling segment. It then

ensures that the request is valid (e.g. that the requested semantic routine is al-

lowed by the access rights in the capability). The kernel then creates an IMC

record on the stack which serves as an indication of the thread's progress; the

kernel stores into it the operands of the IMC (capability, semantic routine num-

ber, read-only flag). If either or both the Co-Module Table and the Code Table

include a capability for a QLM, these are also copied into the IMC stack record.

At this stage the kernel cannot simply execute the inter-module call, be-

cause bracket routines may first need to be activated. These bracket routines (as

illustrated in Figure 24.2) may in the order of their execution be

• call-out brackets associated with the code of the calling module,

• call-out brackets associated with the data of the calling module,

• call-in brackets associated with the code of the called module,

• call-in brackets associated with the data of the called module.

126

 The easiest way to invalidate data is to change its length in the red tape to 0.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 163

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Figure 24.3 illustrates a thread stack after a module A, with three call-out brack-

ets, has called a module B, which has three call-in brackets, and module B then

calls a further module C.

4.2 Summarising the Handling of Brackets

When a new IMC occurs, the user request process checks whether any call-out

brackets are required by the calling module. These (and any call-in brackets as-

sociated with the called module) must be executed before the new IMC can be

executed.

It can establish this by examining the previous IMC stack record on the

stack. (At the time of the call this is actually the "current" IMC stack record.) If

this indicates that call-out routines are defined, it executes these, and then evalu-

ate whether call-in bracket routines are required for the called module by exam-

ining the new IMC stack record. If not, it can then execute the IMC as normal. If

Bracket Linkage Segment

Code Call-In Bracket 1 for Module B

IMC Linkage Segment:

Module B calls Module C

Bracket Linkage Segment

Code Call-Out Bracket 1 for Module A

IMC Stack Record for Module B

Figure 24.3: A Thread Call Stack with Bracket Routines

IMC Linkage Segment:

Module A calls Module B

Bracket Linkage Segment

Data Call-Out Bracket 1 for Module A

Bracket Linkage Segment

Data Call-In Bracket 2 for Module B

IMC Stack Record for Module C

Bracket Linkage Segment

Code Call-Out Bracket 2 for Module A

Bracket Linkage Segment

Data Call-In Bracket 1 for Module B

The parameter segments, which

have been omitted from the

diagram to keep it simple,

would conform to the rules de-

scribed in section 3, and would

appear below the linkage seg-

ments, where necessary.

An IMC stack record holds the

operands for the IMC (called

module capability, semantic

routine, read-write flag) and, if

brackets are involved, the mod.

capabilities for the QLMs, cop-

ied from the Co-Module Table

and/or the Code Table. Space is

also left for further information

which the QLM will provide

about bracket routines.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 164

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

call-in bracket routines are required the user request process must acquire the

information from the appropriate QLMs and add it to the new IMC stack record.

It must then execute the required call-in brackets if necessary and can then exe-

cute the new IMC itself.

4.3 How the Kernel Obtains Bracket Information from QLMs

The kernel's user request thread uses surrogate threads, in this case called QLM

threads, to obtain the information which it needs from QLMs. We now describe

this procedure in more detail. Since the basic working of surrogate threads has

already been explained in principle (see chapter 22 section 8.2) it is now simply

assumed that a pool of QLMs has been set up and partly prepared at system ini-

tialisation in a separate container (the QLM process container), and that the ker-

nel

• allocates and deallocates the individual threads as required, using a resource

set semaphore;

• completes their initialisation before activating them
127

;

• schedules and suspends them via requests to the UTS.

4.4 Acquiring General Bracket Routine Info from a QLM Thread

We now describe how the kernel acquires general information about the bracket

status of a new IMC.

When the new IMC first reaches the kernel, it does not know whether call-

in or call-out brackets or both are defined in the QLM file(s). (This cannot be

defined statically, since the QLM file can be modified – subject to synchronisa-

tion requirements – at any time by the user.) Hence when the kernel has activat-

ed the surrogate threads and has requested the kernel interrupt process to sus-

pend the current thread, each QLM thread begins to execute; its first task is to

advise the kernel how many call-in and call-out brackets are defined in its QLM

for the target module.

It supplies this information in a kernel instruction bracket_info, which

passes a bracket parameter block with the appropriate information, including

(for identification purposes) a copy of the module capability for the QLM and a

copy of its own surrogate thread capability to the kernel (see Figure 24.4).

127

 In this case a QLM thread needs only two input parameters (its own QLM capability

and the user thread capability, both for identification purposes). Otherwise its job is al-

ready well defined and only varies in that each can access its individual QLM via seg-

ment register 5, which has been initialised to address the root data segment of the QLM

in question.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 165

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

When each QLM thread has provided its bracket parameter block, it sus-

pends itself by calling the UTS. But before we can consider in more detail what

follows next, we need to know how bracket routines affect linkage segments on

the user thread stack.

4.5 Controlling the Execution of the Bracket Routines

In order to discover the details of the individual bracket routines, the kernel must

activate the individual QLM thread(s) in the defined sequence to obtain the in-

formation about the first/next bracket routine. What now follows can therefore

be viewed as something similar to co-routine activity or to a producer-consumer

situation between a QLM thread (advising of the next bracket) and the user

thread (executing this bracket) operating repeatedly until the last bracket has

been executed. But this simple view is an oversimplification, because the kernel

has to sit between the two and organise the execution of the bracket routines.

4.6 Managing the Linkage

Before a bracket routine can be executed the kernel must first store linkage for

the routine which was previously executing. In the case of the first call-out

bracket (or, if there are no call-out brackets, the first call-in bracket) this will be

the normal linkage for an inter-module call (see Figure 20.5).

When a bracket routine issues a body or call instruction the kernel like-

wise places a linkage segment on the stack. This has a different form from an

Figure 24.4: General Bracket Info from QLM Threads to Kernel

QLM Surrogate Thread 1

Overview of data related

brackets: Qualifier List

Module from Co-Module

Table

Kernel Instructions
bracket_info

QLM Surrogate Thread 2

Overview of code related

brackets: Qualifier List

Module from Code Table

bracket_info

Kernel User Request Process

IMC stack record

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 166

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

IMC linkage segment, as is illustrated in Figure 24.5.

4.7 The QLM Thread Provides Information about a Bracket Routine

The kernel's user request process determines which QLM thread should be re-

started
128

 first, and activates it by placing a request in the input buffer of the user

interrupt process. It then issues a kernel reschedule.

When the QLM thread starts executing, it examines its list and selects the

first bracket routine to be applied, setting up the following parameter block de-

tails for the kernel:

a) The module capability by which its bracket routines can be invoked.

b) The entry point number of the appropriate bracket routine.

c) An indication whether the bracket routine has no access, read-only access

or read-write access to the input and return parameters.

d) An indication whether the bracket routine is designed always, sometimes or

never to invoke the kernel's body instruction.

e) An indication whether the bracket routine is permitted to make normal in-

ter-module calls.

f) An indication whether the current bracket is the last call-in (or call-out)

bracket in the list.

g) Its own surrogate thread capability and QLM capability as well as the user

thread capability as identification.

The QLM thread passes this information to the kernel, using the kernel instruc-

128

 The QLM thread already exists and is suspended awaiting a request for an individual

bracket.

Linkage Type

Kind of Bracket Routine

Info on Parameter and Call restrictions

Kernel Pseudo-Register Values

Code Segment Register and Program Counter

Parameter Segment Registers 0 – 3

Saved Segment Registers

Bit List of valid Segment Registers

Caller's Local Base on Kernel's Linkage Stack

Previous Top of Stack

Figure 24.5: A Bracket Routine Linkage Segment

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 167

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tion next_bracket (see Figure 24.6). It then suspends itself with the UTS (until

the kernel releases it to supply information for the next bracket routine).

4.8 Executing a Bracket Routine

The information available to the kernel's user request process is

a) that received from the QLM parameter block details in its current next_

bracket instruction,

b) information about the qualifier module which it can obtain via the latter's

module capability (e.g. the address of its root data and the start address of

the bracket routine's code from its bracket entry point list (see chapter 19

section 9.3), and

c) information in the IMC stack record.

The user request sets up the register save area of the stack to point the image of

segment register 5 to the bracket routine's root data (which is not that of the call-

ing or called module!), its code segment register image and offset to the address

at which it begins execution, and its parameter segment registers to address the

input parameters supplied by the user thread (with the access rights indicated in

section 3). It then places an interrupt message block in the kernel user interrupt

process's buffer area to advise the UTS to activate the user thread.

When the bracket routine is executing this can use other kernel instructions

where it has permission to do so (e.g. to discover environmental information

QLM Surrogate Thread

Details of next bracket

Qualifier List Module

Kernel Instructions
Next Bracket

User Thread Stack

Bracket Execution

Figure 24.6: Information Flow from QLM to User Thread

Stack

Kernel User Request Process

IMC stack record

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 168

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(see chapter 26). If it attempts to make an inter-module (or equivalent) call, the

kernel's user request process can check whether this bracket has permission to

make inter-module calls. If so the kernel executes this as normal.
129

 If it is not

permitted the kernel generates a synchronous interrupt (see chapter 22 section

8.2)
130

.

4.9 Executing Body and Call Instructions

When a bracket executes a body or call instruction, the kernel

• checks whether this is the appropriate instruction and that it is not being

called for a second time. (If so, a synchronous interrupt is activated.)

• places a bracket linkage segment on the user thread stack (see Figure 24.3),

paying attention to the parameter addressing rules described in section 3

above.

• locates the appropriate IMC stack record and checks whether this is the last

call-in (or call-out) bracket to have completed executing its prelude. If not,

it activates the next bracket by activating the appropriate QLM thread
131

(via the user interrupt process) and exits.

When the QLM thread issues a next_bracket instruction, the above procedure

is repeated until all the call-in or call-out brackets have been executed.

If the final call-out bracket issues a call instruction this signals to the user

request process that a new series of call-in bracket routines (if any) should

begin.

If the final call-in bracket issues a body instruction this signals to the kernel

that the target inter-module call should now happen.

4.10 The Postlude Phase

When a called module executes a return instruction, this might signal the start

of the postlude phase for bracket routines. Hence the user request process checks

at this point whether the last linkage segment on the user stack is a normal link-

age segment or a bracket linkage segment.

If a bracket routine's postlude needs to be activated, the kernel's user re-

quest process loads the registers for the postlude from the linkage segment, pay-

ing attention to the rules for managing parameters in brackets, as described in

section 3.3. The bracket linkage is then deleted from the top of the stack. The

129

 If so the new IMC may also be bracketed and the kernel must nest this on the stack in

the usual way.
130

 The action taken depends on a setting in the Thread Security Register (see chapter 26).
131

 If the bracket issuing the body statement is associated with the data file and there are

call-in brackets associated with the code file, it activates the code file QLM thread.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 169

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

postlude is then executed and the bracket routine eventually exits using a kernel

bracket_return instruction. This procedure is then repeated for each outstand-

ing bracket postlude, until the linkage for the module to which the return is

made is reached. In this case the user request process organises the resumption

of the module's execution (including the deletion of the IMC stack record on the

stack).

4.11 Executing an Inter-Module Call in a Bracket Routine

If a bracket routine issues an IMC, this is as usual directed to the user request

process. Since bracket routines need permission to execute IMCs (even if they

have a valid capability), the user request process checks whether this call is

permitted. If it detects an illegal IMC attempt it generates a synchronous error

interrupt. If all is well the kernel places bracket linkage for the calling bracket

routine on the stack and causes the user request process to be reactivated to carry

out the legal IMC. This then executes the IMC as normal (including any re-

quired bracket handling), setting up an initial secondary link in the current IMC

message block (which will be returned to null after the new IMC sequence

ends).

4.12 A Bracket Routine Executes a Bracket Return in its Prelude

This can occur, for example, when the bracket routine has detected a serious

problems and wishes to abandon the call to the target module before this takes

place. It is not particularly significant for the kernel which kind of bracket rou-

tine this was. It is merely a sign that the postlude phase has begun, and return

postludes are then executed until the last call-out bracket (if any) exits. The ker-

nel then deletes the IMC stack record on the stack and allows the calling module

to execute its next instruction. The calling module is unaware that the call was

abandoned unless the module abandoning the call indicates this in the return pa-

rameters (or logs an entry in a module accessible to the caller).

5 Bracket Routines and Free Capabilities

Free capabilities were introduced in chapter 18 section 8 and chapter 19 section

13.3 as a technique which allows n-ary access to files in order to overcome the

strict rules of information hiding in situations such as the copying or conversion

of a file, by permitting a module (under restricted circumstances) to use the ker-

nel instruction load_free_cap in order to gain direct read-only access to the

content of a file module. Write access is not permitted for free capabilities.

But this creates a rather tricky problem associated with the use of qualifi-

ers. What happens when a free capability refers to a data file which is protected

by qualifiers? For example, it may have an associated Qualifier List Module

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 170

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

containing bracket routines which revoke capabilities, provide access control

lists, log the use of the qualified module, synchronise access to the file or even

prevent its use entirely.

Because access to free capability parameters is not via inter-module calls,

existing bracket routines cannot be used in the normal way. There are several

reasons for this, e.g.

• The concept of a body or call statement has no direct significance when

applied to the loading of a free capability using a load_free_cap instruc-

tion (see chapter 18 section 8.1).

• Since a semantic routine is not being bracketed (as is the case in normal

bracketing as described above), there are no parameters which might be

read or modified.

For such reasons the solution is to allow a further kind of bracket routine to be

defined.

5.1 Free Capability Brackets

Free capability brackets are defined in a similar way to other brackets except

that they have no body or call statements (and therefore there are no prelude or

postlude phases) and they have no access to inter-module call parameters nor to

the file being passed.

It would be theoretically possible to give free capability brackets optional

read-only access to the free capability file (e.g. to allows the bracket routine to

scan for viruses, etc.) However the free capability mechanism itself can be used

for such purposes, so that this would introduce a duplicated mechanism which

would itself have to be protected!

When the kernel receives a load_free_cap instruction it first determines

from the Co-Module Table of the (free parameter's) file container and from the

Code Table (of the code module about to access the file) whether a QLM or

QLMs exist for free capabilities (see "Free Cap QL Cap" in Figures 19.6 and

19.8). If so it activates a QLM thread.

The user request process activates each free capability bracket in turn.

When the bracket module invokes the kernel's bracket_return instruction, the

kernel proceeds to the next bracket. When the final bracket executes a bracket

_return instruction, the kernel then executes the load_free_cap instruction

and the application continues as normal.

Free capability brackets can prevent the use of a free capability (e.g. if a se-

curity breach is discovered) in that they can simply execute the kernel's abandon

_call instruction, passing a code to identify the problem which it has found.

This causes the thread to generate a synchronous interrupt.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 171

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

It would be theoretically possible to introduce a further kind of bracket rou-

tine more or less equivalent to a postlude phase. But this raises the question at

what point the "postludes" should be executed. In principle they could be trig-

gered when the kernel recognises that the segment register which addresses the

free parameter

• is re-loaded via a further load_free_cap instruction,

• is invalidated either from within the module in which it is initialised (as a

result of an explicit request to invalidate it via the kernel's reduce_

access_rights instruction
132

 or

• implicitly when the thread exits from the application module via an inter-

module return
133

.

This may appear to be overkill, since it is unlikely that such routines could in-

crease the security of a system. Security tests (e.g. based on access control lists,

capability revocation) are usually applied before a potentially dangerous situa-

tion arises, and this would imply that in the present context the bracket routines

applied when the load_free_cap instruction is executed. However the lack of a

postlude phase has disadvantages. For example it eliminates the possibility that

brackets could be used to synchronise access to an entire file using bracket rou-

tines. This is unfortunate and therefore I propose that a group of "postlude"

bracket routines also are made available.

With this solution all the normal security checks applying to the module

can be made, e.g. to revoke capabilities, to apply access control lists, etc.

5.2 Effects of Free Parameter Bracket Routines on a User Thread Stack

The execution of "prelude" free capability brackets takes place at the current

stack top, and proceeds in a similar manner to call-in brackets, except that they

have no input or return parameters, hence the values for segment registers 0 to 3

are invalid. They use the same bracket linkage segments as normal bracket rou-

tines (see Figure 24.5), except that the "Kind of Bracket Routine" is not call-in

or call-out but "free capability prelude"
134

 brackets, which have no body or call

statement (and therefore no "official" postlude).

The second group, free capability "postlude" brackets, which will probably

by quite rare, should be executed when one of the circumstances listed in section

5.1 arises. But because of the stack discipline these cannot formally be regarded

as postludes!

132

 This kernel instruction was not envisaged in Espenlaub's thesis.
133

 A call to a further module is not considered to be an exit from the module.
134

 An implementer might choose to reduce the size by allocating a new linkage type and

eliminating the input and output segment registers, etc.

Chapter 24 QUALIFIERS WITH BRACKET ROUTINES 172

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Separating "postlude" brackets for free capabilities in this way also solves

another stack problem. A module can concurrently load and access more than

one free parameter, with the result that more than one set of bracket routines

may exist at the top of a thread stack. The first set of stack frames to be deallo-

cated must be that at the top of the stack. Hence if a thread explicitly invalidates

free parameter segment registers this would always have to take place in the re-

verse order from that in which they were loaded. But if postludes are separate

routines, this problem does not arise.

I suggest that at the programming language level free capability bracket

routines could still be defined as having a prelude and a postlude section, sepa-

rated by a keyword such as file. But the compiler should be aware that it must

compile these sections as separate free capability routines.

I have not provided an implementation but this should be fairly clear based

on the analogy of the main bracket routine implementations described in earlier

sections.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 Chapter 25

The Confinement Problem:

Some Principles

The confinement problem is one of the more serious problems which conven-

tional security mechanisms fail to solve in a general way. As was mentioned in

volume 1 chapter 3, it cannot be solved simply by setting appropriate access

rights (in the sense of Lampson's Matrix), because the risk can arise in situations

in which a subject has a legitimate right to access information, but must be pre-

vented from passing it to unauthorised third parties.

How might information reach unauthorised third parties? In a conventional

system the information of interest is primarily stored in persistent files in the file

system. When this is stored in a conventional file system, hackers have more

than one way of achieving their aims. They can search for weaknesses in the file

system, or in conventional (non-persistent) virtual memory, or in the interfaces

between the two. By contrast, persistent information in SPEEDOS is always

held in the persistent virtual memory in information hiding files with their own

semantic routines.

Information held in the SPEEDOS persistent virtual memory is made avail-

able to subjects in the system primarily via inter-module calls. This gives file

owners an assurance that only those users whom the owner has authorised (by

providing them with capabilities
135

) can invoke these semantic routines to obtain

information directly. But one important guarantee is not provided by the capabil-

ity and module calling mechanisms, viz. that the code of the semantic routines

correctly implements its specification (and nothing more or less than the specifi-

cation)!

This is one of the reasons why a confinement problem exists at all. In

135

 Chapter 26 describes how capabilities and other mechanisms in SPEEDOS can be used

to prevent users entitled to access to a file from passing on these rights.

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 174

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

SPEEDOS, a code implementation containing a trojan horse (or an error, or ma-

liciously programmed code) might attempt to release information in several

ways. It might, for example

– pass information directly back to a caller who has a capability entitling him

to call the module, although not to obtain the information in question;

– secretly pass information from the file to another file module, via which it

can be accessed later by a hacker;

– display information on an output device, e.g. a monitor screen or printer.

Similarly, incorrectly implemented code of a file module might violate the integ-

rity and/or availability of information held in a file by accidentally or deliberate-

ly changing or destroying it.

These are not the only – nor even the usual – problems which attract atten-

tion in discussions of how information can be confined. In conventional systems

the issue is not how the implementation routines of a file module can be con-

fined (because the SPEEDOS concept of a file module with semantic routines is

not found in such systems). The issue for such systems is rather how programs

which illegitimately gain access to data in the file system can be confined, but

also how programs which legitimately need access to a file in order to carry out

services for applications and their users, such as a spooler module in the operat-

ing system, can be confined so that they do not misuse the information which

users provide to them.

The first of these problems should not arise in SPEEDOS, because its im-

plementation of the information hiding principle causes a single authorised pro-

gram to be tightly bound to a file, thus excluding other programs from directly

accessing the file data. While there are occasions when the program in question

must be replaced by another, this change is carried out via a semantic routine of

the appropriate co-module manager. The latter can only be called by a subject in

possession of a valid capability for this co-module. Therefore this kind of prob-

lem should only arise as a result of a human error or a deliberate criminal act

carried out by an insider. However, human errors occur, and unfortunately insid-

ers can be persuaded by greed or bribes or even blackmail to commit criminal

acts and to help others to do so. Consequently it must be anticipated that further

technical measures must be taken to ensure the confinement of information.

The second problem, that software with legitimate access to information

can illegitimately release this to third parties, could just as easily occur in

SPEEDOS as in conventional systems if the latter did not provide confinement

mechanisms. This is the main subject of the present chapter, although the solu-

tions described can be equally applied to programs which illegitimately gain di-

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 175

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

rect access to persistent data.

The remaining sections of this chapter take a closer look at the information

channels which might be used to release information against the will of its own-

ers, and how the tools available in SPEEDOS can help confine programs. Final-

ly some examples are presented.

1 Information Channels

Neither a system architecture nor an operating system can ever guarantee that

operating system and/or application code is fully correct. At best, a system ar-

chitecture can ensure that certain basic actions are prevented while a thread is

executing in a module. For example it can enforce basic access rights which

– prevent write operations to particular data segments when "read-only"

mode is set, but

– allow writes when "read-write" mode is set.

Because of the SPEEDOS structure, these controls can be applied separately for

the different kinds of segments associated with a module, as follows.

1.1 Persistent Data Segments

File modules have persistent data segments, which may be shared by many users

with capabilities (via their semantic routines). Access to these segments can be

variously set individually to "read-only" or to "read-write" for executing threads,

i.e. some threads can write to them, while other threads can only read them
136

.

Persistent data segments represent a security problem for two reasons:

– Because they are shareable by many threads (both concurrently and over

time) they can serve as an information channel which might be misused.

– Because they contain persistent data, this must be considered to be "useful"

data, i.e. data potentially of interest to third parties.

Hence persistent data segments provide a potential communication channel be-

tween user threads of the same or different processes, and an ideal target for

hackers.

1.2 Temporary Data Segments

Thread-local data segments hold three kinds of non-persistent (i.e. temporary)

data associated with a particular thread, i.e. its internal computational stack, its

local heap data and its inter-module parameter segments. The kernel ensures that

the local data segments of an executing thread cannot be shared with other

threads, since each thread has a separate root for its temporary segments which

136

 Such accesses should of course be synchronised.

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 176

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the Segment Manager dynamically allocates on request from the thread. They

may therefore be modified without creating the possibility that information can

be passed from one thread to another. However, inter-module parameter seg-

ments provide a communication channel between modules.

1.3 Code Segments

The segments of a module include both local and externally accessible code rou-

tines which may for example consist of the routines for accessing a file module,

or they may implement a program or library routines. These segments exist in

one or more code modules.

A code module starts its life as a persistent data module for a compiler, i.e.

as a file which is the output of the compiler. But the kernel, with the help of its

security sensitive co-modules, ensures that once a module has been designated

as code it cannot be modified while being executed.

A code module may have its own data segments but these are always set to

read-only while the module is being executed as code, and therefore they cannot

be used as a communication channel. They may, however, hold capabilities

which can be used to make inter-module calls.

1.4 Communication Channels Relevant to the Confinement Problem

The above points lead to the conclusion that there are three basic information

channels which could be used by malicious code to release information illicitly:

persistent data segments, inter-module parameter segments and module capabili-

ties held in constant segments of the code. In this chapter SPEEDOS mecha-

nisms are described which can restrict the passing of information via these seg-

ments. We now consider in more detail how these mechanisms can be used to

prevent information from being stolen.

2 Bracket Routines

Both call-in and call-out bracket routines
137

 can be used as tools for confining

modules, especially where the owner of a file module does not trust the code

which manages it.

2.1 Call-Out Brackets

An obvious way of preventing information leakage is to use call-out brackets. A

call-out bracket is activated when a qualified module attempts to call other mod-

ules. It intercepts outgoing calls and executes a prelude. If this determines that

the call can proceed, the call-out bracket executes a call instruction, which al-

lows the appropriate routine of the destination module to be entered. When this

137

 see chapter 24.

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 177

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

finally returns, the call-out bracket routine continues at the postlude following

the call instruction, and finally a return is made to the qualified module. If a

call statement is not executed in the call-out routine, the call never reaches the

intended module.

There are at least two ways in which a call-out bracket method can confine

information. It can simply prevent its qualified module from making calls to

some or all other modules, or it can examine and where appropriate change the

parameters being passed to the destination module, e.g. by reducing the access

rights in a module capability or by replacing the module capability with another,

less dangerous one. Call-out brackets cannot increase the rights in a capability.

Call-out brackets can only be applied by the owner of a qualified module,

or by a subject authorised by the owner to access the qualified module's qualifier

list module in an appropriate way. Consequently this technique is most useful

for cases where the owner of the module (i.e. the owner of the module's data

file) does not trust the software which manages his data and/or that which is

used in the destination module. Since the vast majority of computer users either

cannot or do not want to write all their own programs, most of the software

which they use is written by other (usually unknown) programmers and is there-

fore potentially a source of data leaks.

2.2 Call-In Brackets

Call-in bracket routines can also be used to help prevent information leakage.

But whereas call-out brackets are primarily concerned with protecting infor-

mation held in the qualified module from being passed on to third parties via

inter-module calls, call-in bracket routines are usually concerned with prevent-

ing modules which have called the qualified module from receiving information

via return parameters. In this case unwanted callers, who have either legitimate-

ly or illegitimately obtained a capability to call the qualified module, may at-

tempt to trick the qualified module into returning information in return parame-

ters which can later be used to access and even modify information illegally.

If in its postlude a call-in bracket detects a risk, it can, for example, change

the return parameters, signal an error or simply log its suspicions.

3 Information Confinement Rights

As indicated above, there are three basic information channels which could be

used by malicious code to release information illicitly: persistent data segments,

parameter segments and constant segments in the code holding module capabili-

ties. We now describe how confinement rights can play a role in restricting the

passing of information via these information channels.

The first group of rights, the information confinement rights, is designed to

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 178

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

prevent information flow from a module via these channels. Information in this

context includes both module capabilities and other data. These rights are sum-

marised in Figure 25.1.

The information confinement rights work either by ensuring that segments

or capability partitions therein are inaccessible (Cap Out, Return Params, Return

Cap, File), or by setting the access rights of appropriate segments to read-only

(File Write), thus preventing the writing of information to them
138

. These rights

can be unset in a capability or directly in the Thread Security Register (TSR),

for example by a bracket routine.
139

3.1 Restricting the Use of Parameters

In SPEEDOS the kernel can easily distinguish between input parameters and

return parameters on external calls (i.e. inter-module calls and co-module calls)

because these are held in different parameter segments.

The basic SPEEDOS call mechanism (see Chapter 19) already ensures that

a called module cannot write to its input parameters and that a calling module

cannot write to the return parameters which are passed back to it. Furthermore,

there is little point in restricting a caller from writing to the output parameter

segment while it is being prepared for calling a module, since virtually every

routine needs these parameters, which become its input parameters.

It does, however, make sense in some cases to ensure that code does not at-

tempt to pass a capability as an output parameter if it is only supposed to be

passing normal data. If the right permit_cap_out is unset, the kernel prevents

this (Figure 25.2).

It can also make sense to prevent a called module from writing to the pa-

rameter segment via which it returns parameters to its caller (when it should not

be passing information back). This is achieved by unsetting the confinement

right permit_return_params. When this confinement right is permitted, a

138

 They follow the same principle as other access right settings, i.e. if the corresponding

bit is set, the thread has access, if it is unset, the corresponding action is prevented. A

thread can only reduce access (by setting a 1 bit to 0). It can never increase access (by

setting a 0 bit to 1).
139

 These possibilities are described in more detail in the next chapter.

Figure 25.1: Information Confinement Rights

File File

Write

Return
Params

Cap

Out

Return
Cap

Restricting the Use of Parameters

Restricting the Use of Persistent Data

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 179

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

called module can return results; when it is unset the return parameter segment

is set to read-only, preventing the called module from copying data and capabili-

ties (e.g. from its file data) into the result parameter segment, see Figure 25.3.

In the case of a co-module call, the unsetting of permit_return_params

also prevents a module from returning pointers as parameters. (A similar result

can also be achieved if the caller sets the lengths of the return parameter seg-

ment in the kernel instructions create_imc_params and create_pc_params to

zero, but this cannot be done in bracket routines, and there is no guarantee that

untrusted software will do this.)

The less restrictive right permit_return_cap can be used to prevent ca-

pabilities, but not data, from being returned (Figure 25.4).

Figure 25.2: The permit_cap_out Confinement Right

Untrusted

Software

Untrusted

Software

Capabilities cannot

be passed as

parameters

CONFINEMENT:

not_permit_cap_out

Figure 25.3: The permit_return_params Confinement Right

Untrusted

Software

Untrusted

Software

Information cannot

be returned as

parameters

CONFINEMENT:

not_permit_enq

CONFINEMENT:

not_permit_return_params

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 180

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3.2 Controlling Access to Persistent Information

The entry point list of a module indicates whether the segments of state data

should be set for the thread to read-only or to read-write access for each seman-

tic routine individually. However, the read-write setting can be overridden by

unsetting the confinement right permit_file_write. When this confinement

right is permitted, a called module can read and write the state data of the mod-

ule, subject to the setting in the entry point list of the called routine. Access to

all the state segments is set to read-only when permit_file_write is unset,

regardless of the setting in the EPL entry for the called routine (Figure 25.5).

From the viewpoint of confining information, unsetting this permission has

the advantage that the software associated with a called module cannot secretly

write information to a file, even if the file exists and contains valid information

which can be modified by other callers.

It also has the advantage that it can prevent threats to the integrity of infor-

Figure 25.4: The permit_return_cap Confinement Right

Untrusted

Software

Untrusted

Software

Capabilities cannot

be returned as

parameters

CONFINEMENT:

not_permit_ return_cap

Figure 25.5: The permit_file_write Confinement Right

Untrusted

Software

Information cannot

be written to file

data

parameters

CONFINEMENT:

not_permit_file_write

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 181

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

mation and its availability.

A more drastic way of controlling access to persistent data is provided by

the permit_file confinement right, since this, if unset, prevents a module from

accessing persistent data segments. If a module containing file data is called, the

kernel sets access to persistent file segments as "no access" (i.e. both read and

write permissions are unset). Calls to independent program modules (see Chap-

ter 18) are allowed (see Figure 25.6).

Both normal application modules with file data and independent program

modules use a data container for storing temporary thread-oriented structures

such as local stack and heap data. The unsetting of the permit_file_write

and/or permit_file rights does not prevent either from creating such tempo-

rary segments, which have no persistent root and which are either deleted or be-

come inaccessible when the thread exits the module. Furthermore no thread can

access the temporary segments of another thread. Hence they cannot secretly

store information which will survive after an inter-module return.

4 Module Call Confinement Rights

Call-out brackets provide the simplest way of restricting calls from a qualified

module, and they have the advantage that the decision to make such a restriction

can be finely controlled, e.g. on the basis of an examination of the parameters

being passed or the identity of the caller. However, they have the disadvantage

that they can only be used when the caller wishing to make the restriction is also

the owner of the module in question or has a capability for the qualifier list

module. Hence a second group of rights, the module call confinement rights, is

aimed at preventing an executing module from making particular classes of call.

These rights are summarised in Figure 25.7.

Figure 25.6: The permit_file Confinement Right

Untrusted

Software

File data

is inaccessible

CONFINEMENT:

not_permit_file

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 182

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

These restrictions cannot be so finely tuned as controlling calls via bracket

routines, but they have the advantage that once applied to a module, they can be

automatically applied in appropriate circumstances to modules called subse-

quently, as will be described in the next chapter.

The call restrictions fall into six categories:

– all calls (permit_calls). If this permission is unset, the called module can

make no further calls of any kind, regardless of the other call permissions;

– calls (permit_const_calls) made using module capabilities located in or

previously copied from code constant segments;

– calls to modules via a module capability which has been explicitly passed

to the module via an input parameter segment (permit_param_calls);

– calls to modules for which no module capability has been explicitly passed

and which are not "constant" calls (permit_nonparam_calls);

– calls to user co-modules for which no module capability has been explicitly

passed (permit_comodule_calls);

– calls to synchronising modules (which is explained below).

These are summarised in Figure 25.7 and illustrated in Figures 25.8 to 25.13. In

some cases the restrictions refer to the source (segment) of the capability used to

make the call. Since user code can attempt to disguise such origins by moving

the capability in question from one kind of segment to another kind, the status

bits in the capability are used to indicate the origin in the case that a capability is

moved. This is more fully described in chapter 26.

4.1 The Permit Calls Right

Unsetting permit_calls has the very drastic effect. A module which has been

subjected to this restriction cannot make any calls whatsoever.

Figure 25.7: Module Call Confinement Rights

Restricting Calls Param

Calls
Nonparam

calls
Comod

calls
Sync

Calls
Calls Const

Calls

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 183

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.2 The Permit Constant Calls Right

In the case of restricting permit_const_calls, attempts to call modules using

capabilities embedded within the code segments of a module are forbidden. This

can be used to prevent a capability embedded in a code module (e.g. for a file

module at the home base of a software design company) from being used to

make a call.

Untrusted Software

Module M1

Module M2

No Module can

be called

Figure 25.8: The permit_calls Confinement Right

Calling Module

CONFINEMENT:

not_permit_calls

Figure 25.9: The permit_const_calls Confinement Right

Untrusted Software

Module M1

Module M2

Module capability for

M2 taken from a

constant segment of

the code

Calling Module

CONFINEMENT:

not_permit_const_calls

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 184

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.3 The Permit Non-Parameter Calls Right

Unsetting the permit_nonparam_calls right has the advantage that a

module capability hidden in the module being called (e.g. in proprietary soft-

ware which has its own persistent data) cannot be used to make further calls

(e.g. back to the database of the proprietary company), while the thread can still

call the caller's own modules passed as parameters.

4.4 The Permit Parameter Calls Right

The unsetting of the permit_param_calls right prevents a module from using

capabilities passed to it as parameters from using these capabilities to make calls

(Figure 25.11). This might for example be used if a module A calls a further

module B which then calls a further module C. Since the owner of A may not be

aware of the call to C and therefore cannot know whether B is releasing his in-

formation to C in parameter form, he might use this confinement to ensure that

his information is not released.

It might be thought that in cases where permit_nonparam_calls is set the

permit_param_calls will also always be set, on the assumption that it makes

no sense to allow calls to unknown modules while not allowing calls to modules

deliberately passed as parameters. However there are at least two reasons why

this might not be appropriate. First, the module capability passed as a parameter

may be intended for use by the module at some later time and possibly while it

is executing in a different thread. Second, if the caller does not need to pass ca-

pabilities as parameters then permit_param_calls can be unset as a precaution

Figure 25.10: The permit_nonparam_calls Confinement Right

Untrusted Software

Module Capability for

Module M1 is passed

Module M1

Module M2

Module M2

cannot be called

Calling Module

CONFINEMENT:

not permit_nonparam_calls

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 185

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

against a bracket routine which might surreptitiously add a module capability as

an input parameter.

4.5 The Permit Co-Module Calls Right

If permit_comod_calls (see Figure 25.12) is unset, a called module cannot

make co-module calls using the CMC instruction, i.e. to another module in the

same container (but this does not prevent it from making normal inter-module

Figure 25.11: The permit_param_calls Confinement Right

Untrusted Software

Module M1

Module M2

Module M1

cannot be called

Calling Module

CONFINEMENT:

not permit_param_calls

Module Capability for

Module M1 is passed

Figure 25.12: The permit_comod_calls Confinement Right

Untrusted Software

Comodule

A co-module call

cannot be made

Calling Module

CONFINEMENT:

not_permit_comod_calls

Module Capability for

Module M1 is passed

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 186

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

calls without pointer parameters) to such a module, provided that it has a capa-

bility and there are no other restrictions which would prevent such a call. With-

out unsetting this permission it might be possible for modules to pass pointers

for a database to co-conspiring modules, which provides the latter with direct

access to the database.

4.6 The Permit Synchronisation Calls Right

The right permit_sync_calls (see Figure 25.13) has been introduced to sim-

plify the use of permit_nonparam_calls. Leaving the latter permission set (as

a right) increases the possibility that arbitrary capabilities which have not been

passed as parameters to a called module (which might therefore have been ille-

gally obtained by the called module) may be used to gain access to a file. This

risk cannot be avoided in some cases, e.g. when a called module uses capabili-

ties which were legitimately passed to the module as parameters to a constructor

call. However there is one common situation where this risk can be avoided.

This arises from the decision described in Chapter 21 that synchronising opera-

tions which involve suspending and re-activating threads must do this via rou-

tines of the appropriate Thread Control Manager. In order to do this, threads

must not only suspend themselves but must also activate other threads, possibly

belonging to different users. Without adding a confinement permission permit

_sync_calls it would quite frequently be necessary to leave permit

_nonparam_calls unset when a thread needs to invoke methods of the sched-

uler/synchroniser modules, since the thread capability needed to re-activate a

Figure 25.13: The permit_sync_calls Confinement Right

Untrusted Software

Calling Module

Module Capability for

Module M1 is held in a

file or code segment

Module M1

Synchroniser/Scheduler

Module M1 can-

not be called

PERMISSION:

permit_sync_calls

CONFINEMENT:

not_permit_nonparam_calls

Chapter 25 THE CONFINEMENT PROBLEM: SOME PRINCIPLES 187

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

thread is not acquired via parameters received from a call to the scheduler, but

typically from a queue of suspended threads. If permit_sync_calls is set, the

kernel permits calls to a thread scheduler, even when permit_nonparam_calls

is unset. (The kernel can distinguish calls to a thread scheduler, since these are

invoked by presenting a thread capability, rather than a normal capability.)

4.7 Note on Library Calls

Library calls are in effect simply extensions of the main code file from which

they are called. Hence they are excepted from the restrictions which would re-

sult on them being called. However if they themselves attempt to make further

calls to other modules, any call restrictions which have been imposed on the

main code file apply to these calls.

5 Conclusion

This chapter has described some basic principles for solving the confinement

problem in SPEEDOS and has hinted at some solutions in cases where bracket

routines cannot always be used. However, it has not concretised how the pro-

posed rights can be implemented in detail. In the following chapter further rights

are described and more attention is given to implementation details.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 Chapter 26

Some Confinement

and Access Controls

The previous chapter looked at some basic principles and techniques for solving

the confinement problem. This chapter continues and expands the basic theme

by reiterating, bringing together and expanding upon those protection mecha-

nisms which have already been discussed in earlier chapters. We begin by ex-

plaining further mechanisms which can contribute to a safer environment, viz.

the rights which under certain circumstances

• allow a thread to acquire information about the environment in which it is

working, thus allowing appropriate software to carry out protection and

other checks, and

• prevent modules from gaining access to certain capabilities.

We then provide details of the access rights in capabilities and introduce a new

mechanism, the Thread Security Register (TSR), which is an essential part of the

state of each user thread and is held at the base of the thread's kernel thread

stack.

The rights themselves are held in three locations. Those held in the Thread

Security Register allow the owner of a thread to set rights which apply to the

thread while it is executing. Those held in capabilities allow the owner of the

object addressed by the capability to determine how the capability and the object

which it addresses can be used. The container rights are held in page 0 of each

container.

The basic principle in all the SPEEDOS protection mechanisms is that

rights can always be reduced but never increased by a thread. The kernel ensures

this by using an intersection instruction to reduce rights.

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 189

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1 Environmental Checks

In order to carry out security checks, software (e.g. bracket routines, but also

normal modules) often needs information about the environment in which it is

working. For example when checking whether a capability has been revoked for

a user, it is necessary to know who the user is, and whether he owns the thread

currently trying to use the capability. To satisfy this and many similar require-

ments, there are kernel instructions which provide such information.

1.1 Checking Application Modules

These kernel instructions are listed in three groups by Espenlaub [4, pp. 235-

236]
140

, and a fourth group is added below.

i) The first group of kernel calls returns information directly related to the

current environment of a thread, in the form of world-wide unique module

or thread identifiers
141

 (including the index value):

unique_id current_thread();

unique_id current_file();

unique_id current_code();

unique_id calling_file();

unique_id calling_code();

unique_id target_file();

unique_id target_code();

If these instructions are executed in an invalid situation, they return the value 0.

When they are executed by an application module, their meaning is straightfor-

ward:

– current_thread returns the unique identifier of the thread in which the

instruction is executed;

– current_file and current_code return the unique identifiers of the file

module and code module of the currently active application module;

– calling_file and calling_code return the unique identifiers of the file

module and code module of the module which called the currently active

application module;

– target_file and target_code refer to the unique identifiers of the file

module and code module about to be called by the currently active module.

In practice these are only known when the currently active module has al-

ready issued a call instruction; hence if these instructions are used by nor-

140

 Most of these instructions are based on my lecture slides on "Secure System Architec-

ture" at the University of Ulm, but Espenlaub added some additional instructions for use

in call-out brackets, i.e. those referring to the target module (the destination module of

an inter-module call). These are only relevant for use in call-out brackets, and return a

value of 0 if used in any other context.
141

 A module/thread identifier is its full 192 bit identifier, i.e. Node #, Disc # and Container

(including index). It is not a capability.

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 190

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

mal application code, the result returned is always in practice 0.

The two instructions target_file and target_code encode into the re-

turn value (unique_id) a bit indicating whether the module being called was

passed to its calling module as a parameter, thus enabling the caller to check re-

strictions on the use of parameters (see, chapter 25 section 3.1).

If these instructions are executed in bracket routines

– current_file and current_code return the value 0;

– calling_file and calling_code refer to the module which called the

module now making a call;

– target_file and target_code refer to the module currently being called.

ii) The second group of kernel instructions identifies the owner of each of the

above, in the form of a unique container number (showing an index value

of -2)
142

:

container_id current_thread_owner()

container_id current_file_owner()

container_id current_code_owner();

container_id calling_file_owner();

container_id calling_code_owner();

container_id target_file_owner();

container_id target_code_owner();

The kernel obtains this information from the red tape at the beginning of the cor-

responding container (see Figure 19.2). For example current_file_owner is

the owner of the container in which the currently active data file is located.

iii) The third instruction group returns the number of the semantic routine (en-

try point) of the currently active module, of the semantic routine which

called this, and of the semantic routine currently being invoked.

int current_ep()

int calling_ep()

int target_ep()

iv) A fourth group of environmental instructions, known as the calling rights,

is needed in order that bracket routines can more thoroughly check the ac-

cess rights associated with the target call than was envisaged by Espenlaub.

bitlist semantic_rights()

bitlist metarights()

bitlist capability_rights();

bitlist environmental_rights();

bitlist confinement_rights();

142

 The index field, which normally signifies the module number within a container, is set

to -1 when an entire container is being identified. The number of the first container for a

new user identifies the user uniquely throughout his existence in the system and has the

index value -2.

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 191

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

bitlist thread_rights();

The semantic rights, metarights and capability rights are obtained by the kernel

from the calling capability, the remaining rights from the Thread Security Regis-

ter, which is described in section 4 below.

1.2 Checking Bracket Routines

In principle bracket routines should be checkable in the same way as application

modules. However, it would not only be considerably more difficult actually to

check these but also to specify kernel instructions for this purpose. However, an

alternative technique is possible. As was described earlier, the bracket routines

which qualify a module are held in a list, which is itself a module known as a

qualifier list module (QLM). Information provided by this module is accessible

to the kernel when the qualified module is executed or is being called.

The kernel can make the following information about this list module

available at run-time to applications and bracket routines:

unique_id calling_QLM_file()

unique_id calling_QLM_code()

unique_id target_QLM_file()

unique_id target_QLM_code()

where QLM is an abbreviation for a qualifier list module and refers to the appro-

priate qualifier list module (see Figure 19.6, Figure 19.8 and chapter 24).

These instructions allow an application module or bracket routine to log

this information for further security checks, or – if it has a capability for the ap-

propriate module – to call its semantic routines to obtain further information.

There are corresponding ownership checks:

container_id calling_QLM_file_owner()

container_id calling_QLM_code_owner()

container_id target_QLM_file_owner()

container_id target_QLM_code_owner()

These can be useful in cases where certain users are not known or are considered

to be completely untrustworthy.

1.3 Rights for Environmental Checking

The environmental instructions return sensitive information to callers and hence

their use must be controlled. Normally the right to use kernel instructions is con-

trolled via kernel capabilities, but this method is not sufficiently dynamic for the

present purpose, so that another technique is used.

Two sets of rights are maintained (see Figure 26.1). The first lists the rights

which an application module can exercise; the second lists the rights which

bracket routines can exercise. Although both sets of rights might be set and un-

set in the same way, they can differ, because the security aims of bracket rou-

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 192

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tines can differ substantially from the aims of normal applications.

The environmental rights are summarised in Figure 26.1:

permit_env_checks

permit_QLM_checks

These are general rights which together allow all environmental checks to be

turned off together (for application modules and/or for bracket routines). If these

rights are permitted, individual groups of rights can be turned off by unsetting

the following permissions.

permit_current_module_checks

permit_calling_module_checks

permit_target_module_checks

permit_current_owner_checks

permit_calling_owner_checks

permit_target_owner_checks

permit_calling_rights

permit_calling_QLM_checks

permit_target_QLM_checks

permit_calling_QLM_owner_checks

permit_target_QLM_owner_checks

These rights can appear in capabilities and also in the Thread Security Register

(see sections 3 and 4). If the corresponding right is unset in either or both, the

action is prohibited.

2 Capability Accessibility and Use Rights

Section 5 of chapter 19 explained how certain capabilities can be made accessi-

ble to the threads which need them. However, not every thread needs, nor should

have the right to obtain, these capabilities. Known as the capability accessibility

Figure 26.1: Environmental Rights

QLM

Current

Mod

Calling
Mod

Target
Mod

Current
ModOwn

Calling
ModOwn

Target
ModOwn

Calling

Rights

Env

Environmental Rights for Application Modules

Current
QLM

Calling
QLM

Target
QLM

Current
QLMOwn

Calling
QLMOwn

Target
QLMOwn

QLM

Env

Environmental Rights for Qualifiers

Calling
Mod

Target
Mod

Calling
QLM

Target
QLM

Calling
ModOwn

Target
ModOwn

Calling

Rights

Calling
QLMOwn

Target
QLMOwn

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 193

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

rights, these are concerned with controlling their accessibility and use (see Fig-

ure 26.2). The sixth accessibility right can control access to free capabilities

(which were introduced in chapter 18 section 8), while the seventh and eighth

rights define levels of privileges possessed by the holder of a capability.

The first five rights (permit_segman_cap, permit_threadman_cap,

permit_thread_cap, permit_SIO_cap, permit_print_cap) determine

whether the potentially restricted module is permitted to obtain

– a module capability for the Segment Manager associated with the current

module, allowing the thread to create segments explicitly,

– a module capability for the Thread Manager associated with the current

thread (in order to create subthreads),

– a thread capability for the currently executing thread, to allow it to syn-

chronise with other threads,

– module capabilities for the standard input and output modules associated

with the current thread, and

– a module capability for the current thread's print request module (see chap-

ter 33).

Unsetting the permit_free_cap permission is an important precaution

which can be applied in most situations, since providing a module with direct

access to the root persistent data segment of another module is not only a viola-

tion of the information-hiding principle but if misused it provides a hacker with

unlimited access to all the information in the module. However, it is not intend-

ed that free capabilities will be widely used as a normal way of accessing mod-

ules; rather it is intended that they will be used only in special situations such as

the conversion of files or to enable them to be efficiently copied or compared.

Hence by default this right should normally be turned off by users. However, it

cannot be unset as a system default, since it could then never be turned on (or a

mechanism would have to be devised to allow it as a special case).

An administrator capability confers certain administrative rights on the

holder of a capability in which the administrator right set. These are defined at

the operating system level. There is only one owner capability for a container,

file or process which is set when the relevant object is created.

Figure 26.2: Capability Accessibility and Use Rights: An Overview

ThreadMan

Cap
Thread

Cap
SIO

Cap
Free

Cap
SegMan

Cap
Admin

Cap
Owner

Cap
Print

Cap

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 194

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3 Rights in Capabilities

Module capabilities hold six groups of rights:

– semantic access rights (the right to access the interface routines of the mod-

ule to which it refers),

– generic rights (rights which are needed for controlling actions common to

all modules),

– metarights (the rights which determine how the capability can be used),

– environmental rights (see section 1),

– the various confinement rights (see the previous chapter), and

– the capability accessibility rights (see section 2).

Some of these rights have a direct effect on the use of the capability, whereas

others have an effect on the actions which can be taken by modules which are

invoked via the capability.

3.1 Semantic Rights

These rights indicate on an individual basis which entry points to a module can

be called using the capability. In addition they include two bits which allow the

list to be overridden by the following special bit settings:

00 = none, i.e. no semantic routine can be called;

01 = all, i.e. all the semantic rights can be called;

10 = read only, i.e. only enquiries
143

 can be called;

11 = use the list of semantic rights.

The first three of these are useful shortcuts for users.

Bracket routines are not considered to be semantic routines and can never

be invoked directly. However, if an executing bracket routine has a capability to

call a module the above rules apply as normal.

3.2 Generic Rights

Espenlaub has argued that in SPEEDOS, capabilities should not hold generic

143

 'Enquiries' is the name used in Timor to signify routines which do not modify the state

data of a module.

Figure 26.3: Semantic Rights in Capabilities

Bit List in which each semantic routine

is represented by a single bit
Special (2 bits)

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 195

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

rights (see Chapter 2), explaining this as follows:

"Operations such as creating, copying, renaming and deleting modules are the task

of other modules that relate to the implementation of the virtual memory, and may

thus be controlled by the semantic access rights to these management modules.

However renaming and deleting a module implicitly makes the module capabili-

ties associated with the original module unusable, as the container associated with

the module will no longer exist." [4, p. 179]

While it is correct that the operations listed below are implemented in the Con-

tainer Manager co-module, there is not a separate Container Manager co-module

for each container. Consequently access to its routines is via capabilities which

are unspecific with respect to the module on which the action (e.g. copying)

should be carried out. Hence a user requiring a generic service can only achieve

this by passing a capability as a parameter to the routine. Consequently the Con-

tainer Manager can only determine whether the requested action is permitted by

examining an access right in the capability, i.e. a generic access right.

Figure 26.4 shows which generic access rights are supported by the Con-

tainer Manager:

Their meanings are as follows.

copy: If set, the Container Manager's copy operation can be invoked to create a

copy of the container indicated in the capability, which must be a container ca-

pability. Process containers cannot be copied. The copy operation will be car-

ried out as described in chapter 23 section 7. The owner of the copy becomes the

owner of the container to be copied.

copy with owner change: same as for copy, except that the instigator of the

copy becomes the owner of the copy.

delete: If set, the Container Manager's delete operation can be invoked to de-

lete the file or the entire container indicated in the capability, taking care to warn

the caller of any problems deletion would entail. One result of a delete operation

is that all capabilities for the object will be implicitly revoked.

download/upload: If set, these operations of the Container Manager can be

used to copy the nominated container, which will be transferred to a nominated

computer (see chapter 29). The operations will only be carried out if all other

permissions allow this (e.g. see the rights in section 5.1). In both cases the up-

loaded or downloaded file becomes the property of the recipient.

rename/change_owner: The meaning of these rights is self-evident.

Figure 26.4: Generic Access Rights in Capabilities

Download
Copy with

owner change
Rename Change Owner

Upload Copy Delete

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 196

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3.3 Metarights and the 'Copy Cap' Kernel instruction

Metarights
144

 define the access control rules which determine how a capability

(not the associated container or module) can be accessed and changed. They af-

fect the execution of kernel instructions for which module capabilities are used

as operands, in particular the inter-module call and related calls, the load_

free_cap instruction and the copy_cap instruction.

3.3.1 The 'Copy Cap' Instruction

The latter is defined as follows:

copy_cap(boolean data_copy, //copy to data or cap partition

 <segreg#, offset> source_cap,

 <segreg#, offset> destination_cap,

 <boolean> restrict,

 bitlist generic_rights, bitlist metarights,

 bitlist confinement, bitlist environment,

 bitlist semantic_rights)

The various access rights bit lists define for the kernel how the corresponding

access rights in the destination capability are to be reduced. The mechanism is

an intersection operation.

In the initial capability for a new object all the rights are set, i.e. all opera-

tions are permitted. Normally a capability is never changed, but the copy_cap

instruction permits copies to be made with (or without) reduced access rights. A

capability copy operation has its source address in the capability partition of a

segment. Its destination address may be in either the capability partition or the

data partition of a segment. Where it is in the data partition, all the bitlist pa-

rameters are ignored (i.e. the access rights in the capability are copied but not

reduced); the copied capability can be read (and modified) as data, but it cannot

be used as (nor converted back into) a capability.

Note that these operations can only be carried out when the source and des-

tination segments are currently addressable at the same node, i.e. within the

same module (including input and output parameter segments) or within another

co-module in the same container. Whether they can be passed or returned as pa-

rameters to/from other modules depends on the following metarights.

The boolean parameter restrict does not apply directly to the copy oper-

ation as such, except that it causes the kernel to unset the first capability re-

striction status bit (see section 3.4). This affects further copy operations in that it

prevents the holder of this capability from copying it to a third party after it has

144

 Some of these rights are based on the list of capability confinements which appeared in

lecture 12 of my lectures on Secure System Architecture at the University of Ulm, Ger-

many. These were further developed in [4, pp. 178-9], but the final list provided here

has been substantially revised and improved.

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 197

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

been copied once to another user, regardless of the settings the metarights

file_copy, in_param_copy and out_param_copy in the permissions for for-

eign owner and for foreign node owner in Figure 25.6. An implementation is

described in section 3.4.2.

3.3.2 The General and Once Only Permissions for Using a Capability

The following metaright permissions define how the capability which contains

them can be used. They are checked on inter-module (and similar) calls and re-

turns, by the load_free_cap instruction and by the copy_cap instruction, as

appropriate.

Two possibilities are provided for each individual permission. In the first

(general) case, the normal uses for the capability are defined. The same permis-

sions are repeated as "once only" permissions. If a once only permission is set

(regardless of the setting in the corresponding general permission) the kernel

allows the action to be carried out once only. Both the general permission and

the corresponding once only permission are then unset in the capability by the

kernel, i.e. the once only permissions override the general permissions. These

permissions are listed in Figure 26.5.

Their meanings are as follows.

permit_file_copy: If set, the module capability may be copied to a file seg-

ment, subject to the rights and restrictions defined below. If unset the capa-

bility cannot be used as the source capability for a copy_cap instruction

Figure 26.5: Metarights in Capabilities

General/Once Only Permissions for Foreign Owner

General/Once Only Permissions for Same Owner

General/Once Only Permissions for Foreign Node Owner

General

Once

Only

General

Once

Only

General

Once

Only

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 198

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

where the destination segment is a file segment.

permit_in_param_copy: If set, the capability can be passed as a normal input

parameter to another module (i.e. it may be copied to the segment ad-

dressed via SR2). If unset, it may not be copied to the parameter segment

addressed by SR2.

permit_out_param_copy: If set, the capability can be passed as a normal re-

turn parameter to another module (i.e. it may be copied to the segment ad-

dressed via SR1). If unset, it may not be copied to a destination segment

addressed by SR1.

permit_calls: If unset the capability cannot be used to make inter-module or

similar calls. This might be appropriate, for example if the capability is a

free capability.

permit_free_cap: If set, the capability can be used to access the content of the

module which it names directly, i.e. providing access as a free capability

parameter which can be loaded into a segment register. This is not possible

if the right is unset.

permit_duplicates: If unset, the source module capability is invalidated

when being copied, changing the behaviour of the copy_cap instruction

from normal copy to destructive move.

permit_read: If set, the capability may be copied to the normal data part of

any other segment. This allows the content of a module capability to be ex-

amined. If unset, it is not possible to store the content of a capability in the

data partition of a segment, thus rendering it impossible to examine its con-

tents.

permit_dir: is discussed below under "Directory Mode".

permit_print: If set, the file addressed by the capability may be printed. No-

tice that this right could in theory be classified as a generic right, unlike other

generic rights the printing of files is not carried out by the Container Manager

but directly by users (see chapter 31) and hence this right has been included with

the general and once only metarights.

In a capability the above rights appear in three groups.

a) The first set of rights applies when the owner of the source segment and the

owner of the destination segment are the same or when the owner of the

current thread and the owner of the capability are the same. Allowing re-

strictions even when the same owner is involved allows a user to guard

against his own potential mistakes, but also helps prevent software and

hackers from misusing the capability if they gain access to it.

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 199

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

b) Subject to the rights in (a) not being infringed
145

, this set of rights ("foreign

owner") applies when the owner of the destination segment and the current

thread's owner are different or when the owner of the capability and the

current thread's owner differ.

c) Subject to the rights in (a) and in (b) not being infringed, this set of rights

("foreign node") applies when the home node of the owner of the capability

is not the same as the node on which the action is being attempted.

3.3.3 Directory Mode

Directories (known as folders in some systems) are used in SPEEDOS analo-

gously to their use in some conventional systems (i.e. to store access rights asso-

ciated with the use of files). But since capabilities are separately protected by the

SPEEDOS kernel, directories need not be special modules. (Directories are dis-

cussed in more detail in chapter 30.)

In the present context, they present a particular danger. It should be possi-

ble to store a capability in a directory (i.e. in any SPEEDOS module) with the

intention of ensuring that while it is in the directory it cannot be secretly used by

the directory software to invoke its associated module, nor to be passed on as a

parameter to a further module, nor to be used in any other way except as a stor-

age repository. Once it is taken from the directory, these restrictions should be

removed.

The "once only" modes do not help in this case, neither does just unsetting

permit_calls nor the other permissions. Similarly the confinement rights (see

below) do not help, since they apply only to a particular thread, but a capability

may be placed in a directory by one thread with the intention that threads of oth-

er users may use it. Hence a special permit_dir metaright is provided. When

this metaright is set, the capability is treated as normal, but when it is unset the

capability, once in directory mode, cannot be passed to another module as its

input parameter (i.e. via SR2 for the caller) nor as the operand for an inter-

module call.

To change a normal capability to directory mode the kernel first copies it

(as a normal capability) into an input parameter segment (SR2 for the caller) of

the directory module (later accessible via SR0 for the directory module). Then

the user thread unsets the permit_dir metaright. The kernel checks that when

this unset operation is requested, the capability is in an input parameter segment

and then unsets the permit_dir metaright. (It cannot – and need not – check

that the module being called is a "directory" module, since the kernel does not

recognise such modules as special.)

145

 It makes no sense to apply more stringent rights to oneself than to others.

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 200

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

When the receiving module copies the capability from the input segment,

the kernel checks that the destination segment is a persistent file segment. If not,

the copy operation fails. The kernel also allows the capability to be transferred

from one file segment to another (to allow for directory re-organisation), but it

may not be moved to an input parameter segment in preparation for an inter-

module call. Nor can it be used for any other purpose while in directory mode,

except to be transferred to a result parameter segment in preparation for an inter-

module return. As part of the inter-module return itself, the kernel resets directo-

ry mode to normal mode, i.e. the permit_dir metaright is set again.

3.4 Status Bits

There are two pairs of status bits which can be set in a capability. These appear

as subfields of the container number, not in the access rights fields (see Appen-

dix 1).

3.4.1 The Capability Origin Status Bits

The module call confinement rights were described in chapter 25 section 4. In

order for the kernel to determine whether a call is permitted, it must know the

origin of the capability, e.g. if it is currently in or was moved from a constant

segment of the code, or whether it was passed as a parameter to a module. Since

the user might attempt to disguise this origin, the copy_cap instruction uses two

status bits (the origin bits) in a module capability to record the source of its

movements. If the capability has been copied from a parameter segment the first

bit is unset (0); if the capability has been copied from a constant segment the

second bit is unset.

3.4.2 The Capability Copy Restriction Status Bits

These two bits are used to prevent a user who has been given a copy of a capa-

bility from further distributing copies of this to other users (see section 3.3.1

above). To implement this two status bits in the capability are used. The first is

unset by the kernel in the copy operation initiating the restriction. The second is

unset by the kernel immediately following it being passed (or returned) as a pa-

rameter to a module not owned by the current user. This allows the original user

to provide another user with a copy of the capability (which can be used by the

latter as defined in the metarights) but it prevents this user from distributing it

(or further copies which this user creates) to third parties.

3.5 Confinement Rights and Environmental Rights

The confinement rights were described in detail in chapter 25. These include:

• the information confinement rights (see Figure 25.1), and

• the module call confinement rights (see Figure 25.7).

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 201

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The environmental rights were defined in section 1 above.

When confinement rights and/or environmental rights are unset in a capability,

the corresponding restrictions are applied to user threads which are executing in

a module (or bracket routine) which was activated as a result of a call which

used the capability.

3.6 The Capability Accessibility Rights

The capability accessibility rights, when held as rights in a capability, determine

whether a module called by the capability can access the relevant capabilities.

Notice that in the case of the free capability right, this determines whether a

module called via the capability can make use of free capabilities whereas the

free capability bits in the metarights determine whether this capability can be

used as a free capability in other modules. When appearing in a capability the

administrator and owner rights indicate that this is an administrator/owner capa-

bility.

4 The Thread Security Register

The Thread Security Register (TSR) is a pseudo register maintained by the ker-

nel as part of the state of each user thread. It holds a set of rights currently asso-

ciated with the thread. Its current values are stored at the base of the thread stack

and are recorded in the linkage segment on each inter-module-, co-module-, and

library call and on bracket routine activations (and restored on the corresponding

returns). Its current values are available only indirectly to active modules and

bracket routines via kernel instructions. Its content is extremely security sensi-

tive and it is fully protected from direct user access.

The permissions in the TSR follow the same rules as those for access rights

in capabilities. Initially all the rights are set (implemented as 1 in the TSR), i.e.

all permissions can initially be used, but can be reduced (unset/turned off, i.e.

with the value 0). A permission which has been turned off cannot be explicitly

turned back on. To reduce the rights, the kernel uses an intersection operation.

A summary of the TSR structure appears in Figure 26.6. The rights fall into

four groups (thread control rights, confinement rights, environmental rights and

capability accessibility rights).The thread control rights are described in section

4.1. The confinement rights were explained in Chapter 25 (see Figures 25.1 and

25.7). The environment rights were described in section 1.3 above and the ac-

cessibility rights in section 2 above. When they appear in the TSR the adminis-

trator/owner rights indicate whether the thread can make use of administrator/

owner privileges.

Each set of rights is repeated in primary and secondary sections, as will be

explained below. They are stored in the TSR as a bit list, with each bit represent-

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 202

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ing a specific right. If a bit is set, the thread has the corresponding right; if the

bit is not set, the right is denied.

When a thread is initially created, all the rights are set. As the thread pro-

ceeds, some or even all of these rights may be removed or changed as described

below; an application cannot restore its own rights. The rights are perpetuated

from call to call in appropriate cases
146

.

The removal of rights can be effected by an application or bracket routine

using a kernel refinement instruction. Applications and bracket routines can also

examine the current contents by executing kernel instructions. These possi-

bilities are described below.

4.1 The Thread Control Rights

The owner of a thread may wish to control its use. There are two subgroups in

this category (see Figure 26.7). The first group (coloured brown) applies to

standard SPEEDOS operations. The second group (coloured red) applies to In-

ternet operations involving non-SPEEDOS nodes. The latter are explained in

chapter 34 section 7.3.2.

permit_remote_node: When unset, the kernel prevents a thread from be-

ing transferred to another node.

permit_foreign_calls: When unset, the kernel prevents calls to mod-

146

 The full rights are temporarily restored when the kernel makes a forced call to handle a

synchronous error.

Figure 26.6: Thread Security Register

Primary Confinement Rights Secondary Confinement Rights

Primary Environmental Rights Secondary Environmental Rights

Primary Accessibility Rights Secondary Accessibility Rights

Primary Thread Control Rights Secondary Thread Control Rights

Figure 26.7: Thread Control Rights: An Overview

Mail FTP Other

Internet
Web-

sites

Foreign

Code Caps
Foreign

Thread Caps
Remote

Node
Foreign

Calls
Foreign

File Caps
Down-

load
Up-

load
Sub-

threads
Call-

Backs

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 203

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ules owned by users other than the owner of the thread.

permit_foreign_file_caps: When unset, the kernel prevents the thread

from making use of any file capabilities for modules owned by users other than

the owner of the thread.

permit_foreign_code_caps: When unset, the kernel prevents any use of

code capabilities for modules owned by users other than the owner of the thread;

permit_foreign_thread_caps: When unset, the kernel prevents the

thread from making use of any thread capabilities for modules owned by users

other than the owner of the thread.

permit_download: When unset, the Container Manager (a privileged ker-

nel co-module which organises downloads and uploads, see chapter 28) prevents

the thread from initiating downloads.

permit_upload: When unset, the Container Manager prevents the thread

from initiating uploads.

permit_subthreads: When unset, the thread cannot create subthreads.

permit_callbacks: When unset, the thread cannot invoke or support

call-back routines
147

.

permit_websites: When unset, the thread cannot access non-SPEEDOS

websites.

permit_mail: When unset, the thread cannot access non-SPEEDOS email

systems.

permit_FTP: When unset, the thread cannot access non-SPEEDOS FTP

facilities.

permit_other_internet: When unset, the thread cannot access any non-

SPEEDOS Internet facilities.

Initially these confinement rights are all set for all the threads of a process

and are stored in page 0 of the process container, but the Container Manager

provides a routine which allows them to be reduced (for all threads in the pro-

cess). When a new thread is created, the current values held in page 0 of the pro-

cess container are copied into the Thread Security Register, where they can be

further reduced for an individual thread, using the instruction

refine_tc_rights(bitlist tc_rights)

The bitlist parameter tc_rights provides a bit list of thread control rights in

which the rights to be reduced are set to 0. The remaining bits are set to 1 in the

input parameter and are not modified in the TSR.

147

 see chapter 20 section 8.5 and chapter 28 section 7.

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 204

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.2 Understanding the Rights in the TSR

Control over the environmental and confinement rights cannot be managed

simply by initialising all the rights in the TSR for a new thread to the permitted

state, then allowing refinement instructions to reduce these. The reason for this

is illustrated by the following example.

A user has a general purpose thread in which it can invoke a command lan-

guage interpreter (CLI) or an equivalent graphical interface to execute different

commands. Suppose that via the CLI an edit interface of a text file module is

invoked. This in turn calls a dictionary module used for spelling checking. The

CLI module is the start-up module for the thread, which is invoked "automati-

cally" when the thread is first activated, on the basis of the capability passed to

the thread as part of the thread creation activity. Depending on its design, this

could be an independent program module without file data, or an application

module which uses file data to keep a log of the modules which it is required to

invoke. If the former, then it might have a capability for a log file module

(passed to it when the thread is created).

The CLI may invoke application modules for which it obtains capabilities

from a directory (i.e. not passed to it as parameters). The applications which it

invokes vary at the user's choice, and might be independent program modules

and/or file applications. The edit command might be an independent program

module which accesses text files via free capabilities, or it might be a semantic

routine of a specific text file module. It will also need to communicate either

directly or indirectly with a monitor/keyboard device driver module to receive

and display text. And it will possibly need to access a dictionary file to check

spelling, and a further file containing user preference settings. Eventually it (and

the CLI) may need to access a logout module.

This variety of possibilities illustrates that it is not sufficient to use the

same confinement permissions or simply to reduce them as a thread proceeds. A

more dynamic mechanism for controlling these rights in the TSR is therefore

necessary.

4.3 Primary and Secondary Confinement Rights

The following mechanism does not claim completely to solve the problem, and

in some cases may need to be combined with the use of qualifiers and their

bracket routines to achieve the desired security.

Because a user owns his own processes and their threads, he determines at

least the first module to be called and therefore the capability used to call it
148

,

148

 The only exception may be the first capability used to create the first process of a new

user.

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 205

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

and can therefore reduce the rights in this capability to suit the environment in

which it will execute. He can also pass further capabilities as parameters to this

module, which can be used for making calls to further modules in the thread;

hence he can also reduce the rights in these capabilities. Furthermore he can de-

termine – or reduce – the confinement permissions of capabilities for the mod-

ules which he owns (using the capability copy operation), before placing them in

a directory. In other words he has considerable control over the confinement

permissions held in many, though not necessarily all, capabilities used in his

threads to make calls.

Taking advantage of this, the proposed mechanism organises the environ-

mental and confinement permissions in the TSR and in capabilities into two

groups: primary and secondary environmental, confinement and accessibility

rights. The primary rights apply when a user-controlled capability is used to in-

voke a module. The values of these are copied afresh into the TSR as part of the

call mechanism. The secondary rights are used for all modules which are called

by such modules on the basis of uncontrolled capabilities. The primary confine-

ments are never carried over on an inter-module call, but the secondary con-

finements are copied into the TSR and applied to all modules called using un-

controlled capabilities. When a controlled capability is used to make a call, both

the primary and secondary rights in its capability replace those in use up to that

point.

4.4 Distinguishing Controlled from Uncontrolled Capabilities

In the sequel, a module which is invoked via a controlled capability is referred

to as a controlled module. Otherwise it is an uncontrolled module. Capabilities

are considered to be controlled if any of the following conditions is met.

a) The start-up capability is by definition a controlled capability.

b) A capability passed as an input parameter by a controlled module within the

thread to another module in the thread is also considered to be a controlled

capability. The receiving module might nevertheless be an uncontrolled

module. (The justification for this is that the owner of the thread can reduce

the rights in the capability, and is aware how the module is to be used.)

c) The owner of the module addressed by the capability is the owner of the

thread in which the module is being activated. (The argument for this is that

even if the capability has been passed to a different user, it must have been

created by the owner of the module which it addresses. The other user can-

not increase the rights beyond those which were in the capability when he

received it.)

4.5 Examining and Reducing Rights in the TSR

There are 4 pairs of kernel instructions for examining and reducing the rights in

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 206

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the TSR. Each instruction pair consists of a refinement instruction which allows

the rights to be reduced and a further instruction for examining the current state

of the rights. There is such an instruction pair for each of the four rights catego-

ries. These conform to the following pattern.

(a) the rights refinement instructions:

refine_[tc|conf|env|acc]_rights

 (bitlist rights; boolean primary)

The bitlist parameter rights provides a bit list of rights in which the rights

to be reduced are set to 0. The remaining bits are set to 1 in the input parameter

and are not modified in the TSR. The boolean parameter primary indicates

whether the primary or secondary rights are to be refined.

(b) the rights enquiries:

bitlist query_[tc|conf|env|acc]_rights

 (boolean primary)

On return the bitlist result shows the current settings in the TSR. The boolean

parameters specify which subset of the environmental parameters is to be re-

turned.

5 Container Confinement

Confinement techniques based on capabilities are intended to restrict unwanted

activity by individual users or threads. But it is also possible to provide some

blanket restrictions on containers, which apply globally. These can give the

owners of containers control over the use of the container. They are stored in the

protected area of page 0 of the container.

Illustrated in Figure 26.8, the container confinement rights determine

whether information in the container can be transferred to another node via a

download or upload, whether they can be used by a thread the owner of which is

not the owner of the container and whether they can be used by a thread belong-

ing to another node which has been transferred temporarily to the current node

following a remote inter-module call.

These can be modified by the owner or an administrator of the container

and they are held in the privileged area in the container's page 0. However, they

are not transferred to the TSR. The first two permissions are checked by the

Container Manager before initiating a transfer to another node. The third and

fourth rights are checked by the kernel as part of an inter-module call to a desti-

Foreign

Upload
Foreign

Thread
Imported

Thread
Foreign

Download

Figure 26.8: Container Confinement Rights: An Overview

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 207

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

nation in the container and in the load_free_cap instruction. These rights can

only be changed by the container's administrator. There is no mechanism for

them to be changed in any other way. They are not subject to the normal rule

that rights can only be reduced, since allowing the administrator of a container

to change them allows more flexibility.

6 Utility Programs

The mechanisms described so far are carried out by the kernel when a thread

requests them. Here we show that it is also possible to supplement such checks

by means of free-standing utility programs.

6.1 Examining New Code Files for Hidden Capabilities

Because the information in SPEEDOS modules is held in structured segments

which have a known root segment, it is possible to write utility programs which

can search these in a systematic way, as this example illustrates.

A utility program could be written which searches newly acquired code

files before they are put into service. Such a program could, for example, search

for constant segments and list (or invalidate) all the module capabilities which

are embedded in the program.

In order to do this the code file would have to be viewed as a data file and

the utility program would need a free capability for accessing it. There is no

technical problem in achieving this, assuming that the ownership of the code file

is transferred to the user or system manager, etc. This approach would reduce

the need for some bracket routines.

6.2 Assistance in Setting Rights in Capabilities

Setting the rather daunting list of rights described above, if carried out directly

by users, would be a tedious and error prone activity. For this reason SPEEDOS

should be accompanied by a utility program which carries out much of the work

involved.

This might be based on the provision of a formalised specification of pro-

grams provided by the vendors of program modules. It would in any case be an

important step towards more transparency in computer systems to expect that a

readable specification is provided by code developers, since it would greatly in-

crease the transparency of code functionality and hence provide a significant

step towards more secure systems.

One form that such a specification might take could be based on a template

which requires the developer to

(a) provide an overall description of the program in plain English (or appropri-

ate foreign language),

Chapter 26 SOME CONFINEMENT AND ACCESS CONTROLS 208

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(b) list each semantic routine provided by the code;

(c) give each semantic routine a standard symbolic name;

(d) describe which semantic routines of other modules (including device driv-

ers) each semantic routine needs to call and why;

(e) explain where it obtains the required capability to call each such module

(e.g. as an input parameter supplied by the user, or from one of its constant

segments);

 (f) list which capabilities, if any, each semantic routine needs to return to its

calling module;

(g) indicate for each semantic routine whether it places capabilities in its file

segments and why;

(h) whether it creates and activates threads and why.

The above list is not exhaustive and should be extended by adding further points

which can be automatically translated into settings for the rights within capabili-

ties and the TSR.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Part 7

Basic Networking

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 27

Partitioning and Relocating Discs

In chapter 23 a number of simplifying assumptions were made about the organi-

sation of the virtual memory. One purpose of the present chapter is to replace

these assumptions with a more realistic description of how SPEEDOS should

really function. We begin by describing the partitioning of discs.

1 Partitioning Discs

When it is initialised a SPEEDOS disc can be subdivided into separate parti-

tions. Each partition can be viewed more or less as a separated disc (except of

course that such partitions are mounted and dismounted together). The question

then arises how they are uniquely named. The unique internal name of a

SPEEDOS disc consists of a 64 bit node number (of the creating node) and a 64

bit disc number, whereby the node number is system-wide unique and the disc

number is unique within the node.

The final 4 bits of a disc number can be used as a partition number. In this

way nothing changes substantially except that the system can immediately rec-

ognise which "disc numbers" belong together as logical partitions of the same

physical disc. A disc which is not subdivided into partitions is regarded as a disc

which only has a single partition numbered 0. Hence when numbering new

physical discs, the actual discs have a 60 bit number which is incremented with

each newly initialised disc (see Figure 27.1).

Each partition has its own separate disc directory and page tables (as de-

scribed in chapter 23 sections 2 and 3), but of course these have different physi-

cal disc addresses. This is achieved in that page 0 of the actual physical disc be-

SPEEDOS Node Number

(64 bits)

Disc Number in Node

(60 bits)

Partition #

(4 bits)

Figure 27.1: A SPEEDOS Partition Number

Chapter 27 PARTITIONING AND RELOCATING DISCS 211

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

comes a directory for the actual disc start addresses and lengths of the different

partitions. The structure of this partition directory is simply a list of entries, one

per partition, whereby each entry (which is indexed by partition number) con-

sists of fields <disc address of start of partition, length of partition, access prop-

erties>. The length of a partition is an integral number of 8 KB pages. The ac-

cess properties include a "read only" bit, which if set indicates that the pages of

the partition can only be read. This can be used to indicate devices which can

only be read (such as CD ROMs, DVD ROMs), but also normally writeable disc

partitions which must not be overwritten. Similarly it can be used to indicate that

the partition holds the SPEEDOS kernel or the system co-modules needed to

boot the system). The resolution of page faults, etc., as described in chapter 23,

must be straightforwardly adjusted to take account of the existence of this table.

2 Moving Discs from one Computer to Another

So far it has been assumed that discs remain at the node on which they were cre-

ated and that containers remain on the same disc throughout their existence. This

simplified the description in chapter 23 because the unique identifiers of discs

contain the unique node numbers of the creating node and the unique disc num-

bers of the disc (and partition) on which they are created. This is a very useful

starting point for addressing containers since it helps to locate them rapidly. If,

for example, a capability for a container has a node number 233, a disc number

11 and a container number 12345, then the obvious place to search for the con-

tainer is by finding node 233, looking up disc number 11 and accessing contain-

er 12345. In the vast majority of cases this approach will be successful, but not

always.

In reality users sometimes need to move discs from one computer to anoth-

er (often close by, but possibly at the other side of the world). Of course in some

cases copying a container or even a disc and deleting the original (and thus re-

naming the container and/or disc) would offer a satisfactory solution, but not

always, because this would prevent all users who already have capabilities with

old names from gaining access as a result of the changed name. Of course the

users could continue to access the original disc or container if it were not deleted

after making a copy, but then the other users would not see any updates made to

the new version.

We need to tackle two problems associated with moving a disc to another

computer. Since it has become commonplace physically to attach a removable

disc to virtually any computer (e.g. via USB connections) it is of paramount im-

portance to be able to ensure that unauthorised users cannot gain access to the

information contained on the disc. But it is equally important that those users

who are authorised can actually access the disc when it is mounted on another

Chapter 27 PARTITIONING AND RELOCATING DISCS 212

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

computer. (At this stage we do not consider access over a network since that is-

sue is dealt with to the next chapter.)

2.1 Preventing Unauthorised Access to Information on Disc

In this section we discuss how it is possible to prevent hackers and others from

accessing the information on a removable disc by mounting it on another com-

puter and attempting to access it illegally via that computer (e.g. by using a

hacking program to read it directly, e.g. disc block by disc block).

2.1.1 Accessing a Disc on an Unauthorised SPEEDOS Computer

If the computer on which the disc is mounted is a SPEEDOS computer, the fol-

lowing precaution can be taken
149

.

When the disc is first mounted, page 0 of its partition directory must in any

case be read. At this stage it is possible to check if the SPEEDOS node on which

it is being mounted is authorised to access the disc. This is achieved by listing

authorised SPEEDOS nodes in the disc's partition directory. The list, known as

the Disc Authorisation List (DAL), can be set up by the owner of the disc (or

another user with an appropriate capability). To do this he calls a semantic rou-

tine of the disc directory module while it is still on-line at an authorised comput-

er. This mechanism will typically be used in situations such as a group of home

computers, or when the disc's owner plans to use the disc on a computer which

is geographically away from his home location. The node on which a disc is ini-

tialised will normally be the first entry in the DAL, but the owner can add en-

tries to the list and remove them from the list by invoking routines of the appro-

priate disc manager co-module (see Figure 27.2).

This mechanism provides an additional precaution over and above the other

security tools available in SPEEDOS. But unfortunately, as described above it

149

 If an attempt is made to access a SPEEDOS disc on a non-SPEEDOS computer, the

encryption technique now described should make this impossible.

Figure 27.2: A Disc Authorisation List (DAL) [Version 1]

Creating Node#

Node# Authorised

to Use Disc
Node# Authorised

to Use Disc

Node# Authorised

to Use Disc

Node# Authorised
Node# Authorised

to Use Disc

Chapter 27 PARTITIONING AND RELOCATING DISCS 213

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

does not solve all the problems. Hence it is called Version 1.

2.1.2 Encrypting Pages on Discs

A problem can arise if a hacker takes the disc to a non-SPEEDOS computer and

reads the information block by block. To prevent this two of my former col-

leagues and I sketched out a plan how such protection could be effectively

achieved on MONADS systems using encryption (and how the secure booting

of a MONADS system could also be achieved by means of a similar technique)

[24].

The basic ideas behind encryption techniques were introduced in volume 1

chapter 4 section 3. Readers not familiar with encryption concepts might like to

read that section again. There it was explained that only symmetrical encryption

(i.e. where the same key is used both to encrypt and to decrypt data) can reason-

ably be used to encrypt the content of discs, because the encrypted text (or pro-

gram, etc.) has the same length as the unencrypted text, i.e. a page of encrypted

text (on disc) has the same length as its unencrypted counterpart in the main

memory of the computer.

However, this raises the problem how the symmetrical key can be distribut-

ed to authorised persons without allowing the same distribution route to be used

by non-authorised persons. The normal solution is to use an asymmetric key on

the symmetric key in order to distribute the latter securely. An asymmetric key

has the disadvantage that the encrypted version of a text (or in this case a key) is

not necessarily the same length as the plain text version (which is one reason

why the asymmetric keys cannot be used to encode the page). But it does have

the important advantage that the public key
150

 used to encrypt a message (or

text, etc.) may be publicly known (e.g. it might even be published in a newspa-

per or openly on the internet). But decryption can only be achieved via the cor-

responding private key (which is kept secret).

How can this be used to secure removable discs? We assume that the kernel

at each node of a SPEEDOS network has its own (different) asymmetric key

pair. The nodes on a SPEEDOS network can safely answer enquiries from other

nodes about their public keys (since these can be publicly known). Hence a user

wishing to take his disc (which was created and used on Node A) to Node B can

ask that system manager (or other user) at Node B to provide him with its public

key (even by post or in a plain text email).

Having received the public key of Node B, the kernel at Node A (on which

the disc is still mounted) can use this to encode its own symmetric key and place

the result in the DAL in the disc directory. Later, when the disc has been mount-

150

 see chapter 4 section 2.

Chapter 27 PARTITIONING AND RELOCATING DISCS 214

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ed on Node B, the kernel of Node B can, by using its own private key, learn the

symmetrical key used to encrypt the disc and henceforth use it to work with the

disc.

2.1.3 Encrypting the DAL

But there remains a small problem. Is the page containing the DAL itself en-

crypted, and if so using which technique(s)? Remember that the DAL may list

keys for several destination nodes, which each have different asymmetric key

pairs.

Under normal circumstances the page containing the DAL would be en-

crypted using the symmetric key of the source node, but precisely this symmet-

ric key should be kept secret and therefore should not be readable on a computer

which does not know the key! Remember also that Node B does not know the

order in which the DAL entries are held, so that it cannot simply use its private

key at a fixed position in the page! And remember that each entry in the DAL

has been encoded using a different public key, one of which is its own (but only

if it is authorised)! I suggest the following solution (see Figure 27.3).

The start of the DAL is always in a fixed position in page 0 of the partition

directory of the disc, and it has a fixed number of entries, each with a fixed max-

imum length (because the public keys used to encode the symmetrical code may

not produce entries of the same length). Each publicly encoded entry has a

length field. The DAL itself (in contrast with the rest of page 0) is NOT encod-

ed, except via the various public key entries, but the rest of the page is encoded

using the symmetric key of the source node
151

. This can then only be read using

the symmetric key, after it has been recovered. Figure 27.3 uses colour coding to

show that the different entries in the list have been encrypted by different public

151

 It is probably more convenient to place the DAL in a separate page (e.g. page 2 of the

disc directory.

Creating Node# A

Node# B Authorised

to Use Disc

Node# C Authorised

to Use Disc

Node# D Authorised

to Use Disc

Symmetric Key

used to encrypt disc

Symmetric Key

used to encrypt disc

Symmetric Key

used to encrypt disc

Symmetric Key

used to encrypt disc

Length of Public

Key for Node A

Public Key for

Node A

Length of Public

Key for Node C

Public Key for

Node C

Length of Public

Key for Node D

Public Key for

Node D

Length of Public

Key for Node B

Public Key for

Node B

Figure 27.3: Protecting Entries in the Disc Authorisation List (DAL)

[Version 2]

Chapter 27 PARTITIONING AND RELOCATING DISCS 215

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

keys.

Finally in order to discover whether a disc is authorised the destination ker-

nel decodes (only) the DAL using its private key. If it discovers that its node

number is on the list and its public key details match, it is authorised to mount

the disc. It can use information in the corresponding DAL entry as the symmet-

ric key for the disc. If it is not in the list a failure message is generated and the

disc cannot be used. The public key details are included not because they are

needed as such, but to ensure that a different node's encoding does not decode to

another node number by chance. (The likelihood is very small, but cannot be

fully excluded.)

This procedure not only ensures that the destination computer, if author-

ised, can discover the symmetric key used to encode the rest of the disc, but also

that no other computer – not even other SPEEDOS computers listed in the DAL

– can discover the node numbers of the other authorised nodes!

For the owner of the disc all that is involved in this process is to inform the

disc directory of changes to the list of nodes at which the disc may be mounted.

The kernel's disc process responsible for the disc must of course use the sym-

metric key which it has recovered for all further accesses to the disc.

The next chapter describes how networking is organised in SPEEDOS. In

principle it would be possible to use this route to obtain a public key from a

partner computer, but only if that computer is on line. The above method is

therefore to be preferred for the task which we have described, i.e. accessing a

removable disc which has been plugged into a different computer.

One final point on this theme: what we have described should prevent

thieves from acquiring information from a stolen disc, but it does not prevent

them from overwriting the information! This unfortunate fact reminds us that

encryption alone is not the key to achieving high security, as some computer

scientists and others tend to think...

2.2 How Authorised Users can Access the Content of a Moved Disk

After the kernel has recognised another SPEEDOS disc using the above proce-

dure, the question still remains how a user can access its content.

In chapter 23 the simplifying assumption was made that all discs created at

a node are always mounted and available at that node. That assumption is self-

evidently too stringent. It is possible to create many more disks at a node than

can be concurrently mounted. Furthermore discs sometimes fail and have to be

destroyed. What is clearly needed is a further table, belonging to the kernel disc

Chapter 27 PARTITIONING AND RELOCATING DISCS 216

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

process, which we call a Local Mount Table (LMT)
152

. This lists all the discs

and their partitions that are currently mounted at a SPEEDOS node, together

with the address of the physical disc drive at which it is mounted and, for rapid

access, the disc address of each partition's directory page 0 (see Figure 27.4).

The table is set up by the VM process when a node is initialised. At that

point the process enters the details of the disc used to initialise the system

(known as the boot disc) into the table, along with all its partitions, and those of

any further discs which are already mounted at the node at initialisation. There-

after the VM process enters any further discs/partitions when an interrupt indi-

cates that a new disc has been mounted (after checking that it is accessible ac-

cording to the procedure described in section 2.1.3) and removes entries as the

corresponding discs are dismounted.

2.3 Resolving Page Faults on a Locally Mounted Foreign Disc

The first page fault for a module occurs on an inter-module call, as described in

chapter 23 section 4.4. One of the tasks of the user request process handling the

IMC is to check the local mount table is to establish whether the appropriate disc

is on-line. It can do this because the capability passed as an operand to the IMC

contains a creating node # and disc/partition #. This can be checked against the

Local Mount Table to establish whether the required disc/partition is currently

on-line, and if so it sends a "request and lock page 0" message to the VM pro-

cess, and continues as described in chapter 23 section 4.4.

2.4 Accessing Moved Discs which were Created at the Current Node

So far we have considered the situation where a disc has moved from one node

to another from the viewpoint of the node where the disc has been mounted. But

152

 This name, and much of the remaining content of the present chapter, is heavily reliant

on the MONADS design, as extended by Frans Henskens and described in his PhD the-

sis [20], which Prof. Henskens has kindly made available on the SPEEDOS website.

Creating Node# Disc/Partition #

on creating node
Physical Drive# Disc address

of Directory Page 0

Figure 27.4: The Local Mount Table

Chapter 27 PARTITIONING AND RELOCATING DISCS 217

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

from the viewpoint of the node which created the disc, the latter is no longer di-

rectly available, despite the possibility that user threads on the creating node

might still want to access it. However, this is self-evidently not possible without

the availability of networking, which is the subject of the next two chapters.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 28

Accessing the Internet

This chapter examines how SPEEDOS can function in a network environment,

in particular in the context of the Internet. It does not go into technical details of

how exactly the Internet works, since there are many experts in this field
153

, but

merely shows how SPEEDOS ideas can be made to work in the Internet envi-

ronment. The same principles apply, with detailed differences, to other net-

works.

1 Accessing the Internet

The first issue is to determine how a thread executing on one SPEEDOS node

can access or modify information stored on a different node. We take as a start-

ing point the transfer of information between SPEEDOS nodes.

Information transferred over the Internet must be secured to prevent unau-

thorised users from eavesdropping. The scheme described in chapter 27 for pre-

venting discs from being read by unauthorised parties can easily be adapted to

deal with this situation.

Since each node has its own asymmetrical key set, nodes can easily send

secure messages to each other simply by each SPEEDOS sender encoding its

messages using the receiving node's public key, and each SPEEDOS receiver

can use its own private key to decrypt messages which it receives.

2 Remote Paging

In the late 1980s an ethernet-based network of three MONADS-PC systems, in

which each system had its own ATU, was built to experiment with the issue of

how the MONADS architecture (the predecessor of SPEEDOS, which also sup-

ported a persistent virtual memory) could be adapted to networking. The basic

153

 I am not an expert in the technicalities of the Internet, and it may be that some details in

this chapter may need some small corrections. A further discussion of the Internet ap-

pears in chapters 34 and 35.

Chapter 28 ACCESSING THE INTERNET 219

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

idea was to test out the feasibility of remote paging, a concept which my former

student David Abramson and I first proposed in 1985 [25]. This concept was

then developed in detail in the PhD thesis of Frans Henskens [20], another for-

mer student
154

.

The basic idea behind remote paging is that pages are transferred across a

network when a page fault occurs for a page which resides on a remote node.

Such page faults are implemented by transferring the required page from the re-

mote node (the server node, which owns the faulting page) to the page-faulting

node (the client node). This should be entirely transparent to the user, who need

not be aware of the fact that he is working in a network environment.

As the co-inventor (with David Abramson) of remote paging
155

 I was keen

to use this mechanism in SPEEDOS, following Frans Henskens' successful im-

plementation of the idea in the MONADS context. However, when I again

looked into this technique I realised that developments in SPEEDOS made it

difficult to use the technique so cleanly and efficiently as had been possible in

MONADS. Some of the relevant issues for this decision were:

a) the SPEEDOS implementation of semaphores
156

, and

b) the introduction of security sensitive co-modules
157

.

For these reasons it was decided to follow an alternative route for SPEEDOS,

viz. remote inter-module calls.

3 Remote Inter-Module Calls

Whereas with remote paging the data and code are transferred across the net-

154

 This thesis was supervised by another of my former students, John Rosenberg. Hens-

kens has kindly agreed to place a copy for download on the SPEEDOS website:

http://www.speedos-security.org/
155

 Many U.S. researchers think of Kai Lee as the inventor, overlooking the fact that our

publication of the idea in a Hawaii conference in 1985 preceded the publication of [28]

in 1986.
156

 Semaphore operations modify the page in which the semaphore is held. Since in

SPEEDOS they are held in the file pages of an application container (see chapter 21) the

result is that each time such an operation occurs the page becomes a "writer" and thus

prevents further readers from accessing the page; this makes the system, especially

nodes which have many readers, inefficient by causing otherwise unnecessary page

transfers and the delaying of threads..
157

 Containers contain both system information and application information, possibly in the

same page. These would have to be kept in separate pages and only application data

could be remote-paged. Furthermore if the MONADS design were used, the SPEEDOS

kernels on all nodes would have to be identical, which in the Internet environment

would be unacceptable (in contrast with a homogeneous local area network, for which

Henskens' original system was designed). At the time the MONADS remote paging

work was carried out, the Internet did not yet exist in its present form. With the solu-

tions presented in this chapter only page 0 of a container has a fixed format.

Chapter 28 ACCESSING THE INTERNET 220

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

work to the thread needing them, with remote inter-module calls (RIMCs), the

thread is taken to the data and code. In other words RIMCs can be loosely con-

sidered as the SPEEDOS equivalent of remote procedure calls
158

 and remote

method invocations
159

 in conventional systems (except of course that (a) the call

is to a SPEEDOS module, with all the accompanying security measures, and (b)

the implementation differs significantly from conventional RPCs).

The basic idea underlying an RIMC in SPEEDOS is that a semantic routine

of a module which is located on a different SPEEDOS node can be called, with-

out the caller necessarily being aware of this. From the viewpoint of the caller

the call is exactly like a normal inter-module call (with exactly the same pa-

rameters).

From the system viewpoint the kernel recognises the difference via the ca-

pability presented to the IMC, which contains a node number that differs from

the number of the node on which the call is made.
160

 We refer to a node issuing

an RIMC as node A, and the node carrying out the call as node B.

3.1 An Overview of RIMC Handling at the Client Node

The SPEEDOS technique selected to implement RIMCs is the use of surrogate

threads at the destination node B. The thread which initiated the call (at node A)

is referred to as T1 and the surrogate thread which implements the call (at node

B) as T2.

When the kernel receives an inter-module call request at node A and recog-

nises that the node on which the called module is located (the server node) is a

different SPEEDOS node, it passes on the call to the server node (node B). But

before it does this it must

a) store the registers of T1 in a new linkage segment on the T1 thread stack,

b) check that the call is valid (e.g. by comparing the called routine number

with the access rights in the capability),

c) create an IMC stack record on the stack of T1, in which the operands of the

IMC are noted
161

,

d) establish whether the IMC needs to be handled as an RIMC, and if so carry

out the actions listed in e) to i),

158

 see https://en.wikipedia.org/wiki/Remote_procedure_call
159

 see https://en.wikipedia.org/wiki/Distributed_object_communication
160

 In fact the situation is rather more complicated than this suggests, as will become clear

when we later discuss the possibility that removable storage devices and/or containers

can be moved from one node to another. But at this stage the remote IMC mechanism is

far easier to understand provisionally if we temporarily put this issue aside.
161

 Before the RIMC is issued, the thread will have used the kernel call create_imc_

params to prepare the parameter segments (see chapter 20 section 6.2).

Chapter 28 ACCESSING THE INTERNET 221

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

e) check in the thread security register that T1 has permission to make

RIMCs
162

 (and if not it creates a synchronous error interrupt),

f) complete any call-out brackets
163

 associated with the current (i.e. the call-

ing) module,

g) send a message to the user interrupt process that the current thread should

be suspended by the UTS,

h) create a top of stack record which indicates that the call is being handled as

an RIMC together with an indication of the node to which the thread is be-

ing transferred, and

i) activate a surrogate thread to advise the thread's Thread Control Manager

that the thread has been transferred to node B.

Node A then sends a message to node B in which it provides details of the IMC,

requesting node B to accept and take responsibility for the RIMC.

When it later receives a message that the RIMC has completed, the kernel

then finds the stack of T1 (which has been suspended during the RIMC execu-

tion) and brings this back to life by copying the RIMC result parameters into the

local result parameters. It then requests the user interrupt process to re-activate

T1 and exits. When this resumes it executes any call-out postludes, etc. and re-

turns control to the module which made the RIMC call.

3.2 An Overview of RIMC Handling at the Server Node

When node B receives the request, it checks whether it can handle the IMC at its

own node, and if so it sends a positive acknowledgement to node A. (If not it

uses the mechanisms described in sections 8 and 9 to locate the module and

passes on the RIMC request as appropriate, advising node A. If the module can-

not be located it sends an error message back to node A.)

It then claims a surrogate thread (known as an RIMC thread) and sets this

up, using the information which it has received, and initialises this as appropri-

ate, including creating a bottom of stack record which indicates that this is an

RIMC call, noting the home node of the thread (node A). The kernel then pro-

ceeds more or less as if one of its own user threads had executed an IMC from

its own node.

162

 see chapter 26 section 4.1.
163

 When an IMC occurs the call-out brackets are associated with the caller and must there-

fore be completed before the actual RIMC occurs, whilst the call-in brackets are associ-

ated with the target module and must therefore be executed after the transfer to the tar-

get mode is initiated. Since call-out brackets can make environmental enquiries about

the target module, the kernel instruction target_code requires the kernel at node A to

make an advance enquiry to the kernel at node B regarding the code of the target mod-

ule. The implementation of bracket routines is described in chapter 24.

Chapter 28 ACCESSING THE INTERNET 222

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

When appropriate the surrogate thread (T2) uses its Thread Control Man-

ager (at the new node B) as a local thread would, e.g. when executing sema-

phore operations. Similarly it uses the UTS at node B whenever it needs to be

suspended. If the module has associated call-in brackets these are handled on the

RIMC stack of T2 as normal.

When the module called via the RIMC has completed its task and has writ-

ten its results (if any) to the output parameter segment (addressed via segment

register 1) it issues a return instruction (or in the case that the module's call-in

brackets exit, a bracket_return instruction). When the kernel receives this it

recognises from the bottom of stack record that the thread is an RIMC thread

which is now completing. After arranging that an appropriate message be passed

back to the calling node, it deallocates the RIMC stack and forgets the thread.

4 Decisions Affecting the Interface between Client and Server Nodes

4.1 The Thread Control Manager and the Synchronisation Library

Thread control managers play a significant role in the execution of threads under

their control. We have seen in chapter 21 how they are involved in the organisa-

tion of semaphores. They occupy an intermediary role between the threads under

their control (i.e. those threads which share the same process container) and the

User Thread Scheduler (UTS). Thus when a semaphore operation is carried out

by a user thread any associated suspend and activate operations initiated by

the thread are directed (via the synchronisation library routines) to the appropri-

ate Thread Control Manager, which then calls the UTS. Similarly suspend and

activate operations not involving semaphores normally
164

 also follow a similar

route to the UTS. This arrangement has two advantages. First it means that for

each thread in the system its Thread Control Manager knows what is happening

to the thread and can potentially help, especially in error situations involving the

thread. Second, the synchronisation library and the Thread Control Managers

relieve the UTS of considerable work in terms of managing thread queues,

which is important in terms of efficient scheduling.

But what happens when a thread executes an IMC instruction which leads

to the further execution of the thread at a different node? The simple answer is

that the RIMC surrogate thread at the server node (T2) has a different Thread

Control Manager, viz. that provided in the surrogate process container. There is

no problem in T2 using this and the synchronisation library at node B. In fact it

would be extraordinarily difficult if these attempted to use the software at their

home node! The only additional problem that might arise is if the thread in some

164

 The exception is when the kernel directly suspends a thread or activates a thread.

Chapter 28 ACCESSING THE INTERNET 223

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

way were to "get into trouble" at node B, for example if it had some sort of an

error or became involved in a deadlock. The error itself would normally be de-

tected at node B where the thread was currently executing. But if this were not

its home node, the latter would need to be informed, especially if the thread

were not able to continue. In this case a message is passed back to the home

node with an error code and possibly with further information from the Thread

Control Manager at the server node).

The thread's Thread Control Manager at each appropriate node should be

informed of the thread's movements between nodes.

4.2 Handling an IMC called by an RIMC (Surrogate) Thread

There is clearly no reason to forbid a surrogate thread at node B from making

local IMCs to other modules at node B, provided that all the normal security

rules are followed. Furthermore library calls (which are not possible as RIMCs)

and co-module calls
165

 from the code at node B should be permitted as normal.

4.3 Handling an RIMC made by an RIMC (Surrogate) Thread

When an RIMC surrogate thread is executing at node B, this might in turn call a

module at a different node. Two situations are conceivable. The first is that the

new RIMC involves a call to a module at a third node (node C). This is probably

the more usual case. To keep the situation simple, the obvious answer is for the

surrogate thread making the call to be treated in exactly the same way as has al-

ready been described, i.e. a new surrogate RIMC thread is activated at node C.

The second situation is if the destination of a call from a surrogate RIMC

thread is back to the home node of the original thread, i.e. node A. A first as-

sumption might suggest that this can in some way be handled on the home stack

of the thread T1, but a little reflection will show that this could add further com-

plications which are best avoided. Instead such a call should be handled in a sur-

rogate thread at the home node, just as in the first case. (A call-back mechanism

is provided when a surrogate thread needs to communicate with the thread from

which it was activated, see section 7.)

4.4 What About the Thread Security Register?

The thread security register (TSR) is a pseudo-register maintained at the bottom

of its stack by the kernel for each thread (see chapter 26 section 4). This contains

a significant number of access controls, which should continue to apply if a

thread is transferred to another node. Consequently it should be transferred as

part of the current state each time a thread is transferred between nodes.

165

 See chapter 18 section 7.1.

Chapter 28 ACCESSING THE INTERNET 224

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

5 Communication between the Client and Server Nodes

5.1 The Request to make an RIMC

The information which node A transfers to node B (excluding packet infor-

mation for the network protocol) includes:

a) the node number of the sender (i.e. node A),

b) the number of the recipient (i.e. node B),

c) an error code (0 signifies 'initial request'),

d) a copy of the thread capability for T1 (needed for identification

es
166

),

e) a copy of the thread security register,

f) a copy of the input and output parameters which were created on the stack

of T1 in preparation for the RIMC,

g) a copy of the operands used for the IMC call.

5.2 The Confirmation

When node B receives the request, it checks whether it is responsible for carry-

ing out the RIMC and then responds with a confirmation (or rejection) as fol-

lows:

a) the number of the sender (node B),

b) the number of the recipient (node A),

c) an error code (1 signifies 'receipt confirmed and accepted'),

d) a copy of the thread capability for T1 (for identification purposes),

e) a copy of the surrogate thread capability (T2) in which the RIMC is carried

out (or 0 if an error has occurred).

If the error code shows 'receipt confirmed and accepted' the kernel at node A

copies the surrogate thread capability to the top of the stack of T1. Otherwise it

sets up a synchronous error and requests the user interrupt process to have the

thread activated, so that it can handle the error.

If the request was successful the kernel at the initiating node activates a

surrogate thread to advise the thread's Thread Control Manager that the thread

has migrated to node B. This is explained in section 6 below.

5.3 The Completion

When the kernel at node B receives the final return instruction (i.e. an IMC re-

166

 This and other capabilities used only for identification purposes are all invalidated.

Chapter 28 ACCESSING THE INTERNET 225

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

turn or if there were call-in brackets associated with the called module the final

bracket_return) from the surrogate thread or if a non-recoverable error occurs

for the surrogate thread, the responsible kernel sends a completion message to

the initiating node, as follows:

a) the number of the sender (node B),

b) the number of the recipient (node A),

c) an error code (2 signifies 'success', 3 or more is an error indicator),

d) a copy of the thread capability for T1 (to identify the thread which made the

original IMC),

e) a copy of the thread security register,

f) a copy of the input and output parameters containing the results of the

RIMC.

On receiving the completion confirmation the kernel at node A:

i) activates a surrogate thread to advise the thread's Thread Control Manager

that the thread has now been returned from node B, providing it with a copy

of the error code (see section 6 below),

ii) copies the updated thread security register into the stack of T1,

iii) copies the returned input and output parameters onto its stack.

If the error code signifies that the RIMC was successful, the kernel then prepares

all the appropriate registers for a normal return. If the error code signifies that

the RIMC has an error, the kernel prepares the registers for a synchronous error

(including passing the error code to the error handling routine). In both cases it

passes a message to the kernel's interrupt process to activate the thread which

issued the RIMC.

6 Surrogate Threads for Advising the Thread Control Manager

When a thread is transferred to or returned from another node, the thread's

Thread Control Manager is advised by the kernel, using surrogate threads. For

this purpose the TCM has an entry point in the code which cannot be called by

threads other than surrogate threads (which is marked as such in the module's

entry point list).

When the kernel wishes to activate this entry point it allocates a surrogate

thread (known as a TCM thread) from a list of threads, which have as usual been

prepared at system initialisation. It then sets up the thread to begin executing at

this special TCM entry point (setting the code segment register and program

counter to the beginning of the routine and segment register 5 to address the root

pointer in the TCM's data file) and requests the user interrupt process to have

Chapter 28 ACCESSING THE INTERNET 226

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

this thread started. When the TCM has completed its task it calls the UTS rou-

tine killMe() as was described in chapter 22 section 8.2 (g).

7 Remote Call-Back Modules

A different situation that can arise is if a surrogate thread (here T2) executing an

RIMC on a remote node (here node B) wishes to call a routine located at the

original node A. For example, the module at node B (e.g. a banking website

module) wishes to display its results on the user's screen at node A and possibly

obtain further instructions from the user at an interactive terminal. This is

achieved via call back modules
167

, which typically reside at the origin (client)

node A. A remote call-back module is a "normal" module which also provides

call-back routines for remote IMC modules which it has called. In this case exe-

cution begins in the call-back module at node A, which then instigates the RIMC

at node B.

7.1 Remote Call-Back Calls

The relationship between a remote call-back module and its RIMC module is

illustrated in Figure 28.1.

When the RIMC module wishes to invoke a call back routine of the call back

module it uses a kernel call CBC. This has an interface like a normal IMC which

allows normal parameters (no pointers) to be passed back to the routine
168

. It

indicates which routine is to be called by providing a routine number, which is

an index into the call back entry point list for the module. The second parameter

(as for a normal IMC, see chapter 20 section 8.1) is a boolean parameter indicat-

ing whether the caller is requesting read-only or read-write access to the mod-

ule's file data.

167

 These are a remote version of the call back modules described in chapter 20, section

8.5).
168

 Hence it uses the kernel call create_imc_params to prepare for the call back call.

Figure 28.1: Call Back Modules

Call Back Module

in user Thread T1

at Node A

(activated by user)

RIMC Module in

surrogate Thead T2

at Node B

(called as RIMC by

call-back module) Remote IMC

Call-Back Calls (unlimited number).

RIMC thread T2 is suspended by

the Call-Back Call and reactivated

when the CBC returns)

Chapter 28 ACCESSING THE INTERNET 227

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

7.2 Handling the CBC at the Calling Node (Node B)

The kernel at the calling node B implements the CBC as follows. It first estab-

lishes whether a surrogate RIMC has issued the call and in this case:

a) stores the registers of T2 in a new linkage segment on the thread stack,

b) creates an IMC stack record on the stack of T2, in which the operands of

the CBC are noted,

c) checks in the thread security register that T2 has permission to make CBCs

(and if not it creates a synchronous error interrupt),

d) sends a message to the user interrupt process that the current thread should

be suspended by the UTS,

e) creates a top of stack record which indicates that the call is being handled

as a CBC together with an indication of the node to which the thread is be-

ing transferred, and

f) activates a surrogate thread to advise the thread's Thread Control Manager

that the thread has been transferred back to node A.

Node B then sends a message to node A containing the following information:

a) the node number of the sender (i.e. node B),

b) the node number of the recipient (i.e. node A),

c) an error code (-1 signifies 'call-back'),

d) a copy of the thread capability for T2 (needed for identification

es
169

),

e) a copy of the thread security register (which might have been modified by

the RIMC),

f) a copy of the input and output parameters which were created on the stack

of T2 in preparation for the CBC,

g) a copy of the operands used for the CBC call,

h) a copy of the thread capability for T1 (needed to locate the original stack).

When node A receives the message it sends a confirmation along the lines de-

scribed in section 5.2 (mutatis mutandis).

7.3 Handling the CBC at the Called Node (Node A)

When the call-back message arrives at node A its kernel network process
170

passes this to a kernel call-back process, which uses the thread capability for T1

169

 This and other capabilities used only for identification purposes are all invalidated.
170

 See section 8.

Chapter 28 ACCESSING THE INTERNET 228

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

to locate the original stack, and checks (by examining the stack) that the associ-

ated thread is suspended waiting for a return from the remote IMC.

The call-back process then sets up the stack to call the requested CBC rou-

tine, sends a confirmation message to node B and requests the user interrupt

thread to activate thread T1.

7.4 Bracket Routines

Call-back modules may have both call-in and call-out bracket routines. The call-

in brackets of the call-back module are executed in the thread of the call-back

module (in this case on the thread stack of thread T1 at node A). They are identi-

fied in the Co-Module Table of the call-back module (see Figure 19.6). How

these are applied at the node containing the call-back module follows the same

pattern as usual, except that the call-out routines of the original RIMC call are

not executed before the call-in routines associated with the CBC. These are only

applied (as usual) when the RIMC module exits, returning back to the call-back

module via a normal return. In other words CBCs appear to the surrogate RIMC

thread (in this case T2) to be like internal subroutine calls from the viewpoint of

bracket execution.

7.5 Application of Call-Back Routines

An important use of call-back routines is to allow websites to be designed in

SPEEDOS without having to rely on the normal mechanisms currently used in

the Internet. For example, the call-backs can contain code which allows them to

display web pages at the website client node based on information passed as pa-

rameters to the CBC calls, without using HTML for this purpose. Of course this

does not preclude the parameters of a CBC from including HTML
171

 (or a capa-

bility for an HTML file which can then be downloaded). In this way the full

range of SPEEDOS protection techniques can be used to implement websites in

a secure manner (including secure downloads and uploads, as described in the

next chapter).

A further possibility is to provide a general purpose call-back module

which simply activates SPEEDOS websites, using HTML to display results.

This will be discussed at the application level in chapter 35.

7.6 Call-Backs at a Single Node

We have described how call-back modules can be implemented as a remote ac-

tivity, since it is anticipated that their main use will be for implementing

SPEEDOS websites. But there is no reason why the same technique should be

171

 One advantage of initially using HTML would be quickly to convert non-SPEEDOS

websites into secure SPEEDOS websites.

Chapter 28 ACCESSING THE INTERNET 229

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

used to allow communication between a call-back module and a partner module

to take place (with a much simpler implementation) at a single node. Such an

implementation could be used conveniently to test website software without re-

sorting at all to the Internet. And I expect that clever programmers will find oth-

er uses for this simpler mechanism.

8 The Network Process

The messages described above (and any further Internet communications) are

transferred between nodes by the kernel's network process at the respective

nodes. The network process is responsible not only for the transfers but also for

encoding and decoding them. It also prepares the messages for the appropriate

network, e.g. the Internet.

As such it has the asymmetrical key pair associated with the node and used

over the Internet, but not the symmetrical key used to encode and decode pages

on disc. It receives messages from other kernel processes at the same node in

network message blocks. It is activated when it receives a new message block

(as a result of a kernel reschedule). When a new Internet message arrives, the

kernel interrupt analysis routine also activates it by placing the message in its

input buffer.

The network process is also responsible for locating nodes to which mes-

sages are sent. For this purpose it maintains a Network Address Table (NAT),

which holds the network addresses that it has so far acquired as a result of its

users requesting and using such addresses. This simply consists of entries con-

taining a unique SPEEDOS node number, an indication of the network to which

a node is attached (which may for security reasons be a private network not

reachable over the Internet), a network address within that network and the pub-

lic key of the node
172

 (see Figure 28.2). It may also hold a capability for a public

directory (the "shared capability") at the node listed, thus enabling user level

software at the current node to have a starting point for communicating with us-

er level software at the node listed in the NAT (see chapter 31 section 9).

The first entry in the NAT is an entry for a SPEEDOS "directory" node,

which can accept enquires about the location of other nodes. This can interface

with other similar directory nodes (existing worldwide) to pass on enquiries re-

ceived by it for which it currently has no entry. When a SPEEDOS node comes

on line it should communicate its own details to its local directory node. In this

way the information needed to communicate with other SPEEDOS nodes could

grow rapidly. A security co-module initialises the NAT at system start-up and

172

 Although public keys can be generally known, it would of course be even more secure

to keep public keys secret and made available only to other SPEEDOS kernels.

Chapter 28 ACCESSING THE INTERNET 230

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

"shares" it with the kernel, securing it between system shutdowns and start-ups.

9 A Note on Remote Login

Conventional systems provide a remote login facility which allows users to ac-

cess their files from other systems. This is a dangerous facility, because it allows

anyone who obtains a user's password secretly to access, copy and even destroy

his files. SPEEDOS does not provide (and does not need) such a facility.

If a SPEEDOS user needs access to some of his files from a remote com-

puter, as in a conventional computer, he first needs access to a thread on the re-

mote computer. In SPEEDOS this will be a normal thread of a user process, pos-

sibly set up for this purpose. To give this thread access to the files on his main

computer he simply needs an appropriate directory capability for these. He can

supply the appropriate capability, e.g. on a memory stick, thus completely elim-

inating the need for a dangerous remote login facility.

10 Further Networking Activities Relevant to the Kernel

This chapter has shown how inter-module calls can be handled over the Internet

as well as describing the basic functions of the kernel's Network Process, which

is the process that handles network traffic at each node
173

. In the next chapter we

build on this basic information to explain how the downloading and uploading

of containers is organised by the kernel and how the kernel can efficiently locate

discs and containers which have been moved between the nodes of a network.

173

 How the kernel actually uses the Internet to transfer its messages is discussed in Chapter

34, which also considers how other Internet activities, such as email, can be handled in

SPEEDOS.

Figure 28.2: The Network Address Table

SPEEDOS

Node#

Network to

which attached

Network

Address

Public

Key

Shared

Capability

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 29

Locating and Transferring Objects

in the Internet

In chapter 28 a basic form of network activity ('remote inter-module calls') was

described. This allows a user who is in possession of a capability for a module

located at a different node to activate the module. It also described how a kernel

can communicate with other kernels and it ended by explaining how SPEEDOS

nodes could use "directory" nodes to help them locate other SPEEDOS nodes. In

this chapter we continue the story by considering how discs which have been

mounted on a 'foreign node', i.e. a node which is not the node on which the disc

was created (the 'home node'), can be located and how containers can be moved.

1 Locating Moved Discs

Chapter 27 described how a user can take removable discs to other computers

and use them directly, even if the disc's home node is not online. The inverse

issue is that a user at the creating node cannot assume that all the discs which it

created are available at its own computer. Thus if the kernel discovers from the

Local Mount Table (LMT, see Figure 28.2) that one of the discs which it has

created is not currently online at its own node, it cannot simply assume that it is

offline. In this case it must be able to check whether its disc is mounted else-

where. It would be possible to extend the NAT and the SPEEDOS directory

nodes to provide information about moved discs, but that seems to be an overkill

solution. I suggest the following alternative.

When a disc has been successfully mounted on a foreign node, the kernel at

the foreign node attempts to send a message to the creating node to advise it

where the disc is mounted. If this succeeds the home node notes this in a Moved

Disc List, with entries indicating the disc number and the number of the node on

which it is mounted. Later when it is dismounted the same kernel advises the

creating disc's home node of this. Thus when the home node receives a request

Chapter 29 LOCATING AND TRANSFERRING OBJECTS IN THE INTERNET 232

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(e.g. a local IMC or a request by another node to accept a RIMC) it can establish

the present whereabouts of the disc from its Moved Disc List and act according-

ly by passing on the request to the foreign node on which it is mounted.
174

If the disc's home node is not on-line to receive either of these messages,

the appropriate message is added to a queue of unsuccessful messages, for

which further attempts to send are made at regular intervals
175

. If the original

mounting message for a disc cannot be sent before the corresponding dismount-

ing message is due to be sent, both messages are cancelled.

2 Moving and Locating Containers

Containers must sometimes be moved from one disc to another. For example, a

user of a computer utility on which his files are stored may for some reason need

to change to another location. In this case his files might not be stored on a

computer or disc which is entirely his property, so he might want to move those

containers which are his onto a disc which he owns and can take with him. How

can he go about this?

The simple answer is that he can make a destructive move (i.e. copy the

container to the new disc and delete the old container). But that does not neces-

sarily solve all his problems, since there could be capabilities (held both by the

user moving the container and by other users at the original or another node)

which address the moved container and which hold access rights that they may

still wish to exercise.

If no further measures are taken to allow such users to gain access to the

container at its new location, the effect is that the capabilities are revoked. Thus

by relocating a container (even to another location on the same disc) a user has

an effective way of revoking capabilities, which, it will be recalled
176

, is one of

the problems with using capabilities. Consequently it may be sensible to allow

this situation, but only as an option, because this may not be the container own-

er's intention. So we now have two ways of handling the issue.

2.1 The Revocation Option

Assuming that the new location is to a disc mounted on the same node as the

existing container, the move can be implemented by the owner simply calling

the Container Manager's copy routine (see chapter 23 section 7). Then in the

second stage it calls the Container Manager's delete routine for the original

file. (The issues arising with copying have been partly dealt with in chapter 19

174

 A further possibility is that the users who own discs can provide information about their

current whereabouts.
175

 The kernel's network process could delegate this activity to a surrogate thread.
176

 See chapter 2 section 4.1.

Chapter 29 LOCATING AND TRANSFERRING OBJECTS IN THE INTERNET 233

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

and for the Internet context will be further discussed later in the present chapter.)

2.2 The Re-Use Option

At this point the important issue is how a container can be moved but can re-

main accessible to other users despite the fact that it has changed its identifier.

The preferred solution for SPEEDOS follows the route commonly used to solve

many problems in current systems, viz. by using indirection. This is managed by

the Container Manager's rename_container routine.

The technique proposed to organise the indirection is for the information

about the new location of a container to be placed in page 0 of the old container,

with a flag indicating that the container has been moved and its new location. In

this case the disc directory for the disc which previously held the container

would not be zeroed on "deletion" of the container, but an attempt to access the

container (e.g. in an inter-module call) would see that it has been moved and

could then provide the information to forward the thread to the possibly correct

location. I say possibly correct, because the "same" container might be moved

more than once. In this case the container could be located by following the

"chain" of forward references in the various page 0s.

A further advantage of this solution is that page 0 of the old location could

also contain an access control list (ACR) listing those users (e.g. by unique iden-

tifier) whose threads are allowed to be forwarded. In other words this technique

could be used to revoke the capabilities of some users while allowing other user

continued access to the container.

2.3 A Possible Optimisation

If users repeatedly needed to access the moved container their access could be

speeded up by adding advisory fields to capabilities
177

 which consist of a <node

#, disc #, container #> triple. This would increase the size of capabilities by 192

bits (from the beginning, not just when something is moved). The idea is that

these fields are initially zero, but they could be used as necessary (and overwrit-

ten with the latest information) to advise the kernel where to search for moved

objects and thus avoid a chain of accesses possibly to different nodes. Neverthe-

less what really matters is the identifiers in the original fields of a capability.

However we do not propose that this should be implemented in SPEEDOS,

since the greater majority of containers are never moved, and the technique

would considerably increase the size of capabilities.

What we have not described in this section is how the moving of a contain-

177

 The idea of having advisory fields in capabilities was first proposed by Henskens in

section 6.2.1 of his thesis [20].

Chapter 29 LOCATING AND TRANSFERRING OBJECTS IN THE INTERNET 234

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

er to a new node actually happens. This brings us to the next theme: download-

ing and uploading of containers.

3 Downloading and Uploading of Containers

One of the most common activities in the Internet is the downloading and up-

loading of files. In SPEEDOS terms this means the copying of a container from

another Internet node to one's own node (downloading) or copying a container

to another Internet node from one's own node (uploading). Thus the fundamental

question becomes, how can containers be copied over the Internet?

In the discussion of copying containers in chapter 19 section 13 several dif-

ferent reasons were mentioned as situations in which copying might take place.

The first of these ("to make a copy which the owner, or some other user, can use

independently of the original") is also normally functionally the same as down-

loading or uploading, with the extra premise that the transfer of data takes place

over the Internet (or other network).

Before such an operation can begin the system must ensure that it does not

contain "problematic" capabilities
178

 (e.g. owner capabilities
179

). For this pur-

pose a semantic routine of the container's segment manager can be invoked to

confirm that the download or upload operation is "safe".

3.1 Downloading

On current systems a website offering a download facility the origin node, (node

A) indicates this in such a way that a node wishing to take advantage of the

download offer (the accepting node, node B) can select it. In SPEEDOS terms

this means that node A provides a capability for the container on offer (contain-

ing an access right download), usually via a website for which node B already

has a capability (or obtains it via a search machine)
180

. Optionally it may also

offer a capability for the associated code module.

The download operation is thus instigated at the accepting node, which in

SPEEDOS terms (at the kernel co-module level) means that the capability is

provided to the Container Manager's download operation as a parameter at node

B. There may be further parameters (e.g. a disc capability at node B indicating

where the downloaded container should be located). After carrying out appro-

priate checks (e.g. that the capability's generic rights and the thread security reg-

ister of the current thread include a download right, see chapter 26) the Contain-

178

 see chapter 19 section 13.1.
179

 Of course once a container has been downloaded to a user, that user will become the

owner of the downloaded copy, but that is a quite different issue.
180

 Accessing websites and search machines, etc. is a user level matter (i.e. not directly of

interest to the kernel design) which is discussed in a chapter 34.

Chapter 29 LOCATING AND TRANSFERRING OBJECTS IN THE INTERNET 235

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

er Manager routine at node B calls its kernel's download instruction, passing the

capability to it. The kernel handles this like any other kernel instruction, except

that it places the capability for the container to be downloaded into the input

buffer of its download process and issues a reschedule of the kernel processes.

3.1.1 Downloading at the Accepting Node

Before starting the download operation the kernel at node B, the accepting node,

first causes the user thread issuing the download operation to be suspended by

the User Thread Scheduler (noting the thread capability for later reactivating the

thread). It then starts the download procedure by sending a message to the origin

node (node A), requesting a copy of page 0 of the container to be downloaded.

The request contains a copy of the capability for the container to be downloaded,

in which the download right is set. When page 0 arrives, the Container Manager

at node B first checks whether it also has a copy of the associated code module,

or if this is otherwise accessible at the downloading node. If so it creates a new

container for the requesting user. It places in the new container's page 0 a copy

of the page 0 which it received from node A, and modifies this by changing the

identification fields to reflect the new situation. The activator of the download is

regarded as the creator of the new container and the appropriate fields are modi-

Node A

The Origin Node

Node B

The Accepting Node

Figure 29.1: An Overview of Downloading a Container

Receives request

and transfers page 0

Receives request

and transfers page 1

and then following pages

 in sequence

Website of Node A has a

capability for Container

on Offer for Download

Request to download page 0

Creates new container and enters

modified version as its page 0

Requests next page, etc.

in sequence

If the code module must also be

copied the accepting node

repeats the same procedure.

Download Capability

Page 0

Page 1

Page 2

Page ...

Chapter 29 LOCATING AND TRANSFERRING OBJECTS IN THE INTERNET 236

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

fied accordingly
181

. It sets the address of the code module at node B into the

copy of page 0. It also clears the qualifier entries in the co-module table as these

are not downloaded. It then checks whether the code module needs to be down-

loaded and if so follows the same procedure to do this.

Node B then sends a request to node A to download the next page; when

this arrives a free disc page is requested on the appropriate disc at node B and

the page is copied into this and written to the free page; the disc location is noted

in the page table. This procedure is followed for each page which arrives until

the entire container has been downloaded.

When the download of the file container is completed, node B must check

whether it already has a copy of the code module (which it can establish by ex-

amining the entry in the copied co-module table). If not, and if Node B has pro-

vided a capability for the software, the same procedure is repeated to download

the code module, assuming that the settings in the capability allow this.

When the download has been completed the Container Manager creates ca-

pabilities for the new containers and returns them to the user who requested the

download. It then reactivates the thread requesting the download.

3.1.2 Downloading at the Origin Node

When node A receives the initial request, which contains the page number re-

quired (initially 0) its download process checks that the requested container is

on-line (by examining its local mount table), that the access rights in the capabil-

ity allow downloading and that there are no problematic capabilities. If all is

well it requests the network process to send page 0 to node B. It then exits.

Requests from node B for further pages contain the download capability

and the page number and are handled in the same way. Thus node A's kernel

need not concern itself with a loop and the activity is controlled entirely by node

B. Not only does this simplify the task at node A but is also simplifies error

handling (e.g. because node B can, for example, request the same page twice

without creating a problem at node A, if a timeout indicates that a page has not

been sent or received).

3.2 Uploading

This activity is similar to downloading a container, except that a copy of the

container is transferred from one's own node to another Internet node. In this

case a website typically offers an upload facility, which can be accepted over the

website software by a user at the origin node. Thus the fundamental difference is

181

 The kernel designers might consider extending the identification fields to add infor-

mation about the download source and to scan the download content for viruses.

Chapter 29 LOCATING AND TRANSFERRING OBJECTS IN THE INTERNET 237

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

that the roles of the two nodes are partially reversed.

The uploading node, Node A, instigates the uploading activity by passing a

capability containing an upload access right to the upload semantic routine of

its Container Manager. To do so it passes the following parameters to the Con-

tainer Manager:

• a capability for the container which it wishes to upload,

• a capability for use at the destination site (e.g. a directory at the accepting

site into which the newly uploaded file can be placed). (This is obtained

from the website software at the origin node, and allows it to identify the

purpose of the upload.)

• a message (e.g. a character string provided by the website to assist in identi-

fying the upload container).

Normally the website software at the origin node will activate the Container

Manager's upload routine, providing these parameters.

The Container Manager at the uploading node A now carries out a number

of checks. It examines the first capability to ensure that the upload access rights

are set. It ensures that the container to be uploaded has no "problematic" capa-

bilities, and that the capability's generic rights and the thread security register of

Figure 29.2: An Overview of Uploading a Container

Website of Node B offers a capabil-

ity for a destination folder

to which a container is uploaded.

a

The node sends upload parameters,

including capabilities for

– the container to be uploaded

- the destination container

It also sends a copy of

upload container's page 0

receives request

and transfers page 1

Receives request

and transfers pages 2 and

 remaining pages

to end of container

in sequence

Creates new container and

writes modified page 0 to it

Requests page 1 and

adds to new container

Requests next page, etc.

in sequence

Node A

The Uploading Node

Node B

The Destination Node

Upload Capability

Page 0

Page 1

Page 2

Page ...

Chapter 29 LOCATING AND TRANSFERRING OBJECTS IN THE INTERNET 238

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the current thread include an upload right. It then passes the parameters to the

kernel's upload instruction.

3.2.1 The Uploading Procedure

Before starting the upload operation the kernel at node A, the requesting node,

first causes the user thread issuing the upload operation to be suspended by the

User Thread Scheduler (noting the thread capability for later reactivating the

thread).

Node A, the uploading node, after checking that node B, the destination

node, is on-line, starts the upload procedure by sending a copy of the parameters

and a copy of page 0 of the container to be uploaded. The network process at

node A passes this over the Internet to the upload process at node B. When this

arrives, the kernel at node B creates a new container for the requesting user. It

places in the new container's page 0 a copy of the page 0 which it received from

node A, and modifies this, changing the identification fields to reflect the new

situation. The recipient of the upload is regarded as the creator of the new con-

tainer and the appropriate fields are modified accordingly.

Node B then sends a request to node A to upload the next page, and when

this arrives a free disc page is requested on the appropriate disc at node B and

the page is copied into this and written to the free page; the disc location is noted

in the page table. This procedure is followed for each page which arrives until

the entire container has been uploaded. If the code module has to be uploaded

(cf. the downloading procedure) this is then carried out. On completion of the

upload operation the kernel at node A then reactivates the user thread.

3.3 Encryption

As usual the encoding of information transferred over the Internet can be based

on asymmetrical encryption, where the sending node uses the receiving node's

public key to encrypt messages, while the receiving node uses its own private

key to decode messages. If this method is considered to be too slow, then the

initial request (which is encoded using the download node's public key) can in-

clude a symmetric key for use in the further exchange of pages.

Of course when a page is written to/read from disc to main memory it must

be encoded or decoded using the node's own symmetric key.

3.4 Website Assistance

To simplify downloading and uploading for the end user, the kernel provides an

instruction access_container_manager. This allows a website to obtain a ca-

pability that allows it to call the Container Manager directly, thus simplifying

the work of users. The use of this kernel instruction is not limited to website use.

Chapter 29 LOCATING AND TRANSFERRING OBJECTS IN THE INTERNET 239

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Any software at a node can use this instruction, provided that it has access rights

allowing the following semantic routines of the Container Manager to be called:

upload, download, copy, delete, rename. The security of the actions taken by

these routines relies on the access right in the capabilities which are provided as

parameters, not on the semantic routines themselves.

How the website software itself is uploaded to a user site will be explained

in chapter 35.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Part 8

A Secure Operating System

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 30

Capabilities and Directories

This chapter looks more closely at how modules and module capabilities can be

organised in operating systems developed above the SPEEDOS kernel.

1 Handling Capabilities

We begin by reviewing some key aspects of what the possessor of a capability

can do with it. Most of these possibilities were described in more detail in Chap-

ter 26.

1.1 Examining Capabilities

Unprivileged programs can only directly access the contents of module capabili-

ties by copying the capability into another capability partition or into a data par-

tition of a segment, specifying this in the destination address operand of the ker-

nel instruction copy_cap. The instruction only works if the appropriate capabil-

ity metaright (see Chapter 26) allows this. If the copy destination is a data parti-

tion the capability can then be examined (and even modified) but it can no long-

er be used as a capability. (The format of module capabilities used by the kernel

is not necessarily the same as the format which appears in the data partition of a

segment.)

1.2 Creating Capabilities for New Containers and Modules

A capability for a new container or module cannot be directly created by normal

modules, as a special kernel capability is required to do this. However, when a

container is created and initialised by the Container Manager co-module (see

Chapter 19), this returns a capability for the new container and for new modules

in the container (see Chapter 23 section 6). In this sense the Container Manager

acts as a bootstrapping device for other containers.

1.3 Distributing Capabilities

The possessor of a capability can execute the kernel operation copy_cap in or-

Chapter 30 CAPABILITIES AND DIRECTORIES 242

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

der to create copies of the capability as a capability (e.g. for distribution to other

users). Parameters for this instruction include a set of bit lists which are inter-

sected with the bit lists representing the access rights in the source capability. In

other words a bit has the value one set in the new capability only when the same

bit is set both in the original capability and in the corresponding parameter list.

The result is that the new capability contains only the access rights which appear

both in the source capability and in the parameter list. Consequently access

rights can be reduced (but not increased) using the copy capability instruction.

For more details see chapter 26 section 3.3.1.

1.4 Changing the Ownership of a Container

As described in Chapter 19 section 17, the kernel provides a change_owner in-

struction, allowing the ownership of a container to be changed (after taking cer-

tain precautions). This affects the ownership of all the modules in the container.

There is no mechanism for changing the ownership of individual co-modules in

a container.

1.5 Restricting Capability Distribution

When a user makes a copy of a capability for use by another user, he may wish

to restrict the right of that user to pass it to a third party. To achieve this, the ca-

pability restriction bits are set as described in chapter 26 section 3.4.2.

However, a user who has received a restricted capability is only restricted

from passing it on to third parties. He may wish to store a copy of the capability

into a (different) directory and/or use it in the context of several of his processes.

For this reason the metarights in a capability are divided into three groups. The

first group indicates whether the capability can be copied to other modules (e.g.

directories) owned by the same owner. The second group determines whether it

can be copied to modules of other owners, while the third group indicates

whether it can be copied to users who were created at a different node.

In each of these three groups there are two parallel sets of rights. The first

set indicates ongoing rights, while the parallel set indicates that the right in ques-

tion can be used only once. In that way a user can, for example, provide another

user with a copy of a capability while ensuring that the other user cannot distrib-

ute it further.

Each set of rights defines in more detail to which destinations (i.e. what

kinds of segments, for example file segments, parameter segments) a capability

can be copied. This arrangement gives a user very fine controls over how his

capabilities (which give access to his files) can be used.

For more details see chapter 26 sections 3.3 and 3.4.

Chapter 30 CAPABILITIES AND DIRECTORIES 243

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.6 Deleting Capabilities

A capability may be explicitly deleted using the Container Manager's delete ca-

pability instruction. There is no problem with deleting a normal capability, ei-

ther explicitly or implicitly (by deleting the segment or container in which it is

stored). These operations have no consequences on the module to which the ca-

pability refers, except in the case of owner capabilities.

Making the deletion of objects explicit creates a potential problem: how

can lost modules be deleted? A lost module is one which cannot be reached from

a capability. This problem can in principle happen in two ways. The first case is

when all the capabilities for a module have been deleted without the module it-

self being deleted. The second case occurs when capabilities still exist but have

been stored in such a way that they are no longer reachable.

There is a relatively easy solution to the first problem, which corresponds

more or less to what most users would want to happen, i.e. the deletion of an

owner capability is regarded also as a request to delete the module. In this way

there is always at least one capability – the owner capability – in existence for

an existing object. (Issues such as whether the user is warned are questions for

higher level software.)

The second problem, whereby capabilities exist but become unreachable, is

trickier to deal with. It can happen when all the capabilities for an object end up

in an unreachable circular structure. This can happen, for example, when the on-

ly capabilities for modules are placed in a lower level directory and then the on-

ly capability for this directory is deleted from a higher level directory. The

MONADS systems introduced a complicated scheme in microcode to ensure

that this could not happen. However that mechanism created severe overheads.

In SPEEDOS the problem is deliberately left unsolved at the kernel level. It

can easily be avoided by higher level software storing at least one capability

with module deletion rights (e.g. the owner capability) in a directory which is

guaranteed to be reachable, because the capability for this directory is managed

carefully (e.g. never deleted). In fact in many systems there is a system adminis-

trator who wants to retain a capability for each module for administrative pur-

poses. This can easily be kept in a directory module which remains reachable.

However, this solution is only a suggestion, not an integral part of the architec-

ture.

1.7 Administering Capabilities

The kernel is designed to allow users to maintain control over their own infor-

mation. However some system designers prefer to exercise a measure of control

over their user community. The kernel makes no direct provision for this, leav-

Chapter 30 CAPABILITIES AND DIRECTORIES 244

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ing all such decisions to the operating system(s) above the kernel.

In a system designed to function with a "superuser", the following question

arises. How can a system administrator ensure that he can obtain the object dele-

tion right – and other rights which he probably thinks that he needs for user

modules? The solution is in fact quite simple: he does not provide users with a

capability containing the right to create containers and objects within them (i.e.

he prevents users from calling the creation instructions of the Container Manag-

er directly). Instead he distributes a capability or capabilities giving his users

access to one of his own modules that can create objects for them (via a capabil-

ity for the Container Manager). In other words the superuser reserves for himself

the capability which enables him to create new containers and control similar

actions.

When the superuser creates a new container for a user, he (the superuser)

receives the owner capability and can retain this. This capability confers on him

full rights over the module, including the object deletion right. Then he can later

delete the user's module if and when this becomes necessary.

However, such a mechanism is not supplied as a compulsory part of the op-

erating system, since not all systems have (or need) administrators.

1.8 Revoking Capabilities

The decision to base protection on capabilities confronts us with what some

computer scientists see as the main drawback of the capability mechanism: the

difficulty of revoking capabilities, a problem which was described in Chapter 2.

Most early capability systems which allowed a flexible non-centralised, imple-

mentation of capabilities did not succeed in solving this problem
182

. However, in

realistic systems it is essential that users can revoke the rights which they have

bestowed on others to access their module.

A drastic way of solving this problem is to rename the module for which a

capability should be revoked (see Chapter 26 section 3.2). This results in the ca-

pabilities for the original module becoming useless. It can be an expensive solu-

tion, especially if a number of capabilities have been issued to different users

and the capabilities for only one of these is to be revoked. In order to restore the

rights of other users, capabilities for the renamed module have to be redistribut-

ed to them. Alternatively, as described in chapter 29 section 2.2, an access con-

trol list might be maintained in page 0 at the original node of the moved module.

A flexible solution exists in SPEEDOS, using qualifiers. In chapter 13 sec-

tion 10.4 the idea of "testing" bracket routines (known in Timor as "testing

182

 In fact some designers made a virtue out of the problem by arguing that the possession

of a capability bestows an absolute right which cannot be revoked, e.g. [27].

Chapter 30 CAPABILITIES AND DIRECTORIES 245

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

methods") was introduced. This is repeated here for convenience as Figure 30.1.

The basic idea is that when a module invokes another, the invocation is "caught"

by a bracket routine of a qualifying module, which carries out a test. If the test

fails, the bracket routine simply returns to the calling module without calling the

intended target module.

To use this pattern as a revocation mechanism the owner of the qualified

module defines a qualifier which has a call-in bracket (see chapter 26). He plac-

es in the persistent data of the qualifier a "revocation" list (via normal semantic

routines of the qualifier) with entries consisting of some means by which the

holder of a capability for the qualified module can be prevented from gaining

access to the qualified module, and places a corresponding test in the bracket

routine. This test might, for example, be to check the owner of the calling mod-

ule (the client object in the pattern). To do this it could for example use the ker-

nel instruction calling_file_owner()to test whether the owner of the calling

module's file data is on the revocation list (see Figure 30.2). But there are sever-

al other tests which might be applied in a qualifier to revoke a capability. Fur-

thermore the bracket routine might alternatively take some other action, such as

causing a synchronous error interrupt and/or logging the error.

Which of these approaches is used, and how the lists are implemented, de-

pends on the circumstances, as well as on the scope of the list. For example a

situation might arise in which a user wishes to deny access to several of his files

by all users except those whom he really trusts. This is best achieved by defining

a qualifier with an ACL (access control list, see chapter 2 section 4.2) consisting

simply of the users whom he trusts.

Client

Object
Qualified

Object

prelude;

if test passed

body

else ...

postlude;

Qualifier

Figure 30.1: A Testing Bracket Method

Chapter 30 CAPABILITIES AND DIRECTORIES 246

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Apart from ensuring that certain users who were at some stage legitimately

provided with capabilities for the file are now prevented from accessing the

module, such an ACL qualifier also denies access to hackers who have some-

how acquired or succeeded in forging capabilities. Just a few lines of code, but a

very powerful security tool!

By reversing the test in the bracket routine (i.e. by checking that the user at-

tempting to access the file is not on the list and causing a synchronous error in-

terrupt if he is listed) this ACL qualifier would function as a revocation list,

denying listed users access to the file module.

1.9 Reducing Access Rights

Using ACL and revocation lists can have a further useful advantage. Not only

can they be used to revoke capabilities, but also to reduce the access rights

which a capability contains. In this case the above example is no longer ade-

quate, since that simply views access rights in terms of the subjects attempting

to access the module.

A solution tied specifically to the target module would be to maintain a list

of all the users together with the access rights which they can exercise when

calling the target module. Notice that the kernel's inter-module call mechanism

will already have at least provisionally checked that the caller has the right to

call the specific module and its designated semantic method. However by check-

ing the associated list a qualifier could discover that although the caller has the

right to call the target module the required access right for the semantic routine

(which has passed the kernel's original test) might no longer be permitted to call

the current semantic routine, even if it still has a right to call other semantic rou-

tines of the module.

2 Directories

A capability can be freely stored in a protected partition of any segment of any

Module using

"revoked"

capability

Qualified

Module

if 'callng file

owner' not in

revocation

list

then body

else return;

Qualifier with

list of revoked

owners

Figure 30.2: Using a Revocation List in a Call-in Qualifier

Chapter 30 CAPABILITIES AND DIRECTORIES 247

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

module, in a temporary heap or in a file (provided that the addressing register

used has write access permission). This means that there is no prescribed meth-

od of managing capabilities. For example if a file module needs a capability for

another file, it can store a capability for it in its own space and thus avoid having

to go to a directory each time it needs to access the capability. This is not only

efficient, but it also makes life more difficult for hackers trying to break into

files if capabilities for them are not in directories.

Nevertheless users will often want to store capabilities in an orderly fashion

in directories (folders). In SPEEDOS systems directories are not a special oper-

ating system feature but instead are normal file modules like other modules.

Thus if a user or a system administrator chooses, he can define a private directo-

ry type with its own code implementation. This also makes it more difficult for a

hacker, because he cannot assume a standard directory interface.

On the other hand there are some advantages of using standard interfaces. It

then becomes easier for example for standard software, e.g. a command lan-

guage interpreter (CLI) or graphics interface, to be built which searches directo-

ries to implement user commands. Some standard operating system modules are

inevitable. However, it is emphasized that users have the alterative of program-

ming (or buying) non-standard directory modules. Whereas the basic kernel

should be viewed as a relatively fixed entity, its kernel co-modules are relatively

flexible, and further modules comprising an operating system, such as directory

modules, can be freely designed and different directories, for example, can even

coexist at the same SPEEDOS system. What we now describe are merely exam-

ples of how such modules might be designed.

3 A Basic Directory

The most flexible way of storing directories involves each entry being held in a

separate segment (although other organisations are possible).

3.1 A Directory Module

In its minimal form a directory module consists of a list of symbolic module

names and the corresponding capabilities (together with some information about

the date each entry was made, the type of module, etc.). Its interface routines

include operations to create a new entry, to delete an entry, to get a capability, to

reduce the access rights in a capability, to change the symbolic name in an entry,

and to list a selection of (or all) the capabilities in a directory. Such a directory is

illustrated in Figure 30.3.

Chapter 30 CAPABILITIES AND DIRECTORIES 248

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

It is important to realise that the same module can have different symbolic

names in different directories (and even in the same directory). It is similarly

important that the concept of a "shortcut", found in some conventional systems,

is superfluous in SPEEDOS. Where a user thinks that he needs a shortcut to

provide a direct route to a file module of code module, he can simply place a

copy of the appropriate capability in a directory or elsewhere, since a capability

is a direct route to a module, and potentially there is no limit to the number of

capabilities which can exist for the same module. This also has the advantage

that the kinds of problems which occur with shortcuts (especially when these are

placed on different discs) do not occur in SPEEDOS – unless of course a disc

containing the destination module is not on-line. And it has the further ad-

vantage that capabilities (in contrast to shortcuts) contain access rights.

One semantic routine, deleteMyEntry, perhaps needs some explanation.

Whereas the normal deleteEntry allows the holder of an appropriate capability

to delete any entry in the directory, deleteMyEntry first checks that the caller

created the corresponding entry before allowing the deletion to proceed. Uses

for this will become apparent in later examples.

The changeName routine allows the caller to change the symbolic name of

an entry in the directory. It does not affect the capability in any way. (Different

directories can contain different names for entries containing capabilities for the

same object.)

Figure 30.3: A Basic Directory Module

Chapter 30 CAPABILITIES AND DIRECTORIES 249

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3.2 A Directory Entry

A directory entry might be organised as follows in the usual three partitions in a

segment (see Figure 19.4). The data partition provides the user's description of

the entry, e.g. the symbolic name by which the user identifies the entry, the date

and time of creation, the date and time of last access, the unique identifier of the

user who created the directory entry, etc.

The capability partition of the segment holds the capability providing ac-

cess to the object associated with the entry (e.g. a file module, a code module,

etc.). The capability might be for a directory, thus allowing the creation of hier-

archical and network structured directories (see section 4 below).

The pointer partition of a directory entry can be used to link individual en-

tries together. This can be used to allow several ways of viewing the directory.

For example the first pointer in the directory might be used to provide an alpha-

betical view (whereby each directory entry points to the next entry in alphabeti-

cal order), the second could be used to order the entries by date and time of crea-

tion, a third could order entries by the unique identifier of users who created the

entries, a fourth by the type of object to which the capability refers, etc.

3.3 Extending a Basic Directory

The directory which has just been described is very rudimentary, but from the

viewpoint of this book it provides all that is needed for describing further con-

cepts. However, it is an easy matter to extend such a basic directory structure

using Timor, with more methods and/or with more information.

4 Hierarchical Directory Structures

In conventional systems a user typically has a hierarchical directory structure,

which he can use to organize his files into groups, projects, programs or whatev-

er. Because in SPEEDOS directories are just files, this is simply achieved by

placing capabilities for directories in other directories.

However, this does not mean that SPEEDOS directory structures and con-

ventional directory hierarchies are equivalent. In SPEEDOS it is normal for sev-

eral capabilities for the same module to exist in different directories, often be-

longing to different users. These capabilities can contain different access rights

and a user can only access a module if he can reach it via a capability.

 But the fundamental difference between SPEEDOS and conventional sys-

tems is that each user can have his own root directory which is not necessarily

reachable from the directories of others, as will be seen in the next chapter. This

contrasts with conventional systems, in which there is usually a single root di-

rectory for the entire system. Thus in SPEEDOS modules are highly protected

Chapter 30 CAPABILITIES AND DIRECTORIES 250

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

not only by the capability mechanism itself but also potentially by the fact that

other users may not even be able to see the directories in which capabilities are

stored. To access a directory requires access to a capability for the directory.

Furthermore, capabilities need not even be stored in directories. Any file module

can have capabilities stored in its segments.

Since directory modules contain capabilities which are in effect protected

pointers to objects, the system cannot guarantee that directory structures are

purely hierarchical, but may have more complicated network structures. Poten-

tially this can lead the problem that some directories become unreachable and

therefore that some objects cannot be deleted. However an organisational struc-

ture will be recommended in chapter 36 section 2 which solves this problem.

The next chapter describes how the directory structures of users might be

organised, including how new users are introduced in a SPEEDOS system.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 Chapter 31

Users and Processes

This chapter examines how users and their processes can be created in a

SPEEDOS system, how a user might organise his directories, how he can log in

and out and how a rudimentary mailing system might be organised. We begin by

describing the creation of a process in a new container and how this might be

converted into a new user.

1 Creating a New User

To create a new user, an existing user begins by creating a container for the new

user (assuming that he has the right to create new users). This will serve as the

latter's "root" container, and the world-wide unique identifier which it contains

will also become the new user's identifier. To create this container the creating

user calls the interface routine createContainer of the Container Manager,

setting the parameter new_user, which then carries out the following steps.

• After carrying out various checks, it calls the kernel's new_container in-

struction (see chapter 23 section 6.1), which returns a container owner ca-

pability. The new container already contains the identification fields (see

Figure 19.2).

• It sets up some basic software in the container including a Co-Module

Manager and a Virtual Page Table Manager.

• It subsequently returns a capability for the container to the creating user.

This is the usual procedure for setting up a new data container, which ensures

that the co-modules installed are standard co-modules.

2 Creating a New Process and its Threads

2.1 Creating the Process

The next step involves creating a process in the new root container. To do this

the creating user calls the newProcess routine of the Container Manager (indi-

Chapter 31 USERS AND PROCESSES 252

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

cating in a parameter that this will become the root container of a new user).

The Container Manager (still operating in the creator's thread) then calls the

Co-Module Manager of the new container to install a Thread Manager. It then

installs a Thread Control Manager. Since these are also kernel co-modules the

Container Manager is responsible for ensuring that they are correctly installed. It

then uses the Thread Manager capability to call the latter's constructor (routine

0), passing to it a capability for the Thread Control Manager.

Executing in its constructor (still in the creating user's thread), the Thread

Manager stores the Thread Control Manager capability in its persistent data for

future use. It then sets up the stack management structure described in Chapter

20 and calls the constructor of the Thread Control Manager, which sets up its

own data structures. The Container Manager then returns to the user, passing to

it a capability for the Thread Manager.

At this point a new process has been created, but not yet activated.

2.2 Installing the New Process as a New User

Depending on the detailed design of the operating system, which is not deter-

mined by the kernel, the creating user (still executing in a thread of one of his

own processes) might then call the User Manager module, passing to it various

parameters, including a symbolic name to identify the new user (corresponding

to the startThread parameter in the next section) and a copy of the new con-

tainer capability. This module could, for example, determine whether the calling

user has the right to create new users, determine resource quotas for the new us-

er, etc. When the User Manager has completed setting up the details of the new

user, but still executing in a thread of the creating used, returns to the creating

user's thread.

2.3 Creating the Initial Thread for the New User

Executing in one of its own threads the creating user calls the createThread

interface of the Thread Manager in the new process to create the new user's first

thread, passing the following parameters:

– a capability for the module (startMod) in which the first thread should

start executing;

– an integer startRoutine which indicates the semantic routine number of

startMod that will first be invoked;

– a string parameter startThread providing a symbolic name for the first

Chapter 31 USERS AND PROCESSES 253

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

thread
183

; and

– a capability rootMod for what the first thread will regard as its root module.

Using this information the Thread Manager sets up a stack for the first thread

such that it is ready to make the first inter-module call (to startMod at the rou-

tine startRoutine with a parameter segment containing the capability root

Mod). It then advises the Thread Control Manager of this thread and the latter

then sets up a thread state and calls the global User Thread Scheduler to sched-

ule the thread when a CPU becomes free. Notice that up to this point all the ac-

tivity has been carried out in a thread of the creating use, which might now re-

turn from the Thread Control Manager and go about its further business.

What happens next in the new thread depends on what the startRoutine

of startMod is programmed to do. Some possibilities are discussed shortly.

2.4 Creating Further Threads

A user can create further threads for his process as described by repeating the

steps described in section 2.3 (using his own thread). These can be created from

another thread in the same process or by a thread of another of his processes.

2.5 Creating Subthreads

As was explained in Chapter 20 sections 5 and 8, the code of an application

module called within a thread can create subthreads (subject to the restrictions in

the thread security register, described in Chapter 26). It does so by executing the

kernel instruction get_subthread_cap to obtain a Thread Manager capability

and uses this to call the createSubthread interface of the Thread Manager,

passing as a parameter the entry point number in the Subthread Entry Point List

(see chapter 19 section 9.5), which determines where the subthread should start

executing. Hence the createSubthread interface of the Thread Manager has a

parameter which indicates the internal routine number in the list. It then obtains

the identifier of the calling module (i.e. the module in which the subthread

should start executing) by executing the kernel's calling_file instruction (see

chapter 26 section 1). It then creates a new thread, sets up the initial register val-

ues for the thread and places a 'subthread' backstop on the new stack (which al-

lows the kernel to carry out the final return correctly). The Thread Manager

then calls the newSubthread interface of the Thread Control Manager, passing

to it a thread capability for the new subthread, the identifier of the start module

and the number in the Subthread EPL. This updates its own data structures then

183

 This serves as the user prefix described in chapter 22 section 11. It is passed to the Log-

in Service Module, which checks that it is unique within the current node; if not it re-

turns an error message to the Thread Manager; this then advises the user to supply a dif-

ferent symbolic name.

Chapter 31 USERS AND PROCESSES 254

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

calls the User Thread Scheduler's newSubthread interface, passing on the pa-

rameters; this notes the new thread details and when the new subthread can be

scheduled it calls the kernel's new_subthread interface (see chapter 20 section

8.2), which eventually activates the new subthread (see chapter 19 section 5).

2.6 Passing Parameters to Subthreads

The above scheme provides no mechanism for passing parameters to subthreads.

However this can be organised in the code of the module in which a subthread is

activated. For example the state data of the module could include a table which

is protected by a reader-writer semaphore. In this table there could be an entry

for each subthread, indexable by its subthread number. The subthread number

itself can be obtained by the thread requesting its own thread capability.

Similarly subthreads can communicate with each other (and with their cre-

ating thread) via semaphores. They could thus advise their creator of their im-

pending deletion, or co-operate on a common task.

2.7 Deleting Threads and Subthreads

Threads and subthreads are deleted when the kernel executes their final return

instructions. The kernel recognises this condition from the corresponding back-

stop condition on the subthread's stack. In both cases the kernel then creates a

surrogate thread in which the Thread Manager is activated in a dele-

teThread/delete Subthread interface routine (to which it passes the thread

number of the thread to be deleted). This can carry out appropriate final activi-

ties such as deleting its data structures; it then calls the Thread Control Man-

ager's deleteThread/delete Subthread interface routine which does like-

wise and then calls the User Thread Scheduler's killMe routine, which removes

it from its scheduling data and finally executes the kernel's switch_delete in-

struction (cf. chapter 22 section 1).

3 The Initial Capabilities of a New User

As was described above, when a new thread is created one of the parameters

which it passes to the startMod module is a capability (rootMod) which is typi-

cally for a directory.

3.1 Root Modules which are not Directories

If the thread's root module is not for a directory module then the thread has very

little scope, except simply to execute startMod. This need not be a standard

command language interpreter but can be an application module. This scenario

might for example be useful in a public library setting, where the public is per-

mitted to access the library catalogue online. Such a process/thread will have no

capabilities except those embedded in its own segments. These can of course be

Chapter 31 USERS AND PROCESSES 255

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

exchanged or added to by other library threads (which are only accessible to li-

brary staff) invoking different interfaces of the module.

3.2 Root Modules which are Directories

In many cases the rootMod will be a directory which holds capabilities of fur-

ther directories. Neither the kernel nor the operating system defines what these

should be, and their content will in part depend on the nature and purpose of the

operating system. What now follows is an example of how the directory might

be organised for a general purpose multi-user environment.

3.2.1 Access to Public Software

In such an environment some of the threads of most processes are likely to need

access to a variety of publicly available software (both code modules and data

modules). This could include standard utilities (e.g. text editors, spelling check-

ers, dictionaries, etc.) and also system software (e.g. compilers, libraries, etc.).

Such software can be made reachable to the new user via a capability in

rootMod which leads to further directories. This capability is referred to as the

user's public capability.

3.2.2 Access to Capabilities shared with the Creator

The creator of the process (who might or might not be its owner) might chose to

share some of his own software and files from other processes which he owns.

The directory via which these can be reached is accessible via a creator capabil-

ity in rootMod.

There are a number of capabilities which the creating user holds that can be

viewed (depending on the security model) as belonging to a new user. These

include capabilities for the Thread Manager, the Thread Control Manager, the

Co-Module Manager, the container and the initial thread capability. All these

capabilities can be returned to the creating user via the module addressed by the

creator capability.

Whether the creating user retains a copy of these capabilities is a further

system design decision. If the new user wants to prevent the creating user from

secretly accessing the latter via a secret copy of the capability, he has at least

two possibilities. He can place revocation brackets around the module (if the

owner capability has been passed to him), or more simply – he can copy the con-

tents of rootMod to a new module which he creates and remove these capabili-

ties from the old module.

3.2.3 Private Modules

Then finally the owner of the thread might want to create a root directory for his

own personal files and programs. When he has created this directory (his private

Chapter 31 USERS AND PROCESSES 256

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

root) the capability for this could also be placed in rootMod, but might simply

be stored in a private root directory which is not reachable by the creator.

3.2.4 Simpler Cases

Notice that even in the envisaged environment some threads will not need access

to a root directory containing all of these items. For example, if a process con-

sists of a number of cooperating threads where most are active in a particular

module simply as a means of providing parallel processing, they might need ac-

cess only to the module in question and perhaps to a further module which has

been designed to co-ordinate their cooperation.

4 Different Kinds of Processes and Threads

4.1 Interactive Threads

A process can, but need not, have some interactive threads. For such threads the

rootMod capability will provide access to an authentication module (for check-

ing the authenticity of a user when he logs in) and some form of command lan-

guage interpreter (which may of course use graphics to allow a user to select the

commands which he wishes to invoke) in addition to capabilities for the com-

mands themselves.

If the startMod for such a thread is the command language interpreter, this

will normally carry out its own initialisation then call the logout module. The

latter will long suspend until the owner of the thread logs in. The logout module

can be a module of the user's choice which freely uses any criteria to establish

his identity (see Chapter 22 section 11).

When a user logs in for the first time, he will typically use an authenti-

cation module provided by his creating user (and passed as a parameter by that

user to his new Thread Control Manager) and will have to be informed by that

user how he can pass the authentication test. But thereafter he can use an authen-

tication module of his own choice, after passing a capability for this as a param-

eter to his Thread Control Manager. In order to minimise their security risk, us-

ers can use a different authentication module for each of their interactive

threads, so that if a hacker succeeds in breaking into one thread, this does not

help him to break into other threads of the same user.

4.2 Multiple Processes

A single user can have multiple processes, which might be dedicated to different

activities or different projects, each with multiple threads. SPEEDOS gives him

the opportunity to maximise the security of his individual processes/threads,

simply by following the "need to know" rule (in this case providing each thread

only with the capabilities which it needs).

Chapter 31 USERS AND PROCESSES 257

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

And finally, it is even possible to give a new interactive thread access to

only one module, without an authentication module. This could be suitable, for

example in a public library system which allows users unchecked read-only ac-

cess to a library catalogue.

5 Communication between Processes

In the SPEEDOS design the only way in which two threads can communicate

with each other is via shared file data, but in order to gain access to a shared file,

each user needs to have a capability for the file with appropriate access rights.

How can these capabilities be distributed? Suppose for example that a user has

created a message for another user in a file (his "email" message). How can he

send a capability for this to him?

Section 3.2.1 above describes how a new user can gain access to standard

capabilities when he is introduced to the system. What is now needed is a gen-

eral mechanism which allows users to pass capabilities to each other and thus

communicate in a general way. In principle no further software is required to

achieve this. The solution is to use directories, and the trick is to set them up in

the right way.

5.1 Sending Capabilities

Suppose that there is a capability reachable via the user's public directory (see

section 3.2.1 above) – or a directory which can be reached from this, which we

call the public mailbox directory (PMD). Like other directories it contains a list

of symbolic names and capabilities corresponding to these names (see Figure

31.1). The capabilities in this directory are for the private mailbox directories of

the named users. So if a user A1 wants to send a capability to another user A3,

he calls the getCapability routine of the appropriate PMD, passing the name

"A3" as a parameter, and back comes a capability for Y's private mailbox.

A3's private mailbox is a directory module, so to deposit the desired capa-

bility into it, A1 simply calls the createEntry interface of A3's private mailbox

directory, passing the capability and giving it a symbolic name (e.g. "A1.mail").

A3 can use the listEntries interface of his mailbox directory to see who has

sent him messages in this way, and he can call the getCapability interface to

get the capability for A1's file. Then he can access the file like any other. Since

the unique identifier of the user creating the entry is not supplied by the user, but

instead is obtained by the directory software from the kernel, it is guaranteed

(subject to the correctness of the directory implementation) that the user identi-

fier is correct.

Chapter 31 USERS AND PROCESSES 258

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Interestingly, the aim at the start of this section was to distribute a capabil-

ity to another user, but what has also been achieved (almost accidentally) is the

design of a rudimentary local email system (as the names which were given to

the various directories hinted at). Assuming that the capability is for a text file,

the text is almost equivalent to a conventional email.

Apart from the fact that normal directories have been used, there is one

other substantial difference from a normal email system, i.e. the capability for

the message is copied, but not the "email" itself. This means that the receiver

can decide whether he wants a copy (assuming that the access rights in the capa-

bility allow this) and consequently ensure that his "mailbox" is not cluttered up

by rubbish sent by others.

5.2 Receiving Capabilities

It has been shown how A1 can send mail to others, but how can they send mail

back to A1, a new user? First, A1 has to create a new mailbox directory for him-

self, make a copy of its capability with reduced access rights and then insert this

into the PMD. To create his own mailbox he will need a capability which gives

him access to a constructor for a directory module, which he can expect to find

in the public directories available to him.

When he has created the mailbox he will need to insert a capability for it

into the PMD. This means that the capability which he acquires from the public

directory system for the PMD must not only give him getCapability access

but also an access right for createEntry.

This raises the following question. If A1 can create an entry, shouldn't he

also be allowed to delete it if he decides that he doesn't want to receive any more

mail? Giving him access to the deleteEntry interface has the consequence that

he can mischievously delete other entries. This is one reason why the special

A Public Mailbox Directory (PMD)

Private Mailboxes at a Single Node

User A1

User A2

User A3

A1

A2

A3

Capability for

- a Private Mailbox

- the PMD

Figure 31.1: A Simple Mail System for a Single Node

Publicly Accessible

Software

...

PMD

...

Chapter 31 USERS AND PROCESSES 259

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

deleteMyEntry routine was included in the semantic routines of directories

(see Figure 30.3). It will be recalled that this allows a user to delete only those

entries in a directory which he created.

So if A1 wishes to delete the entry which he has made in the PMD, he can

do so by calling deleteMyEntry, which checks that the calling thread has the

same user identifier as that recorded in the entry to be deleted. So in fact X

needs three access rights for the PMD: getCapability, createEntry and

deleteMyEntry. But he does not have an access right for the more general rou-

tine deleteEntry, which does not carry out this check. (In a system controlled

by a system administrator, the latter (who created the PMD in the first place)

will probably keep this interface restricted for his own use, to delete entries for

users who deregister from the system.)

5.3 Deleting Capabilities Already Placed in a Foreign Directory

It turns out that deleteMyEntry is not really a special interface for this purpose,

but is in fact generally useful. If it is available with individual mailboxes, for

example, it will allow A1 to delete mail which he has deposited in another mail-

box and then decided to revoke (e.g. because he realises that he has sent some

wrong information), without allowing him to interfere with mail from other us-

ers which happens to be still in the mailbox.

Who has the right to delete the email message itself? That depends on the

sender. He can send a capability with or without this right. He might even pass

an owner capability.

5.4 Receiving a Copy of the Capability's Content

In conventional mail systems the recipient receives a copy of an email in his

own file area. To achieve this in SPEEDOS, no further mechanism is required.

Since at present we are only considering messages sent within a single system,

the recipient will already have a capability for the Container Manager at that

node. Hence assuming that the sender has set a copy access right in the capabil-

ity the recipient can call the Container Manager to copy the module and store it

in his own space.

The recipient thus has the choice of copying the content or not, which he

would obviously not be necessary, for example, if he recognises that the mail is

spam. (This would also make life more difficult for spammers!) Of course, if a

user does not copy the content of the mail there is always the risk that he will

later not be able to access it, if the sender decides to delete it.

6 Is the Communication Secure?

So without any extra software whatsoever, the basic directory module has pro-

Chapter 31 USERS AND PROCESSES 260

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

vided us with a local mail system. But is it a secure system? What is to stop each

user from reading the mail in other mailboxes, for example? The answer is sim-

ple: the access rights in the various capabilities can be restricted to doing the

"right thing". For example the capability which user A1 receives from the PMD

for a private mailbox can restrict him to inserting entries – he cannot use inter-

faces such as listEntries or getCapability; only the owner of the private

mailbox can do that. It is of course the receiver's choice to decide whether he

allows the sender access to the semantic routine deleteMyEntry.

What is to stop A1 from being mischievous and deleting other users' mail-

box entries from the PMD? In this case A1 only has a right to call the get

Capability and the listEntries interface routines, and possibly delete

MyEntry. The access rights in his capability restrict him from calling delete

Entry, changeName and other mischievous possibilities.

7 Mutually Suspicious Users

Including the unique identifier of the creator/modifier of each entry in directo-

ries has another security advantage. It allows mutually suspicious users to be

sure about the sender and the receiver of a message, provided that they each al-

ready know the unique user identifier of the other (which need not be kept a se-

cret).

A receiver can determine the unique identity of the sender, because this has

been recorded in his mailbox entry. Assuming that the code of the directory

module is correct, the sender's identity can be regarded as reliable, because it is

supplied by the kernel.

But how can the sender be sure about the identity of the recipient, i.e. how

can he be sure that the capability that he acquires from the PMD is for the per-

son he intends to send mail to? This too is no problem, since the information is

stored with the entry in the PMD.

Hence users of a SPEEDOS system can have far more confidence than in

conventional systems about the identity of the sender or the receiver of messag-

es
184

.

It is in principle possible that a trojan horse could exist in the directory

software, and this might change the unique identifiers. However, this could be

checked by using a special bracket routine designed for the purpose. This inter-

cepts calls to the create entry routine and logs the parameters and the caller's

184

 As was mentioned in Chapter 4, there are methods involving encryption which aim to

dispel doubts about the identities of senders and receivers of messages, but these are by

no means simple and are not used on a routine basis, in contrast with the mechanism

just described.

Chapter 31 USERS AND PROCESSES 261

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

identifier (which it obtains from the kernel) in a separate log file together with

the date and time of each call. By comparing this file with the arrival of mail as

reported by the directory module, it would be possible to ascertain that all mail

is being recorded and that the sender is being correctly recorded.

Such a check would not have to be carried out manually; it could be auto-

matically built into a more sophisticated mail system, as could many of the op-

erations which we have explained above. For example when a user process is

created the User Manager module which first executes in his process could cre-

ate for him a private mailbox, make an entry for him in the PMD etc.

8 Further Mail Refinements

What we have so far described is a rudimentary email system, which works only

within a single computer system. In the next section we shall consider how it

might be extended to cover mail from users working at other computers. But

before doing this let us consider how it might be used locally to serve users bet-

ter.

You probably get annoyed with the amount of junk email which arrives in

your mailbox. What can be done about this? A nice simple solution is to have no

entry for yourself in the PMD at all (or remove it if the User Manager has put it

there for you). Then you will not receive any email at all. This is perhaps a bit

drastic. You might prefer to receive email from just a few special contacts. One

way to ensure this is to create some private mailboxes and send capabilities for

them to your contacts, and delete your original mailbox. Another way would be

to bracket your mailbox with a qualifier which uses an access control list to de-

termine from which senders you wish to receive mail. This is equivalent to using

filters in conventional systems, but can be far more flexibly programmed, and

much more reliable with respect to the identification of senders.

A system administrator also gets some powerful tools to control mail. For

example if some user is not entitled to send and/or to receive mail at all – which

is another possible approach for confining information – then the system admin-

istrator can create a directory system for users which does not include the right

to create new directories. Then the user cannot create a mailbox. Or the new user

does not receive a capability allowing him to make an entry in the PMD. Or it is

possible to develop a more centralized mail system in which all mail has to be

transferred through a central mailbox and then distributed further. This central

mailbox could be bracketed by ACLs to determine which users can send or re-

ceive mail, or it might be a special module which even monitors the mail itself.

There are endless possibilities for improving or changing the basic mail

system which we have described. Some improvements can serve to make the

Chapter 31 USERS AND PROCESSES 262

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

system more convenient for users, while in a draconian mandatory system very

tight controls can be exercised.

9 Distributed Email and File Systems

Having seen how a basic email system might be implemented in a stand-alone

SPEEDOS system, we can now consider how this can be extended to function

across all the SPEEDOS nodes in a system.

9.1 A Distributed Email System Using Remote Inter-Module Calls

Figure 31.2 shows separate mail systems at three nodes based on the design de-

scribed above. The only problem is that they are not connected with each other.

The aim of this section is to show how they can be linked together.

The solution is remarkably simple. In chapter 28 section 8 we described

how the kernel's network process maintains and uses a network address table

(NAT) which has an entry for each foreign SPEEDOS node for which the cur-

rent node has contact details and how it has access to a world-wide network of

'directory nodes' in order to obtain similar information about nodes with which it

has not yet obtained contact details.

One of the items in each NAT entry is a 'shared capability' the purpose of

which is to provide a starting point for communicating with user level software

at nodes listed in the NAT. The kernel design does not define more specifically

what the capability actually addresses and at this stage I would not like to rigor-

ously define its particular purpose. But what we can say is that the capability is

either for the PMD at that node, or is a capability which leads to a directory,

within the structure of which a capability exists for the PMD at that node. In

PMD at Node A

Private Mailboxes at Node A

PMD at Node B

Private Mailboxes at Node B

Private Mailboxes at Node C

User A1

User A2

User A3

User B1

User B2

User B3

User C1

User C2

User C3

A1

A2

A3

B1

B2

B3

C1

C2

C3

Capability for

a Private Mailbox

Figure 31.2: Three Unconnected Single Node Mail Systems

PMD at Node C

Chapter 31 USERS AND PROCESSES 263

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

other words the public mail directory at the node is reachable via this capability.

Exactly how, is a design decision of the operating system above the kernel. And

if the PMD for a node can be reached, so also can the mail boxes of those users

at the node who wish to be reached. Hence the problem of linking the nodes for

email purposes is solved. Notice that just as in current systems one needs to

know a person's email address in order to send mail, in SPEEDOS one needs to

know his node and his local name at the node.

9.2 Retrieving Emails from other Nodes

I pointed out in section 5.4 that a full email in the local email system can be re-

trieved simply by using the copy routine of the local Container Manager. This is

not the case if the email is held on a different node from the recipient's node. But

that is scarcely a problem. Instead of using the Container Manager's copy facili-

ty one simply uses the download routine of the Container Manager (see chapter

28 section 10.1). In this case the download access right must be set in the capa-

bility. The difference between a local copy operation and a download operation

could easily be hidden from the user in a more sophisticated version of the email

system described above.

9.3 An Advantage of the Above Design

I emphasize that the design as presented if fairly rudimentary and does not con-

tain all the facilities found in current systems. But that is not a shortcoming. In-

dividual designers can extend the design to make it more user-friendly. But I

would like to emphasize that I would be very sad if it turns out that some de-

signers were to make their email systems as non-transparent as they have de-

signed current email systems. In particular they should not turn the email system

into a world of its own, which, for example, completely hides the operating sys-

tem directories. My reason for this is that emails thus become a "special" sys-

tem. Emails are rarely isolated in practice from other work of users, yet to store

an email in a normal directory along with other files as part of a project is cur-

rently very difficult. As I have defined them, emails ARE just files like any oth-

er and should be treated as such. Apart from the greater convenience for users,

large amounts of software in current email systems would simply become re-

dundant.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 32

Command Languages,

Name Management

and Graphical Interfaces

So far nothing has been said about the interface between the operating system

and its users. The purpose of this chapter is to fill that gap, at least in broad out-

line. The first issue is that users need a way to communicate with the system.

The first section briefly describes the ad hoc command languages which were

developed in the early days of computing to activate user programs, followed by

a more systematic command language approach based on a unified technique for

invoking operating system operations and user programs.

The second aspect of the user interface issue is that, as so far described, low

level names (typically consisting of integers) have been used when describing

various objects (e.g. node numbers, module numbers). Because of its efficiency

advantages this technique is appropriate in addressing the kernel and low level

operating system features, but it would be dehumanising to expect normal users

to work with such numerical names
185

. Humans expect to be able to use symbol-

ic names, such a 'MyFile' or 'Temp'. The consequence is that an operating sys-

tem needs to be able to translate between the two, and for this reason it needs a

name management system. The second and third sections briefly describe how

such a system might be organised for a SPEEDOS operating system.

Text-based command languages have largely been superseded in more

modern operating systems by a user-friendly approach based on the extensive

use of graphics and pointer devices. Suggestions for how this approach might be

implemented in SPEEDOS are made in the fourth section.

185

 cf . chapter 2 section 2.1.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 265

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1 Command Languages

We begin by briefly describing the early development of ad hoc command lan-

guages. We then consider a more systematic approach.

1.1 Ad Hoc Commands

In early systems computer card readers, paper tape readers and/or simple telex

devices were used to communicate with the operating system. Individual com-

mands were devised to allow users to activate operating system features and the

programs which they had developed. Gradually standardised syntaxes arose,

usually consisting of characters (such as //) which allowed the computer to rec-

ognise that what follows is to be understood as a command for the operating sys-

tem to execute. Then followed the name of the operating system command, e.g.

// copy. This was in turn followed by further information needed to indicate

what the command had to achieve, e.g.

// copy MyFile NewFile

which might mean that a file called 'MyFile' should be copied and the resulting

copy should be called 'NewFile'.

That was sufficient to invoke standard operating system commands, but us-

ers also wanted to start application programs which were not part of the operat-

ing system. It seemed obvious in those early days that this should be achieved

by having a further operating system command which could start user programs,

e.g.

// start MyProg

If 'MyProg' needed further information then the program itself (after it had start-

ed) had to read this information into its memory. The program would usually

expect to find this information on further cards or at the following paper tape

positions or on a further line typed into the telex device, e.g.

// start PayrollProg

file = EmployeeFile, printer = Printer1

In this example the format of the second line is fully determined by the individ-

ual program, which could have chosen a quite different format and quite differ-

ent separators, e.g.

// start PayrollProg

EmployeeFile; Printer1

or it might have been defined by the program that different items should be

placed on different lines, e.g.

// start PayrollProg

EmployeeFile

Printer1

The consequence of this is that users had to learn (from information supplied

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 266

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

with each program which they used) how the input was formatted, which could

differ considerably from program to program, even for different programs which

achieve the same thing.

In this case the file name and the printer name are best understood as input

parameters for the program 'PayrollProg', just as 'MyFile' and 'NewFile' are in-

put parameters for the operating system command 'Copy'. Hence it is thinkable

that the problem of different formats could have been solved by using the same

syntax for invoking user programs and for calling operating system commands.

In other words instead of writing

// start PayrollProg

file = EmployeeFile, printer = Printer1

or

// start PayrollProg

EmployeeFile; Printer1

it could have been written (using the same format that was used above for the

copy command)

// start PayrollProg EmployeeFile Printer1

This would have regularised command formats (and considerably reduced the

amount of learning required to call different programs).

The problem in conventional systems was (and still is) that user level pro-

grams are defined by programming languages and by operating systems in such

a way that they cannot have standardised parameters. Consequently in these sys-

tems there was and still is a shortcoming that user program interfaces cannot be

regularised. Even with modern graphical interfaces, the interfaces for calling

programs cannot be standardised. The result is that programs still today must

create extra graphical interfaces (which vary from each other) to obtain their pa-

rameters.

1.2 The SPEEDOS Solution

SPEEDOS, following the MONADS approach [26], could in principle overcome

this problem in that operating system modules and user modules are uniformly

structured according to the information-hiding principle
186

. One consequence of

this is that their semantic interface routines can in appropriate cases be regarded

as commands which in principle can be invoked using the module name and the

name of one of its semantic routines, followed by the routine's parameters. The

preferred syntax for this is rather like an object-oriented method call, e.g.

containerMan.copy(MyFile, NewFile);

or

186

 see chapters 13 and 14.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 267

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Payroll.calculate(EmployeeFile, Printer1);

However the actual syntax is not important, and could in SPEEDOS be deter-

mined by the programmer of a command language interpreter.

1.3 SPEEDOS Command Language Interpreters

In the SPEEDOS environment a command language interpreter (CLI) is not a

special module nor does it have special privileges. It is simply a module which

is designed to invoke other modules, normally within the persistent thread in

which it is executing, though it may of course create and activate subthreads.

In order to function correctly it needs access to a directory module of the

user who owns the thread in which it is executing. This directory module serves

as a starting point for the CLI to find the commands which it is required to exe-

cute, i.e. the modules and their semantic routines to be called. As we saw in

chapter 30 directories can contain capabilities for other directories so that a hier-

archical (or network) directory structure can be created.

Chapter 31 section 3.2 described how each user has a private directory

structure which is initially set up when a new user is introduced. The user is rep-

resented by a persistent process and its initial thread starts the first activity of the

user. Except in special cases the first module which the user will normally call is

a SPEEDOS CLI. This can gain access to the standard input and output modules

(via the mechanism described in chapter 19 section 5) which allow it to com-

municate with the user. From there on it can receive commands (including

commands which allow the user to move from one directory to another) based

on the modules and their semantic routines, as described above.

But there is one element missing in this description. The modules and their

semantic routines which the user finds in his directories use numbers as names,

yet the normal user wants to be able to work with commands which use symbol-

ic names. We now consider how this gap can be bridged.

2 Translating Numbers into Symbolic Names

At the low level, executing a command (i.e. calling a semantic routine of a mod-

ule) consists of a module capability, the number of a semantic routine and pa-

rameter values for the semantic routine. We consider these in turn.

2.1 The Module Capability

Symbolic names associated with a capability are normally held in directories

which hold a potentially large number of details relating to the capability, in-

cluding a symbolic name which was chosen by the user when he entered the ca-

pability into the directory. This is the name which the user will use when he

wants to call a routine of the module addressed by the capability. In this sense

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 268

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

there is no problem in associating symbolic names with capabilities. Neverthe-

less several users can have separate capabilities for the same module, and they

can provide different symbolic names for the same module
187

. Each directory

will have a semantic routine which takes as one of its input parameters the sym-

bolic name of a capability and which returns a copy of the capability. This rou-

tine can be used by a CLI to translate the module name part of a command and

thus obtain a capability. Hence the first part of the translation is solved in a very

straightforward manner.

Of course the user might first want to obtain a list of the directory entries,

in order to decide which entry is relevant for him. This too can be obtained in

exactly the same way by the CLI, using a semantic routine of the directory mod-

ule which lists its entries. And in a similar manner the user can use the CLI to

make new entries, delete entries, etc. in a directory for which it has access.

But this raises a further question. How can the CLI, and more generally us-

ers who know the symbolic name of a module entry, discover the symbolic

names which the user can use for the semantic routines of modules in a directo-

ry?

2.2 The Names of Semantic Routines

Normally, semantic routines have symbolic names. These are given to them in

programs created by high level programming languages. Consequently it is rea-

sonable to expect that when a compiler compiles a module it can also create a

"partner" module which lists the names and maps them onto the numbers by

which they are known at the kernel level. If this list is available to a CLI then it

is in a position to select the appropriate routine number when the user issues a

command in which it provides not only a module name but also a semantic rou-

tine name.

The question then arises where this list should be kept. If it were held with

or integrated into the compiled version of the module (e.g. as symbolic names in

entry point lists), it would not be easily accessible to CLIs, and it would be

awkward and not very flexible to expect that inter-module calls could pass sym-

bolic routine names.

A better alternative is that the compiler should produce a separate module,

which we call a template manager, containing the mapping between routine

names and entry point numbers. However, it is not immediately obvious how the

CLI gains access to a capability for the template manager associated with a par-

ticular module to be called, since in many cases the module to be called is a file

187

 This possibility of having different symbolic names for the same module can of course

be used to confuse hackers.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 269

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

module, the code for which is implicitly (rather than explicitly) associated with

the module's data container. From the viewpoint of the CLI the most convenient

place to store a capability for a module would be in the same directory entry as it

obtains the capability for the module to be called. But how does it get there?

When a directory entry is created, one of its parameters indicates whether

the module can be used as a command for a CLI. If so the directory module exe-

cutes the kernel instruction getTemplate, passing to it the capability for the

module to be called. This returns a read-only capability for the template manag-

er (which it obtains by examining the Co-Module Table for the module, see

chapter 19 section 7). The directory module then places this capability in a field

of the entry which it is creating, so making it accessible to the CLI. Since the

information is not security sensitive and the capability provides only read ac-

cess, this instruction is unprivileged.

2.3 Passing Parameters to Semantic Routines

In addition to listing symbolic names for the semantic routines of a module, a

template manager also lists the names and types of the parameters for each rou-

tine, together with further information such as the errors which it can cause. This

information is useful to a CLI not only in terms of error checking but it can also

be used for example to prompt a user by providing the names of the parameters,

using these as keywords.

A template manager might also contain further information which could be

helpful for the system software or for the user, e.g. a symbolic name for the code

module (e.g. 'PDF').

2.4 Alternative Template Managers

A template manager is an information-hiding module like any other, so that not

only compilers can use its routines to create templates for the CLI. Users who

would prefer to use other names than those which were taken from the source

code of modules can thus use its routines to create their own templates for the

CLI. In order to use such templates the user simply needs to use the directory

manager routines to add or overwrite the field in the appropriate directory entry.

2.5 The CLI as a Module Tester

When a programmer writes any new program he will of course want to test the

correctness of his code. A CLI as described above provides a useful basis for

doing this, by allowing him to call the individual routines of the module and

check the results.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 270

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3 Other Naming Modules

The user normally wants to use symbolic names not only for command language

interpretation but also for other purposes where the kernel uses numbers as

names. One example of this which we have seen already is the names of users

themselves, when they need to identify themselves and their persistent

threads/processes as part of the procedure for logging out and in (see chapter 22

section 11). Where appropriate the "Current Login Name" shown in Figure 22.3

could also be used as a thread/process name.

4 Graphical User Interfaces

Users today expect to use graphical interfaces rather than old-fashioned CLIs.

However, I have deliberately emphasised the "classical" interface style as found

in most systems before graphical devices became popular. There are three rea-

sons for this.

First, operating systems which support graphical interfaces should not be

seen as an alternative to the classical style, but rather as an extension. The basic

functions of the kernel and an operating system remain substantially the same

regardless of the interface which is offered to users. It is therefore important for

a kernel (and an operating system) to provide a clear and secure basic design

independent of the style of the user interface.

Second, it is important that the basic design and implementation of the sys-

tem are thoroughly tested before the complexities of a graphical interface are

added. This can best be achieved by testing the kernel, its security sensitive co-

modules and related service modules (such as the spooling system which will be

presented in the next chapter) without being concerned about the final user inter-

face. This can be achieved by using a CLI designed along the lines which we

have outlined earlier in the chapter. I thorough recommend that path is followed

when a SPEEDOS system is built.

Third, I also recommend that certain systems, which can easily dispense

with the complexity and the additional risks which a graphical interface repre-

sents for security, should do so. Here I have in mind mainly process control sys-

tems such as those used in power stations, in aircraft, in weapons systems, in

automobiles and some (but not all) hospital applications, to name a just few, as

most of these can easily be driven by a CLI style interface. Furthermore the con-

sequences of security mishaps can be very serious indeed in such systems.

Graphical interfaces are nice but the complexity of the software to drive them

may put such systems unnecessarily at risk.

I must confess that I have little experience with graphical design, and I

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 271

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

have little time to learn in detail about such systems
188

. Nevertheless I will now

offer some comments on how the basic SPEEDOS architecture might potentially

be enhanced by a graphical interface.

4.1 The Graphical Devices

I briefly consider three graphics-related devices: the visual display screen(s), the

mouse and the keyboard. I regard these as a related set of devices which together

provide the graphical interface. However, I do not discuss the hardware and

software of these devices as such, since there is an overwhelming number of ap-

proaches and techniques. I simply assume that appropriate hardware and driver

level software are available. I further assume that in a system which supports

many graphical devices, each graphical unit has its own processor.

4.1.1 The Visual Display Screen Set

I refer to a 'set' because a main screen is sometimes extended by one or more

auxiliary screens. Each might have its own device driver, and it is a function of

the operating system (not the kernel) to provide the user with what he (with a

slight stretch of the imagination) can regard as a single screen.

As was indicated in chapter 22 section 10.2, device drivers load a segment

register via the kernel instruction load_devSR and thereafter control what is

happening to their device using (pseudo-)memory addresses. In the present case

I assume that appropriate mechanisms are available (in hardware, driver soft-

ware and/or library software) for drawing graphical objects and writing charac-

ters in positions, sizes and colours, i.e. we do not concern ourselves with the

pixel level as such. If multiple screens are to be treated as a single logical

screen, this can be managed by a software module which directly accesses the

device driver/interface module (see chapter 33 section 1 and section 4.1).

4.1.2 The Pointer Device

I assume the existence of a pointer device
189

, which I will refer to as a mouse, as

this is the most popular of the available pointer devices. It can be used to guide

the movement of the pointer on the screen, and can take on different pointer

forms, depending on where on the screen it is positioned (e.g. arrows, text cur-

sor, eggtimer wait symbol, etc.). The pointer can be dragged across the screen

and its movement can be tracked via interrupts which report its position as xy

screen coordinates. It also typically has two or more buttons which can be used

to cause single or double "clicks" which cause interrupts that can be interpreted

188

 At the time of writing I am 82 years old, and I have firm plans to write several further

books on other subjects.
189

 This might even be a finger on some devices, such as touchscreen devices.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 272

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

by operating system software.

4.1.3 The Keyboard

The keyboard, which on tablets and smartphones may be a logical keyboard,

basically allows character input, which not only allows letters, numbers and

punctuation marks to be input but also has further modifier keys (e.g. to signal

upper and lower case, to input special symbols such as currency signs, percent-

age, ampersand and other symbols, to provide special functions, to delete char-

acters already input, to terminate a line, and much more). The keyboard device

may include a buffer which allows a text sequence as a whole to be passed to the

main processor via an interrupt
190

. In systems which do not support graphics the

keyboard may provide the only way of interacting with a system.

4.2 Graphical Libraries

The first prerequisite for adding graphics to the SPEEDOS design is to build a

good graphics library, which can be integrated into SPEEDOS via the latter's

library module mechanism (see chapter 18 section 6 and chapter 20 section 9.2).

This should support all the usual mechanisms needed for a graphical user inter-

face (e.g. windowing, menu creation, icons, drawing boxes and shapes with and

without text, selecting colours, and much more).

4.3 A Possible SPEEDOS Graphical Interface

In this section I provide some general remarks which might assist the designer

of a graphical interface to map his work onto the SPEEDOS architecture.

4.3.1 Gaining Access to the Graphics Devices

When a user logs in, his modules (in so far as they have appropriate privileges)

can obtain capabilities to access the appropriate devices (e.g. screen, keyboard,

mouse), as described in chapter 19 section 5 and chapter 26 section 2. Chapter

22 section 11 describes how these might be handled when a persistent thread is

logged out/in.

4.3.2 When Should a Desktop for a New User be Set Up?

Most graphical operating system interfaces provide a desktop (which is actually

a "start" directory) that is displayed over the main surface of a visual display

monitor. The main items on the screen are directories and modules which are

reachable from the desktop. To consider how this desktop is set up we begin

190

 In a simple system each character input may cause an interrupt which allows the kernel's

input analysis routine to buffer the text until an end of line character is received (as in

MONADS, see chapter 22 section 6.1). However, in a graphics based system it is im-

portant for users that they can see each character as it is typed.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 273

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

with the situation in which a new user (and therefore his first desktop) is set up.

Section 2 of chapter 31 describes how a new user is created – an existing user

(the creating user), with the help of various methods of the Container Manager

and other kernel co-modules,

a) creates a container for the new user;

b) transforms this into a process container;

c) registers the new user with the User Manager and the Login Service Mod-

ule;

d) creates an initial thread in the process;

e) prepares this for running by providing a capability startMod (and a string

name startThread, which is a symbolic name for the initial thread, regis-

tered with the User Manager), an integer startRoutine defining which of

its semantic routines should be called, and a capability rootMod which is

passed as a parameter when the routine is called and thus provides an envi-

ronment for the new thread.

This might sound like a good time to prepare a desktop, which after all is part of

the new environment that we need, but then we realise that all the activity so far

described has taken place in the environment (and in one of the threads) of the

creating user, and is therefore not under the control of the newly created user

(especially if startMod is a standard module designed to introduce new users).

Eventually the initial thread will call the process's Thread Control Manager,

which will log the thread out (see chapter 31 section 4.1).

The new user first takes control when he first logs in to his new (previously

logged out) thread. Not only is it appropriate to allow the user to create a desk-

top when he takes over control, but also because at this point he is sitting at a

graphical device (which may be one of many in a multi-user situation) via which

he can exercise this control. But how does this happen?

4.3.3 The Login Procedure Re-Visited

The following procedure is carried out when a logged out thread is to be reac-

tivated, regardless whether the thread is for a completely new user logging in for

the first time or for a thread which the user himself has logged out. The proce-

dure is described in more detail in chapter 22 section 11.2, and only those details

relevant to our task at hand (i.e. setting up a desktop) are described.

a) The user sits at a (in this context) graphical device with pointer device and

keyboard. He indicates his presence by pressing a key at the keyboard,

which causes an "unexpected" interrupt. This causes the kernel to create a

login surrogate thread, which executes in the Login Service Module; this

obtains access to the devices in order to establish the identity of the logging

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 274

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

in user (see chapter 19 section 5). At this point it needs a mechanism for

communicating with the user, i.e. a desktop!

b) When the surrogate thread has discovered from the user which thread

should be activated it executes the kernel's transfer_terminal instruc-

tion, which transfers the device capabilities to the capability access area for

the thread to be activated. It then activates the thread and kills itself.

c) At this point the re-activated thread (which is executing in the last module

before it was logged out, i.e. the Thread Control Manager) carries out ap-

propriate housekeeping tasks then calls the user's authentication module.

This also needs a desktop to carry out its checks! When these are completed

it returns to the TCM which in the case of a failed authentication logs the

thread out again or if the authentication was successful it returns to the

module which called it. This will also need a desktop!

4.3.4 Setting Up a Desktop

This brief overview of the login procedure shows that setting up a desktop is not

a once only procedure but is needed several times. The best way to achieve this

flexibly is to use an interface routine createDesktop of a graphical library

module. This has the advantage (assuming that a capability for the appropriate

graphical device is available, e.g. in the capability access area) that it can be

called (using the kernel's library call LC instruction) from various different mod-

ules as necessary. Each use of this library routine will clear the current screen

and set up a new screen. Parameters to the call will indicate what kind of desk-

top format is required. This might for example be a simple text screen with a

selectable background or it might be a directory displaying the details of the ob-

jects in a directory.

4.3.5 Handling Multiple Activities

In the course of his activities at the computer a user might carry out a variety of

activities in the same session, moving from one activity to another in an appar-

ently random order. For example he might

• check his emails from time to time

while

• carrying out his primary activity (in my case writing a book),

• using the internet as a super encyclopaedia,

• writing an urgent letter,

• paying some bills which just arrived in the post via internet banking,

and so on.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 275

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

One of the ideas behind the SPEEDOS notion of persistent processes and

their threads is that these various, and to a large extent unrelated, activities can

be managed quite separately and without interfering with each other. This is not

always the case in current systems. Just to take a simple example, if I use a par-

ticular document editor in some current systems for more than one activity (con-

currently) and switch between the different uses while leaving the documents

open but off-screen, the likelihood is that not only do I activate the document

which I want but the former document also reappears on the screen.

In SPEEDOS the intention is that different activities can (but need not) be

organised in different processes, while the threads used in a user level process

all contribute to the same activity. Hence when a user switches from one process

to another the former activity (including its desktop) can be "cleared" temporari-

ly by logging out the process, and a different activity (with a different desktop)

can be cleanly retrieved by logging the process in
191

. Recall in this context that

logged out processes and threads are simply saved in the persistent memory and

can be retrieved by logging in to the process again (see chapter 22 section 11).

To simplify this, a graphics screen could provide a list of process icons e.g.

at the bottom of a screen, so that in whichever process the user is active he can

see his other processes. Simply by clicking on the image for a new process he

can then start the logout procedure for his current process followed by the login

procedure for a different process. However, this is simply a suggestion and

should not be regarded as a mandatory aspect of a SPEEDOS system.

4.3.6 Other Desktop Windows

As the previous subsection implies, a desktop often consists not only of a main

window (e.g. displaying the entries in the start directory), but also of other, usu-

ally less conspicuous windows, which can often be viewed as command bars

(e.g. containing icons representing other processes of the same user and their

threads, and/or continuous access to generally useful information such as the

time and date, which printers are available, and so on). What actual windows are

provided is a matter for the operating system design, not for the kernel.

If we assume that a command bar containing icons representing the current-

ly logged out processes of the current user normally exists, this would make it

easy for users to switch between their different logged out threads as they

change to a different activity. A similar bar could be used to represent the cur-

rently active and the temporarily suspended threads of a user. These could be

used, for example, to switch between threads. But once again these are matters

191

 It would also be possible simply to switch desktops temporarily to change the visible set

of activity threads.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 276

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

affecting the design of particular operating systems which need no further dis-

cussion here.

4.3.7 Composite Windows

Any window may be part of a collection of sub-windows which in some sense

should be treated as a unity (e.g. in a main directory window there may be sub-

sidiary windows which provide quick access to related windows). The entire

collection of such windows can then be treated as a single entity for some pur-

poses (e.g. for re-sizing and moving) while they may be treated separately for

other purposes (e.g. for scrolling). While this is important for the user it provides

no special problems for implementation, provided that appropriate data struc-

tures are developed which define the relationships between the parts. Therefore

we do not discuss the issues involved, since they have more to do with applica-

tion design than with kernel or operating system design.

Similarly some parts of a window (e.g. the frame, scroll bars, etc.) may ap-

pear to the user to be part of a single window, whereas they may be separate en-

tities from the implementation viewpoint (often with the help of graphical li-

brary routines). Again we do not discuss the issues involved since they are

scarcely impacted by the special aspects of the SPEEDOS design but may be

relevant to the designers of the graphical libraries.

4.4 Some Technical Aspects

To discuss all the technical aspects of possible graphical interfaces for various

SPEEDOS operating system designs is of course well beyond the scope of this

book. However, it could be helpful if I provide a few general comments.

4.4.1 A Basic Approach

In a new SPEEDOS system (or in a multi-user SPEEDOS system when a new

user is created) the user starts executing in the startMod module, receiving

rootMod as a capability parameter. The startMod module could be a standard

module and rootMod could, but need not, be a directory which holds further ca-

pabilities giving him access to system software and to software which the creat-

ing user wants to share with the new user.

As we saw above, after the new user has logged in and passed all the neces-

sary authentication tests, the Thread Control Manager, which organised the tests,

will return to its caller, which is probably the startMod module. At this point

the new user will need a desktop. This can be organised by the startMod mod-

ule making a library call to createDesktop and passing to it the capability

rootMod, from which it creates a desktop which gives the user a starting point

for carrying out his work, creating more processes, etc. If he does create new

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 277

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

processes the procedure which it uses could follow the pattern which we have

already established for the introduction of the new user, except that the process

containers created will belong to the same user (unless he wants and has permis-

sion to create new users). Each of these new processes can have its own desktop,

fashioned to suit the purpose of the process.

4.4.2 Displaying Directories and their Contents

When the content of a directory is displayed, the symbolic names associated

with the capabilities can be shown along with appropriate icons. In contrast with

most current systems the module names need not contain an indicator showing

what type of module is represented, since in SPEEDOS the code associated with

the module is fixed and cannot be directly modified
192

. However, since the syn-

tax of a name certainly includes characters which can serve as separators (e.g.

the full stop (period), colon, hyphen etc.), a user can optionally develop his own

convention to indicate the type of the module (or can use a standard convention

if this is made available by SPEEDOS OS designers
193

). Alternatively the type

might be indicated by displaying an identifying icon along with the name. An-

other possibility is that the symbolic name for the code to which the module is

bound (which could be made available via the template manager
194

 that is stored

in the directory) could be displayed if appropriate.

4.4.3 Interpreting Mouse Clicks

To access an item which is currently displayed on the desktop, the user selects

and clicks on a desktop item. What happens then? I suggest that a click causes a

desktop thread to receive a parameter from the system that provides the xy

screen coordinates and indicates whether the click is a left click, a right click or

a double click, etc. It must then determine the window in which the click is lo-

cated and activate the item in some way, depending on the kind of click. This,

and the following related activities, should be largely carried out in the graphical

library routines.

4.4.3.1 Following the Pointer

When a pointer device is moved this movement is displayed on the desktop. The

actual motion of the pointer should be independent of the window in which the

movement occurs, since the pointer can traverse several windows. Nevertheless

it is not entirely independent of the window (or sub-window) being traversed,

192

 The type of a module can be modified by using a conversion routine in association with

a free capability.
193

 Unlike conventions in current systems, a possible SPEEDOS convention (which I con-

sider to be superfluous) has no effect on the design of the system.
194

 see section 2.2 above.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 278

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

since it is usual practice to change the display of the pointer itself to suit the kind

of window being traversed. For example if the pointer is moving across a direc-

tory window it will probably appear as an arrow, but if the window is for typing

text then its appearance may symbolise a cursor. This suggests that the pointer

management must detect when a window boundary is crossed and change the

pointer symbol accordingly. How can this be organised?

4.4.3.2 Managing the Desktop

A "map" of the current desktop, showing where the various windows are cur-

rently located, is needed in order to discover the window into which the pointer

has moved when a window boundary is crossed and to change the pointer sym-

bol. This map can be maintained by a standard Desktop Manager module which

can be accessed by threads that create windows on the desktop.

Each entry in the map could hold at least the following information:

– the coordinates of the window's left top corner,

– a current width (horizontal) and a current depth (vertical) or alternatively

the coordinates of the window's bottom right corner,

– a title (with font information) to be displayed at the top of the window,

– a pointer to the entry for the window in which this is nested (for the first

level windows a pointer to the desktop entry),

– a list of pointers to entries which describe windows and sub-windows nest-

ed within this window,

– a symbol for the pointer to be used when the mouse is traversing the win-

dow,

– information about the borders of the window, e.g. what border style is used,

how borders should be displayed (even if these are invisible),

– a thread capability for the thread which created and is responsible for the

window, and

– any further information which the designer of the module considers appro-

priate.

This Desktop Manager module can activated by the initial start thread (since this

has otherwise completed its essential functions), and the latter then becomes the

'desktop thread'.

Given such a map of the desktop, the coordinates can be used to establish

the window in which the mouse is currently active.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 279

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.4.3.3 Thread Activity and Mouse Movements

There are of course more kinds of pointer-based activity which affect the desk-

top than simply pointer movements and clicks, e.g. the dragging of objects from

one position to another, the resizing of windows, as well as the effects of some

of these activities on the appearance of other objects on the screen. The interest-

ing question is which threads are active, and when, with respect to such events.

Furthermore some of these activities have a side-effect on other (possibly unre-

lated) windows, e.g. when a window is moved in such a way that it reveals an-

other window, which may need to be redrawn.

From the purely logical viewpoint it would seem appropriate to associate a

separate thread with each window currently on the desktop. This would most

appropriately be the thread which creates a window. To create a new window, a

thread uses the appropriate graphical library routine createWindow, which inter

alia creates a new subthread (see chapter 20 sections 5 and 8) to control each

new window.

The desktop thread would initially be responsible for the desktop, and as

new windows are created on the desktop it would remain the responsibility of

the desktop thread to control those regions of the desktop which do not contain

windows
195

.

When the mouse pointer is at rest the desktop thread suspends waiting for a

mouse interrupt. When such an interrupt causes the thread to be activated, it

proceeds as follows:

• pointer position changes: the desktop thread moves the pointer to the new

position.

• dragging objects held in a window: the desktop thread moves the dragged

object to the new position, updates the map and activates the threads re-

sponsible for the initial position of the object and the final position of the

object, providing details via a put_message kernel instruction described in

chapter 22 section 10.2.3 in each case and redraws the (affected parts of

the) desktop. Any consequences of the move (including cancelling it) can

be taken by the application threads involved. If the drag action moves an

object to a different position in the same window, the responsible thread is

195

 This might seem to imply that different threads should take responsibility for correctly

moving the mouse across their part of the desktop, which would in turn imply that each

time a user rapidly moves the pointer across the screen, several thread switches might

be necessary in rapid succession, which could perhaps overload the system with thread

switches. This would not be a very efficient way of using the CPU, especially when

most of these thread switches would not achieve any effective purpose except to change

the pointer symbol. Hence we suggest that all mouse movements are undertaken by the

desktop thread. Since this executes in the Desktop Manager it is in a position to change

the pointer symbol as this moves from one window to another.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 280

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

advised of this. The recipient thread or threads can obtain the messages via

the get_message kernel instruction.

• changing the position of, and resizing, a window: the desktop thread notes

the change in the map and redraws the (affected part of the) desktop, and

other windows affected by this
196

.

• clicks (of any kind): it activates the thread associated with the current win-

dow, passing to it an indication of the kind of mouse click and the position

of the pointer. These details are passed using the put_message kernel in-

struction.

The desktop thread then suspends awaiting the next pointer interrupt.

4.4.4 Application Windows

A click or double click can signify quite different things, depending on the win-

dow in which the click occurs, on the position of the click in the window and on

the type of the click. As was indicated in section 4.3.5.3, all mouse interrupts are

initially directed to the desktop thread. If the interrupt is for any sort of click (ra-

ther than just a pointer movement, window movement or drag action) the desk-

top thread, executing in the Desktop Manager module, redirects this to the

thread for the window in which the click has occurred by activating the latter in

the normal way, i.e. by calling an activate semantic routine of the thread's

Thread Control Manager, which then passes this on to the User Thread Sched-

uler, after first transforming the coordinates into their relative positions within

the window. The desktop thread first uses the put_message kernel instruction to

enable an activated thread to discover why it has been activated.

When the suspended thread has been activated, it receives the interrupt in-

formation (location, click type) by executing the kernel's get_message instruc-

tion. It then interprets these to determine what action it must take. This depends

entirely on the nature of the application.

4.5 An Example: Directory Windows

In conventional systems directory modules are part of the operating system

software. However, as we saw in chapters 30 and 31 and in the earlier parts of

the present chapter, they are simply application modules in SPEEDOS, with no

special privileges. Hence the core actions of directory windows of the desktop

provide a useful case study of how relatively simple application windows can be

organised.

196

 These functions suggest that behind a window is a canvas which contains all the details

displayable in the window. This can also be used to modify information in a window

while it is not or is only partly visible.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 281

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.5.1 A Question of Privacy and Security

In conventional systems it is quite normal that when a directory is displayed on

the screen, further directories are automatically displayed in an associated win-

dow, which may appear to the user to be parts of the same window or window

group, allowing him to navigate from one directory to others.

But herein lies a tricky problem for SPEEDOS, because it implicitly sug-

gests that if a user has access to one directory, he automatically has access to the

related directories and the files in them. Furthermore, in conventional systems

directories serve as access control lists (ACLs) and therefore their contents (files

and other directories) can be accessed (occasionally with restrictions) by any

thread which has access to the directory (see chapter 2). But this assumption

does not carry over to SPEEDOS, which is a capability-based system.

The basic rule of access in SPEEDOS is that to access an object one must

have a capability for the object and is also restricted to accessing the object in

terms of the semantic routines permitted by the access rights which it contains.

The question therefore arises, how can directories be displayed in SPEEDOS?

One quick answer might appear to be as follows. Allow related directories and

their entries to be displayed in composite windows, as in conventional systems,

but enforce the capability rule if the user attempts to access an object. However,

this concept has a flaw, viz. that even if a user cannot access all objects which he

can see in a window or on a screen, he can see them, and this alone can be re-

garded as a potential privacy and security violation!

The issue becomes clear when we look at the proposal in chapter 31 section

5 for defining a simple mail system, such that a user A, sending mail to another

user B, can do this by inserting an entry in a mail box (directory) of B. We al-

ready described how A could use a special interface deleteMyEntry to delete

the mail entry later. Thus User A has a capability allowing him to create an entry

in B's mailbox and delete this entry later (if it still exists).

Clearly if user A could use this capability to view the entire mailbox, he

would potentially see mails for B sent by other users. It is clear that such a viola-

tion of privacy should be prevented. The solution is similar to that for deletion.

The directory needs two further semantic routines: view which allows the direc-

tory content to be viewed in full, and viewMyEntries, which restricts the holder

of the capability to displaying and viewing only those entries which he has

made. In this mail example the recipient of the mails needs to see all his mails

(and therefore uses the view interface), while the senders of individual mails

have no access to this semantic routine, but instead can only use the viewMy

Entries interface.

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 282

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.5.2 Creating a New Module

When a new module (which might or might not be a directory) is to be created,

the user might use a single click (e.g. a right click) on the area of the screen at

which the new module is to be created. What happens then?

Recall that single clicks, in our example system, cause the desktop thread to

activate a thread associated with the window. Since such a click can in some

cases activate a long running program, during its execution the user may want to

activate other modules. Hence the initial thread associated with the window can

best achieve this parallel activity by creating a new thread to carry out the user-

intended task. It can then suspend itself waiting for a further click. But it may

carry out short activities itself.

Since different types of modules can be created, the activated thread must

have access to all the necessary components to build the different kinds of mod-

ules which it offers, including for example a capability for the code of the new

module, an option for associating with the new module a qualifier list and a

module capability for the template and those required to create a container for

the module (see chapter 19). Some of these are standard, while others can be

determined via submenus. Finally it creates an entry for the new object in the

directory.

4.5.3 Activating Modules

The most used facility of a directory module is probably the activation of mod-

ules which have entries in the directory. Typically the user double clicks on an

entry to activate the corresponding module, and of course the desktop thread

(acting in the desktop module) passes the double click to the thread responsible

for the window. As was already described for the creation of new modules, the

window associated with the directory will create a new thread, pass the "parame-

ters" to it via the put_message/get_message mechanism and the new thread

will then take the necessary steps to activate the module to be called.

This primarily involves making an inter-module call via the capability held

in the directory, but before that can be done the semantic routine to be called

must be selected by the user and the parameters for this routine must also be

prepared for the call. By their nature these cannot be predefined in the directory

entry. Hence the thread must obtain the necessary information from the user. He

can do so by retrieving the template manager which is stored in the entry and

use this to request the name of the semantic routine to be called (e.g. using a

pull-down menu) as well as the appropriate parameters for this, perhaps using a

pop-up menu (which could indicate the symbolic name of each parameter and

the parameter type for each parameter in turn). The directory thread can check

Chapter 32 COMMAND LANGUAGES, NAMES AND GRAPHICAL INTERFACES 283

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the parameters as they are typed in, convert them to internal format and, after

creating the appropriate four parameter segments on the stack (see chapter 20

section 6.2), can use segment register 0 to enter them into the input parameter

segment which it has created at the top of the kernel stack, then execute the in-

ter-module call instruction. It will eventually return, perhaps passing back some

return values of interest to the user. Meanwhile the user can carry on using the

pointer to carry out further work.

4.5.4 Returning Results

When an inter-module call has been activated as described above, it will eventu-

ally return, and at this point it may have some results to report to the user. Since

the thread might have executed over a long time span, it may arrive when the

user is not expecting it, or is busy carrying out other activities. Hence the ques-

tion arises how he can receive these results at his own convenience. A possible

answer is that executing threads may be listed or symbolised by icons in a sepa-

rate window on the screen (and perhaps coloured red while they are still run-

ning, or green when they have completed). In this case the user could double

click on a green thread symbol and be shown the results returned by the module.

5 Concluding Remarks

A substantial part of this chapter has attempted to show how a basic SPEEDOS

system can be enhanced by the use of graphical equipment, and to the extent that

it does this it should be regarded more sceptically than those chapters which de-

scribe other parts of the SPEEDOS design. The reason for this is that I have in

the past never been deeply involved in designing a graphical interface nor using

graphical hardware or software. I hope that the chapter will nevertheless be

helpful in so far as it makes suggestions about mapping a graphical interface on-

to the SPEEDOS architecture.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 33

I/O Devices and Spooling

Previously, input/output devices have only been mentioned with respect to

SPEEDOS in Chapter 22, in connection with the handling of asynchronous in-

terrupts. When an interrupt occurs, the kernel's interrupt analysis routine exam-

ines the interrupt and passes it on to the appropriate kernel process. This chapter

discusses in more detail what happens when the interrupt is a general device in-

terrupt (e.g. from a printer) and explains how print spooling can be managed in a

secure way. Interrupts from discs are not included since these are directly han-

dled in the kernel as part its virtual memory management function. Similarly

communication with other nodes is initially handled within the kernel and is not

considered in this chapter.

1 Device Drivers

The module which directly interfaces with a device is its device driver. Howev-

er, in contrast with device drivers in most conventional systems there is very

little that is special about a SPEEDOS device driver. It is implemented as a

normal SPEEDOS module. It has appropriate semantic interface routines tai-

lored to its own needs, and only other modules which have a capability for the

device driver can call these routines and therefore use the device which it con-

trols. Its only special privilege is that it has a kernel capability, which is typical-

ly stored in a read-only segment in its code; this allows it to execute the kernel

instructions load_devSR and wait_interrupt.

A request by a module to activate an I/O device is invoked and handled as

an in-process operation within the thread which requests the I/O operation.

When the thread has invoked the device driver, the latter activates the device. In

conventional computers there are two ways of achieving this, depending on the

hardware design. One is a special hardware instruction (here called start_

device), which can only be executed when the computer is currently in a privi-

Chapter 33 I/O DEVICES AND SPOOLING 285

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

leged mode (corresponding to SPEEDOS kernel mode). Alternatively, the hard-

ware might use memory mapped I/O
197

. In SPEEDOS memory mapped I/O is

strongly preferred, because this gives the system much more control over the

operation. In this case the only special privilege required is that a segment regis-

ter is loaded to address the device memory. To achieve this, the device driver

uses the kernel instruction load_devSR, specifying as operands the number of

the segment register to be loaded and a device capability which defines the de-

vice
198

.

Having activated the device, the driver (still executing in the application

thread) executes the wait_interrupt instruction. The kernel then notes that an

interrupt is expected from the device and which application thread should be

activated when the interrupt arrives. It then calls an interface of the User Thread

Scheduler, advising it to suspend the application thread.

When the device operation terminates it causes an interrupt, which leads to

the activation of the appropriate kernel device processes (see chapter 22 section

10.2). Having examined the interrupt parameters and taken any further actions

necessary, this then activates the Thread Scheduler to advise it that the interrupt

has arrived, allowing the latter to put the waiting application thread into the

ready state for eventual re-activation. The kernel process then suspends itself

and waits for another interrupt.

The above description provides a general pattern, but does not exclude the

possibility that further optimisations may be introduced in particular situations.

2 Device Allocation

In older computer systems the allocation of devices to application (and to some

extent system) threads was quite a problem. Usually a central device allocator

module existed which had the job not only of determining which users could use

the system's I/O devices and when, but also whether particular users had a right

to use particular devices and with what priority. But above all the problem of

deadlocks (sometimes called deadly embraces) had to be solved.

2.1 Deadlocks

A deadlock (in the operating system sense) arises when applications have re-

ceived permission to use more than one device or other resource (e.g. a sema-

phore) which they claim for concurrent use, with the result that there is no order

197

 For more detail see Chapter 6.
198

 Segment registers containing mapped device capabilities can neither be stored as point-

ers nor copied into other segment registers (including the parameter registers). Device

capabilities can only be used at the node indicated in the capability. Usually the right to

copy a device capability is unset.

Chapter 33 I/O DEVICES AND SPOOLING 286

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

of execution which allows all the threads to complete, because each is waiting

for another to relinquish a resource. In the very simplest case this can involve

two threads (say T1 and T2) and two resources (say R1 and R2), such that R1 has

been allocated to T1 and R2 to T2. Then T1 claims R2 and waits for it to be allo-

cated, but instead of releasing R2, T2 claims R1 and waits for it. In this situation

each is waiting for the other and neither can proceed. Real situations could be

far more complex than this, for example involving circular waits by several

threads.

The fundamental problem arises when threads can claim exclusive use of at

least two resources. Two quite different strategies for solving this problem were

developed by different system designers. The first approach was to detect the

problem (after it was noticed that the applications were not making progress, or

as a regularly run algorithm) and then to "solve" it (e.g. by deleting one of the

offending threads). The second approach attempted to prevent the problem from

occurring (for example by defining a set order in which devices can be claimed,

e.g. if a thread has successfully claimed a printer, it may not then claim a card

reader. If you are interested in this issue, you will find plenty of information

about various strategies in older books on operating system design.

In modern systems deadlocks are far less a problem than a few decades

ago. The main reason for this is that many I/O devices which need to be used

exclusively (e.g. card readers, tape drives) have all but disappeared. The second

reason is that some modern devices, although they generally need to be used ex-

clusively, are allocated not by software modules, but rather by humans claiming

them separately (e.g. keyboards and monitors which are general claimed by a

user simply sitting at an unused device). The third is that many computer users

now have their own personal computer system, which is used without competi-

tion from other users
199

. The fourth is that devices which are used exclusively

have become cheaper and more plentiful, so that competition for their use has

diminished (e.g. printers). Consequently a device allocation module will rarely

be needed and is not illustrated here.

However, in a multi-user system the use of printers and other output devic-

es (e.g. graph plotters) could in principle still be a problem. But there is a differ-

ent way of solving that problem; this approach is known as spooling.

3 Spooling – The Basic Principle

Spooling (simultaneous peripheral operations on-line) is the name given to a

method of interfacing programs and slow I/O devices in such a way that (a) us-

199

 This alone does not solve the problem, e.g. if a user organises the concurrent use of

threads which claim the same resources.

Chapter 33 I/O DEVICES AND SPOOLING 287

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ers are not inconvenienced by having to wait for the device to become available

and (b) the device can be driven at full speed. This technique used to be im-

portant for devices such as card and paper tape readers and punches, but today

its main application is for printing. It can also be used to achieve considerable

cost savings (e.g. telephone connection charges) with output devices such as

computer driven faxes.

To understand why print spooling is necessary, consider what would hap-

pen in a typical multi-user system without it. Such a system might have many

users and few printers. A user at a terminal wishing to run an application pro-

gram which produces print output – most applications produce results for print-

ing – would therefore have to wait for a printer to become available before he

could start his program, or before the program could start printing. This would

be extremely inconvenient for the user, who in some older timesharing systems

could have done nothing but wait, or tap the keys of his terminal impatiently.

Then when the printer eventually became available his program would start us-

ing it.

Now suppose that when a printer at last becomes available to a user, he

starts an application which does a lot of calculation and which every five

minutes for the next hour prints a result consisting of one line. The other users

waiting for access to the printer would be rather irate at such a wasteful way of

using the device!

Spooling solves both problems simultaneously. The idea is simple. First the

application is run, but instead of it using a printer directly, it outputs its results to

a disc file. (Discs are shareable so there is no waiting problem for the user.)

Then when the file is complete, it is passed (in conventional systems) to a sys-

tem thread, called the spooler. The spooler runs continuously (whenever there is

work to do) printing files one after another (for different users). With this tech-

nique a user never waits for the printer and, because the files to be printed are in

their final form, the printer can be driven at full speed.

This is fine as far as efficiency and convenience is concerned, and it is in

principle how nearly all multiprogramming systems organise the printing of user

output (although it is amazing how some operating system designers can com-

plicate even a simple idea like this!).

But from the security viewpoint it is far from ideal. The spooler program

has the opportunity to see just about every interesting item of data in the system

and make a secret copy of the juiciest bits for an unauthorised user. Further-

more, because the spooler has to be able to access the files of many users, it is

sometimes given a protection status that allows it unrestricted access in the file

system, which means that it can even access files which it has not been asked to

Chapter 33 I/O DEVICES AND SPOOLING 288

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

print.

4 Spooling – The SPEEDOS Approach

How can these problems be avoided in a SPEEDOS system? The problem of the

spooler having a special privileged status is avoided in a capability system be-

cause SPEEDOS has no privileged status of this kind. The only "privileges" are

conferred by capabilities (including kernel capabilities) and if used properly

these limit the privileges which they confer only to those needed to carry out a

specific task. If a spooler is to print a file, it needs a capability for the file. Thus

it needs a capability for each file to be printed, but not for others. That is a start,

but it is not sufficient, because the spooler might retain the capability or make a

secret copy of the file, or pass information in the file to a third party. So there is

potentially both a revocation problem and a confinement problem.

In the remainder of this chapter a spooling system design will be presented

which sets out to solve these and other security problems while retaining the ef-

ficiency and convenience aspects of spooling. We begin by considering some

general issues associated with spooling.

4.1 Spooling Files, Interfaces and Drivers

Spooling files are normally created by application programs using a format

which allows the same file to be printed later on many different kinds of printer

and displayed on many different monitor types. A widely used example of such

a format in conventional systems is Adobe PDF (which is a successor of Post-

Script, a format which was earlier in widespread use for printing).

At the other extreme, manufacturers of actual hardware devices produce

printer drivers (and drivers for other devices such as monitors, graph plotters,

etc.) which differ widely from each other (even those manufactured by a single

company), and which are often quite complicated and messy to use directly.

Consequently they usually provide software drivers with their hardware which

accept a much simpler form of interface and do the messy things for the applica-

tion.

Since it is impossible – and also unimportant in this context – to discuss all

the possibilities in detail, a simplified scenario is now presented in which it is

assumed that application programs create PDF files
200

 and that these serve as

print files which are accepted by the printer drivers in a system.

In order to shield spoolers and other software from the complexities of an

actual driver interface, it is assumed that in a SPEEDOS context an interface

module is implemented for each driver, which allows all other software to ac-

200

 Since 2008 there is an ISO standard for PDF files.

Chapter 33 I/O DEVICES AND SPOOLING 289

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

cess the printer in a standard form. This results in the situation shown in Figure

33.1, which illustrates the final stage of printing a file in a spooler thread.

When called by the interface module, the driver takes the necessary device-

dependent steps to carry out the actual printing (including a call or calls on the

kernel's wait_interrupt instruction). On completion of the printing the driver

returns to the interface module, which returns to the module that called it.

4.2 An In-Process Spooling Architecture

We now consider what modules and threads are needed in order to provide

spooling in such a way that it is both efficient and secure. The normal starting

point in an in-process architecture is that a task should be fully carried out in a

single thread (or a collection of cooperating threads following the in-process

principle), since this provides a framework which encourages both security (e.g.

in the case of SPEEDOS via the thread security register) and efficiency. Howev-

er, the spooling principle demands that the spooling activity should be carried

out in a separate thread from that of the thread requesting the printing. In a con-

ventional system this is a thread belonging to the system which accepts requests

from all users. For each printer such a system thread is needed. Before rushing

into such a solution as the obvious and only one, let us consider an unconven-

tional alternative.

4.2.1 Each User provides his own Spooler Thread(s) for each Printer

The idea that the spooling activity should take place entirely in a thread or

threads owned by the user is attractive for a number of reasons
201

. First and

201

 Some readers may fear that providing extra spooling threads for each user will be ineffi-

cient, e.g. because these will clog up the scheduler. However a SPEEDOS user thread is

implemented as part of a user process, which is in fact more comparable to a file than a

conventional process. In SPEEDOS user threads must only be made known to the User

Thread Scheduler (UTS) when they become active and are then removed from the UTS

Figure 33.1: The Final Stage of Printing a File in a Spooler Thread

Printer Driver

Module

Printer Interface

Module

Spooler Stack

(Spooler Thread)

Chapter 33 I/O DEVICES AND SPOOLING 290

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

foremost, this allows the user to exercise some control over the security issues,

e.g. via the thread security register. But also, since the owner of the thread is the

user, the processor time, the disc and printer I/O operations, and any other re-

sources used can be automatically clocked up to the user on whose behalf they

are consumed, not to a system thread. Consequently spooling is not a special

case with respect to accounting, logging, resource limits, etc.

In a single user system this architecture would not present any significant

problems, but the question arises in a multi-user system how the different users

could then share access to the same printer, and how the print requests of differ-

ent users could be handled fairly. We tackle the fairness issue first.

4.2.2 How Can Print Requests be Handled Fairly?

It is by no means clear what fairly means when users are competing for the use

of the same printer. Is it fair, for example, if a user requests in quick succession

that three of his files should be printed which each take an hour or more to print,

thus preventing users with much shorter print jobs from accessing the printer?

To avoid this situation it would be possible to adopt a scheduling policy known

as shortest job first, i.e. a printer scheduler gives preference to print job requests

according to the (estimated) time they will need the printer.

Is it fair, for example, to give higher priority to some users over others?

Should user jobs be selected for printing on the basis of their urgency? Who de-

termines urgency and using what criterion? For example should print jobs for

the Managing Director of a company get higher priority for his print jobs than

those of his staff?

These issues make it clear that in a good system it is appropriate for an in-

stallation to have scheduling rules which are laid down in a scheduling algo-

rithm suitable for that installation. From the present point of view it thus seems

appropriate to have a scheduling module which determines when different print

jobs (possibly from different users) should be started. At first sight this may

seem to suggest that this should exist in a separate thread, which is used by all

who have a right to use the printer. However, that would be a typical out-of-

process solution for the problem.

4.2.3 Printer Scheduling Modules and User Spooler Threads

The in-process solution is that such a scheduling module (hereafter called the

Print Scheduler Module) should exist, but not in a separate thread. Instead it is a

module which is invoked in different user spooler threads as appropriate. Since

when they become inactive, i.e. they are not a permanent burden to the UTS. While they

are inactive they behave more like a passive file.

Chapter 33 I/O DEVICES AND SPOOLING 291

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

this module determines which print request should be passed next to the printer

interface module/printer driver module (see Figure 33.1), and since the latter is

executed in a thread of the user whose print job has been selected, a switch must

occur to a waiting spooler thread of the user whose print request has been select-

ed as next for printing. How should this switch be coordinated?

The answer of course is via semaphores. The scheduler maintains a list of

print requests from various users and sorts them into an order determined by the

scheduling policy. When it receives a print request while the printer is occupied,

it uses a P operation to suspend the current thread, which we assume is a user

spooler thread (see below). When some other spooler thread (of the same or an-

other user) frees the printer it returns to the Print Scheduler Module in the cur-

rent thread, it then examines its scheduling list and selects the next appropriate

spooler thread to execute, by issuing a V operation to wake up the thread
202

,

which will then call the Printer Interface Module to start the printing of its own

print request.

The user spooler thread structure just described is illustrated in Figure 33.2.

4.3 The Print Request Module

When a user requests the printing of a file it will be executing in a normal appli-

cation thread of the user (or in a Command Language Interpreter Thread, see

Chapter 32), not in a spooler thread. This suggests that the PRM should be ac-

tive not only in the user's spooler threads but also in any application thread

which requests that a file be printed. In this way one of its semantic routines can

be seen as a 'print' command, which is called in application threads that have a

202

 In order to wake up the selected thread it will need a thread capability for this thread,

which is part of the print request information provided by the thread itself.

Figure 33.2: Printing a File in a Spooler Thread

Printer Driver

Module

Printer Interface

Module

Print Scheduler

Module

(User Spooler

Thread)

Print Request

Module

Chapter 33 I/O DEVICES AND SPOOLING 292

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

capability allowing this (see Figure 33.3).

This solution requires that the PRM can be invoked both in application

threads requesting the printing of a file and in user spooler threads in order to

pass print requests to the Printer Scheduler Module (for the printer on which the

request is to be printed). How are these two "halves" of the module linked? In

other words how is the print request passed from the application module to the

spooler module?

The simple answer is via a shared data structure, as is usual in in-process

systems when a module is active in more than one thread. How this happens in

detail depends on how user spooler threads are organised. The following sugges-

tion attempts to avoid a number of problems which could otherwise arise in this

scenario.

Although it was suggested above that there should be a user spooler for

each request, I now propose that a single thread receives requests from applica-

tions of the same user; this allocates requests to different subthreads, which it

creates and manages. These carry out the actual spooling activities. In the first

stage, the PRM receives print requests for its user from application threads of

that user via a shared data structure. This serves as a multiple producer/single

consumer bounded buffer, in which different application threads of the same

user can each produce print requests and enter them into a shared buffer while

the PRM, acting in a separate user thread, consumes them in turn and allocates

them to separate user spooler threads.

Why not instead simply also have multiple consumers (each being a user

spooler thread)? That would imply that a sufficient number of user spooler

threads for this use must always pre-exist. (If insufficient were to exist then a

print request for the user would have to wait for another print request from the

same user to complete, which would then adversely affect its chances at the

Print Scheduler Module level, where requests from different users compete with

each other.)

In the proposed solution the single consumer would receive requests in the

Figure 33.3: Receiving a Print Request

Print Request

Module

Application

Module

User Stack

(Requestimg

Thread)

Chapter 33 I/O DEVICES AND SPOOLING 293

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

order in which they had been submitted and ensure that each is immediately al-

located to a user spooling subthread. The implementation then becomes a strate-

gy decision: it would be possible to maintain a small pool of threads which

might be sufficient for the normal flow of print requests, but if this turns out to

be insufficient the Print Request Module can dynamically create new user

spooler subthreads as required. Alternatively it might adopt a strategy of dynam-

ically creating and deleting a user spooler thread for each request from its user.

In either case we end up with a scenario as illustrated in Figure 33.4.

This figure suggests how the individual user spooler threads might be imple-

mented, viz. as application subthreads of the Print Request Manager (see chapter

20 section 5). In this case the initial master spooler thread continuously waits

(via the bounded buffer) for new print requests and then dynamically creates

subthreads for them (and deletes them on completion).

4.4 After the Print File has been printed

When the printer driver has completed the printing of a file it returns to the

printer interface module, which then returns to the Print Scheduler Module; this

then selects a further request to be printed. However, it does not simply pass this

to the Printer Interface Module/Printer Driver, but activates the thread which

made the request and which is now in a wait state (see section 4.2.3). The best

way to organise this is by each thread having a private semaphore (see chapter 8

section 12.3) in the Print Scheduler Module, with the current thread activating

the thread whose print request has been selected. Once activated this thread calls

the Printer Interface Module/Printer Driver to have its file printed.

Figure 33.4: Three Print Requests Active

in the Spooler Threads of a Single User

Printer Driver

Module

Printer Inter-
face

Module
Print Scheduler

Module

(User Spooler

Thread)

Print Request
Module

Printer Driver

Module

Printer Inter-
face

Module
Print Scheduler

Module

(User Spooler

Thread)

Print Request
Module

Printer Driver

Module

Printer Inter-
face

Module
Print Scheduler

Module

(User Spooler

Thread)

Print Request
Module

Print Request

Module

Application
Module

User Stack
(Requestimg

Thread)

Bounded

Buffer

in PRM file
Master Spooler Stack

(Spooler Thread)

Print Request Module

Chapter 33 I/O DEVICES AND SPOOLING 294

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Meanwhile the thread which activated it (i.e. the thread whose file has now

been printed) continues by exiting from the Print Scheduler back to the Print

Request Module, where it exits from the subthread (which causes its deletion).

In this case there is no need to advise its creating thread of this.

4.5 Scheduling Equivalent Printers

In some cases several equivalent printers might exist (e.g. in the computing lab

at a university). ("Equivalent printers" simply means a set of printers which are

equally convenient for the user to use.) This requires a relatively trivial exten-

sion to the system as described above. In its last phase the print scheduler will

normally have a binary semaphore which is used to signal that the printer has

been claimed (via a P-operation) or released (via a V-operation). If there are

multiple equivalent printers then this can simply be replaced by a resource set

semaphore, thus allowing more than one printer to be in use concurrently. This

is of course initialised to show the number of printers which are free.

4.6 The Print Request Module

A PRM's semantic routine print (i.e. the print command) expects three parame-

ters:

i) a capability for the file to be printed,

ii) a name by which the user wishes to refer to the file (e.g. to appear at the

head of the printed file, or to indicate which file if he decides to cancel the

print request before it has reached the printing stage),

iii) the number of print copies which he requires.

However, when the print request module places this in the bounded buffer, it

adds a fourth parameter:

iv) a thread capability for the thread in which the print request is made. This is

needed to synchronise the bounded buffer with the spooler thread.

When the printer interface module prepares for the printing, it can establish

the identity of the user requesting the printing from the fact that it is operating in

a thread of that user (and can therefore use the kernel's environmental instruction

current_thread_owner). Hence this need not be passed as a parameter
203

.

4.7 Simplifications for Single-User Systems

Many desktop and laptop computers, as well as smartphones and other mobile

devices with operating systems, are used exclusively by a single user with pri-

203

 If a symbolic user name is to appear in a heading of the print output, the interface mod-

ule for the driver can provide this, if necessary by looking up the user's unique identifier

in the user directory (see Chapter 31).

Chapter 33 I/O DEVICES AND SPOOLING 295

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

vate printers. For such systems the spooling mechanism can often be simplified

in two ways.

First, the Printer Scheduling Module (PSM), which is designed to schedule

requests from different users, can usually be eliminated. This simply involves

providing the Spooler with a capability for the PrinterInterface module, ra-

ther than with a PSM) capability. However, if the user has equivalent printers,

he can consider retaining a PSM to manage these.

The second possible simplification is that a single-user system will only

need a single thread for each printer, because the PRM already supplies a queu-

ing system which (in a single-user system) does not suffer from the fairness

problem described earlier.

4.8 Additional User Facilities

The PSM would need some further routines to allow requesters prematurely to

report on the current position of a request or to remove a request from the buffer.

These are not described in detail.

5 Security Aspects of Spooling in SPEEDOS

As was noted in the introduction to the spooling section of this chapter, from the

security viewpoint the conventional spooling technique is far from ideal, be-

cause spooler software has the opportunity to see just about every interesting

item of data in the system and make a secret copy of the juiciest bits for an un-

authorised user. Furthermore, because the spooler has to be able to access the

files of many users, it is sometimes given a protection status that allows it unre-

stricted access in the file system, which means that it can even access files

which it has not been asked to print.

5.1 Checking the Right to Print

The right to print a file is determined by the "metaright" print (see chapter 26

section 3.3.1). However, unlike the generic rights (to which categorisation it

ideally belongs) it is not immediately clear how this can be controlled. In the

case of the normal generic rights (see chapter 16 section 3.2) the implementation

is carried out by the Container Manager – a kernel co-module–, which is nor-

mally responsible for checking the generic rights. As so far described in section

4 above, no module in the chain is a kernel co-module. How then can it be

checked?

Ideally it would be good to have the necessary check carried out as soon as

the print request is made. The Print Request Module would be the ideal module

to carry out the check, but this module is a normal user module, which in princi-

ple could be different for each user. Hence, although it can carry out a check of

Chapter 33 I/O DEVICES AND SPOOLING 296

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the corresponding metaright in the capability for the file, this check could not be

enforced.

The Print Scheduler Module is the next module to see the capability for the

file to be printed. In a multi-users system this module is not directly under the

control of a particular user. In principle there is a separate (instance of a) Print

Scheduler Module for each printer or group of equivalent printers, which must

be used by all the users wishing to print a file on the printer(s) which it controls.

Its independence of a particular user makes it a good candidate for carrying out

checks which apply to the files of each user. Hence when a Print Request Mod-

ule passes a print request (including a capability for the file to be printed), the

Print Scheduler Module should check whether the print right is set in the capa-

bility.

The Print Scheduler Module thus becomes a kernel co-module, which is in

any case appropriate for a module which carries out a scheduling task that arbi-

trates between users. When a printer is installed in a system the installation

manager must allocate for it a Print Scheduler Module, a Printer Interface Mod-

ule and a Printer Driver Module. He must also provide and distribute capabilities

for invoking these modules. (Without access to these capabilities a user cannot

print files on the corresponding printer(s)).

5.2 Securing the User's Information

Except for the device driver, which will be considered shortly, no module in the

SPEEDOS spooling system outlined above has any special privileges, e.g. ker-

nel capabilities (not even the Print Scheduler Module despite its status as a ker-

nel co-module). Spooling modules have access only to those files for which they

receive a capability, and the only file capabilities made available to the spooling

software are the individual files to be printed and capabilities allowing each

module to call the next module in the spooling chain.

Although the scenario outlined in section 4 ensures that all spooling opera-

tions are carried out in spooler threads owned and controlled by the user of the

file to be printed, this does not eliminate all dangers. In particular the code mod-

ules which are used in these threads are potentially untrustworthy, unless they

can be controlled by SPEEDOS security mechanisms.

Hence there could be a danger that a module in the spooling system which

contains secret code (e.g. a trojan horse) may attempt to copy or retain a print

file capability for later use, or pass the capability or information in the file to a

third party. So there is potentially both a capability revocation problem and an

Chapter 33 I/O DEVICES AND SPOOLING 297

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

information confinement problem to be considered
204

.

The first security decision which the user has to make is to secure the capa-

bilities for

– his print files,

– the system modules discussed above,

– the parameters passed to the spooler module.

We now consider the security settings which should be applied in these capabili-

ties.

5.3 Securing Print File Capabilities

When an application initially calls the print request module, it provides a copy

capability (not the original) for the file it wishes to have printed. At this point

the user has the opportunity to tailor the rights in this capability to secure it from

attacks. Here are some of the measures which might be taken.

a) The Printer Interface and Printer Driver modules need direct access to the

file's content. Hence the metaright permit_free_cap must be left set.

However, no spooler module needs access to any of the semantic rights, so

that the special setting 00 can be set in the semantic rights. This prevents

any semantic routine from being invoked (see Chapter 26 section 3.1).

b) The following further metarights could be unset:

i) permit_duplicates: if unset this results in each subsequent copy

action becoming a destructive move, i.e. the source capability in each

copy operation is invalidated, and therefore becomes unusable. This in

effect revokes the capability at each stage of its transition to the driv-

er.

ii) permit_read: unsetting this prevents the software in the spooling

system from examining the capability.

iii) permit_calls: unsetting this ensures that the software cannot in-

voke any semantic routines of the print file module. This is possible

because the driver accesses the file not via a semantic routine but via

direct access using a free capability.

 These rights could be unset in all the metarights categories listed in chapter

26 section 3.1.1.

Notice that as the thread returns from the Driver, none of the modules to which

the return is made have access to the capability, since the parameter segment in

204

 Other potential dangers are that capabilities passed to the spooling system for printing

might be used to alter or destroy their contents. These can be avoided by unsetting the

"write" bit in the semantic rights.

Chapter 33 I/O DEVICES AND SPOOLING 298

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

which it is held is inaccessible after return instructions have been executed.

5.4 Securing the Capability for the Print Request Module

If the owner of a thread finds the system's standard Print Request Module satis-

factory then he will initially find this in the public software made available when

his directories are created (see chapter 31, section 3.2.1). Alternatively he may

choose to develop his own module or buy a module from a software vendor.

He can then make a copy of the capability for this and has the opportunity

to reduce the rights in it. In particular he could reduce the semantic rights such

that modules executing in the thread can only call the module's semantic routine

print (and any associated rights allowing him to check the progress of, or to

delete, a print request (see section 4.8)). He can also reduce the metarights as he

finds appropriate, e.g. by unsetting the rights: permit_file_copy, permit_

in_param_copy, permit_free_cap, permit_read, permit_dir, permit

_print
205
.

He can then distribute the capability for use by modules in his thread(s) by

following the same pattern as the distribution of capabilities for other standard

modules (see chapter 19 section 5), i.e. a user wishing to print can use a kernel

instruction to obtain the capability for the Print Request Module which the

thread owner has set up for the thread.

5.5 Securing the Capability for the Print Scheduler Module

The possession of a capability for a Print Scheduler Module, which contains a

scheduling algorithm associated with a specific printer, indirectly gives a user

access to that printer. Consequently the system administrator will provide spe-

cific users with the capability. The recipient of such a capability will need a

copy of this capability for each thread which he creates as a spooler thread. In

the architecture proposed such threads are actually subthreads which are dynam-

ically created as demand dictates. This implies that the administrator cannot re-

strict the capability's metarights to once only use for the new owner. But if he

allows unrestricted copying, he loses control over who can use the capability!

To retain control, i.e. to prevent the recipient user from passing it on to other

users, he can make a copy capability in which he unsets all the metarights for

foreign owners
206

 and foreign node owners, as well as the read and print rights

for the same owner, while leaving the remaining permissions for the same owner

metarights set, but also unsetting all the once only permissions for the same

owner. This alone would not solve the problem because the administrator would

205

 This is not intended to be an exhaustive list.
206

 Note that in this context "owner" does not mean the owner of a file, but refers to the

source and destination segments in move or copy operation, see chapter 2 sect. 3.3.1.

Chapter 33 I/O DEVICES AND SPOOLING 299

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

still need to pass the capability to a different user. He then places the capability

in an output parameter segment (to pass to the new user) leaving the once only

permission for permit_out_param_copy set in the foreign owner section of the

metarights. This allows him to transfer the capability to the new user, thereafter

leaving the permit_out_param_copy unset. Thereafter the new user can only

copy the capability between his own segments.

The capability for the Printer Interface Module will be held in the constant

segments of the Print Scheduler Module and will have been pre-secured. Simi-

larly the capability for the Printer Driver Module will be held in the constant

segments of the Printer Interface Module and will likewise have been secured,

so that the normal user cannot reach these directly.

5.6 Securing the Confinement of Information and Preventing Unauthor-

ised Access by the Spooler Software

Although the above metaright settings provide a strong measure of protection,

they do not guarantee that either the capability for, or the information in, the file

to be printed cannot escape to a third party. But unsetting confinement rights in

the capability for the file to be printed cannot confine the spooling modules, be-

cause the effect of de-activating confinement rights specified in a capability only

occurs when the capability is actually used either to make an inter-module call

or as a free capability. But this implies that the capabilities used to invoke the

spooling modules (rather than the file to be printed) can be used to restrict the

confinement rights.

5.6.1 Confining the Print Scheduler Module

The Print Scheduler Module must be able to store the capability in its file data

and pass it on to the Printer Interface Module. It requires no further facilities

with respect to the capability. How might it illicitly make the capability availa-

ble to a third party? Here are its only possibilities:

a) It might pass the capability as a parameter to an inter-module call, using a

secret capability to make the call.

 This can be prevented by ensuring that it cannot use a capability to make

such a call. Hence the module call confinement rights permit_param_

calls, permit_nonparam_calls and permit_comodule_calls should

be unset.

 The right permit_const_calls must remain set to allow the Print Sched-

uler Module call the Printer Interface Module. We consider below how it

can be guaranteed that there are no illicit capabilities in the constant seg-

ments of the module.

b) A module executing in a different thread may call the Print Scheduler

Chapter 33 I/O DEVICES AND SPOOLING 300

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Module (assuming the improbable situation that it can obtain a capability

for this module), using a different (secret) semantic right which has a return

parameter via which the print file capability is passed. This can be avoided

by unsetting the Information Confinement Right permit_return_cap.

Then there is the question: How might the Print Scheduler Module illicitly make

the content of the file available to a third party? In order to do that it must be

able to access the content. Since the capability for the print file itself is protected

by the unsetting of permit_calls, access to its semantic routines is unavaila-

ble. The only possibility would be via access as a free capability activity (which

implies knowledge of the internal file structure). However, this is easily pre-

vented by unsetting the right permit_free_cap (at all levels) in the capability

used to call the Print Scheduler Module.

5.6.2 Confining the Printer Interface Module and the Printer Driver

Module

Much of what was described in the previous subsection with respect to the Print

Scheduler Module can be applied to the Printer Interface/Printer Driver. The

fundamental difference is that these need access to the file content, so that the

risk arises that these modules could leak the content of the print file.

This can to some extent be avoided by unsetting the Information Confine-

ment Right permit_file (see Figure 25.1) in the capabilities used to invoke

them. The effect of this is that they cannot have persistent data. In fact they do

not need persistent data, because they have no need (according to their purpose)

to store information persistently. The working space which they need can be

provided in the temporary data that they can create and address via segment reg-

ister 4 (see chapter 18 section 5.1). This has the effect that they cannot keep cop-

ies of the file content after they have returned.

5.6.3 How Can the Capabilities for the Spooler Modules Be Restricted?

We have described the restrictions which might be applied to the capabilities of

the Printer Interface/Printer Driver Modules, but this raises the problem that the

owner of a spooler thread does not have direct access to these, because they are

held in constant segments of the code modules of the Print Scheduler and Printer

Interface Modules! How can these settings then be applied?

The answer is straightforward. When a driver is introduced into the

SPEEDOS system its owner is (or becomes) the system, and since it is in the

interest of SPEEDOS to provide a very secure system the settings which we de-

scribed above can be applied by the system to the capabilities for the Printer In-

terface and the Printer Driver Modules.

Furthermore such modules are thoroughly checked (e.g. using bracket rou-

Chapter 33 I/O DEVICES AND SPOOLING 301

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tines) to provide a further guarantee that they are secure from information leak-

age. Thus although the individual user, as a non-owner, cannot bracket these

modules, he can rely on the system to guarantee their safety.

5.7 A Concluding Note on Security Settings

In this chapter I have concentrated on describing the most important security

settings with respect to the management of spooling, but as a glance at chapters

25 and 26 will show, I have by no means provided an exhaustive description of

how all the security settings should be set in the relevant capabilities.

Furthermore no attempt was made to illustrate the use of all the security

mechanisms available in SPEEDOS. For example the special facilities provided

by the Thread Security Register and those provided by bracket routines were not

needed to solve the spooling issues and were therefore left unmentioned. That

should not be taken as an indication that these mechanisms are unimportant or

superfluous. Both of these are important features of SPEEDOS which have a

significant part to play in solving security problems in many environments.

6 Other Devices

In this chapter we have concentrated on the spooling issue because it is more

complex than most other security problems associated with the use of input-

output devices. This has allowed us to illustrate how security settings can be

used effectively to prevent information leakage and other security problems. But

at the same time it has allowed us to illustrate in a more positive sense how de-

vice schedulers and drivers can be organised at the operating system level.

Of course, not all devices have been illustrated, but a general pattern has

been supplied to cover other devices which may be spooled, such as graph plot-

ters and other drawing devices.

Simpler devices, such as built in cameras and sound devices, will also need

device allocators and device drivers and it is important that their use is restricted

by using capabilities to restrict their use to authorised users/modules, but in a

secure environment such as SPEEDOS offers, they should present no special

problems.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 34

A Secure Internet?

At the outset of this chapter it must be clearly stated that there is no such thing

as an absolutely secure Internet! And this remains true however many precau-

tions are taken. One reason for this will be explained in section 9. In this chapter

we explore mechanisms whereby SPEEDOS computers can be made much safer

than is often the case for users of the Internet.

That current systems frequently fall victim to attacks from Internet hackers

need hardly be said. But why? The heart of the problem is very simple to state.

In order for a hacker to break into a system, he needs some way of executing his

programs on the computer system which he is attacking. Why is this even possi-

ble? To answer this it is first necessary to have a basic understanding of the na-

ture of the Internet.

1 The Basic Functionality of the Internet

There are several layers of activity and protocols involved in sending messages

across the Internet. We now briefly examine those which are relevant to

SPEEDOS.

1.1 Transmission Control Protocol/Internet Protocol

The Internet is a vast collection of interlinked computers which can communi-

cate with each other by sending messages. The basic mechanism for doing this is

called TPC/IP (Transmission Control Protocol/Internet Protocol)
207

, which con-

sists of two layers. The TCP layer takes a message intended for the internet and

breaks it down into individual packets, and when these arrive at their destination

the TCP layer at the receiving computer reconstructs the message from the indi-

vidual packets. When it receives a packet from the TCP layer for actual trans-

mission, the IP layer is responsible for actually sending this to the correct desti-

207

 see https://www.hostingadvice.com/blog/tcpip-make-internet-work/

Chapter 34 A SECURE INTERNET? 303

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

nation.

There are two kinds of computers on the Internet: routers and hosts. Host

computers are end-user computers. Routers are responsible for passing commu-

nications from one to another until their destination can be reached. We need not

be concerned with exactly how this works, except to say that every computer has

its own address, known as an IP address. These are unique addresses, which for

some computers are fixed, while others are dynamically allocated; they identify

a computer's network interface and provide the location of the host on the net-

work
208

.

Each packet contains the destination IP address and the number of the

packet within the message; in addition it contains the packet content and other

relevant information such as the IP address of the sending computer. But this

alone is not sufficient to tell the receiving computer which of the many internet

protocols the sender is using or which of its processes knows how to deal with

the message, since the latter may provide several services. This brings us to the

subject of ports.

1.2 Ports

In order that a receiving computer knows what to do with an incoming message,

the message contains a port number
209

, which is a 16-bit unsigned number. The

port number is used to identify a specific service on the receiving computer and

when a message arrives for a specific port the corresponding service is activated.

There are three ranges of port numbers. The "well known" (or system)

ports are numbered in the range 0 to 1023. Then there are "registered" ports,

which are numbered from 1024 to 49151; these are registered for use by specific

users (especially firms). The use of these ports is controlled by the Internet As-

signed Numbers Authority (IANA)
210

. The remaining ports (49152 and greater)

are known as dynamic or private ports
211

, which can be used by any Internet us-

er.

1.3 Secure Transfers

The most common way of attempting to provide security for internet messages

is via the Transport Layer Security (TLS) protocols, which are the successor of

the Secure Sockets Layer (SSL) protocols and are jointly referred to as TLS/

208

 see https://en.wikipedia.org/wiki/IP_address
209

 see https://en.wikipedia.org/wiki/Port_(computer_networking)
210

 see https://www.iana.org/numbers
211

 For an extensive list of port numbers see https://en.wikipedia.org/wiki/List_of_TCP_

and_UDP_port_numbers.

Chapter 34 A SECURE INTERNET? 304

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

SSL.
212

 These protocols are encryption-based and also incorporate integrity

checks (i.e. techniques such as checksums used to establish whether during

transfer operations an attacker has modified a packet) in addition to a digital cer-

tificate. The latter, which contains the server's public encryption key, confirms

via a 'certificate authority' that the server is secure.

A secure connection is created via a 'handshake' between the client and the

server, using the server's public key to agree on a symmetric key, which can then

be used to pass messages via the secure connection.

1.4 Email Protocols

Emails are normally transferred between computers using the protocols SMPT

(Simple Mail Transfer Protocol) and either POP3 (Post Office Protocol version

3) or IMAP (Internet Message Access Protocol).
213

SMTP differs from the others in that it is used to send emails from an email

client program to an email server (a computer which accepts, transfers, holds

and/or sends emails). Such servers are typically on-line the whole time, in con-

trast with the computers of casual email users, which are often turned off at

night, for example. Hence a user typically has his incoming email sent to an

email server with which he is registered, and when he goes on-line his email

program calls up incoming emails which have arrived at his server and thereafter

at regular intervals until he goes off line again. The SMTP protocol, which uses

port 25 (or port 465
214

), is responsible for managing incoming email messages to

the point where they reach the destination server. Thereafter there are separate

(alternative) protocols (POP3 or IMAP) which are used to transfer emails from

the destination server to the client user's email program on his own computer.

POP3 (Post Office Protocol version 3) allows a client to collect his emails

from his email server usually on port 110 (or for SSL/TLS encrypted emails via

port 995). It also deletes the emails from the server when they are downloaded;

however, some versions allow a user can specify a period of time before the

emails are deleted.

IMAP (Internet Message Access Protocol) also allows a client to retrieve

his emails from his server. The main difference between this and POP3 is that

IMAP does not implicitly delete emails from the server. This makes it better to

use in situations where a user regularly accesses his emails from more than one

device. IMAP also allows folders to be created on the server and to be searched,

212

 see https://en.wikipedia.org/wiki/Transport_Layer_Security, which provides details of

TLS/SLL mechanism.
213

 see https://www.jscape.com/blog/smtp-vs-imap-vs-pop3-difference
214

 Port 465 is a 'secure' port which uses encryption; it is sometimes known as SMTPS.

Chapter 34 A SECURE INTERNET? 305

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

etc. It uses port 143 by default and for a secure version uses port 993.
215

1.5 HyperText Transfer Protocol

There are many protocols for sending messages across the Internet, the most

popular of which is probably HTTP (HyperText Transfer Protocol), which is

best described as a request-response system
216

. The normal HTTP port is port

80, while HTTPS port 443 is used for secure (encrypted) HTTP messages. A

host computer sends an HTTP request across the network, and this is delivered

to the computer with the corresponding IP address. The recipient then deals with

the request and responds to it by sending a reply message over a port which is

specified in the original message.

1.6 Domain Name System

In order to simplify the management of IP addresses, which are 32-bit numbers,

a database called Domain Name System (DNS) exists which translates ASCII

strings into IP addresses. This is used for example to translate email addresses

and web page addresses into IP destinations.

1.7 World Wide Web

Websites are domains on the World Wide Web (www) which are addressed by

URLs (uniform resource locators) that can be thought of as the addresses of in-

dividual web pages. A URL normally consists of an Internet protocol name

(usually, but not always, http or https) followed by the symbols :// and then a

DNS name (of the host computer), optionally followed by a / separator and the

name of the web page to be displayed (e.g. https://www.jlkeedy.net/biography.

html). If a URL is used without specifying a web page, then the start page of the

domain is assumed.

When a client computer wishes to connect to a web page the browser of the

client computer first obtains the corresponding IP address for the website from

the DNS data base then connects to the requested port (e.g. port 80 for http) of

the website (the server). When a TCP connection has been made the client then

requests the specific page, which the server then supplies and the connection is

released. When the browser receives the page from the server website, it dis-

plays this at the client computer. It can then typically obtain a further URL from

the web page and activates this in the same way, and so on.

215

 see https://www.jscape.com/blog/smtp-vs-imap-vs-pop3-difference
216

 see https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics

.html

Chapter 34 A SECURE INTERNET? 306

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.8 Hypertext Markup Language

The Hypertext Markup Language (HTML) is a standard language used for creat-

ing web pages. It describes how a web page can be displayed as part of a web-

site by following instructions contained in tags which describe structural ele-

ments of the page, such as a page's title and subtitles, images and videos to be

displayed, etc.
217

 These may involve downloading further information such as

files, images and videos.

Programs can be embedded in the HTML. These are written in scripting

languages
218

 (often interpreted rather than compiled, such as JavaScript
219

). They

can be used, for example, to allow the user to interact with the web page.

The presentation of documents can be separated from their contents by us-

ing a style sheet language
220

 such as CSS (Cascading Style Sheets)
221

. Using

CSS technology the same content of a web page can be presented in different

ways, e.g. different layouts, colours and fonts, and/or for different display devic-

es, e.g. visual display units, smartphones, tablets.

1.9 The Cloud

Perhaps the best way to understand "The Cloud" is simply to regard it as the In-

ternet. "Cloud computing" means accessing your data or your programs over the

Internet. Large companies have developed business models (e.g. Software-as-a-

Service
222

) in which businesses subscribe to application programs over the In-

ternet (and pay fees for this). There are lots of business models which in effect

mean that you put your data, your programs, your internet bandwidth and your

trust in the hands of large companies, which make you pay handsomely for it. If

you want to know more I suggest that you begin by reading the Wikipedia arti-

cle "Cloud Computing"
223

 (especially the sections "Security and privacy" and

"Limitations and disadvantages") and also the PC Mag article "What is Cloud

Computing?"
224

 (especially the section "Arguments Against the Cloud").

This (oversimplified) description of basic Internet mechanisms should be

sufficient to understand how SPEEDOS deals with basic Internet issues. The list

of protocols described in this section is not necessarily complete (from the

217

 see https://en.wikipedia.org/wiki/HTML
218

 see https://en.wikipedia.org/wiki/Scripting_language
219

 see https://en.wikipedia.org/wiki/JavaScript
220

 see https://en.wikipedia.org/wiki/Style_sheet_language
221

 see https://en.wikipedia.org/wiki/Cascading_Style_Sheets
222

 see https://en.wikipedia.org/wiki/Software_as_a_service
223

 see https://en.wikipedia.org/wiki/Cloud_computing
224

 see https://uk.pcmag.com/networking-communications-software/16824/what-is-cloud-

computing

Chapter 34 A SECURE INTERNET? 307

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

viewpoint of relevance to SPEEDOS). Other protocols, such as FTP
225

, may also

be relevant, and can easily be fitted into the architecture described in section 3

below.

2 Browsers

Browsers are standard programs which are notoriously insecure but which play

an essential role in conventional systems. Their main functions are to assist the

user

• to activate internet requests which the users specify and

• to display the results of these requests,

with the aim of shielding users from the low level details of accessing the Inter-

net. These two related activities, together with email, represent the main modus

operandi of Internet use for most users.

2.1 Browsers and Malware

The main problem with browsers for normal computer users occurs in connec-

tion with the browser's second function, displaying the results of requests. This

corresponds to the response stage of HTTP requests, sent in reply to a request

from the user (which normally takes the form of clicking on text on the web

page). It might for example involve displaying a text file or other file, e.g. a PDF

file, or it might involve playing an audio file, displaying a video file or a spread-

sheet, etc. The heart of the problem appears to be that browsers need access to a

variety of programs to allow these files to be displayed and to implement this

need they typically allow plug-ins
226

 and other browser extensions to be used to

supplement the functionality of the browser; for example different plug-ins pro-

vide the functionality to display the various kinds of file on the user's screen.

While this may appear to be advantageous (by allowing the browser to be

customised and extended), it also has a dark side, since users who use plug-ins

to customise their browsers are in effect placing their trust in the code of these

plug-ins, which often have access to "sensitive data, such as browsing history,

and have the ability to alter some browser settings, add user interface items, or

replace website content... There have also been cases of applications installing

browser extensions in a sneaky manner, while making it hard for the user to un-

install the unwanted extension".
227

The plug-ins may include mechanisms which display adware, i.e. software

which generates advertisements that appear alongside the intended information

225

 see https://en.wikipedia.org/wiki/File_Transfer_Protocol
226

 see https://en.wikipedia.org/wiki/Plug-in_(computing)
227

 see https://en.m.wikipedia.org/wiki/Browser_extension

Chapter 34 A SECURE INTERNET? 308

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

display. Sometimes the adware may appear in a window that cannot be closed,

which is particularly annoying.
228

Cookies
229

 are small files which are placed on the user's computer when he

visits a website. They are included in the discussion of browsers because it is

browsers which provide the facilities for websites to store cookies. Like plug-

ins, cookies can have a useful purpose (e.g. they can store information allowing

hosts to log in to a website, they can store user preferences, they can allow web-

sites to personalise their content), but they can equally be used for malicious

purposes (e.g. some cookies, known as trackers, can be used to track the sites

which hosts visit on the web)
230

. In the words of PC World, cookies can "hide in

your computer so that your browser and websites can track your browsing ses-

sions and save certain useful information, such as account names and passwords,

for later retrieval. Although cookies may seem harmless overall, they can threat-

en your privacy if an attacker tries to use them maliciously."
231

Supercookies and Zombie Cookies
232

 are pernicious extensions of the cook-

ies idea which use storage space outside of the normal cookie storage in brows-

ers to store cookie-like information, especially tracking information, often in

multiple locations, to ensure that the usual browser cookie deletion mechanism

cannot delete them. If an advertiser discovers that his tracker information has

been deleted from a location he can restore this by copying it from another loca-

tion.

2.2 Browsers and SPEEDOS

In principle the first function of browsers (the activation of internet requests)

should be entirely superfluous in SPEEDOS, since the standard ways of access-

ing other SPEEDOS nodes (i.e. Internet requests) are as described in chapter 28

(i.e. via remote inter-module calls) and in chapter 29 (via download and upload

operations). However, at least until SPEEDOS becomes widely used, many us-

ers are unlikely to willingly forgo the use of the millions of websites which al-

ready exist in the World Wide Web. Therefore section 4 describes a SPEEDOS

alternative to conventional browsers, which can access websites.

An important ancillary service provided by browsers, maintaining "book-

marks", should similarly be completely unnecessary since in SPEEDOS terms

these should be nothing other than module capabilities via which remote inter-

module calls can be activated. Since these can be stored in normal SPEEDOS

228

 https://en.wikipedia.org/wiki/Adware
229

 https://en.wikipedia.org/wiki/HTTP_cookie
230

 https://www.howtogeek.com/119458/htg-explains-whats-a-browser-cookie/
231

 htts://www.pcworld.com/article/242939/how_to_delete_cookies.html
232

 https://www.makeuseof.com/tag/what-are-supercookies-and-why-are-they-dangerous/

Chapter 34 A SECURE INTERNET? 309

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

segments (and therefore directories), there should be no need for special lists

with separate list management facilities as are found in browsers. In fact this is a

more natural alternative for bookmarks, since the capabilities can be stored

alongside other relevant information related to a remote site or to the user's

work, rather than separately in a browser. Furthermore SPEEDOS capabilities

have the advantage over bookmarks that they contain access and other usage

rights which enhance privacy and security. Nevertheless we consider in section

3 how "bookmarks" can be maintained for websites in a SPEEDOS context.

We therefore conclude that browsers in the conventional sense should not

be needed in a SPEEDOS environment. But of course that is not the same as

saying that existing websites and otherwise useful aspects of the Internet can

simply be ignored.

In the following two sections we consider how websites and email designed

for a SPEEDOS environment can function. Then we consider how users of

SPEEDOS systems might take advantage of existing Internet facilities. There-

after we look at the implications of providing Internet support for the SPEEDOS

kernel and review protection aspects of the proposed design.

3 Implementing SPEEDOS Websites

In chapter 28 a mechanism was described whereby a user sitting at his own

computer (the client side) could activate a "call back" module which might then

invoke a remote inter-module call (RIMC) via a capability that gives access to a

remote (server side) module, e.g. a website which has been designed as a

SPEEDOS website. This can in return use a call-back call (CBC) to a routine of

the client side call-back module (which is waiting for information to display,

e.g. a page from the website)
233

. The user might then choose to initiate some ac-

tivity enabled by the webpage (e.g. select a file to download or activate another

web page). In SPEEDOS the way in which this is done is determined by the

page design, which might, but need not, offer facilities that resemble those used

in conventional browsers. The decision on how the display works is not limited

to browser-like facilities such as a typical website download mechanism or se-

lection of a URL. Rather the design is entirely in the hands of the programmer of

the call-back module and its remote partner.

When the call-back call exits, it returns the user's request back to the web-

site call-back module at the server side. The website module then examines the

returned information, completes the required action(s) and issues a further call-

back call to provide and as appropriate display the results. This pattern of call-

233

 How a SPEEDOS user can obtain a call-back module and a capability for this is de-

scribed in chapter 35.

Chapter 34 A SECURE INTERNET? 310

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

back calls continues until the required action is to terminate the session.

Hence a SPEEDOS website designer has a choice between using HTML

(with or without JavaScript) or using a quite different technique.

SPEEDOS websites are discussed in more detail in chapter 35.

4 Email in SPEEDOS

Chapter 31 sections 5-9 described how a primitive email system could be devel-

oped in SPEEDOS environments simply by using SPEEDOS directories and

capabilities. The basic principle is that capabilities for messages can be passed

from a sending user to a designated mailbox directory of a receiving user. If he

chooses, the receiving user can then use the capability to view (or copy/down-

load) the message. For emails between users at the same node the mechanism is

straightforward. If sender and recipient are at different nodes the sender of an

email can acquire a capability for the public mailbox directory (PMD) of the

remote node and thence the mailbox of the intended recipient, which he can then

store for future use.

To simplify the discussion emails in current systems are referred to simply

as "emails", whilst emails in a SPEEDOS system are designated as "S-mails".

4.1 Delivering S-Mail

Provided that a receiving user's node is on-line at the time an S-mail is sent to

him, delivering the S-mail is not problematic and simply involves an inter-

module call (local or remote) to the receiver's mailbox, but if it is not on-line the

receiver's mailbox cannot be accessed. The solution in current systems is to use

mail servers, which are permanently on-line (see section 1.4).

An alternative solution might be to delay the sending of the email until the

node comes on-line. Is this viable? In some cases this would be acceptable, but

not always. For example if a user in England is trying to send a message to a

contact in New Zealand, there is a time difference of 13 hours, so that normal

users will rarely be active at the same time in both countries. This would make

the delivery and receipt of S-mails an irritating and uncertain activity.

But delaying the sending of messages is not the only alternative. Another

possibility is to send the message in stages via intermediate SPEEDOS nodes.

How might this look in practice? The answer is: very difficult, because the S-

mail (a capability) is inserted into the mailbox via an (in this case remote) inter-

module call, rather than being transferred as a file!

In fact the last point makes clear that S-mail, as so far described, is quite

different from email in its mode of delivery. We now consider this in more de-

tail.

Chapter 34 A SECURE INTERNET? 311

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.2 S-mail by Remote Inter-Module Call or by Content

Current systems deliver mail by sending the content of the email, whereas S-

mail, as described in chapter 31, uses remote inter-module calls to directories.

But as we just saw, that can lead to a problem when attempting to deliver email

to a node which is not on-line.

In fact this issue applies in principle not only to sending S-mail but also to

the uploading of files (as described in chapter 29 section 3.2); otherwise the so-

lution could have theoretically been to upload S-mail in such circumstances. But

whereas under normal circumstances the uploading of files is unproblematic,

because it usually takes place in the context of website activity (where both

nodes are normally on-line at the time of an upload request), this is not the case

with S-mail.

Chapter 28 section 8 introduced the idea of permanently on-line SPEEDOS

directory nodes to allow a node's kernel network process to locate other nodes.

Such nodes can also function as S-mail servers for the case that an S-mail desti-

nation node is not online. To achieve this efficiently, the sending node uploads a

container which holds the content of an S-mail to the directory node associated

with the destination node of the S-mail. If necessary this then further uploads it

to another directory node, etc., until the directory node of the recipient has re-

ceived it. When the destination node then comes on-line it not only advises its

directory node that it is on-line, but also asks how many S-mails it is holding for

the node. It then requests these to be uploaded one by one to the destination

node, with details of the intended recipient. An email client node can also con-

tact its directory node from time to time to check for the arrival of new emails

(automatically in an enhanced system).

4.3 Appearance of S-Mails

Current email schemes produce an email with standard information and text. No

such scheme was suggested for S-mails. However, the scheme outlined in chap-

ter 31 is intended only as an outline proposal. If operating system designers feel

it appropriate or necessary to imitate the standard scheme or to produce an alter-

native, this path remains open for them. However, it would be very regrettable if

the basic idea of using ordinary SPEEDOS directories as the basis of an email

scheme were to be abandoned, since this brings with it considerable simplicity

in the implementation, and in addition it allows standard SPEEDOS utilities

such as search facilities (which, as pure application programs, are not presented

in this book but which are of course necessary) to be used on all directories,

whether or not they contain S-mails).

Chapter 34 A SECURE INTERNET? 312

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.4 S-Mail Security

Emails in current systems are not very secure. One issue is that by default they

are not encrypted, though it is possible to use secure ports. This is not the case in

SPEEDOS, since all SPEEDOS messages sent across the Internet (including the

initiation of remote inter-module calls needed to place S-mail in remote directo-

ries, and the uploading of S-mails to SPEEDOS directory nodes) are encrypted.

A further problem with SMTP transfers is that there is no check on the le-

gitimacy of the senders of emails. The result is that it is easy for spammers to

send unwanted emails, some of which may be malicious. With the directory-

based S-mail approach the basic mechanisms used not only always uniquely

identify the sender of an S-mail but also make it possible for mutually suspi-

cious users to be sure about the sender and the receiver of a message, as is de-

scribed in chapter 31 section 7.

In order that this level of security is maintained where S-mail is sent via

SPEEDOS directory nodes the message must be accompanied by the unique

identifiers of both sender and recipient of the message.

4.5 S-mail Attachments

In a conventional email system one of the features often used is the ability to

attach files to an email. Chapter 31 did not explicitly describe how this can be

achieved in S-mail systems, but there are two obvious ways to do this.

First, each attachment could be entered as a separate entry into the receiv-

er's mailbox, if appropriate giving it a name such as "attachment 1 to email x".

Second, the directory structure described in chapter 30 serves as an exam-

ple, but should not be regarded as definitive. Any user (at least in a system in

which the access rights are discretionary
234

) can define a directory system which

suits his purposes (because he can define segments which include capabilities).

This raises the possibility that a directory structure can be defined in which each

entry has as an additional possibility for storing several capabilities (either in a

fixed number of slots or as a linked list), the first of which is intended as the ac-

tual S-mail and the remaining for attachments.

5 A SPEEDOS Architecture for Managing Conventional Internet

Activities

At this point we turn to the situation in which SPEEDOS users would like to

take advantage of Internet facilities which are only available in a non-SPEEDOS

environment. This approach is based on two principles. First, the kernel should

have only a minimal involvement in the activity, and second, measures should

234

 see chapter 2 section 3.6 and chapter 36.

Chapter 34 A SECURE INTERNET? 313

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

be adopted to ensure that a high level of protection is provided to safeguard both

the rest of the SPEEDOS system and the module/thread which carries out the

internet activity itself.

The basic idea is based on the normal SPEEDOS in-process/inter-module

call mechanism. Some user threads are authorised to access certain non-

SPEEDOS protocols. The permission to access a particular protocol or group of

protocols is based on the possession of a capability authorising the user to access

one (or more) of a restricted set of System Internet modules, which serve as a

protected environment, in Internet jargon a "sandbox"
235

 (see Figure 34.1).

These have all the SPEEDOS protection mechanisms at their disposal to

isolate them from the rest of the SPEEDOS system. Such modules can for ex-

ample be severely restricted by bracket routines, as will be described below.

These requests are then passed on to a firewall module, which has a separate

interface routine for carrying out separate checks on requests for the various pro-

tocol groups supported. These routines also examine and if necessary block the

235

 see https://www.computerhope.com/jargon/s/sandbox.htm

Figure 34.1: A SPEEDOS Internet Architecture

Kernel

Internet Instructions

Internet module

e.g. Webmod

Internet module

e.g. Mailmod

Kernel Listener Process

Listener Table

Users with Permission to Use Features of the Internet

Firewall module

System Internet

Modules

("sandboxes")

Chapter 34 A SECURE INTERNET? 314

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

results from the Internet when a response to a request is returned back through

the firewall.

Figure 34.1 illustrates this arrangement by two example modules, webmod

and mailmod, which are described in more detail below, allowing users to ac-

cess non-SPEEDOS websites or mail servers. Such modules will always be sin-

gleton file modules which register details of users, including their unique 192-bit

SPEEDOS identifiers. These modules can also note users' preferences, maintain

other relevant security information and prepare (e.g. by calling the DNS data-

base) and carry out individual user Internet requests.

If all is well, the firewall uses one of the kernel instructions provided to

support the different protocol groups. The kernel issues the appropriate Internet

request, causes the user thread to be suspended and passes a message to the ker-

nel's listener process to listen for a reply.

When a reply arrives, the listener passes this back to the suspended thread

and causes the latter to be re-activated. The reply then gets passed back to the

firewall module, which carries out its checks; if all is well it then returns the

reply back to its caller (e.g. webmod or mailmod) which may carry out further

(e.g. user related or protocol specific) checks and where appropriate displays the

results (e.g. by interpreting HTML) on the user's monitor. In this sense the Sys-

tem Internet modules serve a function similar to that of browsers and/or mail

programs.

This general architecture can be used to define any approved Internet ac-

cesses, while the details may vary from case to case. In the following we first

explain the two examples (websites and email). Then we provide further details

of the kernel mechanisms and consider the protection aspects in more detail.

6 Accessing non-SPEEDOS Websites

In current systems websites work hand-in-hand with browsers, which display

their results, returned in the form of HTML. This can introduce security risks. In

particular it is possible to insert interpreted code into a web page, e.g. using Java

Script. In the words of the 'Computer Hope' website, "Because JavaScript is

downloaded from an unknown origin and executed on your computer, Java-

Script could have the potential of being a virus or doing other malicious things

to your computer."
236

 This risk should clearly be avoided in SPEEDOS. The ide-

al situation, from a SPEEDOS viewpoint, would be for all websites to be de-

signed as SPEEDOS websites. But that is obviously unrealistic.

The webmod module offers an interface routine which makes contact with a

236

 see https://www.computerhope.com/jargon/j/javascript.htm

Chapter 34 A SECURE INTERNET? 315

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

conventional website. As its main parameter this has a character string in the

form of a URL (see section 1.7) such as https://www.jlkeedy.net/biography.html.

Like other SPEEDOS modules this is called using a normal (local) IMC.

Once activated, webmod establishes the website's IP address by activating a

request to the DNS database and subsequently uses this to request a web page,

using the appropriate protocol (e.g. http or https) indicated in the URL.

When the webpage arrives, webmod obtains the device capability for the us-

er's screen in the usual way and then creates a new window by calling the graph-

ical library routine createWindow (see chapter 32 section 4.4.3.3). It then reads

the HTML from its buffer, using a reliable HTML interpreter to display the re-

sults on the user's new web page window. Thereafter it reacts to mouse clicks

until the user activates a further URL embedded in the HTML. In this case the

webmod module services this call in the same way as the initial URL. When the

user closes its last window, the webmod module exits.

6.1 Cookies

In principle a cookie is nothing more than a small file. The risks arise because

unscrupulous websites can use them in an uncontrolled way and because they

are not normally visible to the user on the computer which hosts them. They can

for example store personal information about a user, garnered from the use of

their own website and sometimes from other websites. They can also be used to

introduced viruses and other malware (e.g. spyware) into the host's computer.

Why then are cookies tolerated? The primary answer
237

 is that websites

need to store information during a user session to help them to relate requests to

each other. For this reason cookies hold a "session id" and are passed backwards

and forwards between user and website server with every HTTP request over the

course of a session. This is necessary because the Internet as such (and HTTP) is

stateless. The length of a cookie is limited to 4 KB to keep the level of traffic on

the Internet reasonably low. A domain can have up to 20 cookies, which can be

read and modified at both the server side (i.e. the website software) and the cli-

ent side (i.e. the browser).

Cookies are managed at the client side by JavaScript (in conjunction with

the local browser). Each cookie has an expiry date, which can be set in the

HTML. If no date is set then it is deleted when the browser closes. But cookies

can outlive browser sessions; this means that a website can leave data on the cli-

ent side, which might for example contain registration details for the website.

These reasons for cookies make good sense, and to allow SPEEDOS users

237

 see https://flaviocopes.com/cookies/

Chapter 34 A SECURE INTERNET? 316

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

to take advantage of non-SPEEDOS websites they should be supported by the

webmod module. But the problem is that in conventional systems there is no con-

trol over what is stored at the client side, and the owner of the client node cannot

examine this, although his browser will probably delete cookies on request.

It is therefore suggested that cookies be maintained in webmod as small

SPEEDOS files associated with the webmod registry, and that transparency is

achieved for end users in that an interface routine is supported which allows the

registered user to read (but not write) cookies, providing him with a capability

for the cookie with the access rights set for searching, for reading and for delet-

ing the cookie. However he should not be given write access to the cookie, since

this would enable him to cheat websites. It is of course part of the job of webmod

to attach the content of a cookie to each user's webpage request and to update

the cookie when a response is received. The system can set Thread Security

Register restrictions and add call-out bracket routines to ensure that cookies are

not used as platforms for launching malware.

7 Email Programs

Emails have become a standard mechanism for communicating between users of

the Internet and must of course be provided in SPEEDOS systems.

7.1 Current Email Programs in Current Systems

In current systems email has developed into a quite sophisticated system, organ-

ised by application programs which deliver the email to users and assist them in

receiving email, sorting it into email folders, etc. In my view such programs are

unsatisfactory in the sense that they duplicate many functions of an operating

system and thus make it difficult to integrate emails (which are nothing other

than files uploaded and downloaded between users) into the general work of the

user. Put simply a user normally places all the (non-email) documents relating to

a particular event or task, etc. into a single directory (possibly with further sub-

directories), but because email is organised as a separate activity with its own

filing system one ends up with parallel but formally unrelated directory systems.

Furthermore general purpose utilities, such as search programs, often cannot be

used in the context of the data associated with email programs.

7.2 Using Conventional Email in SPEEDOS Systems

Presumably SPEEDOS users will want to communicate by email with non-

SPEEDOS users. This can be implemented as an option, but those who use the

mechanism which I now present should be aware that in doing so they open

themselves up to risks which do not arise normally in SPEEDOS systems and

therefore that wherever possible they should use S-mail.

Chapter 34 A SECURE INTERNET? 317

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Rather than using a conventional style email program, the intention is to

provide a simple mechanism which simply allows conventional mail to be sent

and to be received by SPEEDOS users. Its aim is not to provide a separate man-

agement system for mails by providing its own folder system
238

, etc.

7.2.1 A SPEEDOS System Internet Mail Module

A SPEEDOS mail module, mailmod, needs three basic semantic routines.

a) A mailRegister semantic routine, which allows a user to apply for regis-

tration with mailmod. This accepts as parameters:

– a string containing the email name (i.e. the part preceding the @ sym-

bol) to be used by the sender; and

– a capability for a directory into which arriving emails should be saved.

 After carrying out appropriate checks (e.g. that the thread security register

permits external emails or, in a mandatory system, that the email name con-

forms with conventional standards, that the user meets criteria set by the

system manager), the identifier of the calling thread's owner is established

by calling the kernel instruction current_thread_owner (see chapter 26

section 1). The email name and the unique identifier of the user (i.e. the

value returned from the kernel call) are entered into a list for use when a

user attempts to send or receive emails. A user can register multiple email

names.

b) The sendMail semantic routine accepts as parameters

– a text file containing the body of the mail;

– a list of capabilities for attachments to the mail;

– a string containing the email name used by the sender; and

– a list of strings containing the email addresses of the recipients.

 It creates an email in standard conventional form from this information and

sends it to the recipient, using the SMTP protocol.

c) The receiveMail semantic routine accepts as parameters

– a return parameter indicating the number of attachments received;

– an indication how many further emails are waiting for the user.

 It accepts emails in standard form from a normal email server (using POP3

or IMAP) and converts each email which it has received into a SPEEDOS

file, then places a capability for this in a directory provided (as a capability)

238

 When conventional email systems provide their own folder management system it be-

comes difficult for users to integrate their emails with related work and it is often also

impossible for users to use other software (e.g. search applications) for their emails. It is

also wasteful to provide parallel folder management systems.

Chapter 34 A SECURE INTERNET? 318

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

by the user when he registers his email name with the mail program.

8 Kernel Mechanisms for Accessing the Internet

This section describes how the kernel handles Internet requests (including those

from the network process, from the mailmod module and from the webmod

module).

8.1 Handling Requests from the Network Process

The kernel network process at a SPEEDOS node (see chapter 28) sends and re-

ceives encrypted messages via the Internet to and from other SPEEDOS nodes.

For this purpose it uses two as yet undefined ports, but the encryption is carried

out not as part of the port definition but as described in chapter 28. It uses

asymmetric encryption to allow 2 nodes to agree on a common symmetric en-

cryption key, or for short messages it simply uses the asymmetric keys, using

the TCP/IP transfer protocol.

8.2 Listening for Messages from another SPEEDOS Node

At each node a kernel Listener process listens continuously for messages from

other SPEEDOS nodes, and when it detects one, it checks the authenticity of the

message. Authentic messages received on the SPEEDOS receiving port are

transferred by the listener process to the network process, using the normal in-

ter-communication mechanism provided by the SPEEDOS kernel's process

scheduling mechanism (see chapter 22 section 7).

8.3 The Listener Mechanism

The Listener process is the lowest priority kernel process, i.e. the process which

in chapter 22 was called the 'idle' process. This listens continuously on the in-

coming SPEEDOS port for the arrival of SPEEDOS messages but also on a

round robin basis for other messages which it is expecting. The latter are listed

in its Listener Table, which contains a list of all the expected message arrivals.

Entries in the Listener Table hold the number of the port on which the mes-

sage is expected, a further identifier to allow it to be distinguished from other

messages arriving on the same port and a thread capability for the waiting

thread. The latter is used to re-activate the waiting thread when a reply is re-

ceived.

All other ports are kept closed, since the SPEEDOS Internet facilities only

request information from other Internet sites (except other SPEEDOS nodes).

9 Protecting SPEEDOS and Its Users from the Internet

In this section we describe some precautions provided to help protect SPEEDOS

and its users from the usual Internet problems.

Chapter 34 A SECURE INTERNET? 319

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

9.1 Kernel Instructions

To communicate with the Internet the webmod, for example, executes the privi-

leged kernel instruction web_request (or other correspondingly named kernel

instruction). Its constant segments hold a kernel capability which allows it to use

this instruction. (By providing a separate kernel instruction for each protocol

group, more protection is achieved, and individual instructions are kept simple.)

In the case of web_request this takes as operands the IP address, the port num-

ber and the requested webpage. This instruction causes the thread to be suspend-

ed awaiting a response from the website. When the response arrives, the listener

process passes the HTML page back to the requesting thread and causes the

thread to be reactivated.

The module mailmod uses two similar kernel instructions mail_request

and mail_send in order to request and to send emails, which are also protected

by two (separate) kernel capabilities. In both cases the calling program must

supply an IP address and the port number. In the case of mail_send the kernel

expects as a further operand the mail to be sent. And in both cases the calling

thread is suspended. When the corresponding replies are received the kernel

makes these addressable and causes the waiting thread to be activated.

Kernel capabilities for kernel Internet instructions are only issued (in the

constant segments of the program code) to the respective modules. Notice that in

a multi-user system each user could be provided with a separate instance of the

file module, but the mail registration module should a singleton module (be-

cause the list contains entries for multiple users), a capability for which could be

embedded in the individual file instances of the users.

The kernel instruction dns_request can be used by these modules to ac-

cess the Domain Name System database.

9.2 Managing the Lengths of Messages Received over the Internet

The length of the information returned from an Internet request is variable and

might be quite long; the actual length is returned to the user at a fixed position in

the segment addressed by segment register 15, which holds the operands for

kernel instructions (see chapter 17 section 6). To avoid the inefficiency of trans-

ferring long messages as return parameters from the kernel or from one inter-

module return to another the following mechanism can be used.

For all returns from calls which are Internet-related (e.g. calls from mod-

ules such as webmod, mailmod and firewall) and for related kernel instructions

(e.g. web_request, mail_request, dns_request) segment register 14 is

used to address a large segment (created by webmod, mailmod and similar)

which is used as a buffer by the listener to accept Internet messages for the

Chapter 34 A SECURE INTERNET? 320

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

thread concerned. The access rights of segment register 14 are set to read-only

by the listener after reading in the message. Segment register 14 is stored and

reloaded as with normal thread switches, but on inter-module calls and returns

this register remains unchanged by calls, returns and kernel instructions if a spe-

cial code is set at the bottom of the thread's stack. There is a protected kernel

instruction fix_sr_14, which sets or unsets a code (depending on the setting of

a boolean parameter for the kernel instruction). The code is checked as part of

calls, returns and kernel instructions to determine whether segment register 14

should be invalidated or not (in contrast with the normal IMC mechanism which

invalidates all segment registers except registers 0 and 1 on inter-module calls

(see chapter 20 section 8.1).

9.3 Security Measures

All the SPEEDOS protection mechanisms (e.g. module capabilities with re-

stricted access rights, the thread control register, environmental control instruc-

tions and bracket routines) can be used to safeguard the use of the Internet.

But above all, the listener keeps only the necessary ports open for accessing

mail and websites and special (protected) kernel instructions are used to access

the Internet from outside the kernel. It ignores any messages on other ports.

We now look at some specific examples of how security measures can be

taken.

9.3.1 Protecting Access to the Internet

Leaving aside the kernel processes themselves, users can only gain access to the

Internet via System Internet modules such as mailmod and webmod. Access to

these programs in each case requires an appropriate capability, which is initially

under the control of the administrator of a node
239

. He can determine which oth-

er users, if any, can obtain a copy, and these must all call the firewall module

to access the Internet. They obtain a copy of the necessary capability for calling

firewall from within their own constant segments. These capabilities have in-

dividual access rights to different routines of firewall, tailored according to

the needs of their own functionality. Only firewall has a kernel capability

(embedded in its constant segments) which gives it the right to execute the spe-

cific kernel Internet instructions.

The code capabilities for the System Internet modules can be used as a ba-

sis for creating "file" instances (see chapter 19 section 7), which can contain

persistent data that records information such as registration details of users. (In

reality only a singleton module is required for some Internet applications, in

239

 At a single user node this is of course the user who owns the node.

Chapter 34 A SECURE INTERNET? 321

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

which case normal users only need a capability for the appropriate singleton

module.)

9.3.2 Thread Security Register Settings

To cover the use of the Internet the TSR includes thread control rights allowing

its use (see chapter 26 section 4.1). These are separate rights for calling web-

sites, mail, FTP and other Internet operations), which are checked by the kernel

on inter-module calls but also can be checked by the registration module and by

the kernel instructions. There is one special rule: if a System Internet module is

called and the thread is neither already registered with its Internet activity group

nor is currently being registered, that System Internet module unsets the corre-

sponding rights in the TSR. Thereafter that group of Internet operations cannot

be used by the thread.

The effect of this rule is that only registered threads can access the Internet.

9.3.3 Bracket Routines

Bracket routines (which from the standpoint of Internet activity can be thought

of as private firewalls for individual modules) can be used by the system for a

number of purposes, e.g. as a revocation list, which holds the unique identifiers

whose right to use the Internet have been revoked.

Another use of bracket lists could be to hold a list of website URLs; it

could contain a list of websites etc. which have been disallowed because they

are known to be dangerous
240

. This would be applied as a set of call-in bracket

routines which check the parameters supplied to mailmod or webmod, etc.

Possibly the most important form of bracketing would be the use of call-out

brackets on the System Internet modules and firewall to ensure that if these

modules are in some way penetrated, the attacker could not activate new mod-

ules of its own devising or penetrate other SPEEDOS modules. The output re-

turned to a caller of these modules should also be checked by call-in brackets to

ensure that capabilities, for example, could not be passed.

There are certainly several other uses to which bracket routines could be

put, but there is one problem which they cannot directly solve, i.e. checking the

results which are returned from the Internet, because this involves executing

kernel instructions rather than making inter-module calls. We now consider this

issue.

240

 A mechanism could be devised to allow SPEEDOS nodes to share information about

dangerous websites, etc.

Chapter 34 A SECURE INTERNET? 322

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

9.3.4 Checking Information from the Internet

Information from a website comes in 2 basic forms: as HTML or as a download-

ed file. It is of course important to check that such information does not have

dangerous content, such as viruses and the like. It is not the function of the ker-

nel to carry out such checks. Rather, this is primarily the responsibility of the

firewall module.

9.3.4.1 The Firewall Module

The firewall is responsible for checking all internet content which arrives

from the normal Internet (excluding transfers between SPEEDOS nodes), in-

cluding cookies.

The interface routines used by the System Internet modules to call the

firewall module correspond to the kernel's Internet instructions, i.e. there is an

interface routine webrequest (corresponding to the kernel instruction web_

request), an interface routine mailrequest (corresponding to the kernel in-

struction mail_request), an interface routine mailsend (corresponding to the

kernel instruction mail_send), etc. These routines accept the corresponding In-

ternet requests, carry out checks on them and if these checks are successful, each

routine uses the corresponding kernel instruction to activate the Internet. When

it returns, it uses segment register 14 to address the response from the Internet

and to check its content. If all is well it returns to its caller in the normal way.

However, if it detects a serious problem it raises an error exception.

Perhaps the most serious risk is that JavaScript could be used in an attempt

to attack the rest of the system. It is therefore especially important that checks

should be included in the firewall module, but also in the modules which inter-

pret JavaScript to ensure that any such attack can be contained, e.g. by the use of

call-in and call-out bracket routines.

One reason for placing the firewall outside the kernel is that from time to

time it will need to be updated. One possibility for simplifying the update activi-

ty would be to put the updates into a file which it accesses as part of its work. To

reduce the risk that this file is broken into, a capability for the file should be em-

bedded in its own segments (e.g. a constant segment) rather than being held in a

more accessible location. Another capability could be held at a site responsible

for the update, and via this changes could be made to the file. (Such an arrange-

ment would of course have to be synchronised.)

10 Search Machines and Similar

The issue of search machines has been left to last, because the issue of accessing

search machines appears to be quite straightforward. A search machine is simply

a website which returns information about other websites. Consequently the

Chapter 34 A SECURE INTERNET? 323

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

website mechanism proposed in section 6.1 (i.e. using webmod) can also be used

to gain information on the existing Internet about other websites which a

SPEEDOS user might wish to access. Similar considerations apply also to other

commonly used websites, e.g. for on-line shopping, for accessing social net-

works, etc. The next chapter discusses search machines for SPEEDOS.

11 Concluding Remarks

As was stated at the beginning of the chapter, there can be no guarantee of ever

reaching complete security when accessing the Internet. The reason for this is

that there is no way of preventing denial of service attacks. A denial of service

attack occurs when an attacker deliberately tries to overwhelm an Internet node

by transmitting huge numbers of Internet requests to that node, beyond its ca-

pacity to deal with them
241

. What is particularly pernicious about some such at-

tacks, especially if they are initiated by Internet bots
242

, is that the attacker may

target several IP addresses which in effect by sheer volume of messages then

clog up the same or related routes to the target nodes; this can in the end affect

not only the target(s) but other 'innocent' nodes which use the related IP address

ranges.

Can SPEEDOS withstand such attacks? In the end the best that it can hope

to do is in effect to turn off the Internet by closing all Internet ports. One way

the listener process could do this is by observing the amount of incoming traffic

and when it reaches a suspicious level (or a higher rate than it can cope with)

and closing down the ports, and only reopening these when the attack has sub-

sided. Fortunately the servicing of Internet calls by the listener is the lowest pri-

ority task of the kernel processes, so that this will only affect those processes

which are dependent on the Internet, while the rest of the kernel should continue

to function normally.

Finally, this chapter should be regarded more sceptically than those chap-

ters which describe other parts of the SPEEDOS design. The reason for this is

that I have in the past never been deeply involved in designing Internet software.

Hence I have ignored certain more advanced features, such as virtual private

networks (VPN) and remote desktop (team viewing). How these can be safely

integrated into the SPEEDOS architecture would make good topics for PhD stu-

dents.

I hope that the suggestions about mapping Internet interactions onto the

SPEEDOS architecture will nevertheless prove to be helpful.

241

 see https://en.wikipedia.org/wiki/Denial-of-service_attack
242

 see https://en.wikipedia.org/wiki/Internet_bot

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 Chapter 35

Secure Website Applications

The previous chapter outlined how SPEEDOS users can access the conventional

Internet, hopefully in a more secure way than is possible using current operating

systems. However, the techniques presented there are intended as an intermedi-

ate solution which will allow users to convert conveniently to SPEEDOS sys-

tems. In the longer term it should become possible for SPEEDOS users to con-

fine their activities to applications which are based entirely on SPEEDOS con-

cepts and remain within its protection bounds, without the need to access mech-

anisms and software not designed especially for SPEEDOS. This chapter de-

scribes in further detail how SPEEDOS can support websites which are designed

especially to use its protection mechanisms rather than the rather insecure mech-

anism available to conventional Internet users.

1 The Basic SPEEDOS Networking Mechanisms

The SPEEDOS kernel supports four basic networking mechanisms:

a) The remote inter-module call (RIMC), which allows a user to activate a

module that is located on a different node
243

.

b) A call-back call (CBC), which allows a remotely active module to "call

back" an entry point routine of the module which activated it (i.e. at the

original node)
244

.

c) The downloading of a module from a remote node (which is managed by

the Container Manager with the assistance of the kernel)
245

.

d) The uploading of a module to a remote node (which is managed by the

Container Manager with the assistance of the kernel)
246

.

The most significant of these for supporting SPEEDOS websites are the RIMC

243

 see chapter 28 section 3.
244

 see chapter 28 section 7.
245

 see chapter 29 section 3.1.
246

 see chapter 29 section 3.2.

Chapter 35 SECURE WEBSITE APPLICATIONS 325

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

and the CBC, but the websites can of course offer the downloading and upload-

ing facilities to their users, as was described in chapter 29 section 3.

2 How a SPEEDOS Website Operates

SPEEDOS websites rely on the existence of a related call-back module at the

computers of their users. This plays a role similar to that of browsers in conven-

tional systems. However, as was discussed in chapter 34, browsers are the cause

of much insecurity in current systems. An ideal alternative is to dispense with

browsers entirely and replace them with SPEEDOS call-back modules, as was

suggested in chapter 34 section 4.1. We begin by outlining this approach.

2.1 Using Custom-Built SPEEDOS Call Back Modules

In this scenario a user of a website, at the client node A, activates a thread T1

which has a capability for a website call-back module at the client node. This

makes a normal local IMC to activate the call-back module (at node A). The lat-

ter has an embedded capability which allows it to make a remote IMC to the

website module at node B.

In the course of initialising the call-back module at node A, thread T1 ob-

tains and stores capabilities for the user's monitor, mouse and keyboard. It may

then display a standard start page. At this point the user might request a further

page. In this case the call-back module issues a remote inter-module call to the

website at node B, using a capability which is embedded in its own segments.

This activates a surrogate RIMC partner thread T2 in the website module.

At the remote node B the partner thread carries out any preliminary tasks

such as ensuring that the caller is registered. It then prepares the requested web

page information and uses a call-back call (CBC) to return this to the call-back

module at node A, causing the initial thread at node A to be reactivated.

The call-back module will then display the new information on the user's

screen. The user might then activate a further request, in which case the call-

back module requests the appropriate information in its return parameters and

exits back to the website RIMC thread.

In a further call-back call the website module provides the necessary in-

formation to fulfil the user's request and the call-back module displays it. This

activity pattern is repeated until the user signifies that he wishes to close the ses-

sion. The call-back module then exits from the call-back with a return parameter

indicating that the session is to be closed. The RIMC then makes a normal return

back to the call-back module and the surrogate thread is deleted in the normal

way. The thread in the call-back module at node A then also exits and the ses-

sion is closed. Normally the thread will then log out until it is needed at some

future time. This activity pattern is illustrated in Figure 35.1.

Chapter 35 SECURE WEBSITE APPLICATIONS 326

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The organisation behind the displaying of web pages is an internal matter

determined by the programmer(s) of the website module and of the call-back

module. SPEEDOS does not define how this works, leaving the programmer of

the website free to determine, for example, whether HTML is used or whether

some other technique is applied, e.g. using preformatted pages held in the call-

back module.

This arrangement is particularly suitable for websites which a user will fre-

quently visit (e.g. an internet banking facility, the employer's website, a

bookshop website, a shopping website, etc.). It presupposes that before the web-

site can be accessed the user must not only have a capability for the call-back

module but also a copy of the module itself. Otherwise he must somehow obtain

these. This can occur in several ways.

One possibility is that he buys the call-back software or obtains it free. In

this case he might use a CD or a memory stick supplied by the website owner or

bought from a software shop, which he then uses to install the call-back module.

Alternatively he might download the software from the website. But how

he might obtain a capability for this? Before answering this question we consid-

er how more casual visits to a website might be organised.

2.2 Using Standard Call-Back Modules with Library Routines

The architecture described in section 2.1 is suitable for accessing websites which

Figure 35.1: Custom-Built Call Back Modules

Website Call Back Module

activates the Website

Module via an RIMC and

requests web pages.

It receives pages from the

Website Module via

CBCs, displays the pages

and sends further page

requests (via return

parameters).

Website Module

This uses CBCs to send

web pages back to the

website call-back module

at the user's node
Remote IMC

Call-Back Calls (unlimited number)

Surrogate RIMC Thread T2 at Node B

(activated by Website Call-Back Module)

RIMC thread T2 is suspended by

the Call-Back Call and reactivated

when the CBC returns)

User Thread T1 at Node A

activates the Website Call-

Back Module via a local

inter-module call.

It receives pages from the

Chapter 35 SECURE WEBSITE APPLICATIONS 327

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

are frequently visited by a user, but not for accessing websites which are used as

"quick lookup" websites, such as encyclopaedias, dictionaries, calendar and in-

ternational time zones, etc. These are the websites which one normally expects

to access quickly but infrequently.

For such websites each SPEEDOS node can offer a number of standard,

pre-prepared library routines which use standard display strategies such as

HTML
247

. Unlike browsers the SPEEDOS library module does not offer the

dangerous possibility of plugging in new software.

The library routines offer functionality which can display and download

(SPEEDOS conform) PDF files, play videos, etc. Like all SPEEDOS modules

and library routines these are rigorously tested in advance to ensure that they

perform the correct functionality required of the individual module according to

their specification (and nothing more!)
248

.

To find and quickly access other SPEEDOS websites a search machine

module is needed. This might crawl websites, just as in conventional systems,

but an alternative is suggested in section 2.4. The search machine itself should

be developed with its own pre-installed call-back module to help users with their

searches. When the search machine displays a page, this will offer a menu of

webpages which attempt to meet the search criteria. Associated with each

webpage listed there will be a webpage address (in an as yet undefined SPEED-

OS format
249

) and a website capability/page number pair.

If the user selects a page to be displayed from the search machine's menu,

the search machine module prepares parameters for a new subthread, including

the page number and a capability for the website's main module
250

. It then cre-

ates a subthread
251

 by calling the Thread Manager.

When activated the subthread locates its parameters and calls the selected

standard call-back module, which then makes an RIMC call to the website mod-

ule. This in turn locates the requested page and prepares it for display, if neces-

sary using the library routines. It then makes a call-back call to the standard call-

back module, which displays the page in a separate website window. The user

can then use this page to select further pages of the same website, which the

call-back routine passes to the main website module, etc. This procedure contin-

247

 The HTML call-back should not be confused with webmod, which was described in the

previous chapter, although the two could use common library routines, e.g. for interpret-

ing HTML and JavaScript.
248

 see chapter 26 section 6.1, section 6.22 and chapter 38 section 3.
249

 perhaps a node number and module number?
250

 see chapter 31 section 2.6 for passing parameters to subthreads.
251

 see chapter 20 section 5 and chapter 31 sections 2.5. The reason why subthreads are

used is to allow the search machine to manage multiple requests.

Chapter 35 SECURE WEBSITE APPLICATIONS 328

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ues until the user closes the website window, in which case the call-back routine

signals the search machine call-back module and exits, causing the subthread to

be deleted.

Note that the user may leave windows open while he searches for other

websites. When all its windows have been closed the search machine itself can

exit. This solution is illustrated in Figure 35.2.

In the unlikely case
252

 that the SPEEDOS library routines cannot display or

otherwise process a request, a message will be displayed to this effect.

2.3 SPEEDOS Bookmarks

A SPEEDOS website bookmark is simply a capability for a SPEEDOS website

or for its call-back module. Hence bookmark software is in principle simply di-

252

 This should not happen because we are considering only SPEEDOS websites in this

chapter. The designers of SPEEDOS websites will be aware of the constraints imposed

by the library.

Figure 35.2: A Search Machine Environment

Search Machine

Website Module

This uses CBCs to send

web pages back to the

search machine call-back

module at node A Remote IMC

Call-Back Calls (unlimited number)

Surrogate RIMC Thread T2 at Node B

(activated by Search Machine CB Module)

RIMC thread T2 is suspended by

the Call-Back Call and reactivated

when the CBC returns)

User Thread T1 at Node A

activates a search module

via a local inter-module

call.

It receives pages from the

Search Ma-

chine

Subthread

(website 2)

Search

Machine

Subthread

for

Standard

call-back

(website 1)

Website 2

RIMC

Thread

Website 1

RIMC

Thread

Search Machine Call-Back

Module

obtains I/O capabilities.

It accepts a search request

and displays appropriate

website information.

When the user has selected

a web page the search

module creates a subthread

which access and displays

the selected web page.

Call-Back Calls

Chapter 35 SECURE WEBSITE APPLICATIONS 329

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

rectory software. If it is felt necessary to develop special software for book-

marks this simply involves extending a normal SPEEDOS directory.

When a user activates a SPEEDOS search machine he passes a capability

for a directory module as an input parameter. The search machine can then rec-

ord capabilities and names for all the websites which it visits. In this way when

an Internet session completes the user can access the directory (for which he has

retained a capability) and distribute appropriate entries to other files and directo-

ries. In this way Internet access can be fully integrated with the user's other

work.

This approach to bookmarks also answers the question which was posed at

the end of section 2.1, i.e. he can obtain the first capability for a custom-built

website (e.g. for his favourite bookshop) by using the mechanism described in

section 2.2. In this way he can then take advantage of an offer from the website

to upload the necessary call-back module.

2.4 Must a Search Machine crawl?

Because we are concerned in this chapter only with SPEEDOS-conform web-

sites, it would be possible for new SPEEDOS websites, when they want to go

on-line, to provide the necessary information to a distributed SPEEDOS data-

base of information and to provide other SPEEDOS nodes with access to this

information on request, including providing a capability giving appropriate ac-

cess to the semantic routines of the website. This could be organised in conjunc-

tion with the idea of "directory" nodes briefly described in chapter 28 section 8.

3 Conclusion

The proposals in this chapter not only describe how SPEEDOS-conform website

activity might be implemented but they also by implication explain how many of

the dangers of the conventional Internet might be eliminated, in particular those

associated with browsers, including for example how all the commercial espio-

nage software, such as the tracking of users' use of the Internet, can be avoided.

As in the previous chapter the present chapter should be regarded more

sceptically than those chapters which describe other parts of the SPEEDOS de-

sign. The reason for this is that I have in the past never been deeply involved in

designing Internet software. I hope that the chapter will nevertheless be helpful.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 Chapter 36

Mandatory Access, Rule Based Systems

and Computer Administration

As was explained in Volume 1 part 1, there are two quite different approaches to

viewing security in a computer system: the libertarian view (which some might

perhaps see as the anarchist view) and the authoritarian view (which others

might perhaps see as the dictatorial view).

In the variously coloured security criteria which have appeared since the

Orange Book in the early 1980s (see chapter 1), these two viewpoints are usual-

ly described as "discretionary" and "mandatory" access controls. Not surprising-

ly the coloured books all favour the mandatory view. I say "not surprisingly" for

two reasons. First, these documents are the work of military and/or government

departments. Second, the original formulations of the security criteria stem from

the age of mainframe computers, computers which were (and still are) so expen-

sive to buy and to run that they can only be purchased by the military, by gov-

ernment departments and by business and commerce.

But since their heyday the computing scene has radically changed. Today

mainframe computers are increasingly thought of as the dinosaurs of the com-

puter revolution. In the last three decades the microprocessor has made it possi-

ble for virtually every household to possess its own personal computer(s), tablets

and smartphones, and these have become as indispensable as the home tele-

phone or television.

When personal computers first appeared, it seemed that security problems

were not a serious worry for them. However, it has become increasingly evident

that this is not the case. As PCs grow in power and storage capacity, they are

already individually more powerful than many mainframes of the past. This

means that they are being increasingly used to hold sensitive data and are there-

fore increasingly targets for penetration by hackers. And in the last two decades

the Internet has taken off in a spectacular way. It is now normal that virtually

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 331

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

every personal computer, tablet and smartphone can be reached via the Internet,

thus making inter-computer communication and therefore illicit penetration by

hackers a major problem.

But PCs and smartphones on the Internet do not fit the mould of mandatory

access controls. They do not have the paraphernalia of mainframes, with opera-

tors and system administrators and so on. People own their own devices and ex-

pect to make their own decisions about how they can use them. This, together

with the lingering death throes of the mainframe industry, makes it clear that the

coloured books no longer provide a balanced view of computer security. Discre-

tionary controls have undoubtedly become far more important than the role giv-

en to them in those documents.

Hence this book had been written primarily with discretionary access con-

trols in mind. However, the purpose of the present chapter is to demonstrate that

implementing both rule-based systems and mandatory access systems (even side

by side) is also straightforward in SPEEDOS, beginning with a description of

how the Bell-LaPadula rules, and by implication the Biba rules, and most rules

based on the Access Rule Model (see chapter 3), can be implemented.

1 A Bell-LaPadula System

Chapter 3 describes the rules of the Bell-LaPadula security model. The aim of

these rules is to permit information flow only to trustworthy objects, and thus to

solve a special case of the confinement problem for systems, as viewed through

the eyes of the military and similar organizations. Each subject in the system is

given a clearance which reflects his hierarchical role in the organization and

each object (e.g. file) in the system has a similarly hierarchical classification

which determines how subjects may access it. A set of projects is also associated

with each subject; these define his permitted sphere of activity in terms of access

to the files, and files are likewise associated with specific projects.

1.1 The Bell-LaPadula Rules

The rules of the Bell-LaPadula model are as follows:

a) Reading of Objects (simple security property):

 (clearance (subject) ≥ classification (object)) (projects (subject) projects (object))

b) Writing of Objects (*-property):

 (clearance (subject) ≤ classification (object)) (projects (subject) projects (object))

c) Creation of subjects:

 Subjects creates Subjectt (projects (Subjectt) projects (Subjects)) (clearance

(Subjectt) ≤ clearance (Subjects)).

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 332

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

To implement the Bell-LaPadula rules two modules could be used in SPEEDOS.

1.2 The Subjects File

The first, a file module (see Figure 36.1), maintains a list of subjects together

with their clearance and associated projects. It supports the following basic se-

mantic operations:

• for creating new subjects (identified by their unique SPEEDOS identifier),

with a clearance level and a list of projects;

• for changing the subject details (e.g. with a new clearance level and/or

changed list of projects).

All routines assume that the users already exist in the SPEEDOS system and

therefore have unique identifiers. The first routine (creating new subjects) exe-

cutes the kernel instruction current_thread_owner, and uses the result to es-

tablish (from the module's list of users) whether the caller is authorised to create

a new subject at the proposed clearance level and with the nominated projects,

using the Bell-LaPadula subject creation rule. If so it enters the new subject into

its list with the appropriate details.

The remaining operations carry out similar checks and if the caller is au-

thorised to do so the changes are entered.

Further semantic routines can provide an authorised caller with information

(the clearance and projects) about another user.

Figure 36.1: A Subjects File with Semantic Opera-

tions

A Subjects File containing,

for each subject in the

system:

his unique identifier,

his clearance and

a list of associated projects

Change

Subject

Details

Create

New

Subject

Change

Clearance

Change

Projects

Request

Clearance?

Request

Projects?

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 333

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.3 The Objects Qualifier Modules

The second module is a qualifying module which contains protection infor-

mation (classification, associated projects) about a Bell-LaPadula object to be

protected by its brackets routine (see Figure 36.2).

It has interface routines that can be used by the system administrator to de-

fine and redefine a classification and the associated projects for the file, and to

make enquiries about this information. One of the routines (callable by the sys-

tem administrator) provides a capability for the subjects file. The system admin-

Client

Object
Protected

Object

Bracket Routine

which checks

whether the sub-

ject is authorised

to access the

qualified object

Figure 36.2: A Bell-LaPadula Rule Controller

An Object Qualifier

containing, for the

associated qualified file:

the classification level,

and

a list of associated projects

Change

Classification

and Projects

Create

Classification

and Projects

Subject

Change

Classification

Change

Projects

Request

Classifica-

tion?

Request

Projects?

Info

 from

Sub-

jects

File

Subjects File

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 334

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

istrator also has a capability allowing it to set up and redefine the protection

properties of each file to which the qualifier routines are to be attached, includ-

ing the classification level and associated projects; he also indicates which se-

mantic routines are subject to the Bell-LaPadula 'reading' rule and which are

subject to the 'writing' rule.

Such a qualifier is associated with each protected file (i.e. each object) in

the system and is set by the administrator to suit the individual security proper-

ties of the file. The qualifier has a call-in bracket routine which is activated for

all calls to the protected file. When this is activated it first executes the kernel's

current_thread_owner instruction to establish the identity of the caller. It

then uses the capability for the subjects file to request details of the clearance

level and projects of the caller. Next it determines the semantic routine number

of the call by executing the kernel instruction calling_ep (see chapter 26 sec-

tion 1.1) to establish whether it is a read or write routine. It then invokes an ap-

propriate subroutine to carry out checks needed for the current routine number,

using the read or the write rule as appropriate. If it discovers an error it raises an

exception which disallows the call and then writes the error into a log.

1.4 Conclusion

We have now seen how the rules for creating new subjects and for controlling

read and write access to protected files can be achieved in a SPEEDOS based

Bell-LaPadula system.

It is interesting to note that more stringent rules could easily be applied. For

example, since SPEEDOS can easily detect when a new file is being created

(because the entry point number 0 signals that a constructor is being called) it

could implement a further rule defining which subjects can create new objects.

Similarly it could check that a user has opened the file before he calls the normal

routines. It could also be supplemented by a call-out bracket which ensures that

no information is released by malicious code.

It will be obvious to the reader that similar access control rules, e.g. those

of the Biba model described in Chapter 3, can be implemented in a similar way.

In fact SPEEDOS can use a similar pattern to implement most access rules that

can be expressed using the Access Rule Model.

Finally, as we already observed in chapter 3, the Bell-LaPadula model does

not guarantee the integrity of objects, because it permits subjects with a lower

clearance to write to objects with a higher classification. Similar problems arise

in Biba, which simply reverses the Bell-LaPadula model.

2 Retaining Control of a System

We now turn to a more realistic issue. Systems which involve multiple users

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 335

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

normally need a controller (e.g. a system administrator or a superuser) who is

responsible for the correct, secure and orderly management of the system. How

can such a person exercise control and carry out his functions safely?

2.1 Retaining Control in a Business System

How can a business system administrator ensure that he can maintain control

over the rights which he needs? The basic answer is straightforward. He

achieves this by not providing users with a capability containing the right to

carry out sensitive actions (e.g. by preventing them from calling the Container

Manager's createContainer routine and other related routines, e.g. copy

Container, download) if they are not permitted to create files. This is easily

organised, since when a system is first initialised by the system administrator,

the basic capabilities needed to use the system are handed over by the system

software to the thread which carries out the initialisation, in this case the system

administrator's thread. It is then a question for the system administrator to de-

termine which capabilities (with what access rights) he hands over to other users

when he creates them (see chapter 31).

There are probably cases where other staff members may need to create

files, for example in the business's software development department. The best

way to do this is undoubtedly on separate computers which themselves are sepa-

rate nodes, with carefully scheduled tests on the main computer carried out un-

der expert supervision. But if that is not considered necessary, how can such

staff be prevented from accessing the active business files? The answer is of

course that they may be permitted to create new files using the Container Man-

ager, but they do not receive capabilities for the business files which are current-

ly in use. And just to be sure, the sensitive files can be bracketed to indicate

which users of the system can – and/or cannot – access the files. In other words

the brackets can implement both access control lists and revocation lists.

To ensure that problems do not occur when the system administrator is on

leave or ill, etc., his deputy or deputies may need to take over the system admin-

istrator's duties. This could be arranged, for example, by the deputy being pro-

vided with the knowledge to allow him to log in as system administrator. Alter-

natively the administrator could nominate two or more deputies, who are each

provided with half the information needed to log in as system administrator (just

as in a bank two keys might be needed to open the vault door). But of course

such arrangements should be determined by the business itself, and not fixed by

SPEEDOS. For this purpose lots of mechanisms are available within SPEEDOS

to provide the needed level of security. Inventive minds can use capabilities, ac-

cess rights, kernel enquiries, bracket routines, passwords, the thread security

register, etc. to devise good solutions.

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 336

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2.2 Retaining Control in a Multi-User Discretionary System

Whereas in business systems the business staff may not be allowed to create

new files, in a discretionary multi-user system such as a computer system at a

university, the users will want to create files, etc. Nevertheless the superuser

may wish to retain the power to delete student files (e.g. when students leave the

university). He may also want to ensure that students do not exceed limits which

he sets on the use of resources), etc. How can such requirements be organised?

Consider first the delete issue. Only one way of deleting a file has so far

been described, i.e. by presenting a capability for the file with the owner right or

the delete right set. To expect a student (or other user) voluntarily to provide the

superuser with a copy capability in which the delete right is set is certainly not a

guaranteed solution! One alternative is for the superuser to obtain the owner ca-

pability before it gets into the hands of the user. This solution could in fact be

made to work, as is shown in Figure 36.3.

As in the business situation described in section 2.1, the superuser does not

provide other users with a copy of the Container Manager's createContainer

routine and other related routines (e.g. copyContainer, download). But in con-

trast with the business scenario, users in a discretionary system expect to be able

Figure 36.3: Superuser Control over Capabilities

Container Manager

Module provided

by Superuser

Users do not have a ca-

pability for this call
Create Container

Users have a capability

to make this call

Superuser has a ca-

pability to make

this call

User Modules

requesting a new

container

Superuser

modules used e.g. to

delete a container

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 337

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

to create their own files at will, so that can only be part of the solution. The

superuser (as a person) does not expect to be directly involved in the creation of

user files, but he can do so indirectly by providing users with a capability for a

module that creates files for him. This module would retain the owner capabili-

ties for all the containers which it creates, and thus the superuser has complete

control over all the containers in the system. This is the solution which I pro-

posed in an earlier (unpublished) version of this book, and I have presented it

here to show the flexibility of the SPEEDOS system. Nevertheless I now reject

the solution because

• it involves considerable overheads in managing the system;

• it gives far too much control to a superuser, who can easily misuse the

mechanism to violate other users' privacy; and

• above all, this solution would obviously offer a perfect target for hackers!

Instead I now recommend a much simpler alternative. All that is required to

solve the problem is a "superuser" capability which the superuser can retain for

himself when the system is first initialised. In fact this is a special kernel capa-

bility which allows the superuser to delete (but not examine) all the containers

owned by a specified user before he left (or was removed from) the system. An

implementation of the mechanism could be as follows.

A kernel delete_users instruction takes as its parameter a list of users.

These are specified as full 192-bit user identifiers. (Recall that a user identifier is

the full container number of his first container, and that this is stored in the red

tape of each container which he creates.) The kernel then scans all the containers

at the node (or perhaps on a specified disc if the user can only create files on a

single disc) searching for containers for which the users listed are marked as the

owners (in the red tape at the base of the container, see chapter 19 section 2).

The kernel deletes each such container.

This is a time consuming activity, especially if used for each student indi-

vidually. For this reason it would be sensible to take the following steps to help

optimise the deletion procedure.

• Include as many users as possible in the search. This is why a parameter has

been included to list multiple users. In a student situation this makes sense,

because at the end of an academic year many students leave the university

at the same time.

• To reduce the scope of the search it would be sensible to place the files of

all the students (or all the students in a single annual intake) on a single disc

or disc partition.

How does the superuser know the identifiers of the relevant users? The answer

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 338

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

is of course that he initially creates the users and in the first part of this proce-

dure a new container, which is used as the new user's first container (and there-

fore his unique identifier), for which an owner capability is returned to the creat-

ing user (see chapter 31). This can then be held in a list of new users which the

superuser can also use to store other details, such as his name.

2.3 Managing Forgotten Passwords

One service which a superuser or business administrator often provides is to

help a user to log in if he has forgotten his password. This solution is not feasi-

ble in SPEEDOS, where logging in is carried out in an unconventional way and

may not involve passwords (see chapter 22 section 11). The central control of

passwords is also undesirable in a secure system, not only because it gives a

superuser inordinate powers, but also because a central password system offers a

tempting target for hackers.

But the problem is easily solved in SPEEDOS. Normally a user can create

multiple processes/threads with different login procedures, so that if he forgets

how to log in for one thread (thread A), he should still be able to log in to anoth-

er thread (thread B). Provided that he has had the foresight to provide thread B

with access to a capability for the authentication module of thread A, he could

call this directly in thread B to call a semantic routine which temporarily turns

off the tests and allows the user to log in to thread A. Alternatively he could use

a semantic routine of the Thread Control Manager to change the login authenti-

cation module.

3 Resource Management and Exceeding Rations

In the general discussion of the kernel the issue of logging and controlling the

use of resources was not discussed, because to do so would have taken the focus

off the main issues. But also, it is not always clear what logging requirements

and limits are necessary. It would therefore be appropriate, as far as possible, to

leave such decisions to the user. One difficulty in achieving this is that the use of

some resources is entirely under the control of the kernel. This is particularly

true of the use of discs and other mass storage devices.

3.1 Disc Usage

Here at least two kinds of measurements can be made, e.g. on a user basis: (a)

the amount of space used, and (b) the number of disc accesses made.

3.1.1 Counting the Pages Used

Measuring the amount of space involves counting the number of pages as they

are allocated and reducing the count when a page is deleted, noting the identifier

of the user on whose behalf this occurs and checking if a limit has been reached.

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 339

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Counting the pages as such is relatively straightforward, but assigning their use

to a particular user is not quite so simple. This cannot simply be achieved by

establishing which user thread was last active, because the kernel may be servic-

ing several requests.

The first page of a container is allocated as a result of executing the kernel's

new_container instruction (see chapter 23 section 6.1). This accesses the ap-

propriate Disc Directory Manager to obtain a new page. Additional pages for the

container are requested by the Segment Manager (see chapter 23 section 5.1). In

both cases a kernel virtual memory block is used. This contains the number of

the thread issuing the request, and so a note of the user and of the count of new

pages can be returned to the Container Manager or the Segment Manager; these

can then access a log file to which the new pages can be added to the count for

the user in question.

Deleting pages can follow the same pattern, more or less in reverse. Appro-

priate measures must also be taken with respect to the copying, downloading

and uploading of containers.

3.1.2 Counting the Number of Disc Accesses

Since the discs are used to resolve virtual memory page faults such actions are

not visible outside the kernel. This implies that counting must take place inter-

nally within the kernel. Yet it would be undesirable to clog up the kernel space

with large amounts of data. For this reason an implementation is best sought by

using shared co-module data, which also had the advantage that it is persistent

(see chapter 17 section 3). Such a solution must also respect the fact that the

kernel should not be delayed by too much processing activity.

The Container Manager can provide an appropriate data structure (prefera-

bly as its first persistent data structure, so that the kernel can find it easily via the

state data pointer in the Container Manager's co-module table (see Figure 19.5).

This can be a simple list of disc numbers and user thread numbers, each repre-

senting a disc access for the thread in question. The individual disc processes

(see chapter 23 section 4.7) add such entries to the list as each access is made.

They are aware of the user thread number from the virtual memory block which

requests the access. The Container Manager has a thread which reads and clears

the list at regular intervals. It counts the individual entries and writes them into a

log file. To avoid the kernel's disc processes from searching for the list each

time, they find this once when the system is initialised or a new disc added, and

store its address in their local data.

3.2 CPU Time Usage

This is simply organised by the User Thread Scheduler, which uses the start time

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 340

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

and stop time for each user thread which it schedules to calculate the total time

which it uses. It provides a semantic routine which allows a Container Manager

thread to obtain the details at regular intervals and to add these to a log file.

3.3 Printer Usage

Since the control of printers is organised outside the kernel, it is a straightfor-

ward procedure to count the number of files and/or pages printed by each user at

a particular printer and to check that this is within the limits imposed by the sys-

tem administrator or superuser. The appropriate module in which this occurs is

the Printer Interface Module (see Figure 33.4).

3.4 Internet Usage

Statistics of Internet usage are best gathered by the Listener process (see chapter

34, section 8), since all Internet traffic passes through this kernel process. It

should record details of all Internet requests and the unique identifiers of the us-

er threads (from which the responsible user can also be identifier) and all re-

sponses to user thread requests, all external requests (which should not occur,

except for requests from other SPEEDOS nodes) and record these in Container

Manager data in a similar way to disc accesses. It should also record SPEEDOS

kernel requests and replies to and from other (normally SPEEDOS) nodes, in-

cluding the amount of bytes transferred.

3.5 Remote Inter-Module Call Resource Usage

The same statistics are of course gathered for resource usage at a remote node as

a result of a thread being transferred following a remote inter-module call (see

chapter 28). If the calling node indicates that it requires such statistics (not all

will) it indicates this on the caller's stack when it makes the RIMC, and when

the RIMC exits, the statistics are also provided on the stack with the return in-

formation. The kernel at the remote node obtains the necessary information by

activating a surrogate stack, which obtains the information from its Container

Manager.

3.6 Charging for Resource Usage

Whether charges are made for the use of resources is clearly a matter for indi-

vidual systems. To obtain the details of what resources have actually been used

by a user is made available to the system administrator or superuser by calling a

semantic routine of the Container Manager (which has an overview as provided

in the previous subsections).

3.7 Run-Time Monitoring

A system administrator should be provided with a run-time monitoring tool

which provides him with an overview of the kinds of activities discussed in the

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 341

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

previous section, e.g. a list of active threads, an overview of disc activity and of

internet activity. In contrast with some conventional systems this should be

transparent, showing exactly which users (by their unique identifiers) are active.

4 Initialising a New System

The processor of a new SPEEDOS node has an in-built read-only memory ad-

dress which is directly accessible only to the kernel. This contains its world-

wide unique node number (see chapter 16 section 2, which describes how this

can be world-wide unique). Using the technique designed originally for the

MONADS-PC system [24], the new node is securely booted and the kernel and

related software are loaded from the system disc. The kernel then initialises it-

self and its co-modules, in so far as this is necessary. When this is completed,

control is passed to an initial thread in a standard user level process of the user

(in a single PC system), of the superuser or of the system administrator. This can

then be used to create users and initialise files, etc. In the course of this initiali-

sation the thread can invoke modules and pass parameters necessary to custom-

ise the system, initialise external discs, etc. It can use subthreads to allow longer

tasks to be processed in parallel. When the initialisation is complete the system

can be freed for use by other users.

5 Closing Down and Restarting a System

In many cases a user or superuser may wish to close down his system (e.g. over-

night) and reactive it at a later time (e.g. next morning). One might think that

because the system is persistent no special action is necessary, but this is not

quite accurate.

Although a SPEEDOS system is persistent it uses the main memory as a

cache for the persistent memory devices. Consequently the least which must be

undertaken before the system can be turned off is to write to disc all the pages

currently in main memory which have changed since they were paged in. For

this purpose the kernel provides a privileged instruction close_down, which can

only be executed by the User Thread Scheduler (because this can confirm that

there are no executing user level threads).

When the decision is made to close down a system, the initial thread (i.e.

the thread which was used to initialise the system, see section 4) is reactivated

and calls all the Thread Control Managers in turn to close down their threads.

(This means that the threads are brought to a state in which they can continue

after the next system restart.) When a Thread Control Manager has done this it

returns to the initial thread, which then continues to the next to do likewise.

When this phase is completed, the initial thread calls the User Thread Scheduler

to check that there are no executing threads and uses the kernel's close_down

instruction. The stack and the thread state for this thread are frozen by the kernel

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 342

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

which then closes the kernel threads down and ensures that they have all run to

completion. It then stops the CPU and dies. It does not store the kernel state as

such (see chapter 17 section 2) but it ensures that the shared co-module state da-

ta is consistent.

In order to restart the system the kernel is re-bootstrapped and then sets it-

self up to a functional state and reactivates the initial thread to restart the system

at the user level.

As a final note, we observe that by restarting the system in this way, the

problems which might otherwise arise from the fact that the user can re-

configure the system while it is closed down (e.g. by removing external discs)

are avoided. If a re-started thread attempts to use a disc or device which has

been removed from the system during close-down it causes an error for the

thread, but not for the system and is treated like any other error, e.g. in that the

system requests that the disc is brought on-line or causes an exception condition

for the thread.

6 Handling a System Crash

Systems can crash for a number of reasons, e.g. because of a loss of power, be-

cause of an unrecoverable processor or disc failure, because of an error in a key

kernel process or in the User Thread Scheduler.

In the early days of computing, power failures were a major problem, but

that should no longer be the case. In fact even most PCs have batteries which

allow the PC to run for several minutes (or even hours) without external power,

and warn users when the battery is beginning to get low, thus allowing users to

either provide external power or to organise their system to run down in an or-

derly manner. Larger systems can be organised to have an uninterruptible power

supply (UPS)
253

 which will at least serve the same purpose or for a longer use of

the system some form of emergency power generator.

In the very unusual situation that the processor or main memory has an un-

recoverable error, the manual intervention will of course be necessary.

Whatever the cause of a system crash (assuming that the processor and the

main memory are in order) both the reason for the crash and the extent of the

damage must be established. On the assumption that power is available, at least

for a reasonable amount of time, a special kernel process should be automatical-

ly activated which first saves the current values in the registers, then establishes

which kernel process is active (or was the last to run), and if a user thread was

currently active. From this information it should then be possible to establish the

nature and extent of the damage.

253

 see https://en.wikipedia.org/wiki/Uninterruptible_power_supply.

Chapter 36 MANDATORY ACCESS, RULE BASED SYSTEMS AND COMPUTER ADMINISTRATION 343

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The most likely cause of a system crash is a software failure. If an applica-

tion contains a software error, this can normally be handled as described in

chapter 22 section 9.2, and the SPEEDOS protection mechanisms will ensure

that the effects of such a failure are limited.

Of course SPEEDOS systems should be regularly backed up to minimise

the effect of failures. As in other systems there are several ways of doing this,

e.g. at the end of every day take a full back-up, or use some form of on-line

backup system. To allow a special backup thread to copy an entire disc it can be

armed with a capability (the owner capability for the disc or a disc capability in

which an 'archive' right is set) which allows the thread presenting the capability

to have page access to the disc. Notice here that an archive of a disc must be

marked as such, since it contains owner capabilities and possibly other items

which should be unique in a running system. To convert an archive into a "live"

disc a procedure must be devised which solves this issue.

Finally we also mention that there are ways of using duplicated hardware to

keep a critical system running. There is no reason why all such techniques

should not be used with SPEEDOS, but they are beyond the scope of this book.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 37

An Example – Online Banking

Banks, but not only banks, have a long history of adapting their computer sys-

tems to changing circumstances, improved technology and new ideas. Conse-

quently it is not irrelevant to begin by asking how easy it is for them to carry out

this process of modifying their software. This is relevant in the context of securi-

ty because computer programming is not an easy discipline to master, so that

each time changes are made it is easy to make (and introduce new) mistakes,

and mistakes in programs are one of the main causes which can give rise to se-

curity and privacy problems. The hackers' evil handiwork is of course made eas-

ier if they can discover mistakes in programs which they can use to their own

advantage.

Added to this is the fact that the CEOs of companies are themselves often

under pressure from their investors to introduce improvements as quickly as

possible and to complete the necessary changes to their software (and of course

other) products before their competition does. This pressure is passed down to

those who are responsible for the new products and those who are involved in

making the changes necessary to bring the new product to market as soon as

possible. But pressure only leads to hastily carried out and therefore often im-

perfect work.

1 Software Structures

As was explained in volume 1 chapter 13, one of the reasons why software mod-

ifications are often badly carried out is because the tools available to program-

mers are quite inadequate. There the fundamental structural problem of conven-

tional systems was discussed in a general way, drawing attention to the many

problems that are created by what I called "flow of control modules". Using this

standard technique, which is forced on programmers by standard programming

languages and operating systems, the fundamental data structures in a system are

separated from the modules which contain the program algorithms that access

Chapter 37 AN EXAMPLE – ONLINE BANKING 345

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

these. I strongly recommend that readers look again at chapter 13 and remind

themselves of the difficulties which this "normal" technique brings (and bear in

mind that this is the technique which still persists in conventional operating sys-

tems and programming language). Here is a summary of the shortcomings which

were listed and explained there
254

:

(i) the specification of the system design is difficult;

(ii) communication between the implementers of separate modules is high;

(iii) inconsistent modules create difficult debugging problems;

(iv) verification is difficult;

(v) synchronisation problems easily arise;

(vi) maintenance of the system is difficult;

(vii) extension/adaptation of the system is difficult;

(viii) optimisation of the system is difficult.

It was suggested that the solution of these problems lies in rigorously enforcing

the information principle and object orientation techniques at the operating sys-

tem and programming language interface level, and qualifying types were added

as a new technique.

These ideas have formed the basis of the SPEEDOS design, in two senses.

First, the principles have been used as the basis for the SPEEDOS design it-

self.
255

 Second, a primary aim of the SPEEDOS system is to free user applica-

tions from the straightjacket of conventional systems, allowing applications also

to be designed according to the information hiding principle. Consequently fu-

ture systems and applications which are based on SPEEDOS should benefit both

from the support of a more reliable and secure operating system, but also from

being able to apply the same principles directly to their own software systems.

With this in mind we now focus attention on developing in outline some of

the main components of a banking system, showing first how a fictional banking

system first designed in say the 1960s might have benefitted from the infor-

mation hiding approach as it would have gone through various stages of devel-

opment up to modern times. But before we do this we should briefly look at how

a fictional system might have fared using conventional techniques.

254

 See volume 1 chapter 13 section 5.
255

 The kernel design itself does not directly use them, but this is because the job of the

kernel is to implement them for the rest of the operating system. However, the kernel re-

lated co-modules do.

Chapter 37 AN EXAMPLE – ONLINE BANKING 346

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2 The Framework of a Conventional Design

At the heart of any banking system is the idea of bank accounts. Using conven-

tional systems these are stored in files in the file system, and are accessed by

programs which have embedded in them subroutines for carrying out the typical

operations on the bank accounts, such as opening an account, closing an ac-

count, making deposits, making withdrawals, adding interest, setting an over-

draft limit, enquiring about the current balance, listing recent transactions, etc.

Not all of these operations should be made available to all the employees in

a bank, but should be restricted to those with a "need to know" and a right to

carry them out. For example the bank teller should not have the authority to add

interest to an account or to increase an overdraft limit. A bank branch manager

will possibly also not have the authority to add interest, but a bank accountant

might have, etc. In a conventional system the easiest way to give different au-

thorisations to different staff is to provide these in different programs, such that

a particular staff member (or employee group) can have a separate program in

which the appropriate access is provided. This is reflected in Figure 37.1, which

is based on Figure 14.2).

The reason for this is that protection works at the file system level, which

associates rights with entire data and program files. The bank employees can be

given access to programs and the programs can be given access to files.

One particularly significant drawback of this arrangement is that in effect

the same operation may appear in different programs, and normally programs in

a large operation are programmed by different programmers. Consequently not

only might the same logical operation on the bank account file be programmed

Deposit Withdraw
Open

Account
......

The Manager's Program The Tellers' Program

The Accountant's Program

Conventional

Bank Accounts

File (Data Only)

Figure 37.1: Accessing a Conventional Bank Accounts File

Close

Account

Add

Interest

Account

Balance?

Total

Balance?
......

Open

Account

Close

Account

.......

Authorise

Overdraft

Deposit

Withdraw

Chapter 37 AN EXAMPLE – ONLINE BANKING 347

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

in several individual programs by different programmers, but the actual pro-

grams may be different. And such duplicated effort is not only costly (on pro-

grammer salaries) but can lead to problems if a change is needed. And above all,

the problems listed in section 1 also possibly arise. One way of tackling such

issues is to use database systems, but this adds another level of complexity and

the possibility of yet more errors.

A further problem can arise with respect to access rights. If all the bank ac-

counts are held in a single central file, the implication is that a bank teller at one

branch can access to all the accounts of all customers, even possibly those at dif-

ferent branches.

3 The Effects of Technological Changes on the Conventional Approach

With the passage of time radical technological changes and improvements have

taken place which have affected banking (and often other) systems. We now

briefly look at the main developments and their effects on the bank programs.

3.1 Batch Processing Systems

Commercial computing systems in the 1960s were based on an arrangement

called "batch processing". This was the age when computers were large mon-

sters which stood in large computer rooms (and sometimes even in separate

computer centres), when rotating discs still were physically large but with very

small storage capacities. The main medium for storing files was magnetic tapes,

which had the severe disadvantage that they could only be accessed sequentially.

Furthermore data input to the system was achieved by punched card or punched

paper tape devices. Figure 37.2 illustrates how such systems functioned.

In such a system the information about bank accounts was typically held on

a magnetic tape, called the "master" file, in a fixed sequence (ordered for exam-

ple by increasing bank account number). The day's banking transactions were

collected together each evening, they were encoded onto punched cards or paper

tape and then were read into the system. There the transactions were checked for

consistency, reasonableness and so on by an "edit" program, and after that they

were copied onto a magnetic tape and sorted into the same order as the master

file. In the next step the master file update program read the transaction file and

the main file together, and created from them a new master file on a different

magnetic tape. This program included the code for processing the individual

transactions and modifying the banking data, recording deposits, withdrawals

and transfers, authorizing overdrafts, etc. In the final stage relevant information

was printed about the day's transactions. On the next evening the transactions for

that day were vetted, sorted and read against the master file, and yet another new

master file was created.

Chapter 37 AN EXAMPLE – ONLINE BANKING 348

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The control code in the master file update program consisted basically of a

large loop in which the next transaction was read and the appropriate subroutine

for the deposit, the withdrawal, etc. was invoked. It was in this program that the

semantic routines were buried. Since they did not appear on the interfaces of the

programs they did not need to be specified in the design documentation.

The whizzing tapes which you may sometimes have seen in computer

rooms in old films are reminders of that era. These were eventually replaced by

files on disc, but although disc accesses need not be sequential they were often

used as if they were sequential tapes to minimize the changes to the system.

3.2 Online Terminals for Bank Staff

The next stage in the development of banking systems was the introduction of

online terminals for the bank staff. For those banks adventurous enough to in-

INPUT

TRANSACTIONS
EDIT

PROGRAM

EDITED

TRANSACTIONS

SORT

PROGRAM

SORTED

TRANSACTIONS

MASTERFILE

UPDATE

PROGRAM

RESULTS

FILE

REPORT

PROGRAM

PRINTED

REPORT

OLD MASTER

FILE

NEW MASTER

FILE

Figure 37.2: Bank Programs in a Batch Processing System

Chapter 37 AN EXAMPLE – ONLINE BANKING 349

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

troduce online updating of the master files on disc, a transaction processing

monitor program was needed. Bank staff had to input transactions into a transac-

tion processing system which read the transactions from terminals, processed

them and updated the master file – which was by this time a disc file in which

the relevant accounts could be accessed directly. Different control routines were

needed in the transaction processing monitor, but although the basic semantic

file operations (deposit, withdraw, etc.) had not changed, new routines to im-

plement them were needed in the transaction processing monitor.

3.3 Automatic Teller Machines

Later ATMs (automatic teller machines) were introduced, from which customers

can directly initiate transactions. New programs were needed with new control

routines to read in the customers' plastic cards, to check PINs (personal identifi-

cation numbers) etc. And again the basic banking operations, although these had

not changed, had to be incorporated into new programs, which typically meant

that they also had to be rewritten.

3.4 Online Customer Banking

Later still online customer banking from home computers was introduced, once

again requiring new programs to access the banking files. This time other pro-

tection requirements had to be built in, but although the basic banking opera-

tions did not change, these once again had to be incorporated into the new pro-

grams.

3.5 Online Banking from Smartphones

And of course further adaptations of the programs were needed to cope with the

introduction of banking via smartphones.

3.6 The Fundamental Problem

Conventional systems (not only banking systems) suffer from the fact that they

separate data structures (e.g. files) from programs. One of the results of this sep-

aration is that programmers, partly for protection reasons but also for structural

reasons, constantly need to rewrite their programs as technology develops. The

latter problem is exacerbated because programs need to serve two purposes in

conventional systems. First they serve as "control" routines and second as "data

management" routines, such that with technological advancements the control

routines need to be updated or changed, whereas the data management routines

can usually remain more constant, but since the conventional concept of a pro-

gram forces programmers to mix these two things up in a single program struc-

ture new programs had to be developed.

You might of course want to argue with this analysis by pointing out that

Chapter 37 AN EXAMPLE – ONLINE BANKING 350

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

data management is separated in conventional systems by the separate existence

of file systems. But the fact is that conventional file management systems cannot

take into account the semantics of the file data; they only provide a few basic

routines for organising files which have different semantics into patterns which

simplify their organisation in the file system (e.g. as index sequential files, as

sequential files, as hashed files, etc.). And as we discussed in chapter 2, the best

that they can do is to provide a totally inadequate protection system, based not

on the semantics of the data but simply on a choice between no access, read ac-

cess and write access. And database systems, while offering an improvement

over the simpler file systems, introduce more complicated mechanisms which

also, in the final analysis, do not solve the protection problems adequately and

are often cumbersome because they are often built on top of file systems.

4 Using the SPEEDOS Approach

As was explained in volume 1 chapter 13, SPEEDOS offers its users the possi-

bility of organising their applications in such a way that the semantic routines

associated with major structures (such as bank accounts), are tightly bound to

the data itself in modules, while the control programs are held as separate mod-

ules. The most important effects of this different structural method are that:

a) when the control structures have to change in order to adapt to improved

technology or new ideas there is no necessity to change the file modules

containing the major data bases in the system (such as, in the present case,

the bank accounts).

b) the semantic routines associated with the data (e.g. the deposit routine, the

withdrawal routine) do not have to be repeated in multiple programs, which

is both cost saving and reduces the potential for errors. This is not merely a

software engineering advantage but also a security advantage.

c) protected access to a data structure such as a bank account can be based on

the semantic routines themselves.

In other words, we have a win-win situation by providing a better software engi-

neering mechanism and a much more flexible security system. We now look in a

little more detail how some parts of a fictitious banking system might look.

4.1 A Bank Account File

We re-use Figure 2.7 as Figure 37.3 to remind readers how a bank account file

and its semantic routines might look. Note that in a real bank account there

would certainly be more routines than are listed here. These are only provided

for illustrative purposes. Furthermore in the next few sections we make the ob-

viously false assumption that a bank only provides one kind of account for all its

customers. This assumption will be corrected in sections 4.6 and following.

Chapter 37 AN EXAMPLE – ONLINE BANKING 351

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

These routines can be divided into two groups: operations, which manipu-

late and change the state of the bank account, and enquiries, which provide the

subject with information about the account without changing its state
256

. Exam-

ples of operations include the routines 'deposit', 'withdraw', 'transfer', 'add inter-

est' and 'authorize overdraft'. These can be viewed as differing kinds of write

operations. The enquiries are distinguished in the diagram by a question mark.

They include such routines as 'customer number?', 'overdraft limit?' and 'current

balance?'. The enquiries can be viewed as different kinds of read only routines,

which return specific information to the caller. Such read only routines are pro-

tected by SPEEDOS to ensure that they do not make modifications.

4.2 Protecting Access to the Semantic Routines

Because they are protected in SPEEDOS by module capabilities, users of the

semantic routines can be provided with separate capabilities on a 'need to know'

and a 'need to use' basis. Figure 37.4 (repeated from Figure 2.8) illustrates how

the authorisations might look.

256

 The programming language Timor [7] allows programmers to distinguish between these

two kinds of semantic routines, thus also allowing SPEEDOS to ensure, for example,

that enquiries cannot modify the data, and thus add further protection to a system.

Figure 37.3: A Bank Account with Semantic Operations

A Bank

Account

Deposit

Withdraw

Customer

Number?

Overdraft

Limit?

Current

Balance?

Add

Interest
Authorise

Overdraft

Transfer

Close

Account

Open

Account

Chapter 37 AN EXAMPLE – ONLINE BANKING 352

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Notice that this diagram is of a different kind from those which were used

to illustrate Lampson's Access Matrix in chapter 2. An entire column in Figure

37.4 corresponds to a single access rights field of Lampson's Matrix. What this

means is that Figure 37.4 refers to the access rights for a single object (identified

by the capability). In other words, it is not sufficient simply to define which op-

erations of an object class a particular subject may invoke. Such a list of permit-

ted operations only makes sense in conjunction with a particular object or list of

objects. For example, I may have the right to withdraw money from my own

bank account, but that should not automatically give me the right to withdraw

money from yours!

4.3 How Many Bank Account Files?

In principle all the accounts of a particular type (e.g. savings accounts) could be

kept in a single file module, but this would have the disadvantage that access

rights associated with the routines can only be associated with all the accounts in

the module as a single group
257

. Keeping each account in a separate file module

has the advantage that different accounts at the same branch can, for example,

be associated with different customer advisers. Separate accounts can of course

share the same code module, because the protection is based on the access rights

to the data files, not to code files (as is usually the case in current systems).

If each bank account has a separate file it has a separate owner capability;

257

 The implication of this approach would be that a further layer of protection, such as a

password, would be needed.

Figure 37.4: Authorisations based on Semantic Routines

√ √ x x

√ √ x x

√ √ x x

√ √ x x

√ √ √ x

x x √ x

x √ x x

√ √ x √

√ √ √ √

√ √ √ √

Open Account

Close Account

Deposit

Withdraw

Transfer

Add Interest

Authorise Overdraft

Customer Number

Overdraft Limit

Current Balance

Chapter 37 AN EXAMPLE – ONLINE BANKING 353

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

additional capabilities can be created by copying them (subject to the metarights

in the capability from which the copy is made, see chapter 26 section 3.3).

4.4 Collections of Bank Accounts

For some purposes the bank will need routines which are associated with a

group of accounts, for example to maintain a cumulative balance of all the ac-

counts of a particular type at a branch or to add interest to the accounts, etc.

Such routines can be programmed in separate file modules, which again can

share a single code module. Such a file module will have access to a stored ca-

pability (with appropriate access rights) for each account, giving it access to the

individual details of the accounts files. The rights to the individual accounts in

these collection modules will be restricted on a need to know basis. For example

in a module designed to calculate a cumulative balance for all the accounts the

module might only have the right to call the 'current balance' routine for each

account.

4.5 Using the More Traditional Approach

Nothing in SPEEDOS (or Timor) forbids the more traditional approach of plac-

ing an entire set of bank accounts into a single file module and providing some

additional routines which operate on all the accounts in the file to maintain cu-

mulative balances, add annual interest to them, etc. This is possibly marginally

more efficient and easier to organise, but it lacks the extra security provided by

keeping each account in a different file.

4.6 Different Kinds of Bank Accounts

So far we have made the simplifying assumption that our fictitious bank only

offers one kind of bank account. In reality banks have a whole range of account

types, some but not all of which are interest bearing and some offer higher inter-

est if the money in the account exceeds a certain amount and is left on deposit

for a fixed period of time. Other accounts are loan accounts, or accounts associ-

ated with stocks and shares, etc. For such accounts different module types with

different routines are needed
258

. But such accounts must be distinguished from

each other, so that in practice each account associated with a particular customer

will have not only a customer number but also a separate account number.

4.7 Customer Information

Another kind of module is needed, describing the customer and his accounts.

Such a module might record details of the customer, e.g. name and address, date

258

 Timor offers facilities for code re-use which are independent of subtyping [8]. This

makes it relatively straightforward to re-use some parts of the code for different kinds of

account, without affecting the semantics of the objects.

Chapter 37 AN EXAMPLE – ONLINE BANKING 354

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

of birth, marital status, nationalities and passport numbers, bank card numbers,

tax identification numbers, the customer's unique SPEEDOS identification num-

ber and other relevant information (e.g. taxation information on his annual inter-

est, details of authorised representatives). This customer information module

will also hold a list of the customer’s account numbers and capabilities for them.

It will be set up when the customer registers as a customer and will be modified

as his requirements change (e.g. when he opens a new account).

5 Online Banking

In conventional Internet banking systems it is standard that data is processed by

the banking system on its own computers and data is returned to users and dis-

played on the user's screen, possibly with the help of HTML or similar. As past

experience has shown, this technique, as used in conventional computers, has

often led to security breaches and theft of funds.

5.1 A SPEEDOS Online Banking Architecture

The most obvious and certainly the best way to organise an online banking sys-

tem using SPEEDOS is to take advantage of its in-process philosophy and the

availability of remote inter-module calls with call-back calls (see chapters 28

and 35). In this case the interactions between the customer and the bank begin

by the user at his computer activating one of his threads which invokes a call-

back module at his own node.

5.2 The Call-Back Module

The call-back module will have previously been supplied by the bank and is a

module which must be installed on the bank customer's computer
259

. In view of

the very high level of security needed by the bank, this module must not contain

information which could be problematic for the bank in the case of failure at the

customer node. Hence all security relevant information must be stored on the

bank's own computer(s), including the customer's registration details (see sec-

tion 4.7). However, the call-back module can contain some initial security

checks, which can be supplemented by further checks in the banking module on

the bank's own computer.

5.3 The Relationship between Bank Modules and Call-Back Modules

In many conventional systems HTML serves as a medium between a remote

259

 The call-back module could previously have been installed on the user's computer via

mechanism described in chapter 35 section 2.2, or it might for example have been made

available on an installation CD (see chapter 27 section 2.5), etc. For smartphones it can

be supplied to the customer as an "app", i.e. the bank's call-back module can be regard-

ed as a smartphone application module if the smartphone has a SPEEDOS architecture.

Chapter 37 AN EXAMPLE – ONLINE BANKING 355

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

computer and its displays on the user's local computer, HTML interpreters (in

particular browsers) have often proved to open up major security loopholes. For

this reason the SPEEDOS design has attempted, as far as possible, to avoid the

use of browsers (see chapter 34 section 2). This applies especially to websites

which are used in systems that need a very high level of security, such as bank-

ing systems. Hence we recommend that HTML is not used for online banking.

Instead we encourage the use of the SPEEDOS call-back mechanism. In the case

of highly secure systems we recommend that call backs are used in a particular

way, applying a rule that the call-back modules do not persistently store secure

information (such as registration information) on the user's computer. Instead,

when such information is requested from the user it is transferred from the call-

back module to the website module (in this case a module on the bank's comput-

er) for checking and/or for storing persistently, and when sensitive information

has to be supplied back to the user this is held persistently by a website module

and only transferred (temporarily) to the call-back module on demand. In this

way secure information is placed only in temporary segments except at the web-

site, and is therefore less vulnerable to thieves and hackers.

5.4 Starting Online Banking

The call-back module is activated (on the customer's computer) via a local inter-

module call to it in one of the customer's persistent threads.

When activated the call-back module displays the bank's website start page,

which allows the user to select from a number of options, including a page

showing information about the bank or a page which allows the user to log in to

his accounts (see Figure 37.5).

In the following subsections we assume that the user selects the latter. This

then uses a capability which the bank has stored in the call-back module to make

a remote inter-module call to an appropriate login entry point of the customer

information module described in section 4.7. In a perfect world no further

checks would need to be made, since in theory the capability used to make the

call is evidence of the right to call the customer information module. However,

this capability might have been secretly obtained by a hacker and so in practice

further checks are appropriate.

5.5 Implicit Checks

Some of these checks can be carried out implicitly, i.e. without the user being

directly involved. The kernel's environmental checking instructions (see chapter

26 section 1) are especially useful for this purpose. For example, as an initial

check the call-back module can use the kernel instruction target_code_owner

in a call-out bracket routine to ensure that the capability used to make the remote

Chapter 37 AN EXAMPLE – ONLINE BANKING 356

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

inter-module call is actually the bank's software. If this check fails the call to the

bank is abandoned.

Similarly the bank module which is called by the call-back module can

check (against the customer information stored at the bank) that the owner of the

calling module is its own call-back module, using the kernel's calling_code

instruction. It can also check that the calling_file_owner and the current_

thread_owner are authorised to access the accounts (either as account owner

or as authorised representative).

5.6 Explicit Checks: Identifying the Customer

In order to be sure that the online banking customer is really who he claims to be

(e.g. rather than another person who has illicitly gained access to his computer),

it is appropriate to adopt a logging in strategy in two steps. The initial remote

IMC to the bank will be made before these checks are carried out and call-back

calls to the bank's call-back module (on the customer computer) can be used to

obtain the information from the user (after first using the implicit checks to en-

sure that the call-back module is genuine).

5.6.1 The Bank's Identification Procedure

In this first stage the bank carries out checks of its own devising, which have

been agreed with the customer. These might, for example, include a password or

Figure 37.5: The Basic Architecture of SPEEDOS Online Banking

Bank's Call Back Module

activates the Bank's Web-

site Module via an RIMC

and requests web pages.

It receives pages from the

Bank Module via CBCs,

displays the pages and

sends further page requests

(via return parameters).

Bank Module

at Bank Node

This uses CBCs to send

web pages back to the

website call-back module

at the user's node
Remote IMC

Call-Back Calls (unlimited number)

Surrogate RIMC Thread T2 at Bank Node

(activated by Website Call-Back Module)

User Thread T1 at Node A

activates the Bank's Call-

Back Module via a local

inter-module call.

It receives pages from the

Stack Frames of

Thread T1 at Node A

Chapter 37 AN EXAMPLE – ONLINE BANKING 357

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

follow a PhotoTAN procedure
260

, etc. The aim is to convince the bank that it is

dealing with a genuine customer entitled to access his own accounts
261

.

5.6.2 The Customer Checks

If the first stage is successfully completed, the bank module then activates the

second stage, the purpose of which is to convince the genuine customer that no-

one is trying to impersonate him.

This stage uses an authentication module similar to that provided for users

as they log their persistent threads into a SPEEDOS system (see vol. 1 chapter

15 section 3.4 and chapter 22 section 11.4). In this case the user's identification

module should not be stored in the call-back module but rather on the bank's

own computer. Such checks are carried out as defined in the user's authentica-

tion module, which challenges him to provide evidence that he is the valid user,

as was previously defined by the user, not by the bank. A capability for this

module will be stored at the bank as part of the customer information (section

4.7) and the bank will also store the module itself. This may, but need not, be a

copy of the authentication module used to log the user into his current thread
262

.

The bank computer activates this module (on the bank's computer) as its

next step after carrying out its own checks. The bank's code can locate the au-

thentication module by using the kernel's environmental instruction current_

thread_owner. This allows it to locate the user's customer information and

therefore obtain a capability for the authentication module. In order to carry out

the identity checks it uses the call-back module to display the questions and to

return the answers
263

 (see Figure 37.6). The authentication module may make

provision for an inter-module call to an "alarm" module in the bank, thus allow-

ing a fraudulent user to think that he is logged in successfully, while the bank

takes special precautions to prevent the fraudster from doing damage and per-

haps attempts to locate/identify him.

If the final authentication step succeeds the call-back module then works in

step with the bank module to display and carry out the user's transactions. When

the customer has completed these he signals this via the call-back module,

which then advises the bank module to log the user out of its system. This could

include a provision to allow the user to indicate that the bank should use a dif-

260

 see for example https://www.youtube.com/watch?v=Ivuodu8plV0.
261

 Nothing is absolutely safe, since smartphones, PhotoTAN devices, etc., just like credit

cards, can be stolen. For this reason it is best not to rely on the bank's tests alone.
262

 It may have to be provided in a standard source format and re-compiled at the bank if

the computer instruction set used by the customer's computer differs from that used by

the bank.
263

 Note that the authentication module can directly use the call-back mechanism, see chap-

ter 28 section 7.2.2.

Chapter 37 AN EXAMPLE – ONLINE BANKING 358

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ferent authentication module when he next logs in online.

NOTE: The bank should of course treat the user's authentication module with

suspicion and take steps to ensure that it is does not contain a trojan horse! To

do this it could for example use

(a) the module call confinement rights (which it can unset in the capability

used to call the authentication module and/or in the thread security register)

and

(b) the thread control rights (which it can unset in the thread security register).

5.7 Displaying the Information

At first sight using the call-back arrangement over an entire banking session

might appear to have the disadvantage that a potentially large amount of infor-

mation might have to be transferred backwards and forwards over the Internet.

But in fact this is not the case, assuming that the structural information of web

pages is maintained at the call-back module, e.g. as formatted pages. For exam-

ple in the case of banking the formats of the individual web pages are normally

fixed. If the call-back module receives display requests from the website module

in the form: <webpage number, parameter list>, all it needs to do is to insert the

parameters (i.e. the actual values, e.g. of the user's account) into the pre-

prepared web page formats and display the page. This is not only more efficient

than sending the entire information over the Internet to display the page but it is

more secure, since a hacker would have to understand the page numbers, the or-

der and meaning of the parameters, etc. before he could use the information sen-

Figure 37.6: Customer Identification via his Authentication Module

RIMC Module in

surrogate Thread T2

at Node B. Remote IMC

Call-Back Calls

User Authentication

Module called by

the Bank RIMC

Module

Bank's Call Back Module

receives pages from the

User Authentication

Module via CBCs and

displays authentication

requests

User Thread T1 at Node A

activates the Bank's Call-

Back Module via a local

inter-module call.

It receives pages from the

Stack Frames of

Thread T1 at Node A

Chapter 37 AN EXAMPLE – ONLINE BANKING 359

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

sibly, and intercepting the call-back information would not help him to access

the persistent information held at the website. The only exception to this might

be the authentication page, since this might be user-defined. However, if the

bank chooses, instead of offering complete freedom with respect to the use of

authentication modules it might offer, say, ten standard alternatives.

When the user chooses to log out, the call-back module deletes the infor-

mation held in its temporary segments then advises the bank module in the call-

back call's return parameters. This results in the bank module finalising its activ-

ity and returning in the RIMC thread back to the call-back module and thence

back to the user.

6 Online Shopping and Services

It has now become common practice to visit websites which offer goods and

services for which the customer can immediately pay online. Payment methods

can vary (and may involve risks, e.g. in the case of providing a credit card num-

ber
264

). However, in their morbid fascination for investment banking and their

corresponding neglect of private customer banking, many banks have overseen

the opportunities offered by online shopping and left the field to others. Here we

show how the banks themselves could gain back some of the custom which they

have lost.

6.1 The Basic Scenario

The scenario here envisaged is that a bank account holder goes online to shop

for goods (or for services such as airline tickets). He begins by visiting the web-

site of a business (the vendor) offering items of interest. To do this from his

home computer (or from a smartphone) with a SPEEDOS system he activates a

vendor call-back module on his own system (which he will have obtained in one

of the ways described in chapter 35). The vendor call-back module, which has

an embedded capability for its associated website, makes a remote inter-module

call to the website, which then eventually makes a call-back call to the potential

purchaser offering goods or services for sale. This process is repeated until the

customer has selected an item or items which he wishes to purchase (see Figure

37.7). He signals this by pressing a "request payment details" button.

The call-back module then displays for him a price list. If the customer de-

cides to purchase the item(s), he then presses a "pay" button. This causes the

vendor's call-back module to display an invoice, which the customer can down-

load if he wishes.

264

 see section 8 below.

Chapter 37 AN EXAMPLE – ONLINE BANKING 360

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

6.2 Activating the Bank's Online Purchase Mechanism

At this point it is appropriate for the vendor's website module, still acting in the

customer's thread, to call the purchaser's bank to allow the payment to be author-

ised. But to do this the vendor needs access to a capability and the appropriate

semantic routine number for the bank. This raises the question: how can the pur-

chaser safely make an appropriate capability and semantic routine number avail-

able to the vendor?

On the one hand such a capability should be made available to the vendor

only after the purchaser has decided to go ahead with the transaction, but on the

other hand the flow of the transaction should not be disturbed. To achieve this,

the purchaser activates a second thread (T3) which activates the bank's call-back

module, using an online_purchase semantic routine, not the routine normally

used for straightforward online banking.

Thread T3, executing in the bank's call-back module, opens a window

which allows the user to select the capability for the vendor's call-back module

from a directory in which he has previously stored it (e.g. as a bookmark). Using

this (and a semantic routine number also provided in the window) the thread

calls a payment interface routine of the vendor's call-back module, passing to it

a capability for the bank and the number of the entry point in the bank module

which handles payments (online_purchase), see Figure 37.8.

Figure 37.7: Online Interactions between Purchaser and Vendor

Vendor Call Back Module

activates the Vendor's

Website Module via an

RIMC and requests web

pages. It receives pages

from the Vendor's Website

Module via CBCs, dis-

plays the pages and sends

further page requests.

Remote IMC

Call-Back Calls (unlimited number)

Surrogate RIMC Thread T2 at Vendor Node

(activated by Website Call-Back Module)

User Thread T1 at

purchaser's node activates

the Vendor's Call-Back

Module via a local inter-

module call.

It receives pages from the

Vendor Website Module

uses CBCs to send web

pages back to the website to

display items for sale, etc.

Stack Frames of

Thread T1

at Purchaser Node

Chapter 37 AN EXAMPLE – ONLINE BANKING 361

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Now executing in the vendor's call-back module, thread T3 must somehow

pass the bank capability and the entry point number to thread T1, which is cur-

rently suspended in the vendor's call-back module, so that this can return the

bank's capability and routine number back to thread T2 in the vendor's website

module, to enable it to call the online_purchase routine of the bank's main

module.

The technique which I suggest is that the transfer is carried out using a

simplified version of the producer-consumer algorithm
265

, in which there is a

single producer (T3) which "produces" a capability and a single consumer (T1)

which is waiting to "consume" this.

This requires a single "buffer" (which in this case is simply a single slot in

the capability partition of a segment of the call-back module and space for an

integer in the data partition). The empty semaphore is initialised to 1 and the full

semaphore to 0. T1 executes the P(full) protocol, which causes it to suspend un-

til the buffer is full. When thread T3 arrives in the vendor's call-back module it

executes the P(empty) protocol and moves the capability and integer into the

buffer segment. The nextfull and nextempty variables are not needed. The

V(empty) and V(full) operations are carried out as appropriate to ensure that

both threads can continue. At this point T3 can exit from the vendor's call-back

265

 see volume 2 chapter 8 section 12.1. Producer-consumer routines should be available in

the privileged synchronisation library routines, see chapter 21.

Figure 37.8: Passing a Bank Module Capability to the Vendor (Step 1)

Vendor Call-Back Module

activates the Vendor's Web-

site Module via an RIMC

and requests web pages.

When "pay button" pressed

T1 coordinates with T3 to

receive a capability for the

purchaser's bank module

(Figure 37.9).

Remote

IMC

Call-Back Calls

Surrogate RIMC

Thread T2 at

Vendor Node

(activated by

User Thread T1 at

purchaser's node

activates the Vendor's

Call-Back Module via a

local inter-module call.

It receives pages from the

Vendor

Website

Module

User Thread T3 at

purchaser's node

activates the Bank's Call-

Back Module via a local

inter-module call.

It receives pages from the

Vendor Call-Back Module

called by Bank's Call-Back

Module in Thread T3.

Bank's Call-Back Module

in Thread T3 obtains

capability for Vendor's

Call-Back Module and

calls it (passing the main

bank module capability)

Stack Frames of

Thread T1

at Purchaser Node

Stack Frames of

Thread T3

at Purchaser Node

Chapter 37 AN EXAMPLE – ONLINE BANKING 362

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

module. Figure 37.9 illustrates these operations.

Thread T1, operating in the vendor's call-back module, is now in a position

to pass the bank module capability and routine number as return parameters

from the call-back call to the vendor's website module and await further call-

back calls or a final return from the website module.

6.3 Making the Payment

On receiving the capability and routine number, the vendor website module, ex-

ecuting in the surrogate RIMC thread T2, uses this to make a remote inter-

module call to the purchaser's bank module (see Figure 37.10).

In addition to using the capability and semantic routine number to make the

call, it passes the following (or similar) information from the invoice as parame-

ters:

a) the account details of the vendor (e.g. in Europe the IBAN and BIC num-

bers);

b) the name of the payee (i.e. the vendor);

c) invoice number (or similar) and date;

d) the name of the purchaser.

This takes it to the semantic routine online_purchase of the main bank mod-

ule, which now receives the payment details that it requires to make the pay-

ment, but to go ahead the bank module still needs the authority of the purchaser

(i.e. the bank customer).

VENDOR'S CALL-BACK MODULE

STEP 1: Thread T1 recognises that the

purchaser has activated a "pay" button.

STEP 2: Thread T1 requests details of

the payer's bank capability and

semantic routine using P(full) request.

This causes T1 to be suspended.

STEP 3: On being reactivated after

waiting, it copies the information into

its return parameters, issues a V(empty)

and returns back to the Vendor Module.

User Thread T1 at purchaser's node

(active in a call-back call in vendor's

call-back module)

Thread T3 at purchaser's node calls

"payment" routine of vendor's call-back

module, passing a capability for the

bank module and a semantic routine

number as parameters.

STEP 1: Thread T3 claims the buffer

using a P(empty) request.

STEP 2: Thread T3 places the

parameters which it has received into

the shared buffer segment.

STEP 3: Thread T3 issues a V(full)

request, thus releasing the shared

buffer segment.

STEP 4: Thread T3 exits from the

Vendor's call-back module.

Figure 37.9: Passing a Bank Module Capability to the Vendor (Step 2)

Chapter 37 AN EXAMPLE – ONLINE BANKING 363

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The simplest way to organise this is for the bank module to prepare a pay-

ment order and display this to the customer. This can be done via a call-back call

to the bank's call-back module. However this must first contact the bank mod-

ule, and the user must be authenticated.

6.3.1 Establishing Contact between the Bank and its Call-Back Module

We left thread T3 exiting from the vendor's call-back module, and returning to

the bank's call-back module. This now makes a remote IMC to the bank module

at the bank node (see Figure 37.11). The latter can then use call-backs to display

information.

The resultant RIMC thread T5, executing in the bank module, can follow-

ing similar authentication procedures to those described in sections 5.4 to 5.6.

Once authenticated, the bank module can make a call-back call to its partner

thread T3 in the bank call-back module, allowing the purchaser (i.e. the bank

customer) to select an online purchasing page which displays the invoice to be

paid. Assuming that this is correct, the user can then click a "confirm payment"

Figure 37.10: The Vendor's Website Module calls the Bank Module

Vendor Call Back Module

activates the Vendor's

Website Module via an

RIMC and requests web

pages. When it receives

"pay" request it obtains

capability for purchaser's

bank module (Figure 37.9)

and passes this to Vendor's

Website Module.

Remote

IMC

Call-Back Calls

Stack Frames of surrogate

RIMC Thread

T2 at Vendor Node

User Thread T1 at

purchaser node activates

the Vendor's Call-Back

Module.

Vendor Website

Module

receives capability

and calls Bank

Module.

Bank Module

receives details of

payment to be

made and sus-

pends awaiting

confirmation of

payment.

Stack Frames of

Thread T1

at Purchaser Node

Remote

IMC

Stack Frames of

surrogate RIMC Thread

T4 at Bank Node

Chapter 37 AN EXAMPLE – ONLINE BANKING 364

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

button. T3 can then return from the call-back call, indicating whether the user

has logged out from the bank session or wants to continue with other online

banking.

6.3.2 Coordinating with the Vendor in the Bank Module

From the vendor's viewpoint the transaction is not complete until the vendor re-

ceives a confirmation that the payment has been made. Thread T4 provided the

details needed to pay but before he can get the necessary confirmation T5 must

confirm the payment. We now have a similar situation in the bank module to

that which occurred in the vendor's call back module (see Figure 37.9), where

the two threads (T1 and T3) needed to pass information in a synchronised man-

ner. In the present case the information is a simple confirmation/reject message

regarding which the two threads T4 and T5 must be synchronised, but this time

in the bank module. The same basic solution as shown in Figure 37.9 can be

used. In this case T5 is the producer (it produces a confirmation) while T4 is the

consumer waiting for the confirmation. Hence T5, after it has confirmed the

payment, executes a P(empty) request and places an evidence of payment in the

single buffer then executes a V(full) statement. Meanwhile T4 executes a P(full)

request, removes the confirmation from the buffer and issues a V(empty) state-

ment. T4 can then place the confirmation into a return parameter before exiting

from the bank module back to T2 in the vendor's module. This can exit back to

T1 at the purchaser's node. T5 can either carry on banking or can exit to T3 and

return.

6.3.3 Comments on the Online Shopping Approach

The user must have a SPEEDOS online banking facility on a home computer, a

smartphone or other computing device, but the solution described above does

Figure 37.11: The Bank's Call-Back Module calls the Bank Module

User Thread T3 at

purchaser's node

Bank's Call-Back Module

in Thread T3 returns from

Vendor's Call-Back

Module and calls its own

bank module partner (at

the bank node)

Stack Frames of

Thread T3

at Purchaser Node Remote IMC

Call-Back Calls

Surrogate RIMC Thread T5 at Bank Node

(activated by Bank Call-Back Module)

Bank Website Module

uses CBCs to send web

pages back to the website to

display banking pages, etc.

Chapter 37 AN EXAMPLE – ONLINE BANKING 365

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

not require registration with an outside authority or company. Nor does it re-

quire either the purchaser or the vendor to pay any "middleman" fees over and

above the normal cost associated with online banking. The only requirements

are that (a) the vendor provides two standardised interfaces for his website call-

back module, and that the bank provides a special interface routine in the main

bank module which allows vendors to present invoices for payment.

Notice also that the scheme is not limited to payments by banks. Any fi-

nancial company (e.g. a company offering a credit scheme) can use the same

model to allow its customers to make online payments to businesses (without the

necessity for passing credit card numbers around).

This example provides a good illustration of how the in-process system

works in practice in SPEEDOS. All the threads described are owned by the pur-

chaser (who is also the bank customer). On the one hand the websites visited

have the advantage from this that they can easily check the identity of the user

on whose behalf they are working. But on the other hand the user can retain con-

siderable control via the thread security register, the settings of which can be

determined by the user.

7 Direct Debit Facilities for Recurring Payments

Direct debit facilities allow payees to withdraw money directly from payers'

bank accounts. This usually means that the payer has previously provided an

authorisation which specifies a number of rules that might define the frequency,

a maximum amount per withdrawal, what happens when the payer's account

does not have sufficient funds, what fees are involved, whether and within what

time limit a the payer can re-claim an incorrect withdrawal, etc. In some systems

the payer can object to a withdrawal and can reclaim the amount withdrawn

within a specified period from the date of the withdrawal (e.g. 6 weeks in Ger-

many).

Such facilities are widely used in financial systems, especially in situations

where regular payments which vary in amount from month to month (e.g. tele-

phone bills, heating bills) must be made by private individuals to companies.

The permitted rules are usually defined by the country in which the transac-

tions are planned to take place, and transactions are normally restricted to that

country. These rules vary very substantially from country to country
266

. In view

of this and the fact that end-users are not directly involved online once the sys-

tem has been set up, I make no attempt present how a system might look in

SPEEDOS, except to say that it will obviously involve accesses to user accounts

and online transactions between banks, which can obviously be implemented in

266

 see https://en.wikipedia.org/wiki/Direct_debit

Chapter 37 AN EXAMPLE – ONLINE BANKING 366

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

SPEEDOS, and such implementations can of course take advantage of the

SPEEDOS security mechanisms.

8 Banking Cards and Mobile Banking

The conventional solution for most mobile banking activities before the advent

of smartphones was the use of debit or credit cards (which I shall refer to collec-

tively as banking cards), and these still have an established place in current

banking practice, e.g. for using at ATMs and for paying bills. Not all banking

card systems work in the same way and in some cases they are country specif-

ic
267

, so I will make some general assumptions.

A debit card is linked directly to a bank account, and it can only be used for

making payments which can immediately be fully paid from the bank account's

current credit value (including in some cases a small overdraft limit). Payments

are made immediately from the bank account, using a radio or other link to the

bank. Debit cards are usually protected by a short (mostly four digit) personal

identification number (PIN).

A credit card is linked to a credit institution, to an account which is recog-

nised from a credit card number, and payments are also operated using a radio or

other link to the credit institution
268

. The credit card holder usually receives a

monthly statement but has a credit limit, so that instead of paying the full

amount he has the option of paying a part of the debt and carrying over the rest

of the debt (on which he pays interest and fees) successively to the following

month(s).

Some credit cards have an associated 3 digit security code on the credit

card, which is known to the merchants and can be used to ensure (e.g. over the

telephone) that the user actually has the card which he claims to have.

Banking cards can be a source of problems, as we now discuss.

8.1 Some Problems with Paying by Card

One very significant issue is that cards store information needed by the bank or

credit institution to carry out the banking operations which the customer wishes

to make. On earlier cards this information (e.g. account number, withdrawal lim-

it, etc.) was recorded on a magnetic strip, which could be read by a payee with

the appropriate device. If the payer and payee were physically in the same place,

there was the added security that the card also held a visible signature of the

payer, so that the payee could convince himself of the payer's identity by com-

267

 for more details see e.g. https://en.wikipedia.org/wiki/Credit_card

 and https://en.wikipedia.org/wiki/Debit_card
268

 In earlier systems, transactions were carried out on paper using a mechanical device and

carbon paper to capture the details (including an embossed credit card number).

Chapter 37 AN EXAMPLE – ONLINE BANKING 367

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

paring this with his signature on the payment order which he signs. In later ver-

sions of banking cards the magnetic strip was replaced by a microchip. Encryp-

tion was introduced to make the process more secure.

One fundamental weakness of banking cards is that to be useful the infor-

mation on the card can be read by a device provided by banks to payees (e.g.

merchants). But if the payee's device can read the information on the card it is

clear that enterprising thieves could also find ways to read or copy the card and

use this information to steal money from the card holder's bank or credit ac-

count. Since in many cases such theft takes place without face-to-face interac-

tion, the signature on the card is also no help, and even in face-to-face interac-

tions some thieves are good forgers!

Even less secure are transfers where the payee simply provides (e.g. over

the Internet or by telephone) a credit card number. And in this case the problem

arises that when a payee receives a credit card number, he can store it for future

use. This then leads to a problem that when a business, a club, or other organisa-

tion stores credit card numbers on its computers, these become a tempting target

for thieves. Over the last decades there have been numerous examples of break-

ins to the computers of organisations which hold vast files of credit card num-

bers of their members or customers and the theft of these card numbers.

The addition of a radio facility to banking cards (contactless smart cards
269

)

is even less secure, since a clever thief can obtain the card details by holding his

reading device within distance of the radio waves, e.g. by reading the infor-

mation from the pocket of a user in a crowd or in a supermarket queue. It would

obviously be desirable therefore completely to eliminate the need for debit and

credit cards.

9 Automatic Teller Machines

When a bank customer wishes to withdraw cash from his account, it has become

the universal practice (because banks want to save on staff salaries) to use auto-

matic teller machines (ATMs). To do this the customer inserts a card into the

ATM and typically provides a four digit PIN number as verification of his iden-

tity.

As its name implies, an ATM has more or less the same functionality as a

human bank teller. Probably its most important function is to allow customers to

withdraw money but it can also be used for other functions such as transferring

money from one account to another (of the same or a different person). Hence

269

 https://en.wikipedia.org/wiki/Contactless_smart_card,

https://en.wikipedia.org/wiki/Contactless_payment, and

https://en.wikipedia.org/wiki/EMV

Chapter 37 AN EXAMPLE – ONLINE BANKING 368

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

logically it can be viewed as being similar to online banking, except that while

online banking allows a customer to transfer funds between users and also be-

tween the accounts of a user it does not provide a mechanism which allows the

customer to obtain real cash. That is perhaps the key difference from ATMs,

which have a mechanical mechanism that allows a customer to withdraw money.

The question therefore arises to what extent ATMs could follow a similar im-

plementation pattern to online banking, but with an extra cash mechanism add-

ed.

9.1 An Approach Using Cards designed for SPEEDOS Systems

There are some interesting similarities. An ATM has a display screen and a key-

board (i.e. a limited set of input keys) via which the user can input his transac-

tion requests and see the results; this is in principle similar to the online user at

his home computer or his smartphone. Is it therefore possible to envisage that

the ATM's software can have more or less the same functionality as a bank call-

back module and that the customer's transactions are managed by remote inter-

module calls from an ATM's local call-back module and the central bank mod-

ule?

In this case the software in the ATM is comparable with the call-back

module described for online banking. It can store the structural information re-

quired for display and the bank's central module can be reached via a remote

inter-module call, which returns information as a <page number, parameter list>

for display on the ATM screen.

We therefore assume that the ATM software includes a (rudimentary)

SPEEDOS system with a call-back module which is used in a similar manner to

that for online banking. However, there is a fundamental difference. Because the

ATM uses the bank's own device, the implicit checks as described in section 5.5

cannot be carried out, and the kernel's environmental instruction current_

thread_owner, which allows the online version to locate the correct customer

information, cannot be used to identify the customer. (It could however be used

to identify the ATM.)

One possibility for identifying the customer would be to fall back on a cur-

rently used mechanism (e.g. a card with a PIN number – but preferably with a

much wider choice of PIN values!) and to use the information stored in the

card's microchip (which could include the customer's unique SPEEDOS identifi-

er). I regard this as a fallback solution, for the case that banks are unhappy about

the following alternative proposal.

9.2 An Approach without the Use of Cards

A better alternative, in my view, is simply to drop the implicit checks described

Chapter 37 AN EXAMPLE – ONLINE BANKING 369

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

in section 5.5 but to carry out (a) a check that the request is from a recognised

ATM and (b) to follow similar procedures to those described in sections 5.6.1

and 5.6.2. The aim is still to satisfy both the bank and the customer about the

validity of the ATM user's identity and in this case to allow the bank to discover

the customer's unique SPEEDOS identification, which can then be used to ac-

cess his accounts, etc.

Notice that the apparent alternative of initially requesting the ATM user to

provide his unique identifier alone at the start of an ATM session is not ade-

quate, because this is not kept secret. It can be used as part of the identification

process to locate the (alleged) user's records (see section 4.7) but further proof is

needed for the bank to be sure that the ATM user is who he claims to be. The

bank can then devise its own identity tests, which can vary from customer to

customer and might, for example, include a PhotoTAN or similar procedure.

After the bank checks have succeeded it is desirable that the bank software

should also use the customer's own authentication module to ensure that the user

is really who he claims to be. In this way the user of the ATM cannot gain ac-

cess to the bank accounts without passing the real checks provided by the user

himself. This should make the use of ATMs more secure than is presently the

case with checks which simply rely on a card that uses only a short PIN number.

10 Conclusion

This chapter has illustrated how a secure banking system might be organised,

specifically with respect to bank accounts and to online transactions. Many other

file modules would be needed (e.g. to list the customers who have safe deposit

boxes, to organise telephone banking, to pay staff salaries, etc.) to complete the

system.

I have restricted the discussion largely to online mechanisms using home

computers and smartphones, because this is where I see the future of banking

systems. In most situations smartphones will probably largely replace the use of

card based payment systems, which, as I have indicated in section 8.1, are inher-

ently insecure. It would of course be possible for card based payment methods to

be integrated into SPEEDOS, along similar lines to those proposed for ATMs.

This could perhaps be organised by providing merchants who want to use pay-

ment cards with a device into which cards are inserted which, as I suggested for

ATMs, would in effect have an in-built rudimentary SPEEDOS call-back mech-

anism in which the card user identifies himself using a PIN in combination with

a unique user identifier, or preferably a mechanism whereby a simple user au-

thentication module (e.g. with a dynamically changeable PIN) could play a role.

Our purpose, as in the entire book, has not been to provide a complete and

Chapter 37 AN EXAMPLE – ONLINE BANKING 370

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

detailed specification of a system, but rather to indicate the main facilities avail-

able to a software designer in a SPEEDOS system and to show how they can be

used in practice. It would be the function of the designer of a specific system to

consider how the SPEEDOS protection mechanisms (including for example

module capabilities, the thread security register, bracket routines, call-back

module, the environmental checks, etc.) can best be used in his system design,

whether in a banking system or some other system. Finally it is worth recalling

in the banking and other contexts that all Internet communication between

SPEEDOS computers is automatically encrypted by the kernel, and that all

SPEEDOS discs are also automatically encrypted.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Chapter 38

Making Life Difficult

for Hackers

In this concluding chapter we recall some of the key ideas in SPEEDOS which

are not found in other operating systems/kernels. These are the main ideas which

help to explain why I consider that SPEEDOS systems will be considerably

more secure than operating systems which are based on conventional computer

designs.

1 The Hardware and Related Features

As the first volume explained in considerable detail, the hardware modifications

required to support a SPEEDOS kernel appear to be fairly trivial but are abso-

lutely essential. The key difference is in the way that the virtual memory is or-

ganised and addressed. Without this, it would be extremely difficult to have an

efficient SPEEDOS system.

1.1 The Orthogonal Segmentation and Paging Model

Chapter 11 of volume 1 explains this model, which combines logical segments

and physical pages in such a way that these two units for implementing virtual

memory are almost completely independent of each other. From the efficiency

viewpoint all accesses to the memory are paged, but from the viewpoint of the

user (and of the compiler) all information is held in segments, without the one

being dependent in a direct way on the other. Page boundaries do not determine

where segment boundaries are placed, and segment boundaries do not determine

where page boundaries occur.

This may at first sight appear to be just a matter of efficiency – and it does

imply that in this respect SPEEDOS will be more efficient than systems which

use a conventional paging or paged segmentation scheme. But that is not the key

issue. This scheme makes it possible in practice to support both very short seg-

ments and very long segments not only efficiently but also in such a way that

Chapter 38 MAKING LIFE DIFFICULT FOR HACKERS 372

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

memory protection can be equally well applied to both, since the memory pro-

tection scheme works at the level of segmentation – regardless of segment size.

This crucial factor means that small segments can contain significant protection

information, including capabilities, and that access to these can be controlled

exclusively by the kernel, thus laying the fundamental basis for security, protec-

tion and privacy. Conventional schemes for segmentation and/or paging are not

able to do this.

1.2 Segment Registers

A crucial further step is the introduction segment registers. Segments can be ac-

cessed only via segment registers. These are hardware-based addressing regis-

ters which allow the hardware to check a program's right to access a segment

and the mode of this access during program execution. In conventional systems

such checks normally use information stored in page tables, thus restricting the

minimum size on which protection can be applied to an entire physical page. In

SPEEDOS this restriction does not exist, making it much easier to apply protec-

tion to logical segments, regardless of their size.

Segment registers can only be loaded and manipulated by the kernel, thus

making it possible in SPEEDOS to eliminate conventional segment tables com-

pletely. Instead SPEEDOS uses protected pointers to organise the logical struc-

ture of programs and data, e.g. as linked lists. This simplifies both the address

translation hardware and the structuring of software. And above all it allows the

kernel to support protected capabilities, as will be discussed shortly.

1.3 Persistent Virtual Memory

SPEEDOS realises the concept of direct addressability, which was an aim of the

Multics project, and extends the idea such that a separate file system is entirely

eliminated; all information, whether persistent or temporary, is held in the virtu-

al memory. Once again this increases the efficiency of the system, because only

one set of mechanisms is required to manage the persistent memory, for which

the main memory is simply seen as a "cache". Apart from the efficiency ad-

vantage of this approach, a single uniform set of security mechanisms applies, in

contrast with conventional systems, where separate mechanisms are needed in

the conventional virtual memory and in the file system.

1.4 Distributed Persistent Virtual Memory

The next significant step is the application of the same persistent virtual memory

concept to all SPEEDOS computers throughout a network (including the Inter-

net). This is achieved in practice primarily by allowing inter-module calls –

which are the heart of the SPEEDOS protection mechanisms – to be made to

modules at remote SPEEDOS nodes in a network. This has the effect that a sin-

Chapter 38 MAKING LIFE DIFFICULT FOR HACKERS 373

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

gle set of mechanisms applies for SPEEDOS computers throughout an entire

network.

1.5 Encryption of the Virtual Memory

The final unusual aspect of the virtual memory is that all information transferred

between SPEEDOS computers across a network is automatically encrypted, and

similarly all information stored on disc is likewise encrypted. Thus unencrypted

information appears only in the main memory.

2 Some Key Kernel and Operating System Features

The next step is to review how the SPEEDOS kernel makes life very difficult for

would be hackers.

2.1 The Information Hiding Module Structure

All software units in SPEEDOS are constructed as modules. These consist of a

code part, which has multiple entry points, and (optionally) a data structure part.

Together these can model any software structure in conventional systems.

The most common form of module is a file module, i.e. a module consist-

ing of (a) a persistent data structure and (b) a number of routines which provide

semantic services for the data structure. The only way of accessing the data

structure from outside the module is via its semantic routines, which have prede-

fined functionality. This alone is a hindrance to hackers, as we now show.

In conventional systems a capable hacker can write a program which di-

rectly accesses the information of interest to him stored in a file in the file sys-

tem as Figure 38.1 illustrates.

This is not possible in SPEEDOS because the file data can only be accessed via

its semantic routines, as Figure 38.2 shows.

At a more technical level, what prevents direct access to the file is that this

nowhere appears in a directory, in contrast with conventional systems. The issue

then becomes: How can a hacker attempt to find the data which he wishes to ac-

cess. This issue is discussed in section 2.3, but first we must consider a special

potential risk.

Figure 38.1: Hacking a File in Conventional Systems

Illegal Access
Hacker

Program
User File

Chapter 38 MAKING LIFE DIFFICULT FOR HACKERS 374

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2.2 Free Capabilities

In section 2.1 we ignored one possibility which a hacker might attempt to use in

his attempts to by-pass the security of a system, viz. free capabilities. These al-

low a thread to call a module which is given read access to the root data struc-

ture of a different module (see chapter 18 section 8, chapter 19 sections 13.5 and

14) and this will undoubtedly be a mechanism which hackers try to use to their

advantage. However, the misuse of free capabilities can easily be prevented by

the owner of a file unsetting the capability use right "Free Cap") as is described

in chapter 26 section 2. Once a right has been unset, the kernel will under no

circumstances permit it to be reset. An aid for programmers which helps them

not to forget this issue is described in section 2.7.

2.3 Directories and their Structures

In conventional systems directories are part of the file system and as such have a

predefined structure which is certainly known to hackers and helps them to lo-

cate the information to which they seek access. But this is not necessarily the

case in SPEEDOS.

As is described in chapter 30, directories in SPEEDOS are simply modules

which can be designed and implemented like any other module. One implication

of this is that a SPEEDOS node which is likely to become a target for hackers

can design and implement its own directory modules in any way that it chooses.

These need not contain the same entry structures nor offer the same services in

their semantic routines nor even use a standard set of entry point numbers for

obtaining these services.

This alone makes life difficult for a hacker, but even more security is of-

fered by the fact that the semantic routines of user-written directories can them-

selves contain checks to ensure that hackers cannot reach the information for

which they are searching. For example they might contain environmental checks

(see chapter 26) which examine the unique identities of the owners of the

threads calling them against a list of users permitted to access them (which

might also list the individual entries which these users are permitted to access).

Alternatively – and more flexibly – they can place such checks in bracket rou-

Figure 38.2: The File Information is protected by the Semantic Routines

Illegal Access
Hacker

Program

I

Ba-

Over

Ac-

Ac-
User

File X

Chapter 38 MAKING LIFE DIFFICULT FOR HACKERS 375

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tines (to be discussed later).

Perhaps most significantly, a careful user can embed the capabilities for his

more sensitive data in segments of his normal user programs (e.g. those which

need access to the sensitive files). This makes them virtually unfindable for a

hacker who does not have insider information.

2.4 Capabilities

Capabilities are the fundamental key for accessing information in a SPEEDOS

system. This means that protecting them is a very important issue. As we have

just seen, directly protecting capabilities held in directories can make life very

difficult for hackers. But this does not mean that they are entirely safe.

The biggest insider risk is that a user who has legitimate access to a capa-

bility either carelessly or knowingly passes copies of this to unauthorised per-

sons. The system has a number of mechanisms which can help to prevent this

from happening. For example the capability itself contains a substantial number

of metarights which can be used to prevent or limit the further distribution of

capabilities, including restrictions which prevent the passing of capabilities be-

tween users, between different kinds of segments of a user and/or between dif-

ferent nodes. A restriction can also be applied that a capability can only be used

once (and is then invalidated). A special mode is also provided to restrict a di-

rectory from accessing the capabilities stored in it. These are just a sample of the

available controls over capabilities, which are described in detail in chapter 26.

If a hacker does somehow obtain a capability, the kernel ensures that he

cannot increase the rights to allow him greater access than the capabilities al-

ready contain, since this is a general rule for all rights.

But the hacker who has gained access to a capability can read the unique

module number of the module addressed by the capability (by copying the capa-

bility to a data segment). From this he could then try to find the file module be-

hind the capability. On an inter-module or similar call the kernel finds the mod-

ule (which it recognises as a file module from the type field in the capability) by

first establishing the number of the container in which the module is located,

and reading in its page 0. From this he obtains the start address of the module's

data root by examining the container's Co-Module Table. These are all internal

kernel operations which cannot be imitated by a hacker unless he can turn on

privileged mode and thus access the kernel's tables (including making a disc ac-

cess). There is no way that a hacker could achieve this under normal circum-

stances and so we conclude that even a knowledge of the capability's content

will probably not help him.
270

270

 Kernel security is discussed in section 3.

Chapter 38 MAKING LIFE DIFFICULT FOR HACKERS 376

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2.5 Controlling Access and Confining Information and Capabilities

Even if a hacker manages to gain access the system his access can be severely

restricted (and he may be detected before he can steal data) by means of bracket

routines (see chapter 24). These are a very flexible tool for use against hackers.

For example call-in brackets can be used to record information about the callers

of a bracketed module, to reject calls and even to serve as decoys which feed

false information back to hackers calling the module. They can also monitor the

information (including capabilities) which is being passed back to a calling

module and either deliberately falsify this information or invalidate the capabili-

ties (and even replace them with capabilities for decoy modules). Similarly call-

out modules can examine the information (including capabilities) which a mod-

ule is illegitimately passing on to a further module. Thus bracket routines (of

both types) can easily be used to confine information.

2.6 The Process Structure

In order to execute code on a SPEEDOS system a hacker needs a thread which

executes his code. But before this is even possible he must develop and install a

code module which the thread can call. And then he needs a process module. All

these stages present him with difficulties if he is not an accredited user at the

node concerned, since the process and thread creation mechanism only works on

a local node. SPEEDOS provides no mechanisms for simply writing code which

can then be executed.

If in a multi-user system a hacker tries to highjack a persistent thread be-

longing to another user, he will have great difficulties in logging in (provided of

course that the user has taken the trouble to use some carefully designed authen-

tication modules, which are tailor-made to suit his needs, see chapter 22 section

11). His first problem is that there is no central repository of authorisation in-

formation which he can target (in contrast with conventional systems) and these

is no standard procedure to be followed when logging in (again in contrast with

conventional systems). Consequently he has no standard starting point for carry-

ing his hacking operations.

And even if he succeeds in hijacking one thread, the user can protect each

of his threads in a different way.

2.7 Environmental Information

A fundamental difference between SPEEDOS and conventional systems is that

SPEEDOS requires each user to have a worldwide unique identity. This is stored

in a place accessible only to the kernel in each container which a user creates

(including process containers). Software in normal modules, including bracket

routines, can check this (provided that they have an appropriate kernel capabil-

Chapter 38 MAKING LIFE DIFFICULT FOR HACKERS 377

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ity) and so identify the user executing the current thread or the owner of the cur-

rently active module (or of the module which called this, or the module about to

be called, etc.). This mechanism can be used in a straightforward way to check

access permissions, but it can also be used to identify hackers (or discover

whose threads they have hijacked) and to identify spammers, etc.

2.8 Simplifying the Setting of Rights

One of the risks which might face users is that they make a mistake in the unset-

ting of rights, e.g. in capabilities and in the Thread Security Register. This could

lead to serious problems, for example if a user forgets to unset the "Free Cap"

right (see section 2.2 above) in a capability which falls into the hands of a hack-

er.

Although the following solution is not a part of the kernel it is strongly ad-

vised that the developers of a SPEEDOS operating system should provide a

carefully thought out set of template masks, i.e. bit patterns which can be used to

"and out" access rights in capabilities and in the Thread Security Register. These

should represent typical patterns of usage in common situations and be given

easily understandable names. They could be stored in a module which is public-

ly accessible via a set of semantic routines which accepts a capability (or a bit

string representing the TSR) as an input parameter, and return this capabil-

ity/TSR string) with appropriately reduced rights as a returned value. The name

of each routine should reflect that of the mask which it uses (e.g. unsetFreeCap

or setFreeCapOnly). Such a mechanism, which is carefully designed, would

not only be of assistance to users
271

 but would also make the system more se-

cure.

3 Securing the Kernel

The discussion so far has assumed that the kernel at a node being attacked by

hackers is completely secure. Under what conditions can this assumption be re-

alised?

3.1 Correct and Accurate Code

So far we have assumed that the kernel code is both correct and accurate. Since

no formal specification exists for the kernel there can be no formal proof that it

correctly fulfils a specification. It would of course be good if such a specifica-

tion and proof were to exist, and I would certainly welcome any attempt to

achieve this.

However, I consider it more important that the code is accurate, i.e. it does

271

 This is my response to Lampson's rather negative comments in [29], where he points out

that users see the management of security as a "pain" (see chapter 5, section 7.2).

Chapter 38 MAKING LIFE DIFFICULT FOR HACKERS 378

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

what it is intended to do, nothing more and nothing less. Formalists will argue

that this is impossible without a specification. However, the whole purpose of

this book has been to explain the intention behind SPEEDOS. Parts of the de-

scription may be unclear and some details have not been completely stated, but I

feel confident that readers who carefully study the text will understand my inten-

tions, and although some details will have to be filled in by implementers, I am

confident that an accurate implementation can be achieved.

Of course an implementation of the kernel code must be exhaustively tested

and only released when the results of tests are repeatedly positive, and after a

professional hacker team has attempted to discover errors.

3.2 Secure Installation of the Code

It would be problematic if at a node which claims to be a SPEEDOS node the

code is not a true version of the SPEEDOS kernel. In order to prevent this from

happening (to the MONADS-PC, forerunner of SPEEDOS) a technique was de-

vised which uses public key encryption to ensure that a system can be safely

booted by the correct kernel [24].

3.3 Human Aspects

The least secure part of any operating system, including a SPEEDOS system,

will almost certainly be the human element. Users can accidentally or deliberate-

ly introduce errors in the settings for the capabilities which they distribute to

others or in their settings for the Thread Security Register, etc., and these might

lead to security breaches.

Companies, public utilities, government espionage agencies, etc. might de-

liberately place their own employees in positions of trust at target nodes, so that

they can provide these with insider information. Thus there can be no guarantee

that any system is totally secure.

But SPEEDOS at least provides tools which can be used to minimise any

damage, e.g. by extensive use of bracket routines to log activity on sensitive

modules and to inhibit the transfer of information using confinement techniques

described in Part 6, including the use of settings in capabilities, the Thread Secu-

rity Register and the container confinement rights which can, for example, pro-

hibit the sending of information and the use of remote inter-module calls to oth-

er SPEEDOS nodes.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 APPENDIX

Formats of Some

SPEEDOS Structures

1 A Worldwide Unique Virtual Address

The main fields are subdivided into subfields as is indicated below. Some bits

are spare.

2 Subfields of a Node Number

3 Subfields in a Disc Number

A physical disc can have up to 15 partitions (logical discs). If the partition field

is all zeros, the disc number refers to the disc as a whole or to its initial "parti-

tion".

4 Subfields in a Container Number

The index field in a SPEEDOS container number indicates a data or code mod-

ule number or a thread number within the container, as indicated by the type

field of a capability.

The type field uses three bits, with the following meanings:

{kernel, data, code, thread, process, disc, container}

Node Number Disc # in Node Address in Container

A SPEEDOS Full Virtual Address

Container # in Disc

64 bits

256 bits

64 bits 64 bits 64 bits

Manufacturer

Number
Node in Manufacturer

A SPEEDOS Node Number

56 bits

64 bits

8 bits

Disc # in Node

A SPEEDOS Disc Number

64 bits

Partition

in Disc

4 bits 60 bits

Appendix FORMATS OF SOME SPEEDOS STRUCTURES 380

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

A further bit indicates whether the capability is INVALID.

The status bits consist of two bit pairs (the capability origin bits and the copy

restriction bits), as described in chapter 26 section 3.4.

5 Subfields in a Within Container Address

This allows for a container to be up to 4 TB in length, which would allow an

entire 4 TB disc to be viewed as a single container.

6 A Virtual Page Number used by the ATU to Translate Short Container

Addresses

To enable a conventional address translation unit to be used, the page number

presented to the ATU is a 32 bit "page number", consisting of a 3 bit SCID

(Short Container Identifier) and the Page Number within Container:

The proposed values for the SCID are as follows.

7 The Main Memory Page Table

In view of the size of modern main memories the hardware TLB (Translation

Lookaside Buffer) will probably not be large enough to hold an entry for each

page currently in main memory, so that this is supplemented by a Main Memory

A SPEEDOS Container Number

Container # in Disc

64 bits

48 bits 8 bits

Index

8 bits

Type and
Status bits

A SPEEDOS Within Container Byte Address

13 bits

64 bits

29 bits

Page# in Container Byte Offset in Page Spare

22 bits

The Page Number Presented to the ATU

Page# in Container SCID

29 bits 3 bits

000 identifies the process address space of the currently active thread.

001 to 011 identify the currently active code address spaces, i.e. for the

 main code address space and up to two active code libraries.

100 to 111 identify up to four data address spaces.

A Possible Allocation of Short Container Identifiers

Appendix FORMATS OF SOME SPEEDOS STRUCTURES 381

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Page Table (MMPT) held in the kernel.

8 Segment Structure

A segment holds user information in 3 segment partitions: a data area, a list of

pointers to other segments in the same container and a list of module capabili-

ties. It is addressed via a (protected) segment register, which addresses the base

of the data area. The data area is directly addressed via a segment register.

Immediately below the data area is a red tape area, which can only be accessed

by the kernel, using negative addresses from the base of the data area. It consists

of two 64-bit words:

Each entry in the segment pointer list consists of a 63 bit pointer and a one bit

'read only' indicator (NOTE: a segment must begin on a 2 word boundary and

the 'read only' bit is set to 0 when loaded into a segment register.)

The kernel provides special instructions (a) to load and store segment pointers in

An Entry in the Main Memory Page Table

Virtual Page

Number

Lock

Count

Disc

Address

Use

Bit

Change

Bit

RO

Bit
SCID

EX

Bit

negative offsets into pointer list

(adjusted for red tape)

Partitioned Segment
positive

offsets Segment Register

Data Area

Data Length

Count of Capabilities

Module Capability List

SPEEDOS Partitioned Segments

Count of Pointers

Segment Pointer List

negative offsets into capability list

(adjusted for red tape and length of pointer list)

Red Tape Area

Unique Segment Identifier

The Red Tape Area of a Segment

Length of Data Area pointer

count

unique segment

identifier

42 bits 16 bits 32 bits

 modcap

count

16 bits

Appendix FORMATS OF SOME SPEEDOS STRUCTURES 382

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the segment pointer list, and (b) to access, store and use module capabilities in

the module capability list.

9 Data Segment Registers

Users can only address memory segments via segment registers. 16 such regis-

ters exist for addressing data.

SCID: short container identifier.

Start Offset in Container: Because segments begin on a word boundary, the 42

bit byte address defining the start address of the container can each be reduced

to 39 bits. The hardware treats these as word addresses.

Segment Length: Similarly the length of a segment is also rounded up to a full

word.

Access Rights: One bit is used to mark the segment register as invalid, one to

mark the register as read only (or read-write) and one indicates whether the reg-

ister values can be stored (see for example chapter 20 section 6.2.1)

10 Code Segment Register

A single code segment register is used to address code segments.

Access Rights: One bit is used to mark the segment register as invalid, one to

mark the register as execute only or execute and read and one is spare. The latter

might be used for example to indicate kernel use or main memory addresses.

11 Capabilities

The full container identifier consists of the first three 64-bit words defined in

sections 1 to 4 above.

A Data Segment Register

Start Offset

in Container

Length/

Limit

Access

Rights
SCID

3 bits 3 bits 39 bits 39 bits

The Code Segment Register

Start Offset

in Container

Length/

Limit

Access

Rights
SCID

39 bits 3 bits 39 bits 3 bits

A SPEEDOS Capability

329 bits

Full Container

Identifier

Semantic

Rights

Generic

Rights

Environmental

Rights

CA & Use

Rights

Meta

Rights

Confinement

Rights

32 bits 192 bits 7 bits 24 bits 8 bits 54 bits 12 bits

Appendix FORMATS OF SOME SPEEDOS STRUCTURES 383

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The remaining fields are based on the discussion of security mechanisms in

chapters 24 to 26. They can be implemented in three 64-bit words as follows:

Thus the Full Container Identifier field and the Access Rights field in a capabil-

ity are each 3 words long and the entire capability is 6 words long. Note: It

would be possible to move the index field and the type and status bits from the

container number into the access rights of the capability, and still leave a few

bits spare.

12 Semantic Rights

These rights indicate on an individual basis which entry points to a module can

be called using the capability. The first sixty two bits define up to 62 semantic

routines which can be called. In addition there are two bits which allow the list

to be overridden by the following special bit settings:

00 = none, i.e. no semantic routine can be called;

01 = all, i.e. all the semantic rights can be called;

10 = read only, i.e. only enquiries can be called;

11 = use the list of 62 semantic rights.

The first three of these are useful shortcuts for users. For modules which have

less than 62 semantic rights the unused bits are set to 0.

Bracket routines are not considered to be semantic routines and can never be

invoked directly. However, if an executing bracket routine presents a capability

to call a module, the above rules apply as normal to the call which it is attempt-

ing to make.

Access Rights in a SPEEDOS Capability

Semantic

Rights

Generic

Rights

Meta

Rights

Confinement

Rights

64 bits 7 bits 54 bits 12 bits

11 bits

S Spare

3 bits
64 bits

Environmental

Rights

26 bits

CA & Use

Rights

8 bits

18 bits

64 bits 64 bits
192 bits

Semantic Rights in Capabilities

Bit List in which each semantic routine

is represented by a single bit
Special (2 bits)

Appendix FORMATS OF SOME SPEEDOS STRUCTURES 384

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

13 Metarights

The metarights in capabilities are explained in chapter 26 section 3.3.

14 Generic Rights

The generic rights are explained in chapter 26 section 3.2.

The principles underlying these confinement rights the subject of chapter 25.

15 Capability Accessibility and Use Rights

Metarights in Capabilities

General/Once Only Permissions for Foreign Owner

General/Once Only Permissions for Same Owner

General/Once Only Permissions for Foreign Node Owner

General

Once

Only

General

Once

Only

General

Once

Only

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

File

Copy

In Param

Copy

Out Param
Copy

Free

Cap
Calls

Duplicates Read

Dir Print

Generic Access Rights in Capabilities

Download Copy with

owner change
Rename Change Owner

Upload Copy Delete

Module Call Confinement Rights

Restricting Calls Param

Calls
Nonparam

Calls
Comod

Calls
Sync

Calls
Calls Const

Calls

Capability Accessibility and Use Rights: An Overview

ThreadMan

Cap
Thread

Cap
SIO

Cap
Free

Cap
SegMan

Cap
Admin

Cap
Owner

Cap
Print

Cap

Appendix FORMATS OF SOME SPEEDOS STRUCTURES 385

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The capability accessibility and use rights are described in chapter 26 section 2.

The capability accessibility rights define which capabilities can be obtained by a

thread via kernel instructions (see chapter 19 section 5 and chapter 26 section 2.

It is not sufficient for a thread to execute capability accessibility instruction on

the basis of the rights in a capability. The appropriate right must also be set in

the Thread Security Register (see below) and a kernel capability must also be

presented with this right set.

The rights conferred in the final three use bits can only be used if they are set in

the capability.

16 Environmental Rights

This is a bit list with 26 permissions. These indicate which of the kernel's envi-

ronmental instructions can be executed from within the module by threads exe-

cuting in it. As in the case of the capability accessibility rights a it is not suffi-

cient for a thread to execute an environmental instruction (see the list in chapter

26 section 1) on the basis of the rights in a capability. The appropriate right must

also be set in the Thread Security Register (see below) and a kernel capability

must also be presented with this right set.

17 Confinement Rights

Environmental Rights

QLM

Current

Mod

Calling
Mod

Target
Mod

Current
ModOwn

Calling
ModOwn

Target
ModOwn

Calling

Rights

Env

Environmental Rights for Application Modules

Current
QLM

Calling
QLM

Target
QLM

Current
QLMOwn

Calling
QLMOwn

Target
QLMOwn

QLM

Env

Environmental Rights for Qualifiers

Calling
Mod

Target
Mod

Calling
QLM

Target
QLM

Calling
ModOwn

Target
ModOwn

Calling

Rights

Calling
QLMOwn

Target
QLMOwn

Information Confinement Rights

File File

Write

Return
Params

Cap

Out

Return
Cap

Restricting the Use of Parameters

Restricting the Use of Persistent Data

Appendix FORMATS OF SOME SPEEDOS STRUCTURES 386

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The confinement rights are in two parts. The first of these is concerned with

confining information which is available in a module to that module. The second

is concerned with restricting the kinds of calls available to a thread while it is

active in a module, based on the type of the origin segment of the capability be-

ing used to make the call.

18 The Thread Security Register (TSR)

The TSR is a register (normally implemented in software at the base of a

thread's stack) which is part of the state of an active thread and therefore, like

the container registers, is copied into and retrieved from the stack linkage seg-

ments on an inter-module call and similar calls and on thread switches. It is only

available for kernel access and is used to restrict the activities of a thread.

The TSR has four groups of rights, each of which has a primary section and a

secondary section containing the same rights fields. The principles on which it

works are described in chapter 26 section 4.

The TSR is implemented in two 64 bit words.

19 The Thread Control Rights

For an explanation of the individual Thread Control Rights see chapter 26 sec-

tion 4. Note that those thread control rights coloured red are only relevant to sys-

Module Call Confinement Rights

Restricting

Calls

Param

Calls
Nonparam

calls
Comod

calls
Sync

calls
Calls Const

Calls
Call-Back

calls

The Thread Control Register

Primary

Thread Controls
Primary

Confinement

Primary

Environmental

Primary

CA & Use

Spare

The Thread Control Register Word 1: The Primary Controls

13 bits 12 bits 26 bits 8 bits

64 bits

Secondary

Thread Controls
Secondary

Confinement

Secondary

Environmental

Secondary

CA & Use

Spare

The Thread Control Register Word 2: The Secondary Controls

13 bits 12 bits 26 bits 8 bits

64 bits

5 bits

Thread Control Rights

Mail FTP Other

Internet
Web-

sites

Foreign

Code Caps
Foreign

Thread Caps
Remote

Node
Foreign

Calls
Foreign

File Caps
Down-

load
Up-

load
Sub-

threads
Call-

Backs

5 bits

Appendix FORMATS OF SOME SPEEDOS STRUCTURES 387

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tems which allow communication with and access to non-SPEEDOS nodes (see

chapter 34 section 7.3.2).

20 The Confinement Rights

These are the same as those listed in section 17. There are twelve individual

rights in each section.

21 The Environment Rights

These are the same as those listed in section 16. There are eleven individual

rights in each section.

22 The Capability Accessibility and Use Rights

These are the same as those listed in section 15. There are eight individual rights

in each section.

23 The Container Confinement Rights

The container confinement rights determine whether information in a container

can be transferred to another node via a download or upload, whether they can

be used by a thread the owner of which is not the owner of the container and

whether they can be used by a thread belonging to another node which has been

transferred temporarily to the current node following a remote inter-module call.

These rights are held in page 0 of each container, but neither in module capabili-

ties nor the Thread Security Register.

Container Confinement Rights

Foreign

Upload
Foreign

Thread
Imported

Thread
Foreign

Download

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 References

[1] J. L. Keedy, “S-RISC: Adding Security to RISC Computers,” SPEEDOS

Website (https://www.speedos-security.org/), 2023.

[2] B. W. Lampson, “Protection,” ACM Operating Systems Review, vol. 8, no.

1, pp. 18-24, January 1974.

[3] J. L. Keedy, M. Evered, A. Schmolitzky and G. Menger, “Attribute Types

and Bracket Implementations,” in 25th International Conference on

Technology of Object Oriented Systems, TOOLS 25, Melbourne, 1997.

[4] K. Espenlaub, Design of the SPEEDOS Operating System Kernel, Ulm,

Germany: Ph.D. thesis, The University of Ulm, Department of Computer

Structures, Computer Science Faculty, 2005.

[5] J. Rosenberg, The Concept of a Hardware Kernel and its Implementation on

a Minicomputer, Melbourne: PhD thesis, Monash University, Department

of Computer Science, 1979.

[6] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson and F.

Pollack, “HYDRA: The Kernel of a Multiprocessor Operating System,”

Communications of the ACM, vol. 17, no. 3, pp. 336-345, 1974.

[7] J. L. Keedy, TIMOR-An Object- and Component Oriented Language, 2020.

[8] J. L. Keedy, G. Menger and C. Heinlein, “Inheriting from a Common

Abstract Ancestor in Timor,” Journal of Object Technology, vol. 1, no. 1,

pp. 81-106, May-June 2002.

[9] A. K. Jones, “Capability Architecture Revisited,” ACM Operating Systems

Review, vol. 14, no. 3, pp. 33-35, 1980.

[10] Cypress Semiconductor, SPARC RISC User's Guide, 2nd ed., 1990.

[11] B. Freisleben, Mechanismen zur Synchronisation paralleler Prozesse

(1985), Darmstadt: PhD Thesis, Technical University of Darmstadt,

Germany, 1985.

[12] B. Freisleben, Mechanismen zur Synchronisation paralleler Prozesse,

Springer Informatik Fachberichte 133, 1987.

[13] R. Conradi, “Some Comments on Concurrent Readers and Writers,” Acta

Informatica, vol. 8, pp. 335-340, 1977.

[14] R. H. Campbell and A. N. Habermann, “The Specification of Process

Synchronisation by Path Expressions,” in Operating Systems, an

International Symposium, Rocquencourt, 1974.

[15] D. P. Reed and R. K. Kanodia, “Synchronization with Eventcounts and

Sequencers,” Communications of the ACM, vol. 22, no. 2, pp. 115-123,

1979.

[16] J. L. Keedy and B. Freisleben, “On the Efficient Use of Semaphore

Primitives,” Information Processing Letters, vol. 21, no. 4, pp. 199-205,

 REFERENCES 389

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1985.

[17] J. L. Keedy, J. Rosenberg and K. Ramamohanarao, “On Synchronising

Readers and Writers with Semaphores,” The Computer Journal, vol. 25, no.

1, pp. 121-125, 1982.

[18] J. L. Keedy and B. Freisleben, “Priority Semaphores,” The Computer

Journal, vol. 32, no. 1, pp. 24-28, 1989.

[19] J. L. Keedy, K. Ramamohanarao and J. Rosenberg, “On Implementing

Semaphores with Sets,” The Computer Journal, vol. 22, no. 2, pp. 146-150,

1979.

[20] F. A. Henskens, A Capability-Based Persistent Distributed Shared Memory,

Newcastle NSW, Australia: Ph.D. thesis, University of Newcastle NSW,

Department of Computer Science, 1991.

[21] J. Rosenberg, J. L. Keedy and D. Abramson, “Addressing Mechanisms for

Large Virtual Memories,” The Computer Journal, vol. 35, no. 4, pp. 369-

375, 1992.

[22] D. A. Abramson, Computer Hardware to Support Capability Based

Addressing in a Large Virtual Memory, Melbourne: Ph.D. thesis, Monash

University, Dept. of Computer Science, 1982.

[23] P. J. Denning, “The Working Set Model for Program Behaviour,”

Communications of the ACM,, vol. 11, no. 5, pp. 323-333, 1968.

[24] B. Freisleben, P. Kammerer and J. L. Keedy, “Capabilities and Encryption:

The Ultimate Defence Against Security Attacks?,” in Proceedings of the

International Workshop on Computer Architectures to Support Security and

Persistence, 1990.

[25] D. A. Abramson and J. L. Keedy, “Implementing a Large Virtual Memory

in a Distributed Computing System,” in Proceedings of the 18th Hawaii

International Conference on System Sciences, 1985.

[26] J. L. Keedy and J. V. Thomson, “Command Interpretation and Invocation in

an Information Hiding System,” in Proceedings of the IFIP TC-2

Conference on the Future of Command Languages: Foundations for

Human-Computer Communication, Rome, Italy, 1985.

[27] R. M. Needham, “Capabilities and Security,” in Security and Persistence,

International Workshop on Computer Architectures to Support Security and

Persistence of Information, Bremen, Germany, 1990.

[28] K. Lee, Shared virtual memory on loosely coupled multiprocessors, New

Haven, CT 06520, USA): Ph.D. thesis, Yale University Department of

Computer Science, 1986.

[29] B. W. Lampson, “Computer security in the real world,” IEEE Computer,

vol. 37, no. 6, pp. 37-46, 2004.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Bibliography

Abramson, D. A. (1982). Computer Hardware to Support Capability Based Ad-

dressing in a Large Virtual Memory. Melbourne: Ph.D. thesis, Monash Universi-

ty, Dept. of Computer Science.

Abramson, D. A. & Keedy, J. L. (1985). Implementing a Large Virtual Memory

in a Distributed Computing System. Proceedings of the 18th Hawaii Internation-

al Conference on System Sciences, (pp. 515-522).

Campbell, R. H. & Habermann, A. N. (1974). The Specification of Process Syn-

chronisation by Path Expressions. Operating Systems, an International Sympo-

sium (pp. 89-102). Rocquencourt: Springer.

Conradi, R. (1977). Some Comments on Concurrent Readers and Writers. Acta

Informatica, 8, 335-340.

Cypress Semiconductor. (1990). SPARC RISC User's Guide (2nd ed.).

Denning, P. J. (1968). The Working Set Model for Program Behaviour. Com-

munications of the ACM,, 11(5), 323-333.

Espenlaub, K. (2005). Design of the SPEEDOS Operating System Kernel. Ulm,

Germany: Ph.D. thesis, The University of Ulm, Department of Computer Struc-

tures, Computer Science Faculty.

Freisleben, B. (1985). Mechanismen zur Synchronisation paralleler Prozesse

(1985). Darmstadt: PhD Thesis, Technical University of Darmstadt, Germany.

Freisleben, B. (1987). Mechanismen zur Synchronisation paralleler Prozesse.

Springer Informatik Fachberichte 133.

Freisleben, B., Kammerer, P. & Keedy, J. L. (1990). Capabilities and Encryp-

tion: The Ultimate Defence Against Security Attacks? Proceedings of the Inter-

national Workshop on Computer Architectures to Support Security and Persis-

tence, (pp. 106-119).

Henskens, F. A. (1991). A Capability-Based Persistent Distributed Shared

Memory. Newcastle NSW, Australia: Ph.D. thesis, University of Newcastle

NSW, Department of Computer Science.

Jones, A. K. (1980). Capability Architecture Revisited. ACM Operating Systems

Review, 14(3), 33-35.

Keedy, J. L. (2020). TIMOR-An Object- and Component Oriented Language.

Keedy, J. L. & Freisleben, B. (1985). On the Efficient Use of Semaphore Primi-

tives. Information Processing Letters, 21(4), 199-205.

Keedy, J. L. & Freisleben, B. (1989). Priority Semaphores. The Computer Jour-

 BIBLIOGRAPHY 391

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

nal, 32(1), 24-28.

Keedy, J. L. & Thomson, J. V. (1985). Command Interpretation and Invocation

in an Information Hiding System. Proceedings of the IFIP TC-2 Conference on

the Future of Command Languages: Foundations for Human-Computer Com-

munication. Rome, Italy.

Keedy, J. L., Evered, M., Schmolitzky, A. & Menger, G. (1997). Attribute

Types and Bracket Implementations. In C. D. Mingins (Ed.), 25th International

Conference on Technology of Object Oriented Systems, TOOLS 25, (pp. 325-

337). Melbourne.

Keedy, J. L., Menger, G. & Heinlein, C. (2002, May-June). Inheriting from a

Common Abstract Ancestor in Timor. Journal of Object Technology, 1(1), 81-

106.

Keedy, J. L., Ramamohanarao, K. & Rosenberg, J. (1979). On Implementing

Semaphores with Sets. The Computer Journal, 22(2), 146-150.

Keedy, J. L., Rosenberg, J. & Ramamohanarao, K. (1982). On Synchronising

Readers and Writers with Semaphores. The Computer Journal, 25(1), 121-125.

Lampson, B. W. (1974, January). Protection. ACM Operating Systems Review,

8(1), 18-24.

Lampson, B. W. (2004). Computer security in the real world. IEEE Computer,

37(6), 37-46.

Lee, K. (1986). Shared virtual memory on loosely coupled multiprocessors. New

Haven, CT 06520, USA): Ph.D. thesis, Yale University Department of Comput-

er Science.

Needham, R. M. (1990). Capabilities and Security. In J. Rosenberg & J. Keedy

(Ed.), Security and Persistence, International Workshop on Computer Architec-

tures to Support Security and Persistence of Information (pp. 3-8). Bremen,

Germany: Springer.

Reed, D. P. & Kanodia, R. K. (1979). Synchronization with Eventcounts and

Sequencers. Communications of the ACM, 22(2), 115-123.

Rosenberg, J. (1979). The Concept of a Hardware Kernel and its Implementation

on a Minicomputer. Melbourne: PhD thesis, Monash University, Department of

Computer Science.

Rosenberg, J., Keedy, J. L. & Abramson, D. (1992). Addressing Mechanisms for

Large Virtual Memories. The Computer Journal, 35(4), 369-375.

Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., et al. (1974).

HYDRA: The Kernel of a Multiprocessor Operating System. Communications

of the ACM, 17(3), 336-345.

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Acknowledgements

I would like to thank all my PhD students who have either directly contributed

to the design of SPEEDOS, or indirectly via the MONADS design and imple-

mentations. Key contributions were made by the following.

MONADS Design and Implementations

The original work on MONADS was carried out at Monash University and the

University of Newcastle, NSW in Australia primarily in conjunction with my

following former PhD students:

– John Rosenberg, who later became Professor at the University of Sydney,

Dean of the Information Technology Faculty at Monash University, Deputy

Vice-Chancellor at the Universities of Deakin and then Latrobe.

– Kotagiri Ramamohanarao, later Professor of Computer Science at the

University of Melbourne; Head of Computer Science and Software Engineer-

ing, Head of the School of Electrical Engineering and Computer Science at the

University of Melbourne and Research Director for the Cooperative Research

Centre for Intelligent Decision Systems.

– David Abramson, later Professor and Head of Department at Monash Uni-

versity, then Director of Research at the Research Computer Centre of the Uni-

versity of Queensland (Co-supervisor Professor Chris Wallace).

– Frans Henskens, later Associate Professor at the University of Newcastle,

NSW; Head of the Discipline of Computer Science and Software Engineering,

Deputy Head of School of Electrical Engineering and Computer Science, Assis-

tant Dean (IT) in the Faculty of Engineering and Built Environment and subse-

quently Professor in the Faculty of Health and Medicine at the University of

Newcastle (Supervisor Prof. John Rosenberg).

Further Work on Operating Systems Design

During my period as Professor of Operating Systems at the University of Darm-

stadt in Germany some advanced synchronisation techniques were developed for

MONADS by my PhD student

– Bernd Freisleben, later Professor of Distributed Systems at the University

of Marburg in Germany.

At the University of Bremen in Germany the following contributed further ideas

to the design of operating systems and database systems:

– Karin Vosseberg, later Professor of Software Technology at the Universi-

ty of Applied Sciences, Bremerhaven in Germany and Deputy Director for

Study and Teaching.

 ACKNOWLEDGEMENTS 393

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

– Peter Brössler, later a manager in various software companies and then a

Freelance Management Adviser in Munich, Germany.

Engineering Support for the MONADS Systems

Special mention is due on the engineering side to David Koch at Monash Uni-

versity and the University of Newcastle, and to Jörg Siedenburg at the Universi-

ties of Bremen and Ulm.

Design of SPEEDOS

Many important contributions to SPEEDOS were made by my PhD student

– Klaus Espenlaub, now Software Development Director, Oracle VM Vir-

tualBox, Oracle Corporation.

Design of Timor

In parallel with the SPEEDOS Project I led a programming language design pro-

ject for an object-oriented language called Timor (Types, Implementations and

More) at the University of Ulm. Since an important aim of this project was to

provide a programming language suitable for implementing SPEEDOS, there

was much interaction between the SPEEDOS project and the members of the

Timor team, to whom my thanks are also due for their indirect and direct contri-

butions to the SPEEDOS ideas.

The main members of the Timor team were

– Mark Evered, later Senior Lecturer at the University of New England,

NSW Australia and Researcher at the Department of Primary Industries NSW.

– Axel Schmolitzky, later Professor at the University of Applied Sciences,

Hamburg, Germany.

– Gisela Menger, now retired.

– Christian Heinlein, later Professor at the University of Applied Sciences,

Aalen, Germany and Dean of Studies.

I would also like to thank all the students who worked on MONADS, SPEEDOS

and/or Timor.

My work has been supported over the years by several competent secretaries,

and my special thanks in this respect are due to Renate Post-Gonzales for organ-

ising the 'International Workshop on Computer Architectures to Support Securi-

ty and Persistence' in Bremen in 1990.

Thanks are also due to the Australian Research Grants Committee for their fi-

nancial support of the MONADS Project at Monash and Newcastle.

Above all I am enormously grateful for the love, patience and support which I

have received from my wife Ulla and also from my son Nicolas.

	Table of Contents
	List of Figures
	Preface
	Part 5 The Basic Kernel Design
	Chapter 17 A Modular Kernel Design
	1 Kernel Support for In-Process Design at the Application Level
	2 Modularity via Co-Modules
	3 Kernel Use of Co-Modules
	4 Composite Modules
	5 Functions Delegated to Co-Modules
	5.1 Co-Module Management
	5.2 Segment Management
	5.3 Virtual Page Table Management
	5.4 Qualifier List Management
	5.5 Debugging Modules

	6 The Kernel User Interface
	7 Kernel Modules and Processes
	8 Cut, Copy and Paste
	9 Conclusion

	Chapter 18 Module Variants and their Invocation
	1 Kinds of Data Associated with a Module
	1.1 Inter-Module Linkage Data and Parameters
	1.2 Persistent Data
	1.3 Temporary Data
	1.4 Retained Data

	2 Kinds of Module
	2.1 File
	2.2 Openable File
	2.3 Program

	3 Types and Implementations
	4 Implementing Programs
	5 Creating the Different Kinds of Data
	5.1 Creating Temporary Data
	5.2 Creating Persistent (File) Data
	5.3 Creating and Deleting Retained Data

	6 Library Modules
	6.1 Libraries in Hierarchical Systems
	6.2 Library Routines as Information Hiding Modules
	6.3 Library Calls: Espenlaub's Solution
	6.4 The New SPEEDOS Solution: Library Calls
	6.5 Evaluation

	7 Cooperating Co-Modules
	7.1 Application Co-Modules
	7.2 Passing Segments as Parameters
	7.3 Kernel Co-Modules
	7.4 Co-Module Calls, Library Calls and White Box Functionality

	8 Free Capabilities
	8.1 N-ary Operations on Files
	8.2 File Conversion
	8.3 Precautionary Measures with Free Capabilities

	9 Call Back Calls
	9.1 Inter-Module Call Back Calls
	9.2 Library Call Back Calls

	10 Conclusion

	Chapter 19 Containers and their Contents
	1 Container Identifiers
	2 Container Red Tape
	3 Using Containers for Multiple Purposes
	4 Segment Management
	4.1 Segment Structure

	5 Distributing Standard Capabilities
	6 Virtual Page Table Manager
	7 Data Files, the Co-Module Manager and the Co-Module Table
	8 Creating File and Program Modules
	9 Organising Code Files
	9.1 Entry Point Lists
	9.2 Inter Module Calls, Co-Module Calls and Library Calls
	9.3 Bracket Entry Point Lists
	9.4 Internal Entry Point Lists
	9.5 Subthread Entry Point Lists
	9.6 Return Instructions

	10 Organising Process Files
	11 Multiple types in a Single Container
	12 Creating a New Container
	12.1 Preparing the Security-Sensitive Co-Modules
	12.2 Protecting the Code Capabilities for Security-Sensitive Modules
	12.3 Constructing the Initial Data
	12.4 The Container Manager newContainer Routine
	12.5 The Disc Directory Manager
	12.6 Installing the Co-Module Manager
	12.7 Installing the Remaining Security Sensitive Modules
	12.8 Creating Normal Modules

	13 Copying Containers
	13.1 Fundamental Copying Issues in a SPEEDOS Environment
	13.2 Temporary Backup of a Container (e.g. while Editing a File)
	13.3 "Simple" File-to-File Copying
	13.4 Page by Page Copying
	13.5 N-ary Copying of a Container
	13.6 Archival Backup
	13.7 Other "Copying" Requirements

	14 Converting Modules to a Different Format
	15 Deleting Containers
	16 Renaming Containers and Modules
	17 Changing the Ownership of a Container

	Chapter 20 Managing User Processes
	1 Processes and Threads
	2 Process Containers and Co-Modules
	3 Thread States
	4 The Thread Manager Co-Module
	4.1 Thread Stacks

	5 Application Level Multithreading
	6 Parameter Passing Strategy
	6.1 Espenlaub's Attempt to Adapt a RISC Strategy
	6.2 The New SPEEDOS Strategy
	6.2.1 Parameter Segment Registers
	6.2.2 Restrictions on Parameters for Inter-Module Calls and Returns

	6.3 Library Calls and Co-Module Calls

	7 Storing/Restoring Registers on Calls
	7.1 Segment Registers
	7.2 General Purpose Registers
	7.3 Floating Point Registers
	7.4 Code Registers

	8 Kernel Call Instructions
	8.1 Inter-Module Calls
	8.2 New Thread Calls
	8.3 Library Calls
	8.4 Co-Module Calls
	8.5 Inter-Module Call-Back Calls
	8.6 Inter-Module and Other Returns

	9 Linkage Information Stored on an IMC
	9.1 Calling Programs
	9.2 Library Calls and Co-Module Calls
	9.3 Inter-Module Call Message Blocks
	9.4 Library Module Call Backs

	10 Internal Calls

	Chapter 21 Synchronisation
	1 Implementing Mutual Exclusion
	1.1 Suspending and Activating Threads
	1.2 Organising Thread Capabilities
	1.3 Implementing Semaphores with Thread Capabilities
	1.4 Creating Queues
	1.5 Informing the TCM of the Activation of its Thread?
	1.6 Delegating Queuing to the Library Module?
	1.7 The Final Solution
	1.8 Summarising the Queuing Operations
	1.8.1 The Suspend Operation
	1.8.2 The Activate Operation

	2 Applying DECT/TINC to Other Problems
	3 Semaphores for Different Classes of User Threads
	3.1 Reader-Writer Semaphores
	3.2 Priority semaphores

	4 Set Semaphores
	4.1 Resource Sets
	4.2 Waiting Thread Sets
	4.2.1 How Waiting Thread Sets Work

	4.3 Applying Set Semaphores in SPEEDOS

	5 Summary

	Chapter 22 Thread and Process Scheduling
	1 The Kernel's Role in User Thread Scheduling
	2 The User Thread Scheduler
	2.1 Interrupt Handling at the UTS Level

	3 Scheduling Parameters
	4 Managing Real Interrupts in the Kernel
	4.1 Synchronous Interrupts
	4.2 Asynchronous Interrupts

	5 Kernel Instructions
	6 Kernel Processes
	6.1 Rosenberg's MONADS Approach
	6.2 Espenlaub's SPEEDOS Approach
	6.3 The New SPEEDOS Solution

	7 Scheduling Kernel Processes Automatically
	7.1 The Automatic Scheduling Mechanism
	7.2 The Scheduling Algorithm
	7.3 Managing the Buffers
	7.4 Passing Interrupts to the User Thread Scheduler

	8 Kernel Interactions with Co-modules
	8.1 Sharing Co-module Data
	8.2 Surrogate Threads

	9 Handling Synchronous Interrupts
	9.1 Page Faults and Related Interrupts
	9.2 User Errors and Security Violations

	10 Handling Asynchronous Interrupts
	10.1 Espenlaub's Proposal for Handling Asynchronous I/O Interrupts
	10.2 Handling Input-Output Operations In-Process
	10.2.1 In-Process Device Drivers
	10.2.2 Handling the Interrupt
	10.2.3 Activating Related Threads
	10.2.4 Adding New Devices to a Running System

	10.3 Device Management
	10.4 Handling Interactive Interrupts

	11 User Commands to the Kernel
	12 Long Suspending Processes
	12.1 Logging Out
	12.1.1 TCM Actions in Preparation for Long Suspensions
	12.1.2 User Thread Scheduler Actions for Long Suspending Threads

	12.2 Logging In in a Multi-User System
	12.2.1 Handling an Unexpected (Asynchronous) Keyboard Interrupt
	12.2.2 The Kernel's Login Process
	12.2.3 The Login Surrogate Threads

	12.3 Logging In in a Single User System
	12.4 Logging In (the User Thread Level)

	13 Scheduling Real Time Systems

	Chapter 23 Virtual Memory Management at a Single Node
	1 Hardware Translation of Virtual Addresses
	1.1 Managing the Number of Main Memory Page Table Entries
	1.2 Managing the Width of TLB Entries
	1.2.1 TLBs Supporting Only a Single Address Space

	1.3 The Main Memory Page Table
	1.4 Mapping SPEEDOS Container Numbers onto SCIDs

	2 The Local Virtual Memory
	2.1 Virtual Memory Message Blocks
	2.2 The Layout of Information on Disc
	2.3 Organising the Page Tables
	2.4 Security Sensitive Co-modules and the Virtual Page Tables

	3 Structuring the Page Tables of a Container
	3.1 Small Files
	3.2 Large Files
	3.3 Page Tables for a Process Container
	3.4 Which Page Tables are Needed in a Particular Container?
	3.5 Organising the Page Tables
	3.6 Page Table Code
	3.7 The Disc Directory

	4 Resolving TLB Faults and Page Faults
	4.1 Handling a TLB Fault
	4.2 Handling Page Faults
	4.3 Locking Down Page 0 of a Disc Directory
	4.4 Page Faults Arising on an Inter-Module (or Similar) Call
	4.5 Locking Page 0 for the Process Container
	4.6 The Page Fault Interrupt Process
	4.7 The Virtual Memory Process and the Disc Processes
	4.7.1 Request the User Thread Scheduler to Suspend the Faulting Thread
	4.7.2 Availability of a Page Frame for the Faulting Page
	4.7.3 Accessing the Appropriate Disc Directory
	4.7.4 Accessing the First Page of the Faulting Container
	4.7.5 Reading the Missing Page into the Main Memory

	5 Allocating Space on Discs and Segment Management
	5.1 Creating Segments
	5.2 Deleting Segments
	5.3 Segment Manager Requirements

	6 Creating a Container
	6.1 The Kernel's new_container Instruction
	6.2 Preparing the New Container for Use

	7 Copying a Container
	7.1 The Kernel's copy Instruction
	7.2 The Page by Page Copy Mechanism

	Part 6 Security Mechanisms
	Chapter 24 Qualifiers with Bracket Routines
	1 Basic Principles of SPEEDOS Qualifiers
	1.1 Timor Qualifiers
	1.2 Call-in and Call-out Brackets in SPEEDOS
	1.3 Multiple Qualifications
	1.4 Sequencing of Bracket Routines with Qualifier List Modules
	1.5 Qualifier List Modules
	1.6 Bracket Routines and Parameters

	2 An Overview of the Execution of Bracket Routines
	3 Managing Bracket Parameters:
	3.1 Managing Input Parameters in Bracket Routines
	3.2 Return Parameters
	3.3 Access to Parameters in Routines which are not Specifically Named

	4 Implementing Bracket Routines
	4.1 Handling Inter-Module Calls
	4.2 Summarising the Handling of Brackets
	4.3 How the Kernel Obtains Bracket Information from QLMs
	4.4 Acquiring General Bracket Routine Info from a QLM Thread
	4.5 Controlling the Execution of the Bracket Routines
	4.6 Managing the Linkage
	4.7 The QLM Thread Provides Information about a Bracket Routine
	4.8 Executing a Bracket Routine
	4.9 Executing Body and Call Instructions
	4.10 The Postlude Phase
	4.11 Executing an Inter-Module Call in a Bracket Routine
	4.12 A Bracket Routine Executes a Bracket Return in its Prelude

	5 Bracket Routines and Free Capabilities
	5.1 Free Capability Brackets
	5.2 Effects of Free Parameter Bracket Routines on a User Thread Stack

	Chapter 25 The Confinement Problem: Some Principles
	1 Information Channels
	1.1 Persistent Data Segments
	1.2 Temporary Data Segments
	1.3 Code Segments
	1.4 Communication Channels Relevant to the Confinement Problem

	2 Bracket Routines
	2.1 Call-Out Brackets
	2.2 Call-In Brackets

	3 Information Confinement Rights
	3.1 Restricting the Use of Parameters
	3.2 Controlling Access to Persistent Information

	4 Module Call Confinement Rights
	4.1 The Permit Calls Right
	4.2 The Permit Constant Calls Right
	4.3 The Permit Non-Parameter Calls Right
	4.4 The Permit Parameter Calls Right
	4.5 The Permit Co-Module Calls Right
	4.6 The Permit Synchronisation Calls Right
	4.7 Note on Library Calls

	5 Conclusion

	Chapter 26 Some Confinement and Access Controls
	1 Environmental Checks
	1.1 Checking Application Modules
	1.2 Checking Bracket Routines
	1.3 Rights for Environmental Checking

	2 Capability Accessibility and Use Rights
	3 Rights in Capabilities
	3.1 Semantic Rights
	3.2 Generic Rights
	3.3 Metarights and the 'Copy Cap' Kernel instruction
	3.3.1 The 'Copy Cap' Instruction
	3.3.2 The General and Once Only Permissions for Using a Capability
	3.3.3 Directory Mode

	3.4 Status Bits
	3.4.1 The Capability Origin Status Bits
	3.4.2 The Capability Copy Restriction Status Bits

	3.5 Confinement Rights and Environmental Rights
	3.6 The Capability Accessibility Rights

	4 The Thread Security Register
	4.1 The Thread Control Rights
	4.2 Understanding the Rights in the TSR
	4.3 Primary and Secondary Confinement Rights
	4.4 Distinguishing Controlled from Uncontrolled Capabilities
	4.5 Examining and Reducing Rights in the TSR

	5 Container Confinement
	6 Utility Programs
	6.1 Examining New Code Files for Hidden Capabilities
	6.2 Assistance in Setting Rights in Capabilities

	Part 7 Basic Networking
	Chapter 27 Partitioning and Relocating Discs
	1 Partitioning Discs
	2 Moving Discs from one Computer to Another
	2.1 Preventing Unauthorised Access to Information on Disc
	2.1.1 Accessing a Disc on an Unauthorised SPEEDOS Computer
	2.1.2 Encrypting Pages on Discs
	2.1.3 Encrypting the DAL

	2.2 How Authorised Users can Access the Content of a Moved Disk
	2.3 Resolving Page Faults on a Locally Mounted Foreign Disc
	2.4 Accessing Moved Discs which were Created at the Current Node

	Chapter 28 Accessing the Internet
	1 Accessing the Internet
	2 Remote Paging
	3 Remote Inter-Module Calls
	3.1 An Overview of RIMC Handling at the Client Node
	3.2 An Overview of RIMC Handling at the Server Node

	4 Decisions Affecting the Interface between Client and Server Nodes
	4.1 The Thread Control Manager and the Synchronisation Library
	4.2 Handling an IMC called by an RIMC (Surrogate) Thread
	4.3 Handling an RIMC made by an RIMC (Surrogate) Thread
	4.4 What About the Thread Security Register?

	5 Communication between the Client and Server Nodes
	5.1 The Request to make an RIMC
	5.2 The Confirmation
	5.3 The Completion

	6 Surrogate Threads for Advising the Thread Control Manager
	7 Remote Call-Back Modules
	7.1 Remote Call-Back Calls
	7.2 Handling the CBC at the Calling Node (Node B)
	7.3 Handling the CBC at the Called Node (Node A)
	7.4 Bracket Routines
	7.5 Application of Call-Back Routines
	7.6 Call-Backs at a Single Node

	8 The Network Process
	9 A Note on Remote Login
	10 Further Networking Activities Relevant to the Kernel

	Chapter 29 Locating and Transferring Objects in the Internet
	1 Locating Moved Discs
	2 Moving and Locating Containers
	2.1 The Revocation Option
	2.2 The Re-Use Option
	2.3 A Possible Optimisation

	3 Downloading and Uploading of Containers
	3.1 Downloading
	3.1.1 Downloading at the Accepting Node
	3.1.2 Downloading at the Origin Node

	3.2 Uploading
	3.2.1 The Uploading Procedure

	3.3 Encryption
	3.4 Website Assistance

	Part 8 A Secure Operating System
	Chapter 30 Capabilities and Directories
	1 Handling Capabilities
	1.1 Examining Capabilities
	1.2 Creating Capabilities for New Containers and Modules
	1.3 Distributing Capabilities
	1.4 Changing the Ownership of a Container
	1.5 Restricting Capability Distribution
	1.6 Deleting Capabilities
	1.7 Administering Capabilities
	1.8 Revoking Capabilities
	1.9 Reducing Access Rights

	2 Directories
	3 A Basic Directory
	3.1 A Directory Module
	3.2 A Directory Entry
	3.3 Extending a Basic Directory

	4 Hierarchical Directory Structures

	Chapter 31 Users and Processes
	1 Creating a New User
	2 Creating a New Process and its Threads
	2.1 Creating the Process
	2.2 Installing the New Process as a New User
	2.3 Creating the Initial Thread for the New User
	2.4 Creating Further Threads
	2.5 Creating Subthreads
	2.6 Passing Parameters to Subthreads
	2.7 Deleting Threads and Subthreads

	3 The Initial Capabilities of a New User
	3.1 Root Modules which are not Directories
	3.2 Root Modules which are Directories
	3.2.1 Access to Public Software
	3.2.2 Access to Capabilities shared with the Creator
	3.2.3 Private Modules
	3.2.4 Simpler Cases

	4 Different Kinds of Processes and Threads
	4.1 Interactive Threads
	4.2 Multiple Processes

	5 Communication between Processes
	5.1 Sending Capabilities
	5.2 Receiving Capabilities
	5.3 Deleting Capabilities Already Placed in a Foreign Directory
	5.4 Receiving a Copy of the Capability's Content

	6 Is the Communication Secure?
	7 Mutually Suspicious Users
	8 Further Mail Refinements
	9 Distributed Email and File Systems
	9.1 A Distributed Email System Using Remote Inter-Module Calls
	9.2 Retrieving Emails from other Nodes
	9.3 An Advantage of the Above Design

	Chapter 32 Command Languages, Name Management and Graphical Interfaces
	1 Command Languages
	1.1 Ad Hoc Commands
	1.2 The SPEEDOS Solution
	1.3 SPEEDOS Command Language Interpreters

	2 Translating Numbers into Symbolic Names
	2.1 The Module Capability
	2.2 The Names of Semantic Routines
	2.3 Passing Parameters to Semantic Routines
	2.4 Alternative Template Managers
	2.5 The CLI as a Module Tester

	3 Other Naming Modules
	4 Graphical User Interfaces
	4.1 The Graphical Devices
	4.1.1 The Visual Display Screen Set
	4.1.2 The Pointer Device
	4.1.3 The Keyboard

	4.2 Graphical Libraries
	4.3 A Possible SPEEDOS Graphical Interface
	4.3.1 Gaining Access to the Graphics Devices
	4.3.2 When Should a Desktop for a New User be Set Up?
	4.3.3 The Login Procedure Re-Visited
	4.3.4 Setting Up a Desktop
	4.3.5 Handling Multiple Activities
	4.3.6 Other Desktop Windows
	4.3.7 Composite Windows

	4.4 Some Technical Aspects
	4.4.1 A Basic Approach
	4.4.2 Displaying Directories and their Contents
	4.4.3 Interpreting Mouse Clicks
	4.4.3.1 Following the Pointer
	4.4.3.2 Managing the Desktop
	4.4.3.3 Thread Activity and Mouse Movements

	4.4.4 Application Windows

	4.5 An Example: Directory Windows
	4.5.1 A Question of Privacy and Security
	4.5.2 Creating a New Module
	4.5.3 Activating Modules
	4.5.4 Returning Results

	5 Concluding Remarks

	Chapter 33 I/O Devices and Spooling
	1 Device Drivers
	2 Device Allocation
	2.1 Deadlocks

	3 Spooling – The Basic Principle
	4 Spooling – The SPEEDOS Approach
	4.1 Spooling Files, Interfaces and Drivers
	4.2 An In-Process Spooling Architecture
	4.2.1 Each User provides his own Spooler Thread(s) for each Printer
	4.2.2 How Can Print Requests be Handled Fairly?
	4.2.3 Printer Scheduling Modules and User Spooler Threads

	4.3 The Print Request Module
	4.4 After the Print File has been printed
	4.5 Scheduling Equivalent Printers
	4.6 The Print Request Module
	4.7 Simplifications for Single-User Systems
	4.8 Additional User Facilities

	5 Security Aspects of Spooling in SPEEDOS
	5.1 Checking the Right to Print
	5.2 Securing the User's Information
	5.3 Securing Print File Capabilities
	5.4 Securing the Capability for the Print Request Module
	5.5 Securing the Capability for the Print Scheduler Module
	5.6 Securing the Confinement of Information and Preventing Unauthorised Access by the Spooler Software
	5.6.1 Confining the Print Scheduler Module
	5.6.2 Confining the Printer Interface Module and the Printer Driver Module
	5.6.3 How Can the Capabilities for the Spooler Modules Be Restricted?

	5.7 A Concluding Note on Security Settings

	6 Other Devices

	Chapter 34 A Secure Internet?
	1 The Basic Functionality of the Internet
	1.1 Transmission Control Protocol/Internet Protocol
	1.2 Ports
	1.3 Secure Transfers
	1.4 Email Protocols
	1.5 HyperText Transfer Protocol
	1.6 Domain Name System
	1.7 World Wide Web
	1.8 Hypertext Markup Language
	1.9 The Cloud

	2 Browsers
	2.1 Browsers and Malware
	2.2 Browsers and SPEEDOS

	3 Implementing SPEEDOS Websites
	4 Email in SPEEDOS
	4.1 Delivering S-Mail
	4.2 S-mail by Remote Inter-Module Call or by Content
	4.3 Appearance of S-Mails
	4.4 S-Mail Security
	4.5 S-mail Attachments

	5 A SPEEDOS Architecture for Managing Conventional Internet Activities
	6 Accessing non-SPEEDOS Websites
	6.1 Cookies

	7 Email Programs
	7.1 Current Email Programs in Current Systems
	7.2 Using Conventional Email in SPEEDOS Systems
	7.2.1 A SPEEDOS System Internet Mail Module

	8 Kernel Mechanisms for Accessing the Internet
	8.1 Handling Requests from the Network Process
	8.2 Listening for Messages from another SPEEDOS Node
	8.3 The Listener Mechanism

	9 Protecting SPEEDOS and Its Users from the Internet
	9.1 Kernel Instructions
	9.2 Managing the Lengths of Messages Received over the Internet
	9.3 Security Measures
	9.3.1 Protecting Access to the Internet
	9.3.2 Thread Security Register Settings
	9.3.3 Bracket Routines
	9.3.4 Checking Information from the Internet
	9.3.4.1 The Firewall Module

	10 Search Machines and Similar
	11 Concluding Remarks

	Chapter 35 Secure Website Applications
	1 The Basic SPEEDOS Networking Mechanisms
	2 How a SPEEDOS Website Operates
	2.1 Using Custom-Built SPEEDOS Call Back Modules
	2.2 Using Standard Call-Back Modules with Library Routines
	2.3 SPEEDOS Bookmarks
	2.4 Must a Search Machine crawl?

	3 Conclusion

	Chapter 36 Mandatory Access, Rule Based Systems and Computer Administration
	1 A Bell-LaPadula System
	1.1 The Bell-LaPadula Rules
	1.2 The Subjects File
	1.3 The Objects Qualifier Modules
	1.4 Conclusion

	2 Retaining Control of a System
	2.1 Retaining Control in a Business System
	2.2 Retaining Control in a Multi-User Discretionary System
	2.3 Managing Forgotten Passwords

	3 Resource Management and Exceeding Rations
	3.1 Disc Usage
	3.1.1 Counting the Pages Used
	3.1.2 Counting the Number of Disc Accesses

	3.2 CPU Time Usage
	3.3 Printer Usage
	3.4 Internet Usage
	3.5 Remote Inter-Module Call Resource Usage
	3.6 Charging for Resource Usage
	3.7 Run-Time Monitoring

	4 Initialising a New System
	5 Closing Down and Restarting a System
	6 Handling a System Crash

	Chapter 37 An Example – Online Banking
	1 Software Structures
	2 The Framework of a Conventional Design
	3 The Effects of Technological Changes on the Conventional Approach
	3.1 Batch Processing Systems
	3.2 Online Terminals for Bank Staff
	3.3 Automatic Teller Machines
	3.4 Online Customer Banking
	3.5 Online Banking from Smartphones
	3.6 The Fundamental Problem

	4 Using the SPEEDOS Approach
	4.1 A Bank Account File
	4.2 Protecting Access to the Semantic Routines
	4.3 How Many Bank Account Files?
	4.4 Collections of Bank Accounts
	4.5 Using the More Traditional Approach
	4.6 Different Kinds of Bank Accounts
	4.7 Customer Information

	5 Online Banking
	5.1 A SPEEDOS Online Banking Architecture
	5.2 The Call-Back Module
	5.3 The Relationship between Bank Modules and Call-Back Modules
	5.4 Starting Online Banking
	5.5 Implicit Checks
	5.6 Explicit Checks: Identifying the Customer
	5.6.1 The Bank's Identification Procedure
	5.6.2 The Customer Checks

	5.7 Displaying the Information

	6 Online Shopping and Services
	6.1 The Basic Scenario
	6.2 Activating the Bank's Online Purchase Mechanism
	6.3 Making the Payment
	6.3.1 Establishing Contact between the Bank and its Call-Back Module
	6.3.2 Coordinating with the Vendor in the Bank Module
	6.3.3 Comments on the Online Shopping Approach

	7 Direct Debit Facilities for Recurring Payments
	8 Banking Cards and Mobile Banking
	8.1 Some Problems with Paying by Card

	9 Automatic Teller Machines
	9.1 An Approach Using Cards designed for SPEEDOS Systems
	9.2 An Approach without the Use of Cards

	10 Conclusion

	Chapter 38 Making Life Difficult for Hackers
	1 The Hardware and Related Features
	1.1 The Orthogonal Segmentation and Paging Model
	1.2 Segment Registers
	1.3 Persistent Virtual Memory
	1.4 Distributed Persistent Virtual Memory
	1.5 Encryption of the Virtual Memory

	2 Some Key Kernel and Operating System Features
	2.1 The Information Hiding Module Structure
	2.2 Free Capabilities
	2.3 Directories and their Structures
	2.4 Capabilities
	2.5 Controlling Access and Confining Information and Capabilities
	2.6 The Process Structure
	2.7 Environmental Information
	2.8 Simplifying the Setting of Rights

	3 Securing the Kernel
	3.1 Correct and Accurate Code
	3.2 Secure Installation of the Code
	3.3 Human Aspects

	APPENDIX Formats of Some SPEEDOS Structures
	1 A Worldwide Unique Virtual Address
	2 Subfields of a Node Number
	3 Subfields in a Disc Number
	4 Subfields in a Container Number
	5 Subfields in a Within Container Address
	6 A Virtual Page Number used by the ATU to Translate Short Container Addresses
	7 The Main Memory Page Table
	8 Segment Structure
	9 Data Segment Registers
	10 Code Segment Register
	11 Capabilities
	12 Semantic Rights
	13 Metarights
	14 Generic Rights
	15 Capability Accessibility and Use Rights
	16 Environmental Rights
	17 Confinement Rights
	18 The Thread Security Register (TSR)
	19 The Thread Control Rights
	20 The Confinement Rights
	21 The Environment Rights
	22 The Capability Accessibility and Use Rights
	23 The Container Confinement Rights

	References
	Bibliography
	Acknowledgements

