

To

my wife Ulla

for helping me through difficult times

and for all the support and encouragement

which she has given me.

SPEEDOS:

Making Computers Secure

volume 1

James Leslie Keedy

 i

Table of Contents

Table of Contents.. i

List of Figures ... viii

Preface ... xi

Part 1 Introductory Concepts .. 1

Chapter 1 Computer Security: an Ongoing Problem 2

1 Complexity and Simplicity ... 7

2 The Role of Computer Architecture ... 10

Chapter 2 Basic Security Concepts ... 13

1 Lampson's Matrix ... 13

1.1 Subjects and Objects ... 14

2 Unique Names... 15

2.1 Hierarchical Names .. 15

2.2 Timestamps ... 19

3 Access Rights .. 19

3.1 Basic Access Rights .. 19

3.2 Semantic Access Rights.. 20

3.3 Generic Access Rights .. 23

3.4 Metarights ... 23

3.5 Mandatory Access Controls ... 23

3.6 Discretionary Access Controls ... 24

4 Implementing Lampson's Matrix .. 24

4.1 Capability Lists ... 25

4.2 Access Control Lists ... 27

4.3 Differences Between ACLs and C-Lists .. 28

Chapter 3 More Security Concepts ... 31

1 The Confinement Problem .. 31

2 Rule-Based Access Rights .. 32

3 The Access Rule Model .. 33

4 The Bell-LaPadula Security Model .. 35

5 The Biba Security Model .. 37

6 Protection Domains .. 38

Chapter 4 External Security Threats .. 39

1 Threats from Outside .. 39

2 Avoiding Eavesdropping .. 41

 ii

3 Encryption of Information on Disc ... 44

4 Authentication of Users .. 45

5 Password Systems ... 45

6 Improving the Security of Passwords ... 46

6.1 Password Length ... 46

6.2 Range of Characters .. 46

6.3 Complicated Password Requirements .. 47

6.4 Dynamic Passwords .. 47

6.5 Cognitive Passwords ... 48

6.6 Required Actions .. 48

7 Alternatives to Passwords ... 49

7.1 Plastic Cards or Other Similar Objects ... 49

7.2 Personal Characteristics .. 49

8 A Fundamental Weakness .. 49

Chapter 5 Internal Security Threats and Weak Mechanisms 51

1 Threats at the Program Level .. 51

1.1 Bugs .. 52

1.2 Viruses .. 52

1.3 Worms ... 52

1.4 Trojan Horses.. 52

1.5 Direct Attacks ... 53

2 Security as a Compiler Issue... 53

3 Security as an Architectural Issue .. 56

4 Security as an Operating System Issue ... 57

5 Privileged Mode .. 58

6 Security Kernels .. 59

7 Inadequate Security Policies ... 60

7.1 The Superuser Role .. 60

7.2 Simplistic Access Control Policies ... 61

7.3 The Authenticity of Logged in Users ... 62

8 Gathering the Evidence ... 62

9 Too Many Cooks .. 63

Part 2 Basic Computer Architecture and Operating System Principles 64

Chapter 6 A Brief Introduction to Computer Architecture 65

1 The Structure of a Modern Computer ... 65

2 Main Memory ... 66

3 The Central Processing Unit ... 67

3.1 The Arithmetic-Logic Unit ... 68

3.2 ALU Instructions .. 68

3.3 Load and Store Instructions .. 69

3.4 The Control Unit ... 69

3.5 The Fetch-Execute Cycle .. 70

3.6 Program Execution ... 70

 iii

3.7 Routine Calls .. 71

4 Cache Memories ... 71

5 The Input/Output Subsystem .. 72

6 Overlapping I/O and CPU Operations .. 73

6.1 Kernel Calls and Interrupts ... 74

6.2 Why Application Programs Do Not Have Direct Access to I/O

Devices ... 74

7 Magnetic Media Devices .. 75

Chapter 7 Virtual Memory... 77

1 Memory in Early Computer Systems ... 77

2 The Transition to Virtual Memory ... 78

3 Program Locality .. 79

4 The Basic Idea behind Virtual Memory ... 80

5 Virtual Memory Management .. 81

6 What form of Virtual address? ... 82

7 Paged Virtual Memory ... 83

7.1 Inverted Page Tables .. 84

7.2 Conventional Page Tables .. 86

7.3 Making Memory Accesses Efficient .. 87

7.4 Protecting Processes from Errors ... 88

8 Segmented Virtual Memory ... 89

8.1 A Segmented Virtual Memory Model .. 89

8.2 Segment Tables ... 90

9 Comparing Segmentation and Paging .. 91

10 Combining Segmentation and Paging .. 92

10.1 Paged Segments .. 93

10.2 Making Memory Accesses Efficient .. 95

10.3 Evaluation of Paged Segments ... 95

11 Conclusion .. 96

Chapter 8 Processes... 98

1 Scheduling Algorithms ... 99

1.1 High priority real time processes .. 99

1.2 Medium priority I/O intensive processes 100

1.3 Interactive Processes ... 100

1.4 CPU-intensive processes .. 101

1.5 Combining the above Requirements into a Single Process-

Scheduling Algorithm... 101

2 Process Scheduling States... 102

3 Process State ... 103

4 Program Structure ... 103

5 Process (or Thread) Stacks ... 105

5.1 Routine Linkage ... 105

5.2 Parameters and Local Variables ... 105

 iv

5.3 Expression Evaluation .. 106

5.4 The Stack Structure .. 107

6 Global Variables and Parameters ... 107

7 Calling the Operating System ... 108

8 Handling Interrupts ... 109

9 Processes and the Operating System .. 110

10 Multiple Processes .. 112

11 Synchronisation: Mutual Exclusion .. 113

11.1 The Basic Problem .. 114

11.2 Mutual Exclusion .. 115

11.3 Dekker's Algorithm... 115

11.4 Turning Off Interrupts .. 116

11.5 Busy Wait Instructions ... 116

11.6 Semaphores ... 116

11.7 Implementing Semaphores ... 117

12 Further Synchronisation Problems ... 119

12.1 Bounded Buffers ... 119

12.2 Readers and Writers .. 122

12.3 Private Semaphores .. 123

13 Scheduling Resources ... 124

14 Conclusion .. 125

Chapter 9 Protection and Sharing in Conventional Systems 126

1 Protecting Processes from Each Other ... 126

2 Protecting the Operating System .. 127

3 Protection Rings .. 128

4 Sharing .. 131

5 Shareable Segments .. 132

6 Addressing Shared Segments ... 134

7 Sharing Paged Segments ... 136

8 Conclusion .. 139

Chapter 10 Protection and Sharing in Capability Systems 140

1 Capabilities and Sharing ... 142

2 Protecting Capabilities .. 145

2.1 Protection in the Operating System Space 145

2.2 Password Protection ... 146

2.3 Protection by Tags .. 147

2.4 Protection by Partitioning Segments .. 148

2.5 Protecting Capabilities via Capabilities ... 148

3 Unique Object Identifiers ... 148

4 Conclusion .. 151

 v

Part 3 A Memory Structure for SPEEDOS .. 152

Chapter 11 An Architectural Basis for SPEEDOS 153

1 Combining Segmentation and Paging Efficiently 153

1.1 Multiple Page Sizes .. 153

1.2 Segmented Pages .. 154

2 A Review of the Requirements ... 154

3 Orthogonal Segments and Pages .. 155

4 Implementing the "Segment Table".. 158

5 Segment Registers and RISC Systems ... 160

5.1 Paging ... 160

5.2 Segmentation .. 160

5.3 RISC Philosophy .. 160

5.4 The Proposed Innovation .. 161

6 Implementing Address Translation .. 162

7 Conclusion .. 162

Chapter 12 Direct Addressability and Persistent Virtual Memory 165

1 Direct Addressability .. 165

2 Advantages of Direct Addressability .. 166

3 Persistent Programming .. 168

4 More Advantages of Direct Addressing ... 169

5 An Ideal Persistent Virtual Memory ... 170

6 Direct Addressing in Multics .. 172

7 Direct Addressing in the AS/400 Family ... 173

8 Persistent Virtual Memory .. 176

9 Conclusion .. 177

Part 4 The SPEEDOS Software Model ... 179

Chapter 13 Software Structures .. 180

1 The Software Crisis .. 181

2 Software Systems .. 183

3 Software Maintenance .. 184

4 Software Modularity ... 186

5 Flow of Control Modules.. 187

6 The Information Hiding Principle .. 190

7 Abstract Data Types ... 194

8 Specifications and Implementations ... 197

9 Object Oriented Programming .. 198

10 Qualifying Types .. 199

10.1 Call-In Bracket Methods .. 199

10.2 The Body Statement ... 200

10.3 Augmenting Bracket Methods .. 200

10.4 Testing Bracket Methods .. 201

10.5 Replacing Bracket Methods ... 201

 vi

10.6 Multiple Qualifiers ... 201

10.7 Call-Out Bracket Methods .. 202

11 Conclusion .. 203

Chapter 14 Modules and Protection .. 204

1 Programs and Files ... 205

2 Object Oriented Files .. 206

3 Protection Advantages .. 210

4 A Uniform Module Structure.. 210

4.1 Programs ... 210

4.2 Subroutine Libraries ... 211

4.3 Operating System Modules .. 212

4.4 Device Drivers .. 213

5 The Proposed Module Structure ... 213

6 Simpler Operating Systems .. 214

7 Protecting Modules ... 215

8 Capabilities or Access Control Lists? ... 215

9 Module Capabilities and Inter-Module Calls ... 215

10 Protecting File Modules .. 217

11 Protecting Code Modules ... 218

12 Protecting Internal Objects ... 219

13 Conclusion .. 219

Chapter 15 Processes and Protection .. 221

1 Process Structures ... 221

1.1 Dynamic Process Properties ... 221

1.2 Further Advantages of the In-Process Technique 223

2 Managing Inter-Module Calls .. 224

2.1 Linkage ... 224

2.2 Parameters ... 224

2.3 Local Data of Called Module ... 225

3 Persistent Processes .. 225

3.1 Logging in and Logging out ... 226

3.2 Executing Commands ... 226

3.3 The Logout Command .. 227

3.4 Identification and Authentication ... 229

4 Implementing a Process as Threads .. 231

5 Multiple Processes .. 233

6 Conclusion .. 233

Chapter 16 Architectural Implications of the Software Model 234

1 Containers in SPEEDOS ... 234

2 Worldwide Unique Addresses .. 234

3 Translating Virtual Addresses .. 236

 vii

3.1 Managing the Number of Entries in the Main Memory Page

Table ... 237

3.2 Managing the Width of TLB Entries .. 238

3.3 TLBs Supporting Only a Single Address Space 239

4 Segment Management .. 240

5 Conclusion .. 241

References .. 243

Acknowledgements .. 252

 viii

List of Figures

Figure 2.1: Lampson's Access Matrix 13

Figure 2.2: An Example of Lampson's Access Matrix 14

Figure 2.3: An Example of Lampson's Access Matrix with an

Object which is also a Subject 15

Figure 2.4: A Simple File Directory 16

Figure 2.5: A Hierarchical Directory Structure 17

Figure 2.6: Two Directory Structures containing Different Pointers

for the Same File 18

Figure 2.7: A Bank Account with Semantic Operations 22

Figure 2.8: Access Rights expressed as Semantic Operations 23

Figure 2.9: Capability Lists for the Access Matrix in Figure 2.3. 25

Figure 2.10: A Hierarchical Capability Directory Structure 26

Figure 2.11: Two Directory Structures containing Different

Capabilities for the Same File 27

Figure 2.12: Access Control Lists for the Access Matrix in Fig. 2.3 28

Figure 2.13: Two ACL Structures giving Access to the Same File 29

Figure 2.14: A Global Hierarchical Directory Structure 30

Figure 6.1: A "von Neumann" Computer 66

Figure 6.2: The Central Processing Unit of a Computer 68

Figure 6.3: Typical RISC ALU Instruction Formats 69

Figure 6.4: Typical RISC Load/Store Instruction Formats 69

Figure 7.1: Computational and File Memory in Early Systems 78

Figure 7.2: Conventional Virtual Memory Organisation 81

Figure 7.3: A Paged Virtual Address 84

Figure 7.4: The Address Translation Unit as a Black Box 84

Figure 7.5: An Inverted Page Table 85

Figure 7.6: A Typical Page Table Entry 86

Figure 7.7: Using a Page Table to Translate a Virtual Address 86

Figure 7.8: The ATU with a TLB using Conventional Page Tables 87

Figure 7.9: A Page Table Entry with Access Permission Bits 89

Figure 7.10: A Segmented Virtual Address 89

Figure 7.11: A Segment Table Entry 90

Figure 7.12: Using a Segment Table to Translate a Virtual Address 91

Figure 7.13: A Segmented Virtual Address 93

Figure 7.14: Segment and Page Tables to Translate a Virtual Address 94

Figure 7.15: Segment and Page Table Entries in a Segmented and

Paged Model 94

Figure 8.1: Process/Thread States and Transitions between States 102

Figure 8.2: A Program Invoking the Same Routine Twice 104

Figure 8.3: A Stack Frame 106

Figure 8.4: A Process Stack 107

 ix

Figure 8.5: A Process Stack with Global Parameters and Variables 108

Figure 8.6: Communication in the Out-of-Process Model 110

Figure 8.7: Communication in the In-Process Model 111

Figure 8.8: A Bounded Buffer with Eight Entries 120

Figure 8.9: A Bounded Buffer with Two Full Entries 121

Figure 9.1: Page Tables in a Multiprogramming System 127

Figure 9.2: A Paged Virtual Address with Operating System

Addressing 128

Figure 9.3: Addressing the Operating System 129

Figure 9.4: A Segment Table Entry with Ring Protection 130

Figure 9.5: Sharing in a Segmented Virtual Memory 134

Figure 9.6: Indirection via a Shared Segment Table Entry 135

Figure 10:1 A Capability 142

Figure 10.2: Selecting a Capability from a C-List 142

Figure 10.3: Locating an Object via a Central Object Table 143

Figure 10.4: Protecting Processes in Capability Systems 144

Figure 10:5 A Password Capability 146

Figure 10:6 Validating a Password Capability 146

Figure 10:7 Partitioned Segments 148

Figure 11.1: Translating an Effective Program Address in the

Orthogonal Paging and Segmentation Model 156

Figure 11.2: A Program Decomposed into Segments and Pages 157

Figure 11.3: A Segment Register 159

Figure 11.4: Typical RISC ALU Instruction Formats 161

Figure 11.5: Typical RISC Load/Store Instruction Formats 161

Figure 11.6: The ATU with a TLB using Conventional Page Tables 163

Figure 11.7: The TLB as the entire ATU 163

Figure 12.1: Copying Programs in a Conventional Virtual Memory 167

Figure 12.2: Persistent Virtual Memory 171

Figure 12.3: Conventional Networks 176

Figure 12.4: The SPEEDOS View of Networks 177

Figure 13.1: Flow of Control Modules in an Operating System 188

Figure 13.2: A Simple Information Hiding Module – A FIFO Queue 191

Figure 13.3: A Bank Account as an Abstract Data Type 196

Figure 13.4: A Normal Method Invocation 199

Figure 13.5: A Qualifying Type with a Call-In Bracket Method 200

Figure 13.6: An Augmenting Bracket Method 200

Figure 13.7: A Testing Bracket Method 201

Figure 13.8: A Replacing Bracket Method 201

Figure 13.9: A Qualifier with Call-In and Call-Out Bracket Methods 202

Figure 13.10: A Client with Call-Out and a Target with Call-In

Brackets 202

Figure 14.1: A File of Bank Accounts 206

Figure 14.2: A Conventional View of a Bank Accounts File 207

Figure 14.3: The Information Hiding Solution 207

 x

Figure 14.4: A Compendium of Games 211

Figure 14.5: A Process Scheduler Module 212

Figure 14.6: A Directory Module 212

Figure 14.7: The Basic Structure of a Module Capability 216

Figure 14.8: A File of Bank Accounts 217

Figure 14.9: Calling a File Module 218

Figure 15.1: Stack Support for an Inter-Module Call 224

Figure 15.2: A Module Frame 225

Figure 15.3: CLI Invoking a Device Driver on a Persistent Stack 227

Figure 15.4: CLI Invoking an Editor on a Persistent Stack 227

Figure 15.5: Logging Out a Persistent Stack 228

Figure 15.6: Logging Out a Persistent Stack from an Editor 229

Figure 15.7: Authenticating a User at Login 231

Figure 16.1: The Basic Structure of a Module Capability 235

Figure 16.2: A SPEEDOS Container Identifier 235

Figure 16.3: A SPEEDOS Full Virtual Address 236

Figure 16.4: A SPEEDOS Virtual Page Number 236

Figure 16.5: The TLB as the entire ATU 238

Figure 16.6 Prefixing an Address with a Short Container Identifier 239

Figure 16.7 A Possible Allocation of Short Container Identifiers 240

Figure 16.8: SPEEDOS Partitioned Segments with Module

Capabilities 241

 Preface

Clarification: We first clarify what is meant in this book by computer security.

When used in the context of computer systems, and in particular computer operat-

ing systems, the word "security" can have (at least) three quite different meanings.

It can mean that the operating system code has been proven "correct", in the quasi

mathematical sense that a specification exists and that the code of the operating

system has been proven to conform to the specification. This is the sense in which

the word "secure" is sometimes used, for example, in association with the claim

that Sel4 (https://sel4.systems/) is the "world's most highly assured OS kernel".

This is not the meaning of "secure" when we describe SPEEDOS as secure.

Similarly the reliance on encryption techniques to guarantee security is not the

sense in which the word security is used here, although SPEEDOS actually uses

such techniques for transferring information over the Internet and for accessing

discs.

In this book and in other documents on SPEEDOS the word security is used in the

architectural sense, i.e. with respect to the hardware instruction set design and the

operating system design (especially but not exclusively the design of the kernel).

As will become evident, the SPEEDOS architecture is radically different from that

of conventional systems.

This book records the main results of an Odyssey which has lasted for more

than fifty years of my life, beginning with my work in the design team of the

VME operating system for the ICL 2900 Series of computers in Kidsgrove, Eng-

land. This was followed by my founding the MONADS operating system group

at Monash University in Melbourne Australia, with follow up work on MON-

ADS in the groups which I later led at the University of Darmstadt in Germany,

the University of Newcastle, N.S.W., Australia and the University of Bremen in

Germany. My final professional move was to the University of Ulm in Germa-

ny, where I founded the SPEEDOS project and the Timor project
1
 in the De-

partment of Computer Structures. Since my retirement I have continued to de-

velop the SPEEDOS ideas, considerably extending and improving on the origi-

nal version and working out how to implement some of the wilder concepts,

such as the world-wide unique virtual memory and addressing incorporated into

SPEEDOS.

1
 Timor is an object-oriented and component-oriented programming language designed to

accompany SPEEDOS, see the Timor website https://www.timor-programming.org/

 xii

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Whereas my team at Monash actually built several prototypes for the

MONADS-PC system which were then used later in Newcastle, Bremen and

Ulm, there is no prototype implementation of SPEEDOS, partly due to a lack of

funding. Nevertheless I have formulated a plan which I believe will convince

computer manufacturers to make a small modification to their RISC computer

designs which will both (a) enable SPEEDOS systems to be built and (b) at the

same time allow existing RISC applications to execute without modification ex-

cept a re-compilation. This hardware modification is particularly significant

since it allows capability systems (such as SPEEDOS) to be built which not only

improve the way that access rights can be formulated and controlled but also can

provide a solution for the confinement problem, thus making computers far

more secure than conventional systems. This modification is described in detail

in [1], which can be downloaded from the SPEEDOS website
2
.

It need hardly be said that current systems are riddled with security loop-

holes and that attempts to close these are usually only partially successful. This

is a nuisance for normal users (to say the least), but it is far more serious in some

areas, especially national security, where espionage and cyber warfare could at

any time lead to a total disaster, and in hospital systems, in electricity supply

systems and similar public utilities which are vulnerable to attack. For this rea-

son I would recommend that the first SPEEDOS systems are built with such ap-

plications in mind.

The book is in two volumes. The first volume is an introductory walk-

through of most of the fundamental technical ideas that form the basis upon

which the SPEEDOS design is built. Some of the ideas are well known and a

few are less well known. What makes them interesting is that almost none of the

best of them are to be found in the major operating systems in current use. I ex-

plain a concept, e.g. virtual memory, which is in use but where several decisions

are possible. I explain why one choice is better for security than the others, and

yet almost invariably a worse alternative has been chosen for implementation in

current systems. And it also turns out, almost without exception, that the good

choice for security is the most efficient solution!

For this reason volume 1 can have a dual purpose. It serves first as my ex-

planation why I chose particular ideas to form the basis for SPEEDOS. In this

sense it serves as an important introduction to SPEEDOS. But second, it can

provide additional material for a first computer science course in computer ar-

chitecture and operating system design. In fact it is to a considerable extent

based on undergraduate courses which I have given in the past.

2
 https://www.speedos-security.org/

 xiii

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The tenor of the second volume is quite different. Relying on the infor-

mation in the first volume, it provides a technical introduction to the SPEEDOS

kernel and an operating system built on the kernel, explaining in some detail

how a real SPEEDOS system can be designed and built. The second volume is

suitable for graduate courses in the same area, and will certainly give good stu-

dents ideas for writing their own PhD theses in this area.

At the outset I would like to make clear that the emphasis in the book is

largely on the design of computers and their basic software. There are some are-

as, in particular those concerned with computer graphics and with the function-

ality of the Internet, where my expertise is limited to that gained as a user of

such systems. Although I have attempted to show the relationship between these

fields and SPEEDOS in the second volume, the main emphasis in the book is

concerned with the design of the computers themselves and on the basic struc-

ture of the operating systems which control them. I believe that this is the best

basis on which to improve Internet security.

Volume 1 can be read independently of volume 2, but the reverse is not the

case, even for computer scientists and programmers.

In order to simplify cross references between the volumes, the chapters for

both volumes are numbered as a single sequence, but each volume uses separate

page numbers.

Readers who already have experience in operating systems and in computer

architecture will probably be familiar with Parts 1 and 2 in volume 1. I suggest

that such readers can skim through these two parts, but Parts 3 and beyond con-

tain much new material which is essential for an understanding of the SPEEDOS

ideas. Among the highlights of these chapters I draw special attention to chapter

13, which explains how the confinement problem can be solved.

Finally, I should mention that this work would never have existed except

for a piece of advice given to me by the late Professor Chris Wallace, former

Head of the Department of Computer Science at Monash University. When I

first arrived at Monash I mentioned to him that it would be nice for me to do

some research in natural language systems. But he wisely said that it would be

sad for me to throw away the experience I had gained at ICL. He was right!

I hope that someday a SPEEDOS system will be built, and I would very

much like to lead a project to do so, but that depend whether I will be successful

in convincing computer manufacturers to modify the designs of their RISC sys-

tems. Meanwhile, I hope that you will enjoy reading both volumes.

 Leslie Keedy

 BREMEN 2023

Part 1

Introductory Concepts

Chapter 1

Computer Security:

an Ongoing Problem

I first considered writing an introductory chapter called "Is there a Computer

Security Problem?" but after a little consideration I decided that computer secu-

rity problems are so widespread and so well known that such a chapter would

only bore readers. At the time of writing, so many computer security problems

have been so widely reported that even most non-specialists are aware that there

are serious problems.

Significant examples of this include infamous viruses and worms such as

Stuxnet, Duqu and Flame, hacker break-ins at Sony, Citigroup, Google, the In-

ternational Monetary Fund, an Iranian atomic energy plant, Paypal, Sega, Nin-

tendo, the US broadcaster PBS, the Australian National Broadband Network, the

Hong Kong Stock Exchange and even the CIA, the Pentagon
3
, the US Senate

and the NATO HQ, not to mention the so-called "Shady RAT" hackings discov-

ered by McAfee, involving break-ins over 5 years at 72 corporate companies,

government computers, and private and public organisation in 14 countries, in-

cluding the International Olympic Committee.

Such problems are not new. They have been happening over many years.

Amongst the most spectacular and well known cases from the 1980s is that de-

scribed by Clifford Stoll [2]. Realising that a hacker was regularly breaking into

his computer system at the Livermore Laboratories in the US and was using this

as a base to break into other supposedly highly secure sites (including US De-

partment of Defense sites), Stoll spent many months patiently tracking the hack-

3
 It was reported on the Australian ABC News 24 channel that there are over 6 million

attempts to break into Pentagon computers every day.

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 3

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

er down to Germany. A story well worth reading!

The favourite target – and the favourite tool – of white collar criminals is

the computer. Hackers use computers on a routine basis to break into other com-

puters. Computer crime might seem a bit remote from most of our lives. But it is

important, because it can involve much higher spoils than say a normal bank

robbery, and it is far more difficult to detect.

In the modern world computers are ubiquitous. They are capable of per-

forming astounding feats of calculation. This alone brings us tremendous bene-

fits. For example without large fast supercomputers the improvements in weath-

er forecasting which we now enjoy compared to a few years ago would be quite

impossible. The security problem does not exist primarily because computers

can calculate. It stems much more from the fact that they also have prodigious

memories, which are used to store enormous amounts of information about al-

most every aspect of our lives, our finances, our businesses, and so on. Our em-

ployers, our lawyers, our doctors, our dentists, our hospitals, our banks, our in-

surance companies, our clubs and our governments all store lots of information

about us. Commercial firms have records of trillions of financial transactions in

their computer databases.

Unauthorised access to such information can lead to serious violations of

data privacy. It is perhaps worth noting at this early point that data privacy and

computer security are not synonymous terms. Privacy is not the same as securi-

ty. Privacy is a legal issue involving special laws to protect the citizen from

misuse of his information stored in computer databases and other systems.

This book is not directly about privacy. It is about security, which is an im-

portant precondition for achieving privacy. All the privacy laws in the world

will not solve the privacy problem unless they can be backed up by secure com-

puters: computers which don't give up their secrets about us to unauthorised par-

ties. So if you are interested in data privacy then you should also be interested in

computer security.

Computers also contain lots of information which has nothing to do with

personal privacy but which is nevertheless very sensitive. For example they

store information which affects the values of stocks and shares on the financial

markets, secret marketing or design information about new company products,

and intelligence information gathered by security agencies. Such information

can be very valuable to competitors, foreign governments and the like.

So there are plenty of reasons why people might want to break into com-

puter systems to acquire information. What can sometimes be even worse: a

huge amount of damage can be done by people changing or destroying infor-

mation and/or programs stored in computers. Thieves can steal from banks by

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 4

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

modifying banking records. The wrong operation could be carried out on a hos-

pital patient if his computerised records are changed. A possible consequence of

a company's database being completely wiped out is that the company will go

bankrupt. And terrorists could blow up nuclear power stations if they could tam-

per with the computer programs controlling them.

This is not an alarmist book. I just want to make the point that computer se-

curity is important and is growing in significance as we store more and more

information in computers. We already find ourselves in the information age, the

age in which humanity's most valuable resources are information and know-

ledge. Industrial spies, terrorists, white collar criminals and many others have

much to gain by breaking into the computer systems where this information is

stored. And sovereign states must also prepare themselves for the fact that cyber

warfare is already taking place, and is likely to be the most dominant form of

warfare in the 21
st
 century.

4

In 1985 the U.S. Department of Defense (DoD) set a trend by publishing its

now famous "Orange Book". The real title of this report is Trusted Computer

System Evaluation Criteria, but it acquired its nickname from the colour of its

cover. The security criteria defined in the Orange Book had three major aims, to

guide manufacturers regarding the security measures to build into their future

computer products, to provide users with a yardstick for assessing how much

trust can be placed in a computer system, and to serve as a basis for security

specifications in future DoD acquisition specifications. It was envisaged in the

Orange Book that evaluations of actual systems can be performed, either in

terms of specific application environments or in terms of general systems, and

that security certification and accreditations can be approved where appropriate

by Designated Approving Authorities. The mechanisms of such accreditations

and approvals are of less interest to us than the recognition that breaches of se-

curity fall into three broad categories [3].

— Breaches of confidentiality result in a flow of information to unauthorised

persons.

— Breaches of integrity result in information being incorrectly recorded in the

system.

— Breaches of availability lead to loss of use of the system or some of its re-

sources.

This book is about making computers secure, about making information safe so

4
 see https://en.wikipedia.org/wiki/Cyberwarfare. For a recent discussion of cyber war-

fare, see "Ten cyber-warfare threats (and how to fight back)" https://bcshq.org/9u7-

6b3lw-6i93ke-3mbfu0-1/c.aspx, and Prof. Claudio Cilli "Cyber-warfare and the New

Threats to Security" https://nlondon.bcs.org/pres/ccmay19.pdf

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 5

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

that it is inaccessible to those not authorised to read it, or change it, or destroy it.

And it is about protecting programs, whether they are proprietary programs

which need protection from piracy, or sensitive real-time programs controlling

machines and systems such as airplanes, nuclear power stations or hospital

equipment, which need protection from criminals and terrorists.

The seriousness of the consequences of unauthorised access to computer

systems is now recognised by legislators and in many countries there are severe

penalties for breaking into computing systems
5
. But laws alone will not prevent

such violations, just as laws alone do not prevent the thief from stealing your

television set. Even the police are not all that successful at stopping burglaries.

We all know that in practice the best strategy is prevention, so we put locks and

bolts on our doors and we buy burglar alarms and install security cameras to

warn us that a thief might be active.

In fact one way to keep computers secure is to lock them away physically,

behind bolted doors in impregnable vaults. While such measures may help a lit-

tle, they do not solve the fundamental problem for most users. Computers are

most useful when they are networked with other computers, or when they are

provided with new programs which are introduced to computer systems by

downloading from the internet or by using CDs or the like. Herein lurk a myriad

of dangers for computer security: the computer equivalents of Trojan horses,

viruses, worms and bugs! Suffice to say at this stage, securing computers physi-

cally is not necessarily going to make your system immune to the world of elec-

tronic insects and other dangers. It is essential to provide internal mechanisms

within the computer which prevent such dangers from being effective, and

which safeguard the security of information and programs.

This book is primarily about describing a set of computer mechanisms

equivalent to locks and keys, bolts and burglar alarms. You might interject that

modern computers are already fitted out with some such mechanisms, which on

the whole are not very effective against the professional or determined hacker.

And of course you would be right. But the mechanisms which I describe in later

chapters are quite different in their nature from those with which you are famil-

iar or which are employed in conventional computer systems. They include a

new way of designing computers and a radically different approach to designing

operating system and application software. But before we look at the new mech-

anisms we must consider why the current mechanisms are so ineffective.

There are in fact lots of reasons. One is that since the early 1980s very little

fundamental research has been carried out into making computer protection

5
 Ironically, most governments do not see a problem in allowing their own agencies to

break into the computers of their own citizens!

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 6

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

mechanisms effective. Of course, many specialists have devoted many hours to

producing more secure mechanisms, and I do not want to belittle their work in

any way. But this is not what I mean by fundamental research. Basically their

work consists of inventing (often very clever) techniques and programs which

are best viewed in my opinion as techniques for patching up an inadequate core.

Their work starts from the assumption that the basics around which computer

systems are built (e.g. the design of computer processors and memories, the de-

sign of operating systems, database systems and programming languages) are

fundamentally in order. The implicit view is that these aspects of computers

perhaps leave some room for improvement but they cannot be fundamentally

changed. This book will show that this view is far from correct.

Another, not unrelated, reason for the ineffectiveness of current systems in

the face of security attacks can be explained by the panda principle, first formu-

lated by the evolutionary biologist Stephen Jay Gould [4, 5]. This in effect says

that once an inadequate mechanism or concept has firmly established itself suc-

cessfully, it is then extremely difficult to replace it with a newer and more effec-

tive principle. Gould illustrates this principle with the example of the panda's

thumb (which is not really a thumb in the normal sense of the word), but also

with the example of the QWERTY keyboard [6, pp. 322-324].

A few newer operating systems have appeared in recent years, but the prin-

ciples upon which they are based are not dramatically different from those with

which they are competing. At the level of hardware design, the current princi-

ples upon which processors are built are concerned with improving processing

speed, but very little fundamental research on how processor design can contrib-

ute to improvements in security has been carried out since the 1980s. Dislodging

the firmly established but insecure operating systems which are widely used to-

day is an enormously difficult task, and it is even more difficult to dislodge the

current direction of processor design.

However, exactly that is what is needed if we really want secure computer

systems. The current approach to achieving security is to wait until loopholes

appear (and lots of them do), and then attempt to patch these loopholes up.

But this re-active approach can never be fully successful, because the prin-

ciples on which current operating systems are based are themselves fundamen-

tally insecure, as we will attempt to show in later chapters. Instead we need to

rethink the design of operating systems and computer processors in such a way

that these inadequate basic principles are replaced by totally new, fundamentally

more secure, principles. In other words, we need to replace the current re-active

approach with a new pro-active approach. Explaining in broad outline how a

new approach might look is the main purpose of this book.

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 7

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Before we embark on this task it will help if we clarify a few basic issues.

1 Complexity and Simplicity

The security mechanisms which have been built into or added onto current com-

puter systems are many and various. Some of them are directly built into the

computer hardware, designed for example to stop one program from writing into

or reading from another program's memory space or to ensure that only the right

programs are allowed to execute certain sensitive instructions.

Some security mechanisms are typically built into the operating system. At

this level of the system, for example, the passwords of users are usually

checked, and the hardware protection mechanisms are applied to programs and

data. A large part of most operating systems is the file system, which is respon-

sible for controlling access to the information (usually in the form of data files

and program files) which users store on discs and similar storage devices.

In many large computer systems the information in files is organised by a

database management system, which usually adds its pepper to the protection

frying pan in the form of some extra protection controls.

To that we often find some more security mechanisms added by the soft-

ware responsible for networking computers together.

Then on top of that it is possible to buy proprietary software packages

which have been especially designed to improve the security of the system by

patching up weaknesses in the other mechanisms.

The end result is that we have lots and lots of security mechanisms but, if

the news reports of computer crime are anything to judge by, very little security.

A former colleague of mine once likened this situation to the Berlin Wall, which

was also a security device – for keeping East German citizens in East Berlin.

Although it prevented a lot of people from reaching West Berlin, the Wall was

not a very successful security mechanism, because about 5000 people succeeded

in escaping. Compare this, my colleague said, with the almost perfect record of

the notorious Alcatraz prison in the United States.

Why was Alcatraz much more successful than the Berlin Wall?

In fact the Berlin Wall was not a continuous wall, but a whole variety of

mechanisms, such as a stretch of river, walls of houses which had been evacuat-

ed, barbed wire sections with armed soldiers in watch towers, booby traps which

exploded if you stood on them, and so on. The escapees could often exploit this

very multiplicity of mechanisms, finding escape niches between the mecha-

nisms, because the way that security worked was not coordinated enough and

simple enough to be effective.

On the other hand, while there were of course some obstacles within Alca-

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 8

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

traz to prevent escapes, there was one very simple to understand and very effec-

tive mechanism: the extremely cold waters and hazardous currents of San Fran-

cisco Bay!

This comparison makes a very important point about security mechanisms.

The more complicated and the more cumbersome you make the mechanisms, the

more likely it is that people will find weak points, by playing the mechanisms

off against each other, or by slipping between them undetected.

This is exactly the situation we find today when we examine computer se-

curity. Every day hackers manage with ease to slip through the cumbersome

technical mechanisms which we currently use in computer hardware, operating

systems, file systems, database systems, networking systems, special software

packages, etc. What is lacking is a simple but effective concept, comparable

with the freezing waters around Alcatraz!

The security mechanisms found in present day computer systems are cer-

tainly not simple and can hardly be considered effective. One of the main rea-

sons is that current processor hardware has not been designed with such a con-

cept in mind, and just as important, the software which controls the systems is

incredibly complex. It has become a common cry of despair amongst computer

programming experts that the software systems have become incredibly com-

plex, so much so that no single person is in a position fully to understand how a

modern operating system works. It is hardly surprising in this situation that

computer security mechanisms are not very effective.

A quotation from John Dewey, the renowned U.S. philosopher, psycholo-

gist and educationalist, helps to explain how this situation has arisen:

"But the easy and the simple are not identical. To discover what is really simple

and to act upon the discovery is an exceedingly difficult task. After the artificial

and the complex is once institutionally established and ingrained in custom and

routine, it is easier to walk in the paths that have been beaten than it is, after tak-

ing a new point of view, to work out what is practically involved in the new point

of view. The old Ptolemaic astronomical system was more complicated with its

cycles and epicycles than the Copernican system. But until organisation of actual

astronomical phenomena on the ground of the latter principle had been effected,

the easiest course was to follow the line of least resistance provided by the old in-

tellectual habit." [7, p. 30]

One of the themes throughout the later chapters of this book will be to ex-

pose the complexity of current systems and to suggest ways of replacing it with

simpler, more efficient and more effective alternatives.

It may come as a surprise to some to discover that there is almost no math-

ematics in this book. Many people, including many computer science academ-

ics, tend to believe that computer science is a branch of mathematics. Indeed

there are many computer scientists who think that a book about computer sci-

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 9

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ence (and a computer science Ph.D. thesis) which is not liberally sprinkled with

mathematics is worthless. I hope that this book will show the invalidity of such

an extreme view. Mathematics can and should be used in computer science as a

useful analytical tool, and it offers valuable theoretical insights into the nature

and limits of computing, as well as providing effective encryption techniques.

But mathematics has few insights to offer when it comes to the task of dis-

covering constructive simplicity in computer science. We cannot simply develop

some equations which will find a simple, elegant and effective security mecha-

nism for us. But finding such security mechanisms is what this book is about.

After we have discovered a good security mechanism we might apply mathe-

matical techniques to quantify how efficient it is and so on, but these techniques

won't find the mechanism for us.

In this respect computer science is much more like engineering than math-

ematics or natural science. Natural systems are already present, all around us.

They do not have to be designed by humans. It is appropriate and very helpful to

analyse them mathematically, and it is challenging to go deeper and deeper into

the detail. When we are on the right track this reductionist approach can offer

many benefits, as the chemical industry, for example, has more than proved.

But mathematics can sometimes appear to be just as convincing when we

are on the wrong track. The ever more intricate Ptolemaic cycles and epicycles

provided 15
th
 and 16

th
 century mathematicians with a field day, until it was final-

ly realised that the Earth is not the centre of the Universe!

Like most engineers, most practical computer scientists are primarily con-

structors and creators of useful artefacts. Our main job is not primarily to reduce

things to their lowest levels and analyse them in ever greater detail, but to con-

struct new and effective systems. As we know from other engineering endeav-

ours, simplicity and elegance of design often go hand in hand to produce an ef-

fective system. If a system starts to get too complex, then this is a warning sign

of a bad design.

Engineers often have an important advantage over computer scientists,

however. They mostly build physical objects, and these can often be judged not

only by their theoretical qualities but also by their physical appearance. If an

engineer were to build a really clumsy bridge, or airplane, or ship, you would

often be able to see by looking at it that it is so clumsy that it will fall down, or

won't fly, or will sink or whatever. Of course appearances alone are not im-

portant, but they help us to remove a whole area of design "space" which is ob-

viously inadequate.

Computer scientists don't have this advantage. You cannot just look at a

complex computer program and see at one glance whether it is likely to be safe

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 10

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

or correct or reliable. The result is that we in fact often build quite grotesque and

incredibly complicated computer programs. Such constructions are inevitably

riddled with errors, and this has provided those with mathematical tendencies

with a new field day comparable with that of the pre-Copernican astronomers.

They have invented a discipline called software engineering. This discipline

quite rightly emphasises that good software products should be built on sound

engineering and mathematical principles – a most laudable aim. But on the

whole this approach has led to an emphasis on the mathematical and analytic

aspects while ignoring the creative aspects of good engineering design.

A good example of this in relation to our present theme is the tendency to

confuse a secure computer system with a correct computer system, where cor-

rectness means viewing a program in the same way a mathematician views a

theorem, and then proving that it is correct.

I do not wish to belittle this approach – correct programs of course play a

very important role in security. But in order to be able to prove a program cor-

rect, we must have a definition of what the program should do, a specification of

the program against which we can measure its correctness. Such a specification

must be a formal mathematically rigorous specification, if it is to be amenable to

the mathematical approach. Unfortunately developing such specifications is a

notoriously difficult problem. Generally speaking, it is almost impossible to

specify anything but toy programs formally. If we do manage to specify a real

one, the specification is usually almost impossible to understand, which amongst

other things means that we cannot be sure that it is really specifying what we

want the program to do! So we may prove a program "correct" only to find that

it doesn't do what we really wanted in the first place.

The reason that very little mathematics appears in this book is because we

are concerned with finding simple, elegant and efficient security mechanisms.

The emphasis is on getting the overall picture right in the first place. Let us first

find the forest which suits our purposes before we start measuring the heights of

the individual trees and counting the number of leaves which they have.

2 The Role of Computer Architecture

In the 1970s a particular approach to computer security created a lot of interest

in the research community. The idea was to base the design of computer systems

on a concept called capabilities, which can be thought of as a kind of equivalent

within the computer to locks and keys in the physical world. While some of the

research was based purely on a software implementation of capabilities, other

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 11

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

researchers integrated it into experimental computer architectures
6
. This was

generally combined with ideas which eventually led to the idea of object-

oriented programming. Unfortunately the architectural aspects of this research

direction were prematurely killed off, because capability based computers were

associated with the kind of computer design which came to be known as CISC

(complex instruction set computers). In the early 1980s an alternative approach

to the design of computer processors emerged, known as RISC (reduced instruc-

tion set computers). The RISC idea led to fundamental improvements in the ef-

ficiency of computers, and is one of the main factors behind the fact that micro-

processor performance since the 1980s has been able to improve at an astonish-

ing rate.

There can be no question of going back to the old-style of CISC architect-

ures, but this does not necessarily mean that we have to abandon security in

computer systems at the architectural level. Security is a theme which is at least

as important as performance. As the originators of the RISC movement them-

selves wrote in the 5
th
 edition of their standard textbook on computer architec-

ture:

"Security and privacy are two of the most vexing challenges for information tech-

nology in 2011. Electronic burglaries, often involving lists of credit card numbers,

are announced regularly, and it's widely believed that many more go unreported.

Hence, both researchers and practitioners are looking for new ways to make com-

puting systems more secure. Although protecting information is not limited to

hardware, in our view real security and privacy will likely involve innovation in

computer architecture as well as in system software." [8, p. 105]

I share this conviction that a simple well-chosen architectural extension to

the RISC philosophy can harness the high performance with vastly improved

security. In chapter 16 and in the Appendix we will in fact describe a very sim-

ple architectural extension to the RISC idea which is capable of fulfilling these

expectations.

This conviction is primarily responsible for the ideas presented in the rest

of this book. For this reason readers should not expect to find a fully balanced

treatment of all aspects of computer security. Instead they will hopefully find a

reasoned argument for reconsidering the idea that computer architectures, along

with appropriate operating system and programming language ideas, have a ma-

jor role to play in achieving secure systems in future.

In the following chapters we introduce some fundamental protection and

security concepts. Then in later chapters we discuss the basic concepts of com-

6
 "Computer architecture", often abbreviated in this book simply to "architecture", refers

to the computer science discipline concerned with the relationship between computer

hardware and the programs (software) which execute on it, e.g. the design of a comput-

er's instruction set, its basic memory protection mechanisms, etc.

Chapter 1 COMPUTER SECURITY: AN ONGOING PROBLEM 12

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

puter architecture which are relevant to the issue of security. In these chapters

we review a number of different memory management and addressing models,

because the addressing of computer memory is a key factor in achieving security

for information contained in the computer memory. We also describe a number

of different models and techniques which are particularly relevant to the issue of

security. Thereafter we describe the essential ingredients of the RISC philoso-

phy and show that they are not inconsistent with the aims of highly secure com-

puting environments.

In later parts of the book we develop some operating system principles and

show how the SPEEDOS system (a combination of hardware and software)

could put them into practice.

Chapter 2

Basic Security Concepts

This chapter describes a basic security model, which is concerned primarily

with controlling the right to access information. This model leads us to a discus-

sion of some of fundamental security issues.

1 Lampson's Matrix

In 1971 Butler Lampson described a simple but important model for expressing

access controls [9]. According to this model a computer system can be viewed

as a collection of subjects, a collection of objects and the access rights which

subjects possess for objects. The model is expressed as a matrix, with each col-

umn representing a subject and each row representing an object, as is shown in

Figure 2.1. An entry in the matrix defines the access rights which the subject in

the appropriate column can exercise over the object in the corresponding row.

For example, let us suppose that the subjects are users called Jill, Jack, Joan

and John, and the objects are files called My File, Your File, Her File and His

File. The access rights determine whether the users can read from and/or write to

the files. An actual access matrix might then look like that shown in Figure 2.2.

Subjects

Objects

Subject 1 Subject 2 Subject 3 Subject 4

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

access

rights

Object 1

Object 1

Object 1

Object 1

Figure 2.1: Lampson's Access Matrix

Chapter 2 BASIC SECURITY CONCEPTS 14

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

This defines for example that Jill has read and write access rights for My

File and for Her File, but she has no access rights for Your File or for His File.

Joan on the other hand is permitted to read from My File, to read from and write

to Your File, but she can only write to His File and she has no access to Her

File.

Now that the basic idea behind Lampson's matrix is clear, we can look

closer at some of the concepts behind the model.

1.1 Subjects and Objects

Subjects are the active components of the system. They carry out the operations

for which access rights (in this example read and write operations) are needed.

Subjects can be – and often are – users of the system, for example people com-

municating with the system via a computer keyboard and monitor. But subjects

needn't be human agents. The matrix model can be applied not only at the hu-

man level to subjects and objects, but to situations inside the computer itself.

Thus it is possible to think of a program as a subject, if for example it accesses a

file. In that case it appears in the matrix along with the other subjects. On the

other hand we can also treat a program as an object in the matrix, since users can

have access rights which allow them to execute programs. Figure 2.3 shows how

an Editor program can be treated as an object which Jack and Joan (but not Jill)

may execute. At the same time the matrix shows that the Editor may read and

write Your File and may read (but not write) Her File.

Just as a subject need not be a human user, an object need not be a file or a

program. It can be anything in the computer system that can be operated on and

over which the right of access has to be controlled. For example it might be a

segment of the memory or input-output equipment such as a printer.

Subjects

Objects

JILL JACK JOAN JOHN

read,

write

read read —

— read,

write

read,

write

—

read,

write

— — —

— read,

write

write read

My File

Your File

Her File

His File

Figure 2.2: An Example of Lampson's Access Matrix

Chapter 2 BASIC SECURITY CONCEPTS 15

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2 Unique Names

You might think that it goes without saying that the names of subjects and of

objects should be unambiguous. If they were ambiguous, we couldn't be sure

what subjects and/or what objects were actually intended in the matrix. For ex-

ample if there were two users called Jack or two files called My File we would

be in trouble, as it wouldn't be clear which subjects have the right to access

which objects. We obviously have to take care to ensure that names can be

uniquely associated with a single subject or a single object.

But in practice ambiguous names can easily slip into a system if we don't

take care. Suppose for example that two users of a system each decide to call

one of their files "Temp" (a favourite name for a temporary file)! Clearly there

must be a way of distinguishing between them. And it would clearly be unac-

ceptable to expect all the users in a system to check all the names of all the files

they and others have created before naming a new file.

The problem of ambiguous names is not just a problem in computer sys-

tems. In the real world public authorities and private companies have to over-

come the problem of non-unique names. They usually use one of two methods:

hierarchical naming or timestamping.

2.1 Hierarchical Names

To understand hierarchical naming schemes you can think of what would hap-

pen if you tried to use just your local telephone number to ring your spouse from

another city. You would probably end up being connected to a stranger. This is

because the telephone authorities use the same set of local numbers inde-

pendently in different cities. But you can call up your spouse from another city

by prefixing the local number with an extra dialling code for the city. Even this

Subjects

Objects

JILL JACK JOAN Editor

read,

write

read read —

— read,

write

read,

write

read,

write

read,

write

— — read

— execute execute —

My File

Your File

Her File

His File

Figure 2.3: An Example of Lampson's Access Matrix

with an Object which is also a Subject

Chapter 2 BASIC SECURITY CONCEPTS 16

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

is not enough if you are trying to ring from a different country, because the same

city codes can be used in different countries. So then we prefix another extra

code for the country.

This process uses a hierarchical structure in order to produce unique tele-

phone numbers worldwide. It has two important advantages. First, the local

numbers can be allocated in each city without having to check whether the same

local number is being used in any other city. Similarly, each country can allocate

city dialling codes without reference to those used in other countries. The sec-

ond advantage is that in a local context telephone numbers are short.

A similar technique is often used to make names in computer systems

unique while keeping them short in a local context. A good example of this is

frequently found in file systems. A file system is that part of an operating system

which manages files. Files are logically related collections of data (e.g. a payroll

file, a bank accounts file, a letter) or programs which are stored over longer pe-

riods in the computer's secondary memory (e.g. its disks and tapes).

Hierarchically structured file systems make it possible for different users to

allocate names for their files without worrying about the names used by other

users. If a user called Smith creates a file called Temp, then the system knows

that this file is really called something like Smith/Temp, and is able to distin-

guish it from another file called Temp created by Jones, because to the system

this is called Jones/Temp. Here the context plays an important role.

In fact file systems usually allow users to introduce their own hierarchies of

names, enabling each user to work in several contexts. This is done by introduc-

ing file directories (folders). A directory contains a list of files with differing

local names, together with information describing each file (e.g. the file type)

and how it can be located (e.g. a disc address), as is shown in Fig. 2.4.

If a directory is itself regarded as a file, information about it can be held in

Figure 2.4: A Simple File Directory

The pointers represent file identifiers, which might e.g. be addresses on

disc or pointers to further information enabling the file to be physically

located (e.g. on a disc).

Filename File Type File identifier

My File Text File

Her File Text File

Editor Program

My

File
Her

File

Editor

Chapter 2 BASIC SECURITY CONCEPTS 17

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

another directory, with the file information noting that it is a directory. This

means that directories can point to other directories, which can point to further

directories, and so on. The names of the directories can then be used in a hierar-

chical fashion, rather like a telephone number with dialling codes, to provide

files with unique names. This is illustrated in Figure 2.5.

In this way a user can create different contexts in which he can work. For

example if Jones is a professor who has a lot of files on the computer, he might

want to create different contexts called Admin, Teaching and Research. If he

wants to he can then have a file called Temp in each context. The full names of

these files would be Jones/Admin/Temp, Jones/Teaching/Temp and Jones/ Re-

search/Temp. As long as he is working in the context Teaching (and the system

knows this) it suffices for him to call his file Temp; the system can add the con-

text. (This is like being able to call your own telephone number in your own

city.)

One point about the telephone numbering system needs to be mentioned: it

is not time independent. Telephone authorities usually reallocate telephone

numbers after people cancel their connections. This can then lead to the situation

where you ring somebody you haven't contacted for a while and to your surprise

a total stranger – who has been allocated the number which your friend previ-

ously had – answers your call.

In order to have time-independent telephone numbers the telephone com-

pany would have to use much larger local numbers. Most people prefer shorter

numbers and are prepared to accept the risk that they occasionally get a wrong

number.

Similarly in file systems users may want the freedom to reuse names in the

Smith/My Dir

His File Text File

My Prog Program

Figure 2.5: A Hierarchical Directory Structure

A Directory may contain any combi-

nation of file and directory entries.

Smith

My File Text File

My Prog Program

My Dir Directory

Smith/My File

 Smith/My Prog

Smith/My Dir/His File

Smith/My Dir/My Prog

Chapter 2 BASIC SECURITY CONCEPTS 18

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

same directory. This need not be forbidden, and in practice file systems do not

prevent it. In fact it can be quite useful for example if a user gets an updated ver-

sion of a file or program which he wishes to use in place of the old version. If

there is a new issue of a word-processing program from which certain errors

have been removed, the normal user will probably want the system to delete the

old version and replace it with the new version, using the same symbolic name

in his directory.

At this point it is useful to draw a distinction between external and internal

names which are used in computer systems. It is a common practice in computer

software design to use integers (whole numbers, such as the number 23) instead

of symbolic names (consisting of alphabetic and other characters, such as My

File) in the internal parts of the system. This is advantageous because numbers

are usually shorter, they have a fixed length when stored in the computer's

memory and they can often be used as indices into tables.

Whereas it can be useful to allow symbolic names, such as Temp, to be re-

used in a local context, we run into greater difficulties if internal names are re-

used over time. To illustrate this we can consider the pointers in Figures 2.4 and

2.5 as examples of internal names. A real problem arises if such a pointer is am-

biguous over time. Suppose for example that there are two directories (for two

users) each with an entry for the same file (Figure 2.6).

If one user deletes the file and the disk space gets used to create another

file, the other user could end up accessing the wrong file. The fundamental prob-

lem is that a disk address is not a unique identifier for a file over time. At differ-

... ...

... ...

My File Text File

Smith/My Dir/His File

Smith/My Dir

Figure 2.6: Two Directory Structures containing Different Pointers

for the Same File

Smith

My File Text File

My Prog Program

My Dir Directory

Smith/My File

Smith/My Prog

His File Text File

My Prog Program

Smith/My Dir/My Prog

Jones/My File

Jones

Chapter 2 BASIC SECURITY CONCEPTS 19

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ent times different files can be placed at the same address. (Similar considera-

tions apply to using main memory addresses as identifiers.)

This is an example of how getting a "wrong number" may mean that a

breach of security can occur. For security to work correctly there must be a level

in the system, which cannot be by-passed, where subjects and objects are

uniquely identified over time. Usually this will be at the level of internal names,

because at the level of symbolic names it is useful for users to be able to rename

objects and even have several names for the same object.

2.2 Timestamps

Names of people are not guaranteed to be unique – think of names like Peter

Smith or John Jones. It is quite usual for authorities to make such names into

unique identifiers by using the name and the place and date of birth together as a

single identifier. This is analogous to a method frequently used in computing,

called timestamping. When some subject or object (e.g. a file) is created, a time-

stamp, which is a record of the time the object was created, is associated with

the name. Timestamps are typically represented in milliseconds (thousands of a

second) or in microseconds (millionths of a second).

Timestamping is especially useful with internal names, but it is not the sort

of name which a user normally wants to associate with his file. We will see an

example of timestamping in a later chapter.

3 Access Rights

Lampson's Matrix defines the access rights which a subject can exercise over an

object. An access right gives a subject permission to carry out a particular op-

eration on a defined object. Similarly a set of access rights confers on a subject

the right to carry out various operations on a defined object.

3.1 Basic Access Rights

In computer systems there are at least two levels at which the exercise of access

rights is of interest from a security viewpoint. At the hardware level the comput-

er executes instructions which carry out the individual stages in a computation.

In order to execute an instruction the instruction itself must be fetched from the

main memory of the computer and in the course of its execution it may read val-

ues from and/or write values back to the main memory. Since these three actions

on the main memory (the fetching of the instruction, the reading of information

and the writing of information) are distinct actions at the hardware level, the

hardware can detect what is happening and in most computer systems provides

protection mechanisms which check whether read access, write access, and/or

execute access is permitted, as it executes instructions. A read access right al-

lows items stored in the computer memory to be read. A write access right al-

Chapter 2 BASIC SECURITY CONCEPTS 20

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

lows items stored in the memory to be changed. An execute access right allows

locations of the memory to be fetched as instructions. We call these kinds of ac-

cess rights basic access rights. As we shall see in later chapters, different parts

of the memory may be designated as readable, writable and/or executable.

At the hardware level basic access rights can be very useful. For example,

given that program instructions and data items are usually held in the same

memory, it is of considerable help when debugging (finding errors in) new pro-

grams if the hardware detects that an attempt is being made to modify constants

(data in memory which should not be modified), or to execute data items as

code, or to treat code as data. When the hardware detects such an error it halts

the execution of the program. Without such protection the computer might for

example execute many supposed "instructions" which are in fact data items,

leaving the contents of memory in such a confused state that it would be difficult

to reconstruct the chain of events leading back to the original error.

3.2 Semantic Access Rights

At the file system level information stored in the computer's secondary (disc)

memory can be viewed as a collection of files, which may contain data or pro-

grams. At this level file access rights determine what operations may take place

on these files. Many file systems simply reflect the basic rights which appear at

the hardware level. Users may have read access, write access and/or execute ac-

cess to a file. This access rights information is usually stored, along with other

information, in the file directories.

In the case of file systems a read access right confers the permission to read

the information which is stored in the file concerned. A write access right gives

permission to modify information in the file. (Sometimes write access rights also

confer permission to append new information to the end of files and/or to delete

the files; alternatively these can be treated as separate access rights.) An execute

access right in a file system confers the permission to invoke the file as a pro-

gram containing executable instructions.

At the level of accessing files, the basic access rights provide some con-

trols, but generally speaking they do not sufficiently distinguish between the dif-

ferent kinds of access controls which are needed in real world computer applica-

tions. For example the right to read a file does not sufficiently distinguish be-

tween the kinds of read operations which might be involved. It is one thing to

allow a payroll clerk to access a company's personnel file to read information

about an employee's salary, but it is quite another thing to allow a trade union

official to read the file in order to obtain the names and addresses of employees.

Payroll clerks have a right to read salary information, but trade union officials

may not have this right. Yet in both cases the same file is being read. So simply

Chapter 2 BASIC SECURITY CONCEPTS 21

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

giving the trade union official read access could lead to him also reading the sal-

ary information, which would be a clear breach of confidentiality. Yet without

it, he could not read the information which he is entitled to have.

Similarly permission to write to a bank account file is insufficient to distin-

guish between allowing a bank teller to record withdrawals and deposits associ-

ated with a customer account and allowing the bank manager to raise the over-

draft limit for a customer.

The point is that files contain logically related collections of data which

consist of many individual items of information about objects, e.g. the names,

addresses, account numbers, current balances, overdraft limits, interest payments

associated with many bank accounts. Different people may have differing needs

and differing entitlements to different parts of the information, which cannot be

adequately expressed by a right to read from a file or to write to it.

The simplest, but least flexible, way to solve this problem is to partition the

data into separate files corresponding to what may be read or written by differ-

ent subjects. This is often inconvenient and does not correspond to the natural

structure of data. It also creates difficulties when different users need partial ac-

cess to the same information.

Another approach is to write separate programs which access the same file

but only provide their users with that part of the information to which they are

entailed to receive. Thus there might be separate programs for the payroll clerk

and the trade unionist. In this case each user has the right to execute only some

of the programs.

A third solution is to build a complex software mechanism to serve as a

watchman. For example a data dictionary, implemented as part of a database

system, might contain information about the structure of the data stored in the

database. It is possible to record access control information in such a dictionary.

Another watchman solution which is sometimes used is to have a special soft-

ware package which works as an extension of the operating system.

The fourth possibility is the most flexible and most interesting. It involves

defining the access rights in terms of the operations on objects as they appear in

object-oriented systems. We shall talk more about object-oriented systems in a

later chapter, but here is a small foretaste.

An object-oriented system is a software system designed around the idea of

object classes. An object class defines the routines which, in a well-defined sys-

tem, correspond to the "natural" operations for objects of that class. As an ex-

ample a bank account can be defined as an object with an appropriate set of rou-

tines, as shown in Figure 2.7.

Chapter 2 BASIC SECURITY CONCEPTS 22

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

We can divide these routines into two groups: operations, which in some

way manipulate and change the state of the bank account, and enquiries, which

provide the subject with information about the account without changing its

state. Examples of operations include the routines 'deposit', 'withdraw', 'transfer',

'add interest' and 'authorize overdraft'. These can be viewed as differing kinds of

write operations. The enquiries are distinguished in the diagram by a question

mark. They include such routines as 'overdraft limit?' and 'current balance?'. The

enquiries can be viewed as different kinds of read routines, which return specific

information to the caller.

Provided that the routines defined for a class of objects such as bank ac-

counts correspond to the natural operations which occur in the real world, they

naturally become ideal candidates for defining access rights. We can express

such a set of access rights as shown in Figure 2.8.

Notice that this diagram is of a different kind from those which was used to

illustrate Lampson's Access Matrix. An entire column in Figure 2.8 corresponds

to a single access rights field of Lampson's Matrix. What this means is that Fig-

ure 2.8 refers to the access rights for a single object. In other words, it is not suf-

ficient simply to define which operations of an object class a particular subject

may invoke. Such a list of permitted operations only makes sense in conjunction

with a particular object or list of objects. For example, I may have the right to

Figure 2.7: A Bank Account with Semantic Operations

A Bank

Account

Deposit

Withdraw

Customer

Number

Overdraft

Limit?

Current

Balance?

Add

Interest
Authorise

Overdraft

Transfer

Close

Account

Open

Account

Chapter 2 BASIC SECURITY CONCEPTS 23

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

withdraw money from my bank account, but that should not automatically give

me the right to withdraw money from yours!

We call the access rights corresponding to natural operations on objects

semantic access rights. In contrast with basic access rights, these allow us to

distinguish for example between a bank teller's right to record withdrawals and

deposits and the bank manager's right to raise the overdraft limit for a customer.

3.3 Generic Access Rights

It is often useful to augment semantic access rights by adding a small set of ge-

neric access rights. These are additional access rights based on operations which

are common to all objects, for example the right to create an object, to delete an

object, to copy an object, to change its ownership, etc.

3.4 Metarights

Finally access rights can themselves be subject to access control rules. For ex-

ample, there may be access rights which determine the right to pass on access

rights to another user, to change (e.g. restrict) one's own access rights, to change

the access rights of others, etc. We call these metarights. This brings us to our

next question. Who has the right to control access rights?

3.5 Mandatory Access Controls

There are two kinds of views about how this question should be answered. The

Figure 2.8: Access Rights expressed as Semantic Operations

√ √ x x

√ √ x x

√ √ x x

√ √ x x

√ √ √ x

x x √ x

x √ x x

√ √ x √

√ √ √ √

√ √ √ √

Open Account

Close Account

Deposit

Withdraw

Transfer

Add Interest

Authorise Overdraft

Customer Number

Overdraft Limit

Current Balance

A tick indicates that the subject at the head of the column

may carry out the operation in the corresponding row.

Chapter 2 BASIC SECURITY CONCEPTS 24

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

first is the "authoritarian" or "organisational" view, which can be characterized

as follows.

"The information to which access is being controlled belongs to some or-

ganisation. Each organisation has a head, who in principle has sole control of the

database. This database can be accessed by others only according to his wishes,

which may include delegating some of his control to others."

In other words, the organisational head (or his computer expert) controls

the metarights in the system. Typically, large organisations seem to prefer a hi-

erarchical access control structure, reflecting their management structures. Vari-

ous security models are based on this way of thinking, such as the Bell-LaPadula

model [10], which we discuss, along with some similar models, in a later chap-

ter.

The authoritarian view of access control leads to systems which are charac-

terized by mandatory access controls.

3.6 Discretionary Access Controls

The alternative approach, found in "open" systems, involves discretionary ac-

cess controls. In a discretionary system each individual subject in the system is

personally responsible for controlling access to the objects which he creates and

owns. The discretionary approach is typical of time-sharing environments (such

as Unix). Notice, however, that in such environments individual users are often

not entirely free of external controls, since they usually have a "controlling" us-

er, e.g. the Unix "superuser" or "root". We discuss this issue in a later chapter.

4 Implementing Lampson's Matrix

So far we have discussed issues relating to the subjects, the objects and the ac-

cess rights which appear as the components in Lampson's Matrix. We now con-

sider the question of how the Matrix might be implemented.

At first sight it might seem that the most obvious way to implement Lamp-

son's Matrix in an operating system would be as a two dimensional array. How-

ever, there are at least two reasons why this is not a realistic approach in prac-

tice.

First, in a multi-user operating system an Access Matrix is usually very

sparse. Most of the entries indicate that subjects have no access to most objects.

Consequently a lot of memory would be consumed by repetitive information.

Second, an Access Matrix is very dynamic. In other words it is frequently

changing. It is not only the access rights which change but, more importantly,

subjects and objects are added and removed frequently. This would involve a

great deal of adjustment to the rows and columns of the data structure.

Chapter 2 BASIC SECURITY CONCEPTS 25

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

For these reasons two alternative implementation models can be used in

practice. The first of these is based on Capability Lists (sometimes called C-

Lists), the second on Access Control Lists (usually known as ACLs).

4.1 Capability Lists

A Capability List is a list which exists separately for each subject. It lists objects

to which the subject has access, along with the corresponding access rights for

the objects. Thus a C-List corresponds to one column of Lampson's Access Ma-

trix, and there is a separate C-List for each column. Entries in the Access Matrix

indicating that no access is permitted need not be included in the C-Lists. The C-

Lists corresponding to the Access Matrix in Figure 2.3 are shown in Figure 2.9.

An entry in a C-List corresponds to the general concept of a capability.

Generally speaking, a capability consists of an object identifier, which should

uniquely identify the object, and a set of access rights for that object. The pos-

session of a capability implies the right to access the object in the ways defined

by the access rights. Thus a capability can be thought of as being like a bunch of

keys which will open some of the doors in a building. The building is the object,

the doors which can be opened by the keys are defined by the access rights.

Just as in a key system it is relatively easy to distribute keys to those who

need them (for example to students who need to work in the university at week-

ends) but is often difficult to get them back later (when the students have com-

pleted their studies), so in a capability system it is usually straightforward to dis-

tribute capabilities to subjects, but it can be difficult to get them back when they

are no longer valid. This gives rise to a well-known problem in capability sys-

tems, the capability revocation problem. It can be illustrated as follows.

Figure 2.9: Capability Lists for the Access Matrix in Figure 2.3.

My File read, write

Her File read, write

C-List for Jill C-List for Editor

My File read, write

Her File read, write

My File read

Your File read, write

Editor execute

C-List for Jack C-List for Joan

My File read

Your File read, write

Editor execute

Chapter 2 BASIC SECURITY CONCEPTS 26

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

In a practical capability based system a subject's C-List can be organized as

a set of directories. Each entry in a capability-based directory might consist of a

symbolic name (which need only be unique within the directory), some infor-

mation about the object (e.g. its type), and a capability. The capability contains a

unique object identifier, which serves as a pointer to the object (similar to the

pointers in Figures 2.4 and 2.5), and the access rights for the object. Figure 2.10

is a revised version of Figure 2.5, showing a small capability directory structure

for our user Smith.

Let us now suppose that the file we have called Smith/My Dir/His File ac-

tually belongs to Jones, and the capability with read access has been given to

Smith by Jones. Jones will have his own capability for this file, with read and

write access. He has possibly even given it a different symbolic name (Jones/My

File), as is illustrated in Figure 2.11. This is an advantage of capability systems,

and it works because the same object identifiers are used in the different capabil-

ities, uniquely identifying the same object. It is as if Jones labels a key on the

bunch as for "My Office" and gives a key for it to Smith, which Smith labels

"Jones's Office".

But now we see the problem which Jones has, if he wants to revoke or

modify the capability which he has given Smith to use. In order to take the ca-

pability back he needs to have access to Smith's directory called My Dir. Even if

Smith had given him a capability for this directory, there is no guarantee that

Smith has not moved the capability to another directory or made a copy of it. It

Smith/My Dir

His File Text File

My Prog Program

Figure 2.10: A Hierarchical Capability Directory Structure

The pointers represent capabilities,

and their colours the access rights in

the capabilities, as follows:

Smith

My File Text File

My Prog Program

My Dir Directory

Smith/My File

 Smith/My Prog

Smith/My Dir/His File

Smith/My Dir/My Prog

read, write access

read access

execute access

Chapter 2 BASIC SECURITY CONCEPTS 27

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

is of course possible to devise extra rules about not moving and not copying ca-

pabilities, but these are often too restrictive to allow capability systems to func-

tion reasonably. In fact the problem is often worse than we have shown, because

flexible capability systems do not even insist that capabilities are stored in direc-

tories. Smith might even have buried the capability in one of his programs. It is

as if he has taken the key off his bunch and put it somewhere entirely different.

So Jones has no idea where he should look to find it!

There are in fact some solutions for the capability revocation problem, as

we shall see in later chapters, but they depend on other aspects of how systems

are implemented. There is no simple general solution which does not depend on

the implementation nor restrict the freedom of users. There is even a view that

the capability revocation problem should not be solved, because a capability

should be seen as a guarantee of access [11, pp. 3-8].

4.2 Access Control Lists

An Access Control List (ACL) can be considered as the inverse of a C-List in

that a list exists for each object, defining all the subjects who have access to the

object, along with the corresponding access rights for these subjects. Thus an

ACL corresponds to one row of Lampson's Access Matrix, and there is a sepa-

rate ACL for each row. Entries in the Access Matrix indicating no access need

not be included in the ACLs. Figure 2.12 illustrates the ACLs corresponding to

the Access Matrix in Figure 2.3.

... ...

... ...

My File Text File

Smith/My Dir/His File

Smith/My Dir

Figure 2.11: Two Directory Structures containing Different Capabilities

for the Same File

Smith

My File Text File

My Prog Program

My Dir Directory

Smith/My File

Smith/My Prog

His File Text File

My Prog Program

Smith/My Dir/My Prog

Jones/My File

Jones

Chapter 2 BASIC SECURITY CONCEPTS 28

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

4.3 Differences Between ACLs and C-Lists

It would appear that ACLs and C-Lists can represent the same information, and

it is therefore natural to assume that they are equivalent. In theory they are but,

surprisingly, they are not equivalent in practice! In real systems they can have

quite different effects.

Whereas a capability can be thought of as a bunch of keys for a building, an

ACL is more appropriately compared with a watchman who sits at the entrance

to the building and accompanies visitors to different rooms, ensuring that they

can only enter those rooms for which they have permission.

Revoking or changing access rights is usually no problem in an ACL sys-

tem. The owner of the building just advises the watchman of changes, which the

latter writes down on his list. Next time a visitor comes, he can only enter if he

is on the changed list. So much simpler than the capability system, it would

seem! We see in Figure 2.13 how this looks in the case of our previous example.

Notice that entries in an ACL directory are not capabilities, which has the

effect that there is only one directory entry per object. Smith now has no entry

for the file we previously called Smith/My Dir/His File. Instead there is an ACL

associated with the file itself which gives him permission to read it, but the file

is now only called Jones/My File. Smith doesn't need a capability, he only needs

to name the file, and the access list shows that he has permission to read it. (The

subject name in the ACL should of course be a unique identifier, not just

Smith!)

Figure 2.12: Access Control Lists for the Access Matrix in Fig. 2.3

Jill read, write

Jack read

Joan read

ACL for My File ACL for Your File

Jack read, write

Joan read, write

Editor read, write

Jill read, write

Editor read

ACL for Her File

ACL for Editor

Jack execute

Joan execute

Chapter 2 BASIC SECURITY CONCEPTS 29

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

But now we have a problem. Smith has to be able to find the file in order

that the ACL can be found and checked. How he does this depends on where the

ACL is stored. In Figure 2.13 we have placed the ACL somewhere between

Jones's directory and the file itself. In practice an ACL can be stored either with

the object for which it defines access or with a directory entry describing the

object. The latter is more usual.

Most ACL-oriented file systems solve the problem by having a single glob-

al directory hierarchy for all users of the system. The first level may represent a

super-user (or the system itself), the next levels represent users, and the lower

levels the users' individual directories and their files. In effect there is a single

global hierarchical directory structure representing the ownership of all files in

the system, as shown in Figure 2.14. This is a simplified view of directory struc-

tures such as that found for example in the Unix system.

With this kind of system users have no difficulty in finding the files to

which they have access via an ACL, if, as is usual, they can browse through the

global directory structure. But herein lies a big danger for security. If a single

global directory structure exists, hackers can take advantage of this to discover

what interesting files there are in a system, making it easy for them to locate po-

tentially useful information. (If I have called one of my files "Computer Archi-

tecture/Exam" I dare say it might be of interest to some student hackers!) And

once a hacker is in a directory then with a little skill he can manage to include

himself in the access control lists for the objects held there.

... ...

... ...

My File Text File

Smith/My Dir

Figure 2.13: Two ACL Structures giving Access to the Same File

Smith

My File Text File

My Prog Program

My Dir Directory

Smith/My File

Smith/My Prog

My Prog Program

Smith/My Dir/My Prog

Jones/My File

Smith read

ACL for Jones/My File

The pointers are not capabilities, and

do not reflect different access rights.

Jones

Chapter 2 BASIC SECURITY CONCEPTS 30

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

By contrast, in the case of a capability based directory system a global

structure is unnecessary, and it is easy to ensure that hackers cannot browse

through all the files in the system. The need to browse has been removed!

The alternative strategy for storing an ACL, i.e. storing the access rights

with the object itself rather than in a directory, would in conventional file sys-

tems have the effect that it would possibly be harder for hackers to find the ac-

cess rights, but it would be equally difficult for users to find the files of others to

which they have legitimate access! This strategy is not normally adopted in cur-

rent systems, because it would complicate the file system too much.

We shall return to the subject of C-Lists and ACLs at various points later in

the book. We have by no means discussed all the important points which they

raise. In particular we have mainly looked at them in relation to file systems. But

issues of representing access rights arise at several levels in a system. In later

chapters we shall be especially concerned with resolving such issues at lower

levels of the system, for example in relation to the protection of pages and of

segments in the virtual memory. Although the principles which we have dis-

cussed apply at that level also, quite different implementation decisions play an

important role, as we shall see in due course.

In the next chapter we examine some further security concepts.

Figure 2.14: A Global Hierarchical Directory Structure

Smith

My Dir

Miller Brown

Jones

System

My File My File My Prog

My Prog

 Chapter 3

More Security Concepts

The previous chapter described the properties and possible implementations as-

sociated with Lampson's Access Matrix. In this chapter we review some security

issues which cannot be resolved via that simple model.

1 The Confinement Problem

An example of a problem which cannot be described in terms of Lampson's Ac-

cess Matrix is known as the confinement problem. This is basically the problem

of ensuring that subjects who/which themselves have a legitimate right to infor-

mation do not reveal it to unauthorised third parties.

As a simple example, consider the process of printing a file. The actual low

level commands which have to be issued to printer devices (e.g. ink jet printers,

laser printers, etc.) are not only complicated, but they differ quite substantially

from one printer type to another. It would be an unreasonable overhead to expect

all programmers of application programs to produce their own code to drive

printers, so what normally happens is that printer driver programs which offer a

uniform and easy to use interface are provided by the operating system or the

printer manufacturer. But can these driver programs be trusted not to reveal the

information to which they need access in order to print user's files?

Furthermore, it is in the interest of all users in a multiprogramming system

that the printers have a high throughput and that individual users do not have to

wait until a printer becomes free before they can run their application programs

which produce printout. Both these objectives are usually achieved by using

printer "spoolers". These are processes which print continuously as long as there

is something to print. They take their input from files which have been created

on disc by application programs. Thus the application programs never write their

printout directly to the printers but instead they write what is to be printed into

files on disc. (Discs have two advantages over printers: the rates of data transfer

are much faster, and they are sharable devices which can be used "at the same

Chapter 3 MORE SECURITY CONCEPTS 32

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

time" by many different programs.)

What all this means is that when an application program wishes to have in-

formation printed out, it first writes this to a disc file, then it puts the name of (or

places a capability for) the file onto a queue of work for the spooler process.

The spooler is expected to read the file and output its contents to a printer.

But by reading the file the spooler has (legitimate) access to potentially secret

information. The confinement problem in this case is how to stop the spooler

from secretly printing user files at another location or from copying them into

different files with access rights that allow unauthorised parties to read them.

A program which cheats in this kind of way is often known as a Trojan

horse, i.e. a program which in addition to its "official" job carries out undesira-

ble secret actions. What is needed is the ability to "confine" the spooler in such a

way that it cannot retain information which it receives from its caller and cannot

copy it or output it other than as required by the application program using its

services.

The confinement problem cannot be formulated in terms of Lampson's Ac-

cess Matrix (and therefore also not in terms of C-Lists or ACLs), and it is also

an extremely difficult problem to solve in practical systems. That is one of the

reasons why we hear such much in news reports about insecure computer sys-

tems.

To make matters worse a Trojan horse need not necessarily use an overt

channel (such as a file or a printer) to pass information to unauthorised users. It

may resort to covert channels. Suppose for example a spooler had access to a

simple piece of information ("yes" or "no") which it wants to pass on illicitly to

a third party, it might encode this information by printing two files in the order

A then B, meaning "yes" or in the order B then A (meaning "no"), or it might

cause a noticeable delay (e.g. 20 seconds for yes, 40 seconds for no), between

printing two files, or send an unwarranted error message, etc.

In a later chapter we shall show how the simple confinement problem can

be solved, but we do not pretend to have a general answer to the problem of

closing all covert channels! When we discuss the Bell-LaPadula model later in

this chapter we shall see a different example of the confinement problem, but

before doing this we first look at some further security issues which are not ad-

dressed by Lampson's Access Matrix.

2 Rule-Based Access Rights

The simplest way to express access rights is to say that a subject S may access

an object O with a set of (basic or semantic) access rights R. This is basically

what Lampson's Access Matrix achieves. However, this is often not fully ade-

Chapter 3 MORE SECURITY CONCEPTS 33

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

quate to meet particular situations. For example, it may be desirable to deter-

mine that a subject S (e.g. an employee) may have access rights R to an object O

only during working hours. The latter is a simple example of rule-based access.

Another example would be the rule that the owner of a bank account may make

a withdrawal operation only if this does not result in an account balance less

than the overdraft limit. We shall see a quite different example of access rules

when we consider the Bell-LaPadula model.

We shall refer to the simple Access Matrix form of access controls as un-

conditional access rights, in contrast to those with associated conditions, which

we call rule-based access.

In our discussion of the issue who controls access rights we distinguished

between mandatory and discretionary access rights. It is important to note that

the concepts of unconditional vs. rule-based access and of mandatory vs. discre-

tionary access are orthogonal, i.e. they are independent themes which can be

combined in any way (giving four possible kinds of system). In other words both

unconditional and rule-based access rights can be used independently of the de-

cision about whether a user himself or an organisation head determines the me-

tarights for the objects of a system. This point is often not clearly recognized,

because most mandatory systems (cf. Bell-LaPadula) are also rule-based and

most discretionary systems (cf. Unix) support only unconditional access rights.

3 The Access Rule Model

A few years ago a colleague and I proposed what is effectively a simple exten-

sion to Lampson's Access Matrix, which we called the Access Rule Model. This

allows rules to be specified as part of the process of defining access rights [12,

pp. 67-82]. As it is intended to be a model which allows security decisions to be

formulated in a formal way, the rules look a little mathematical. But don't let

this put you off. The idea is basically very simple. The description which is pre-

sented here differs a little in detail from the original description.

An access rule specifies a condition which must be fulfilled in order that

access may proceed. It takes the form

condition: subject —> object.{access_rights}

The rule

C: S —> O.{AR}

means that the subject S has the set of access rights AR for the object O, if and

only if the condition C is fulfilled at the time the access is attempted. If the ac-

cess rights are listed separately, a comma is used to separate the individual ac-

cess rights in the set.

The condition is a logical expression, which may use predicates about any

Chapter 3 MORE SECURITY CONCEPTS 34

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

aspect of the system.

Lampson's Access Matrix is a special case of the model, which can be ex-

pressed as follows:

true: S —> O.{AR}

What this means is that it is always true that the subject S has the access

rights AR for the object O. Thus we can express the first column of the Access

Matrix in Figure 2.3 using the following rules:

true: JILL —> My File.{read, write}

true: JILL —> Her File.{read, write}

By using the quantifier "for all", which is abbreviated to the symbol , in

conjunction with subjects, access rights and/or objects, we can neatly express in

a single access rule many fields of Lampson's Matrix. Thus

 S: S —> spooler.{print}

This means that all subjects, here referred to as S, have the right to print using

the spooler. Similarly

 O: Superuser —> O.{read}

means that the Superuser can read all objects in the system, here referred to as

O. The rule

 AR: Smith —> My File.{AR}

means that Smith has all access rights, here referred to as AR, for My File.

By introducing sets, the rules can discriminate more finely. The symbol

means "in the set". For example the rule

 x bank_tellers: x —> account.deposit

means that all members, here referred to as x, of the set bank tellers (i.e. all bank

tellers) can make deposits into the object account.

More complex conditions can be expressed by using boolean operators in

the conditions. For example the symbol means "and" and ¬ means "not", so

that the rule

 x bank_tellers ¬ account.overdrawn:

 x —> account.withdraw

is interpreted as: all bank tellers have the right to withdraw from the account if it

is not overdrawn.

These examples illustrate that the access rule model fits well with both the

object-oriented approach to software design (which we further discuss in a later

chapter) and with the use of semantic access rights, which we discussed in the

previous chapter. The expressions account.overdrawn and account.withdraw can

be understood as operations on the object account.

It is even possible to express confinement if we introduce the predicates

Chapter 3 MORE SECURITY CONCEPTS 35

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

confined (x) (i.e. the operation x is confined) and confined_to (y, z) (i.e. the ob-

ject y is confined to invoking the object z), as follows:
confined(print) confined_to(spooler, printer):

 S —> spooler.print

What this means is that the subject S can invoke the print operation of the spool-

er if the operation print is confined and the spooler is confined to using only the

printer.

The use of such a general access rule model means that it should in future

be possible to specify in a precise form what the security requirements for a sys-

tem are. This is an important step in achieving secure systems.

However, specifying requirements and implementing them are two quite

different things. For example, specifying a confinement condition does not mean

that it is easy to implement it!

4 The Bell-LaPadula Security Model

This model [10] is a rule-based mandatory model which aims to control the

flow of information between subjects. Through its incorporation into the U.S.

Orange Book
7
 and similar publications by other governments it has substantially

influenced general thinking about security.

Each subject and each object in the system is classified as belonging to a

particular security class. A subject has a clearance level and an object (e.g. a

document) has a classification. For example we could use the military classifica-

tions

unclassified < confidential < secret < top secret

where the symbol < means "is at a lower level than" (e.g. confidential is at a

lower level than secret).

The aim is to control information flow between different subjects. For ex-

ample subjects with a clearance level secret may read objects (which we shall

call documents) with a lower classification confidential or unclassified, but they

may only write to documents classified as top secret. Objects at the same classi-

fication may be both read and written. Thus a subject with the secret clearance

level may both read and write secret documents.

In addition there is a non-hierarchical grouping into areas of concern

(which we shall call projects). These are disjunct, i.e. projects do not overlap

with each other. Each subject and each object may be associated with a set of

projects. A subject may only read a document if he is a member of all the pro-

7
 The U.S. Orange Book defines a set of criteria laid down by the U.S. Department of

Defense (DoD) in 1985 for evaluating the trustworthiness of computer systems. It has

now been withdrawn.

Chapter 3 MORE SECURITY CONCEPTS 36

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

jects with which it is associated. He may only write to a document if the docu-

ment is associated with all the projects of which he is a member.

The hierarchical classification rules and the non-hierarchical project rules

are applied in combination. In other words both sets of rules must be fulfilled

before an access may take place.

The rules for reading and writing can be expressed mathematically as fol-

lows:

Reading of Objects (simple security property):

(clearance (subject) ≥ classification (object))

 (projects (subject) projects (object))

 This rule ensures that a subject cannot receive information from higher

classification levels or from projects of which he is not a member.

Writing of Objects (*-property, pronounced 'star-property'):

(clearance (subject) ≤ classification (object))

 (projects (subject) projects (object))

This rule ensures that subjects cannot transmit information to lower classifica-

tion levels or from projects not associated with the document.

In addition there is a rule regarding the introduction of new users into the

system. This states that a subject S can only create a subject T if the projects for

T are a subset of those for S and the clearance of T is not higher than that of S.

Creation of subjects:

Subjects creates Subject

 (projects (Subject) projects (Subjects)

 (clearance (Subject) ≤ clearance (Subjects))

All these rules can be easily expressed using the Access Rule Model, as follows:

 O S (clearance (S) ≥ classification (O)

 (projects (S) projects (O)):

 S —> O.{read}

 O S (clearance (S) ≤ classification (O))

 (projects (S) projects (O)):

 S —> O.{write}

(projects (St)
 projects (Ss)

 (clearance (St) ≤ clearance (Ss)):

 Ss —> user_manager.{new_user (St)}

The aim of these rules is to permit information flow only to trustworthy ob-

jects, and thus to solve a special case of the confinement problem.

However, it does not guarantee the integrity of objects, because it permits

subjects with a lower clearance to write to objects with a higher classification.

Some researchers (e.g. [13]) have therefore suggested that the writing rule

should be modified to disallow the writing to or creation of objects at higher

Chapter 3 MORE SECURITY CONCEPTS 37

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

classification levels.

Other models for controlling the flow of information have been proposed

(e.g. the Lattice Model [14]).

5 The Biba Security Model

Not all security models are concerned with controlling the flow of information.

A model superficially similar to the Bell-LaPadula model, the Biba Model [15]

is also a rule-based mandatory model, but – unlike Bell-LaPadula – it is con-

cerned with guaranteeing the integrity of information. For another example of a

security model aimed at ensuring the integrity of objects (the Clark-Wilson

Model) see

As in the Bell-LaPadula model subjects and objects are classified into hier-

archically organized security classes. A subject has a clearance level and an ob-

ject (e.g. a document) has a classification. In addition there is a non-hierarchical

grouping into areas of concern (e.g. projects). Such projects are disjunct.

The Biba model has the following rules:

Reading of Objects:

(clearance (subject) ≤ classification (object))

 (project (subject) project (object))

 This rule ensures that subjects cannot receive information from lower clas-

sification levels or from projects of which he is not a member.

Writing of Objects:

(clearance (subject) ≥ classification (object))

 (project (subject) project (object))

This rule ensures that subjects cannot transmit information to higher classifica-

tion levels or from projects not associated with the document.

Creation of subjects:

Subjects creates Subject

 (project (Subject) project (Subjects)

 (clearance (Subject) ≤ clearance (Subjects))

This rule states that a subject S can only create a subject T if the projects

for T are a subset of those for S and the clearance of T is not higher than that of

S.

Whereas the subject creation rule and the project membership rules for

reading and writing are the same as in Bell-LaPadula, the hierarchical reading

and writing rules of the Biba model are the inverse of those in the Bell-LaPadula

model. This ensures the integrity of objects but not the confidentiality of infor-

mation. It does not solve the confinement problem [16].

In bringing our descriptions of some standard security models to a close,

Chapter 3 MORE SECURITY CONCEPTS 38

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

we would like to emphasize that from the viewpoint of this book the important

issue is not which security model is best or even good. These models are im-

portant to us rather because they serve as examples of real security models

which cannot easily be implemented on conventional computers using conven-

tional implementation techniques. Thus they provide a practical testbed for the

usefulness of the security mechanisms which we shall propose in the later parts

of this book.

6 Protection Domains

The mandatory security models which we have seen – and in fact most security

models – make an implicit assumption that only one protection domain exists in

a particular computing environment, and that the protection mechanisms of the

system are directed towards implementing that particular security policy or

model. And in practice current systems often support only a single protection

domain.

In later chapters we shall take up the challenge of showing that it is possi-

ble to provide mechanisms which are flexible enough and yet secure enough to

implement different models side by side in a single system. In particular we

shall attempt to demonstrate that it is possible to implement a combination of

policies involving mandatory (authoritarian) and discretionary (open), as well as

unconditional and rule-based models alongside each other. Such mixed systems

are of practical relevance both for providers of computing and networking ser-

vices.

The general conclusion which we might draw from this chapter is that there

are some security problems which are not too difficult to explain or even specify

formally. But they are by no means easy to implement in a general way. This

provides us with one of the challenges to be overcome using the security mech-

anism which we propose in the remainder of the book.

 Chapter 4

External Security Threats

So far we have considered security in a fairly abstract way. In this and the

next chapter we turn to more practical issues, taking a look at some of the threats

and weak mechanisms which in practice place computer systems at risk. We

first review the threats which arise from unauthorised persons attempting to

penetrate a system. Then in the next chapter we review the kinds of internal

threats which can be created by persons who are either legitimate users of the

system or by unauthorised users who have managed to penetrate the system,

concluding with a discussion of some of the weak security mechanisms and pol-

icies which make it easy for them to breach security.

1 Threats from Outside

Most systems include a list of users, who – assuming that they can provide au-

thentication of their identities – are authorised to use the system. There are sev-

eral groups of persons who may not be authorised to use a system, who may

nevertheless be interested in penetrating the system. Here are some examples.

— Amateur hackers often penetrate systems simply to satisfy their curiosity or

to prove that they can beat the challenge of breaking in. Although this may

be relatively harmless it can involve breaches both of the privacy rights of

individuals and of the confidentiality of corporate information. If curiosity

is accompanied by mischievousness or malice then the result may also be

threats to the integrity and/or to the availability of systems.

— Criminals may wish to penetrate a system for their own benefit. The aim is

often to commit a financial crime and may involve breaching either the

confidentiality of the system (e.g. to obtain "insider" information) or the in-

tegrity of the system (e.g. by modifying information about financial trans-

actions or bank accounts, etc.). They are less likely to threaten the availabil-

ity of the system, especially if they wish to go undetected.

 However, it has unfortunately become quite common for criminals to

blackmail the owners of computer sites by encrypting them, with the result

Chapter 4 EXTERNAL SECURITY THREATS 40

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

that the computer system becomes useless (unavailable). Anonymous pay-

ments are now possible in the Darknet
8
 using cryptocurrencies

9
 such as

Bitcoin
10

, which thus facilitate blackmail payments.

— Commercial and industrial spies generally wish to obtain information by

penetrating competitors' systems, and so they are primarily a threat to the

confidentiality of the system. They may of course also modify information

to disadvantage their competitors. Only in extreme cases is it likely that

they will wish to disrupt the availability of the system, as they too will

normally be more concerned to go undetected.

— Social media and other companies avidly gather information about as many

individuals and companies as possible with the primary aim of building

profiles which can be used to place customised advertising especially in the

Internet. While this is not always illegal it often represents a severe threat to

privacy
11

, and in the longer term (because of the massive databases which

are accruing and the ability to manipulate users' opinions) to democracy

[17]. The most common technique which they use is to install trackers

which follow and record their browser history, i.e. their accesses to internet

sites, especially websites. The most common reason for this is to provide

advertisers with information which will help them to sell their goods and/or

services, but there are other uses (e.g. for law enforcement authorities fol-

low the activities of criminals and terrorists
12

. Trackers often use cookies

on the computer of their targets to store their information.

— Whilst it cannot be excluded that terrorists aim to obtain and modify infor-

mation, they are more likely to be concerned with disrupting or destroying a

system, and so mainly represent a threat to the availability of systems.

— Military and governmental spies and hackers are interested in gathering in-

formation about the activities of other countries (and sometimes about their

own citizens) and therefore present a threat to the confidentiality of sys-

tems. Disinformation techniques may also lead to the modification of in-

formation and so provide a threat to integrity. And with the growing threats

of cyber warfare a major aim has become to disrupt availability.

8
 see https://en.wikipedia.org/wiki/Darknet

9
 https://en.wikipedia.org/wiki/Cryptocurrency

10
 https://en.wikipedia.org/wiki/Bitcoin

11
 The European Union has introduced extensive privacy laws, which force websites to

reveal information about the privacy relevant activities of their websites and allow the

user to restrict some of these. However I doubt the efficacy of this, since it considerably

slows down their work, and I suspect that most users simply take the line of least re-

sistance by allowing all activities. I see this as a typical example of how officials often

fail to realise their good (but bureaucratic) intentions!
12

 see https://en.wikipedia.org/wiki/Web_tracking

Chapter 4 EXTERNAL SECURITY THREATS 41

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

— It appears that foreign governments are now infiltrating the social media

networks in what might be successful attempts to pervert the outcomes of

democratic elections.

Although these are quite distinct categories of persons who may wish to pene-

trate systems, they have at least one thing in common. Before they can do their

damage they must in some way gain access to the system or to the information

they need. Here are some of the techniques which they can adopt.

They can physically steal information, e.g. by breaking into an organisation

and stealing magnetic media devices on which information is stored. There are

at least three kinds of precautions which can be taken against this kind of threat:

— physical security measures to prevent theft,

— holding multiple copies of data to ensure that theft does not lead to

unavailability,

— making the data meaningless for the thief (e.g. using encryption tech-

niques).

As a further possibility they can listen in to communications transmissions,

e.g. by wiretapping, by observing internet traffic or by monitoring satellite mes-

sages. This technique may be used directly to obtain the information being

sought. But it can also be used for example to discover the passwords of users

coming on line. The most effective form of defence against this kind of threat is

to encrypt the data, i.e. to encode it into a form which makes it appear meaning-

less.

The third possibility is for an unauthorised person to present himself as an

authorised user of the system, e.g. by stealing or guessing a user's password or

by systematically testing passwords until successful.

In this book we are concerned primarily with technical mechanisms for

achieving secure systems, and so we ignore the issue of physically securing the

data. Furthermore the focus of our interest is primarily on a secure computer ar-

chitecture and the basic aspects of operating systems, rather than on the Inter-

net
13

.

From this review it is evident that at least two mechanisms are relevant for

countering attempts to penetrate systems: encryption and authentication tech-

niques. We now consider these in turn.

2 Avoiding Eavesdropping

Avoiding eavesdropping on communications lines or open channels such as sat-

ellite links can best be achieved by the use of encryption techniques. Such tech-

13

 I do not claim to be an expert on the Internet.

Chapter 4 EXTERNAL SECURITY THREATS 42

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

niques are highly mathematical and it is not our intention here to discuss de-

tailed algorithms, but merely to sketch out some of the aspects which are of gen-

eral interest for preventing security breaches.

The basic idea of encryption is that a text or bit string, the content of which

is to be kept secret, is transformed by an algorithm into a different form, so that

the meaning is no longer self-evident.

 For example, suppose we start with the following text:
this is a secret text

We could use a simple algorithm to transform it into the following text
uijt jt b tfdsfu ufyu

and then send it over the internet in the hope that if an eavesdropper manages to

access the message he will not understand it. In fact our hopes will almost cer-

tainly be dashed. You have probably already worked out the simple encryption

algorithm which was used. All we did was change each letter in the text to the

next letter in the alphabet.

We could make the algorithm rather more flexible by introducing the idea

of a key. For example we could apply a three letter key, which the algorithm us-

es to determine by how many letters in the alphabet the letters in the text are to

be shifted. Thus we might use the key BIT to produce the following encoding of

the text:

vqcu rl c byeayv cyzc

What we have done is to take the first, fourth, seventh … letters and have shifted

them by 2 (because B is the second letter of the alphabet). Then we have taken

the second, fifth, eighth … letters and shifted them by 9 (because I is the ninth

letter of the alphabet) and finally we shifted the third, sixth, ninth … letters by

20 (because T is the twentieth letter of the alphabet). To implement such an al-

gorithm we need a routine which is parameterised.

The advantage of using a key is that different keys can be used, at the will

of the encoder (not the programmer), to produce different encodings. Even if the

eavesdropper knows the algorithm, he still has to find the key.

During and since the Second World War a huge amount of effort and gov-

ernment money has been invested in encryption techniques and in ways to crack

them. As a result relatively safe encryption algorithms have been devised. These

are highly mathematical. We can usefully distinguish between two kinds of al-

gorithms.

Symmetrical encryption algorithms (cf. DES [18]) and more recently

AES14) use the same (secret) key to encrypt and to decrypt a text. The simple

14

 see https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Chapter 4 EXTERNAL SECURITY THREATS 43

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

example which we have just given is symmetrical. If you know both the key that

was used to encode the text and the algorithm, you can decode the text.

Asymmetrical algorithms (known as "public key" encryption) use two keys,

a public key and a private key [19]. The public key, which need not be kept se-

cret, is used to encode the message, but the private key, which has to be kept

secret, is needed to decode it.

Both methods have their advantages and disadvantages. From the organisa-

tional viewpoint an important advantage of symmetrical techniques can be that

the encoded text can be the same length as the plain text, e.g. it takes up the

same amount of disc space. Another advantage is that symmetrical techniques

can use very much faster algorithms than the asymmetrical technique. But a dis-

advantage is that the recipient of a message which has been encoded must know

the same key as the sender. This can mean that the key may also have to be

transmitted and is therefore at risk of being discovered by eavesdroppers.

In a public key system no keys have to be transmitted in this way. Each

agent has his own private key and his public key. An agent who sends an encod-

ed message uses the public key of the receiver to encode it. The recipient uses

his private key to decode it. He doesn't need to reveal the private key to any-

body. The recipient of a message can even publish his public key in a newspaper

if he wants to. But this advantage does not come free. First, a public key algo-

rithm works very much more slowly than a symmetrical algorithm. The other

problem is that the encoded text is normally longer than the plain text.

To take advantage of the strengths of both methods, they can be used in

combination. The text to be transmitted is encrypted using a symmetrical algo-

rithm. This has the advantages that the encoding is fast and that the encoded text

is no longer than the original. The key which was used for the symmetrical en-

coding is then itself encoded with the public key of the receiver and transmitted

to him. He decodes this with his private key and then decodes the text.

A combined method along these lines can be used for example for commu-

nication between the different computers in a network, if each computer has its

own public and private keys. Variants of this technique can also be used to ena-

ble a mutually suspicious sender and recipient of a message to authenticate the

other's identity [20]. But this is by no means a simple issue and there is a large

body of literature on this subject.

However, we shall not consider the issue of using encryption in attempting

to authenticate the identities of mutually suspicious agents, as this is not the sub-

ject of the book. Instead we shall concentrate on issues concerned with the struc-

turing of computer architectures and operating systems. We shall see that the

SPEEDOS operating system can also make a contribution to the problem of

Chapter 4 EXTERNAL SECURITY THREATS 44

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

identifying senders and recipients of messages.

3 Encryption of Information on Disc

Information stored on removable discs (including external hard discs) and simi-

lar media is vulnerable to theft. Having stolen or copied a disc the thief can take

it to his own computer system and read the information at his leisure. In this

case too encryption can play a role in safeguarding the confidentiality of the in-

formation. (To ensure the availability of the information the user must have

made a second copy before the theft.) In practice few systems encode infor-

mation on disc, so what we describe in this section are potential scenarios.

In practice only the symmetrical method of encryption comes into question

because of the faster speed of encoding and decoding and because the infor-

mation remains the same size. The latter is especially important for discs, since

they work with fixed size data blocks which correspond to fixed size blocks in

the main memory of the computer.

In the simplest scenario the operating system can encode the plain data

form of the information when it is written from the main memory to disc and

decode this whenever it is read back into the main memory.

There are several options for using keys. The simplest is for the operating

system to use the same key for all discs which it uses, but this increases the ease

with which a thief can crack several discs which are stolen. Thus a stronger op-

tion is to use a different key for each disc. It is even safer to use a different key

for each file on each disc.

Then there is the issue of choice of keys. This can be made by the operating

system or by the owner of the disc or of the file in question.

There is also the question of whether and how the keys are themselves re-

membered. The first alternative is for the keys not to be stored on disc at all, but

then the onus lies with the owner of a disc or file to remember the key and to

provide this to the operating system when he loads the disc or when he opens

each file. This is both inconvenient for users and is open to the risk of forgotten

keys.

For these reasons it is probably more attractive to store the key(s) on the

disc or with the file in question. This has the advantage that the user can then

simply load his disc on a different system (assuming it provides the same en-

cryption facilities) and they can then be read without difficulty.

But if the owner of the disc can read it, why not a thief? Here the public

key approach can be a help. Just as the sender of information over a communi-

cations link can send his symmetrical key using the public (asymmetrical) key of

the recipient, so a user planning to take his disc to another system could request

Chapter 4 EXTERNAL SECURITY THREATS 45

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the operating system to encode his symmetrical key(s) on the disc, using the

public key of the system on which the disc is to be read. This would make the

key inaccessible to a thief trying to read the disc on his own system.

4 Authentication of Users

When a user logs into a system, his authentication usually takes place in two

stages. First he is asked to identify himself. We shall refer to this stage as the

identification stage. Then he is required to provide proof that he is the user he

claims to be. This is the authentication stage.

The identification stage normally involves the user in typing in the (unique)

username with which he is registered in the system. The operating system needs

this name in order to set up an appropriate context for the user to work in. Usu-

ally this involves creating a process and executing some commands in this pro-

cess to tailor it to the user's needs (as well as ensuring that this process has the

correct security context).

5 Password Systems

The authentication stage can take several forms. In most systems the user is re-

quested to supply a password, which is a secret code known to him and to the

system. The way this security mechanism is usually organised can lead to sever-

al serious security weaknesses.

When users choose their own passwords, they naturally tend to choose

names which are easy to remember. For example there is a tendency to use the

name of one's spouse or parent or child. Even if the choice is not so obvious,

many users are likely to choose a normal word which appears in a dictionary.

In 1979 Morris and Thompson [21] demonstrated how easy it is to discover

most passwords. Within a week they cracked 86 % of 3,289 passwords! Ten

years later a similar study by Riddle, Miron and Semo [22] produced similar re-

sults.

Another weakness of some password systems is that the passwords them-

selves are stored by the system in a password file. If a hacker succeeds in secret-

ly penetrating this file, he can impersonate any user and thus obtain easy access

to all the files in the system. In older versions of the Unix operating system it

was even possible for all users to read the password file. In this case the pass-

words themselves were stored in encrypted form, but this does not prevent users

from seeing at a glance which other users do not have a password. Furthermore,

the encryption algorithm is publicly known and can therefore be used to carry

out comparisons with entries in the password file.

There are several methods which can be employed to make systematic at-

tempts to discover passwords. For example a hacker can wiretap the connection

Chapter 4 EXTERNAL SECURITY THREATS 46

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

between a user and his system in order to discover his password. Or he can use

"brute force" methods such as trying out all combinations of the alphabet of val-

id password characters or trying out all the words in a dictionary.

One way of countering brute force methods is for the system to adopt a pol-

icy of allowing a user only a small number of login attempts. If he exceeds the

limit then the system refuses any further login attempts for say 24 hours. But

this only stops the most blatant and direct attempts at impersonation. If the

hacker has succeeded in obtaining encrypted passwords, for example from a

wiretap or from a password file, then he can combine the brute force methods

with encryption algorithms to crack passwords at his leisure. And of course the

computer is an ideal tool to help him in such an endeavour.

A more sophisticated method of discovering the passwords of others is the

use of so-called Trojan horses. We shall discuss this in the next chapter.

6 Improving the Security of Passwords

The literature is full of suggestions for improving the security of passwords.

Here are some examples.

6.1 Password Length

The shorter a password is, the easier it is to crack by brute force, since the num-

ber of combinations of letters in the permitted alphabet rises sharply with the

length of the password. For example if the alphabet consists of only the 26 small

letters from a to z, and a password can be a single letter, then at most 26 at-

tempts suffice to crack the password. If it has two letters then at most 26
2
 = 676

attempts are needed. With three letters the number increases to 263 = 17,576,

with 7 to 267 = 8,031,810,176 and so on. With ten letters the number is more

than 141 thousand billion (where 1 billion is a thousand million). To understand

what this means, let us suppose that it takes one tenth of a second of computer

time to make an attempt to crack a password (which is in practice far too long!).

With three letter passwords the longest time needed is 1,757.6 seconds, just less

than half an hour. But with 10 letter passwords it would take 14.1 thousand bil-

lion seconds to crack every password, which is nearly 450 thousand years! But

as I indicated, one tenth of a second is unrealistically slow.

6.2 Range of Characters

A further improvement can be gained by increasing the range of characters

which can be used in passwords. For example the use of both small and capital

letters theoretically makes a big difference. For example with even three letter

passwords this gives a range of 523 = 140,608 possibilities, compared with

17,576 for just small (or just capital) letters. If the ten decimal digits are added

Chapter 4 EXTERNAL SECURITY THREATS 47

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

then this increases to 623 = 238,328, and if we add ten extra characters, such as

full stop, comma, hyphen, question mark and so on, then with even three charac-

ters the number of possibilities is now 723 = 373,248.

One problem with increasing the length of passwords and/or with widening

the range of the alphabet used, is that users will tend not to make use of the extra

length or the extra characters, because their passwords become more difficult to

remember. To avoid this, some systems place restrictions on the passwords

which their users are permitted to register. For example they might say that a

password must contain at least one capital letter, one number, and a special

character and be at least eight characters long. Other restrictions which might

apply are that passwords which appear as words in dictionaries or passwords are

not allowed. It might also be required that passwords are changed at regular in-

tervals, e.g. at least once a week or once a month.

But generally speaking such systems are not popular with users, because

they make it hard to remember passwords. Even less popular are systems which

themselves determine which passwords are to be used.

6.3 Complicated Password Requirements

The effectiveness of making passwords more complicated is in fact somewhat

questionable, since the more difficult a password is to remember, the more likely

it is that the user will write it down on a piece of paper or store it in a computer

file. If he does this the vulnerability of the system rests on this piece of paper

being lost, stolen, or left at a computer terminal, etc., or on a hacker breaking

into his system and finding the file.

6.4 Dynamic Passwords

A technique which can help to get around this difficulty is to use dynamic pass-

words, i.e. passwords which automatically change according to some rule. Usu-

ally this involves storing in the computer not a password but a function for each

user. When used as an authentication technique the system challenges the user

with an argument and he has to respond by typing in a reply.

Here are some very trivial examples of functions:
 f(x) = x +3

Here the result is the value of the (numerical) argument, plus three. For example

if the system challenges with the number 67 then the correct password is 70.

Here is another example.
 f(x) = d * h (d = day of month, h = actual hour)

The function in this case ignores the argument entirely and instead calculates a

result which consists of multiplying the day of the month by the hour of the day

at the time the authentication challenge is made. Suppose for example the user

Chapter 4 EXTERNAL SECURITY THREATS 48

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

with this function logs in at 2 p.m. (= 14.00) on the 5th June and the system

challenges him with the argument 67, then he responds with 70 (= 5 x 14).

Notice that the same argument can produce the same response in both ex-

amples, so that even if a hacker is looking over the user's shoulder when he logs

in, or manages to eavesdrop on the challenge and the response on a communica-

tions line, he cannot deduce what the right response will be to any future chal-

lenge which the system makes if he attempts to impersonate the user.

The main limitation on dynamic passwords is that the function must be

simple enough for the user to remember it and to calculate it. (In the case of a

computer identifying itself to another, this need not be the case.)

6.5 Cognitive Passwords

Another approach is to use cognitive passwords. This is another form of chal-

lenge and response system, in which the challenges take the form of questions,

to which the user has to supply the answers. For example the system might chal-

lenge with the question:
"What is the name of your maternal grandfather's dog?"

to which the user might respond with the answer:
"Fido"

The system can be supplied with a large selection of such questions and with the

expected answers to them. Then each time the user attempts to log in, the system

can choose one or more of the agreed questions at random. To make the problem

more difficult for hackers the user might choose to supply the system with "in-

correct" answers. Thus instead of listing the name of grandfather's dog as

"Fido", which might be known to a hacker who knows the user, the careful user

might have determined that the required answer is:
"Are you deaf?"

or something equally irrelevant. But the problem then becomes remembering the

answers expected by the system!

6.6 Required Actions

Yet another mechanism which can be employed to make it difficult for hackers

to impersonate registered users of a system is to monitor the first few commands

which a user invokes after he has (apparently) successfully passed the normal

authentication test. The real user has agreed with the system which commands

he will first type in. If the system detects a different sequence then it assumes

that the active user is a hacker.

This technique, which we shall call required actions, has one drawback. If

the commands are actually carried out, this may lead to breaches of security, so

that it is desirable that such commands are not actually really executed, but are

Chapter 4 EXTERNAL SECURITY THREATS 49

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

simulated in a form which the hacker cannot detect.

7 Alternatives to Passwords

Not all systems use passwords or similar challenge-response systems to authen-

ticate the identities of users. Other methods rely on various kinds of physical

proofs.

7.1 Plastic Cards or Other Similar Objects

One common technique is to require the user to prove his identity by demon-

strating that he possesses some kind of object. We are all familiar with the use of

plastic cards which banks issue for this purpose. These are not without their

problems. In particular theft or accidental loss of these cards can lead to security

breaches. (The 10,000 combinations of PIN numbers – four digit numerical

passwords – which are typically used in conjunction with these cards offer little

security against the professional thief.)

7.2 Personal Characteristics

It might seem that the methods which rely on personal characteristics of the user

to prove his identity are more reliable. We include in this category techniques

such as voice recognition, finger print examination, blood analysis and the like.

However, the equipment needed to carry out such tests is generally expensive.

And in reality even these techniques are not foolproof. Voices can be captured

on discs, users can be physically forced to provide their fingerprints or blood

samples, and so on.

Furthermore, in my own experience with smartphones using fingerpreint

analysis is far from reliable!

It seems that there is no absolutely foolproof method of authenticating the

identities of users.

8 A Fundamental Weakness

What almost all systems have in common is that it is the operating system which

carries out the authentication procedure. This may seem to be the obvious way

to organise things, but in fact it is the root cause for a very fundamental security

weakness in most systems.

In the first place a standard authentication procedure gives the hacker the

important advantage that he knows what he has to do when he sets about pene-

trating the system! For example, he has to input the right password.

He also has a second advantage. A centralised system procedure for authen-

ticating users implies that there is a central repository of authentication infor-

mation, such as a password file. This provides the hacker with an ideal target. If

Chapter 4 EXTERNAL SECURITY THREATS 50

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

he can crack this file then he can easily gain unrestricted access to all infor-

mation in the system.

In view of these disadvantages of centralised authentication procedures car-

ried out by the operating system, there is much to be said for the idea that each

user should be able to carry out his own authentication in whatever way he sees

fit. In other words individual users should have the freedom to check their own

identities using their own authentication module. If such a module is a freely

programmable user module, then each user can individually employ any of the

methods which we have discussed in order to authenticate his own identity. If

such a mechanism is in place hackers must not only discover the content of an

authorisation procedure but also its form, and there is no central information to

help him. He doesn't know whether he has to crack a simple password, a dynam-

ic password, a cognitive password and/or conform to some required actions.

Of course not all users have the necessary skills to program an authentica-

tion module for themselves, but that should not distract us from the importance

of this idea. Non-programmers could (in a world where this idea becomes nor-

mal) buy such modules from software houses and install them themselves. Such

off-the shelf modules could be parameterised so that each user could tailor them

for his or her own purposes. It would already be a help if operating systems pro-

vided a range of such parameterised modules.

Such a radical approach to authentication has not yet been implemented on

conventional computer systems. A possible way of organising this would be for

the operating system, after the user has identified himself by providing his user

name, to create a process in which the user's security module is first executed.

This would then determine whether the authentication is successful and, if not,

destroy the process. But such an implementation would still have one weakness:

there would still need to be a central file maintained by the operating system,

which instead of holding passwords, would hold pointers to the security modules

of all users. This itself would still be a good target for hackers.

As my colleagues and I have shown and demonstrated in practice in our

experimental MONADS computer systems
15

, even this problem can be avoided

with the use of an unconventional computer architecture [23, 24]. In chapter 22

we shall see how it works in SPEEDOS.

15

 see the Monads website

http://www.monads-security.org/persistent-protected-processes.html.

 Chapter 5

Internal Security Threats

and Weak Mechanisms

Once a user has gained entry to a computer system, having (rightly or wrongly)

convinced the system that he is an authorised user, he typically works within a

context in which he has privileges and access rights based on his identity. For

example he may access his own files in a discretionary system or in a rule-based

system he may access those which the rules allow him to. In other words he is

subject to the access rights which are defined for him by the security policy in

force at the computer installation where he is logged in.

However, in most practical multi-user systems there is no absolute guaran-

tee that a user will actually be forced to remain in his intended access environ-

ment. There are several reasons for this. First, the security mechanisms of the

system do not always function correctly. Second, they are often not powerful

enough to implement the security model which is required. Third, the security

model itself is often not adequate to meet the real security requirements of the

users. Thus there is plenty of scope in most systems for expert authenticated us-

ers to break free from their individual security context and cause problems for

other users.

We now consider some well-known ways a user may breach security or

cause damage once he is in the system as an accredited user. We then briefly

review why the mechanisms of a system are often not powerful enough to im-

plement the security policy, and we consider why – in a discretionary system –

the user may be dissatisfied with the system policy.

1 Threats at the Program Level

We first review some of the techniques which have provided practical threats to

system security and have put systems at risk: bugs, viruses, worms and Trojan

horses. These are relatively sophisticated forms of attack, since they rely on an

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 52

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ability either to write (or otherwise obtain) programs which do the damage or to

take advantage of knowledge about computer systems.

1.1 Bugs

Bugs are errors in programs, which may have been accidentally or deliberately

introduced. They have been used for example to allow hackers to gain illegal

access to systems. Well known examples are errors which existed in the "finger"

and "mail" programs of Unix, allowing hackers to gain access to systems, their

password files etc. [2]. These programs ran with "superuser" rights (discussed

later in the chapter), thus giving hackers the possibility of exercising all

superuser privileges. In practice this meant that a hacker could at will read, mod-

ify or delete any file in the system.

1.2 Viruses

Viruses are pieces of program which can reproduce themselves. The dangerous

functions of a virus are copied into various program files. When these programs

are unwittingly executed by authorised users, the virus is further reproduced in

more program files. Viruses often modify data files. Sometimes they are pro-

grammed to produce a spectacular effect (e.g. the destruction of files) at a par-

ticular time (such as at the turn of the millennium). They can also be pro-

grammed to do their damage when a particular event occurs, in which case they

are sometimes called logical bombs.

1.3 Worms

In contrast with viruses, worms are complete programs. Worms deliberately re-

produce themselves across networks, taking advantage of weaknesses in the se-

curity mechanisms of the computers in the network. They are generally a danger

to the availability of a system, in that they are often designed to consume large

amounts of system resources (e.g. processor time, main memory, disc space).

The most famous worm was the "internet worm", which in a very short time led

to the complete unavailability of 6000 computers in the USA.
16

1.4 Trojan Horses

Trojan horses are programs which contain code designed to carry out hidden

activities in addition to their intended tasks. A particularly dangerous example of

a Trojan horse is a program which simulates the login procedure and thus can

discover the passwords of unsuspecting users. Trojan horses are also often used

to introduce viruses into systems.

16

 see https://en.wikipedia.org/wiki/Morris_worm

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 53

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.5 Direct Attacks

In addition to all these relatively sophisticated security threats there are of

course the direct security threats, for example when a user of the system directly

attempts to breach the confidentiality, the integrity or the availability of infor-

mation belonging to other users, or to steal programs, in contravention of the

security policy.

Security attacks, at whatever level of sophistication, are generally possible

because of inadequacies in security mechanisms or security policies. We now

consider some examples of such inadequacies, looking at security first as a

compiler issue, then as a computer architecture responsibility and finally as an

operating system problem.

2 Security as a Compiler Issue

A compiler is a program which translates another program, written in a high lev-

el language, into a series of low level instructions which are capable of being

directly executed by a central processing unit (CPU) in the computer system.

The program to be translated is usually called the source program, the translated

form is the object program.

A compiler is specialised for compiling source programs written in a single

high level language. Examples of well-known high level languages include

Fortran, Cobol, Pascal, C, C++ and Java. There are however very many other

programming languages which have been designed with a variety of aims and

purposes.

Some programming languages emphasise the concept of type. This means

that they insist that the variables used in programs have a fixed type which can-

not be changed once the variable has come into existence. In this sense a type in

a programming language defines a set of values which can be assigned to a vari-

able of the type, together with a specific set of operations which can be used to

manipulate these values.

For example most programming languages have a predefined type integer.

Any variable of the type integer can only have a value which is a negative or

positive whole number, or zero. (Thus integer variables cannot take on fractional

or irrational values such as 1.32 or 3/4 or √2 or π. For this purpose the program-

mer must use another type, for example the type real.) In practice the range of

integers is either limited by formal definition in the programming language or by

the fact that a computer word will only hold a finite number of values. For ex-

ample many computers represent an integer value in a 32 bit word. With the

most common way of representing negative integers this means that the largest

integer is defined to be +231-1 and the largest negative integer -231. All integer

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 54

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

values are then the whole numbers in the range bounded by these two limits.

The operations which are usually predefined on integers are + (addition), -

(subtraction), x (multiplication), mod (modulo division) and div (division result-

ing in a whole number, ignoring the remainder). Notice that the normal division

operation is not included, because it produces a result which may not be an inte-

ger! For example 21÷12 produces a result of 1.75, which is not an integer. In-

stead there are two division operations which always result in a whole number.

The modulo division operation 21 mod 12 just gives the remainder part 9, while

21 div 12 gives an answer 1 (without the remainder 9). Integer operations which

result in a value outside the defined range for integers may cause the computer

to interrupt the program execution to indicate that this has happened.

In most high level programming languages the type integer is a predefined

type, which means that it is built into the language and the compiler knows all

about it. Other predefined types are often real (for fractional numbers), boolean

(for the logical or truth values true and false), the type character (to express the

letters of the alphabet, together with the decimal digits 0 to 9, punctuation marks

and a few non-printable characters which need not concern us here), and possi-

bly the type string (which allows individual characters to be strung together to

form a piece of text).

Usually there are also some predefined types which allow other types to be

combined together. (The array is an example of such a type, which defines a

sequence of values of the same type. Another example is the record type, which

allows several values of different types to be defined as a single entity.)

In most programming languages it is possible to extend the set of opera-

tions on a type by writing algorithms as functions (e.g. square root) which return

a value of the desired type to the caller. Some languages (for example object-

oriented programming languages) go a step further by allowing a programmer to

define new types, building on the predefined types of the language and on other

types which he has previously defined himself.

By now you are probably wondering what the concept of types in pro-

gramming languages has to do with security. The answer is that it is sometimes

claimed that the compiler for a strongly typed language can eradicate most secu-

rity problems.

A strongly typed language is one which rigorously enforces type rules and

does not allow the programmer to ignore them. Furthermore most of these rules

can be checked by the compiler when it analyses a source program before pro-

ducing the object program. Sometimes type rules are difficult to check at com-

pile time, because the decision about whether a rule is being broken depends on

the dynamic execution of the program. In such a case the compiler may insert

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 55

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

some run-time checks into the object program itself.

To see how a language which is not strongly typed can easily lead to secu-

rity breaches, consider again the array idea. In programming languages an item

in an array is typically selected by naming the array and following this by the

index value for the desired item in square brackets. To select say the entry hold-

ing the value for March in an array with twelve integer values called Rain-

fall we could write the expression Rainfall[2]
17

. The actual address of

the location in the computer's memory is calculated by adding the index value

(here 2) to the address where the array begins. But suppose now that instead of

writing Rainfall[2] we were to write something like Rainfall[29435]

in our program, the result might be that the compiler creates instructions that add

the integer value 29435 to the address which marks the beginning of the array,

and that would produce an address which overshoots the end of the array by a

long way. It may even be the case that the resulting address is outside the ad-

dress range of our program. The effect of this could be that the program accesses

a memory location in another program. Voilà! In an insecure computing envi-

ronment we can read or modify information in another program.

How can this be prevented? The compiler could prevent it in this simple

example by checking at compile time whether the index value 29435 is valid

for the Rainfall array. Obviously it is not; only the values in the range 0 to

11 are valid, corresponding to the 12 months of the year. This is an example of a

compile-time check.

But suppose that the program is a bit more complicated. Instead of nomi-

nating each index value explicitly, it might use an integer variable (say called

month) and select an item using the expression Rainfall[month]. This is a

quite normal way of writing programs, and in some programming languages it is

no longer obvious at compile time whether the index variable is in the valid

range. The compiler can usually only check this by inserting a run-time check

which tests that the value held in the integer variable month is in the valid range

before allowing it to be used as an index. Even this is not so easy if the length of

the array itself is not known at compile time. A run-time check is still possible,

but is more complicated. One problem with run-time checks is that they add

more instructions to a program and so increase the time it takes to execute the

program.

Another example of the same kind of danger occurs if a programming lan-

guage allows addresses (usually called pointers in programming languages) to

be manipulated explicitly. For example in a language which is not strongly

typed (e.g. the widely used language C) it may be permitted to use integer opera-

17

 The first entry in an array is usually defined as entry 0, the second as 1, etc.

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 56

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tions on pointers, so that arbitrary values can be assigned to or added to address-

es, again allowing addresses to be produced which refer to the memory locations

of another program.

In fact there are very many ways in which a program can be written which

potentially attempts to access the memory locations of other programs. The im-

portant issue here is whether we should rely on compilers to ensure that this is

not in practice possible. There are advocates of this view, who maintain that we

should always use strongly typed languages, but the mainstream of computer

science finds this approach unsatisfactory. Here are some of the reasons.

First, it assumes that the compiler itself is correct. If the compiler contains

a bug (or can be classified as a Trojan horse) then there can be no certainty that

the programs which it compiles will be correct.

Second, it assumes that only completely type secure languages can be used

at a computer installation. This is a very risky proposition, because the proof

that a reasonably complex programming language is completely type secure is

very difficult.

Third, it means that many widely used programming languages, such as

Fortran, Cobol, Pascal, C and C++, cannot be used.

Fourth, reliance on the correctness of a compiler creates enormous difficul-

ties – both practical and with respect to security – for persons wishing to devel-

op a new programming language or a new compiler for an existing programming

language.

Fifth, it assumes that programming languages have complete control over

all data in a system, which is generally not true, for example with respect to in-

formation on disc. (Most programming languages which are otherwise strongly

typed allow file accesses which simply use the operating system or database fa-

cilities.)

For such reasons the view that security at the level of memory protection

can be left to compilers is certainly inadequate for normal computer installations

which use multiprogramming, allow any programming language to be used and

allow users to develop compilers.

Nevertheless this is not an argument against the use of strongly typed pro-

gramming languages. On the contrary these have many benefits, not least of

which is the advantage that a compiler can find many errors in a source program

before the object program is even produced.

3 Security as an Architectural Issue

Traditionally not the compiler but the computer architecture (the environment

which the computer hardware provides for the execution of programs) takes re-

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 57

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

sponsibility for ensuring that programs executing in the main (or virtual)

memory cannot interfere with each other. Most computer architectures achieve

this in a fairly satisfactory way, provided that one accepts the extremely simple

protection paradigms that they enforce. In particular these paradigms tend to be

good at enforcing strict protection in the sense of complete separation.

However the other side of the coin of protection is sharing. It is not a par-

ticularly difficult challenge to isolate programs so completely that they cannot

communicate with each other or easily share data and/or code. Basically this can

be achieved by providing completely separate and non-overlapping contexts.

(We shall see in later chapters how this is achieved in practice.) But when it

comes to the challenge of allowing subjects to cooperate with each other in se-

cure ways, most computer architectures fail miserably.

An analogous situation would be to imagine that we avoid burglaries by

building houses which have no doors and no windows. This is all very well for

keeping burglars out, but it isn't very good if you want a friend to visit you! In

fact it has lots of other obvious disadvantages too! In the same way we shall see

that conventional computer architectures have lots of disadvantages when it

comes to sharing, and that this is one of the main reasons why the software sys-

tems which have to use these basic mechanisms (i.e. the operating system, the

file system, the database system, etc.) are in practice excessively complex, for

these have been given the job of making the sharing of data and programs possi-

ble. In doing so they have been forced to invent mechanisms which are quite

unnatural and cumbersome. It is therefore not surprising that these software

mechanisms are rather weak when it comes to guaranteeing security.

4 Security as an Operating System Issue

Operating systems usually have sole control of the hardware and of the archi-

tectural mechanisms of the computer. With the aid of these low level controls

operating systems are traditionally responsible for providing the kinds of higher

level mechanisms which are needed for implementing security policies.

One such higher level mechanism normally provided by the operating sys-

tem is the authentication of users when they log into the system. We have al-

ready observed that this – ironically – can be regarded as a security weakness in

that it implies the existence of a central authentication mechanism and of cen-

trally held authentication information, thus helping the hacker both to know

what he has to do to penetrate a system and where there is useful information to

help him achieve this.

The operating system also carries out other important security activities,

such as the allocation of space in the main and secondary memories and ensur-

ing (with the help of basic architectural mechanisms) that programs cannot vio-

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 58

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

late others' space. This implies for example that it is also the operating system's

responsibility to ensure that memory is not allocated to a program until the pre-

vious contents of all memory locations have been cleared. In fact operating sys-

tems rarely do this because of the overheads involved – but if it is to be done in

a highly secure system, then the operating system is the obviously right place.

Other security activities, such as deciding whether a user may start a job or

claim particular resources, etc., are likewise policy decisions which are too

complex for the hardware to carry out. They are the responsibility of the operat-

ing system. It is arguably the failure of operating systems to carry out such tasks

effectively that allows worms to chew up system resources and thereby make

these unavailable for legitimate uses.

5 Privileged Mode

It is clear that operating systems play an important role in maintaining computer

security. Because the operating system is the traditional vehicle for implement-

ing security policies, many computers support a privileged mode – sometimes

called kernel mode, supervisor mode, executive mode or similar – which gives it

greater powers than the rest of the system. This means that when the operating

system itself, rather than a user process, is actually executing instructions, cer-

tain hardware protection checks are relaxed.

When the computer is executing in privileged mode, the main memory pro-

tection checks, which are otherwise carried out by the hardware to prevent pro-

grams from interfering with each other, are usually turned off.

Privileged mode usually also brings with it the right to execute certain sen-

sitive instructions. These are typically instructions which are needed by the op-

erating system to maintain its control over user processes and to guarantee the

security of the system. One such instruction which many computers allow only

to be executed in privileged mode is the instruction which initiates input-output

activity, such as the writing of data to or reading of data from discs. If any pro-

gram could use this instruction in an uncontrolled way, one effect would be that

any user could access the files of others.

While it is clear that there is a need for certain operating system activities

to be privileged, this feature can also be a serious source of weakness for the

security of the system. There are at least two reasons for this.

First, many operating systems are very large and complex. Many of the ac-

tivities which they carry out do not need to be privileged, but in practice these

activities are often also executed in privileged mode. This can be a source of

misuse. Trojan horses in the operating system can easily take advantage of their

privileged status to breach security.

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 59

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Second, the implicit assumption that the operating system has a right to be

privileged is itself a highly questionable proposition. Suppose for example that

the secret service organisation of some small nation such as Australia, which

does not manufacture computers itself, buys a computer and uses it to hold high-

ly sensitive information. Why should the operating system of some foreign

computer manufacturer – which might contain a Trojan horse – have the right to

access its memory space? Or, why should an operating system be able to read

the information held in a banking system? How can the bank then guarantee the

privacy of its customers' information?

In the final analysis an operating system has to have certain privileges

which allow it to protect users from each other and from unauthorised users.

There must be a software module which can read from and write to all the

blocks of a disc, in order to manage disc space in an orderly way. The spooler

must be in a position to print user files, and so on.

For such reasons it seems unlikely that we shall ever reach a situation in

which the operating system has no special privileges. But that does not have to

imply that all parts of the operating system have to have all the privileges, in-

cluding unlimited access to all the information belonging to users.

6 Security Kernels

In the 1970s the idea became popular that the security sensitive parts of an oper-

ating system should be gathered together into a so called security kernel. This

should be open to public inspection and should be small enough and clear

enough that its correctness is self-evident or formally provable (see for example

[25, 26, 27, 28, 29, 30, 31]).

The idea of security kernels has not been put into practice in widely used

systems, because it is often difficult to isolate security functions from other op-

erating system functions; consequently security kernels tend not to be so small

as one would hope. This in turn means that it is not a simple matter to prove a

security kernel correct. Nevertheless the principal idea, that privilege should be

restricted to a small part of the operating system which is provably correct and

open to user inspection (to demonstrate that it does not contain Trojan horses)

obviously provides an important concept, which could play a significant role in

improving the security of operating systems.

Finally it is worth remembering that a provably secure operating system is

only in practice useful if this really is the operating system which is actually put

to use! In other words, there is a security risk that the system which you think

you are using has been penetrated after having been proved correct. This risk has

therefore led to an issue known as secure booting of systems. What this means is

that special measures are taken to guarantee that the operating system which you

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 60

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

think you are initialising on the computer is the one that you actually intend to

initialise. We shall not consider this rather technical issue further. Interested

readers can refer for example to a paper written by two colleagues and myself

[32, pp. 106-119].

7 Inadequate Security Policies

Weaknesses in computer security are not always the result of inadequate securi-

ty mechanisms. In many cases the security policies in force at computer installa-

tions are themselves totally inadequate. By way of example we now consider

some typical weaknesses in security policies which often appear in the design of

general purpose operating systems with discretionary access controls, especially

at the file system level.

7.1 The Superuser Role

There is a general assumption, even in discretionary systems, that there should

be at least one highly privileged user, e.g. the "superuser" in Unix. This role,

which in some systems allows a user to take on the security privileges of any

other user at will, appears to be justified in order that certain administrative tasks

can be carried out. Examples of such apparently essential tasks include the in-

troduction of new users, the resetting of a password which a normal user has

forgotten, etc. However the proposition that such activities require a superuser to

be able to take on all the rights of other users is highly questionable.

The superuser role can easily be abused. Such abuse may take a direct form

if the person filling this role has less than altruistic intentions. Indeed, if an or-

ganisation or group wishes to acquire information over a long period about an-

other organisation, it is an obvious strategy to get one of its spies placed into the

superuser role of the rival organisation!

The superuser role can be dangerous in at least two further senses. First,

this role is often so essential to the running of the system that several people are

entrusted with the superuser password, for example to ensure normal service

when the main superuser becomes ill. The more persons there are involved, the

less secure the system!

Second, if only the superuser can carry out certain functions or execute cer-

tain programs which other users need to use, or if it is much easier to carry out

such functions in the role of the superuser, then there will be a tendency to give

many users the superuser password. This happens every day in many computer

installations around the world.

The superuser role has in fact proved to be one of the greatest security risks

in discretionary systems.

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 61

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

7.2 Simplistic Access Control Policies

The basic file system, the largest component of most operating systems, organ-

ises user data and programs as files. It is responsible inter alia for checking the

rights of subjects attempting to access these files.

The inadequacy of the policies underlying the operation of file systems is

itself a major weakness in most discretionary systems. The problem centres on a

failure to provide a proper implementation of Lampson's Access Matrix for in-

dividual subjects and objects. For example in the VMS operating system for

DEC's VAX computers access to a file was organised on the basis of four user

categories:
 [S:] System administrator (system)

 [O:] Owner of the file (owner)

 [G:] Group of the owner (group)

 [W:] All other users (world)

For these categories access rights for four operations could be specified:
 [R:] Read

 [W:] Write

 [E:] Execute

 [D:] Delete

This means that for any file 4 x 4 possible combinations of access rights exist.

These are represented by 16 bits in a matrix (where 0 = no right; 1 = right pre-

sent).

In Unix the superuser has all rights, so that a category equivalent to the

VMS system administrator category is not necessary. Furthermore, only the

owner of a file has the (implicit) right to delete a file. Thus in Unix one column

and one row of the access matrix used in VMS are redundant. (In fact the situa-

tion is a little more complicated than this, but it doesn't materially alter our

point.)

In the Siemens BS2000 operating system, to take a rather older example,

there were only 2 x 2 possible combinations of rights. It is only possible to dis-

tinguish between access for world and access for the owner, and the actual ac-

cess rights distinguish only between read access and write access. (Further ac-

cess controls could however be achieved through the use of password facilities.)

There are some superficial problems with such schemes (e.g. users may

need to belong to more than one group). But the fundamental problem is the

coarseness of granularity of the access rights. Suppose for example that a user

wishes to give another user (not a member of his group) access to a file, then he

has no alternative but to provide either all users with the same rights or to make

the intended user a member of his group.

In both cases unnecessary privileges have to be given. Even if these are

granted only for a short time (giving the user time to make a copy of the file, for

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 62

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

example) the system is still more insecure than would be necessary if the policy

allowed a full implementation of Lampson's Access Matrix.

Thirty years after Lampson published the idea behind his Access Matrix

paper [9], he published a paper which argues that

"We don’t have “real” security that guarantees to stop bad things from happening,

and the main reason is that people don’t buy it. They don’t buy it because the dan-

ger is small, and because security is a pain",

and

"when security flaws cause serious damage, buyers change their priorities and sys-

tems become more secure, but unless there’s a catastrophe, these changes are

slow. Short of that, the best we can do is to drastically simplify the parts of sys-

tems that have to do with security:

• Users need to have at most three categories for authorization: me, my group or

company, and the world.

• ..." [33].

In the second volume of this book, which describes the SPEEDOS operating

system design in some detail, I describe how Lampson's matrix (and many more

security features) can be put into practice in a relatively straightforward manner,

which users will hopefully not see as a "pain".

7.3 The Authenticity of Logged in Users

A basic assumption of most systems is that a logged in user is really who he

claims to be, since he has succeeded in passing through the operating system's

initial authentication mechanism. However, there are many reasons why this

may not be the case. For example, the user may in fact be a hacker who has suc-

cessfully deceived the initial authentication procedure. Or he may be somebody

taking advantage of the real user's absence from the terminal (e.g. when he has

left himself logged in while going for coffee), or he may even be a criminal who

has overpowered the genuine user.

For these reasons further checks to re-authenticate a user may be appropri-

ate in an environment which aims at high security. Such checks might be period-

ic and/or they might take the form of challenges when the user seeks access to a

secure resource. The form of the challenge might, but of course need not, be that

of the initial authentication procedure. However, with most conventional operat-

ing systems such re-authentication procedures are rarely possible in any form.

8 Gathering the Evidence

Given that security mechanisms are generally not strong enough to guarantee the

perfect execution of security policies, it becomes important to monitor security

sensitive events in order to help discover security breaches, to help track down

users responsible for breaches, to help establish the extent of the damage and

Chapter 5 INTERNAL SECURITY THREATS & WEAK MECHANISMS 63

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

determine what recovery procedures are appropriate.

Again low priority – if any – is given to these monitoring activities in many

security policies, especially those found in discretionary systems. If the system

doesn't organise this, it is very difficult for users to learn about security breaches

affecting their files.

9 Too Many Cooks

There is an old saying that too many cooks spoil the broth. This is certainly the

case when considering security in computer systems. Typically some basic

mechanisms are built into the computer architecture. Then the operating system

adds its own additional mechanisms. The basic file system adds some more. The

database system may add yet other security mechanisms. The network systems

may also add more security mechanisms. Sometimes proprietary security soft-

ware packages are then added to this usually complicated hotch-potch of mech-

anisms.

If these multiple sets of mechanisms are not well designed to interact with

each other correctly, security gaps are often created which the clever hacker can

use by playing them off one against the other. This is one of the major forms of

weakness in a security system.

It is our contention that what is required is not an ever increasing number of

mechanisms to patch up the gaps left by others, but instead a small number of

very simple basic mechanisms which have universal application in all levels of

the system. These should preferably be publicly known and well understood by

all. In the last analysis a security mechanism which relies on secrecy offers no

security, because human nature finds it too hard to keep secrets for ever!

In the remainder of this volume we examine the weaknesses of existing

system security mechanisms at the hardware, architectural and operating system

levels, particularly emphasising how they can harmonise with each other, and

we suggest new mechanisms which are intended to be simple, easy to under-

stand and universally applicable through all levels of a system. In defining these

it has been our intention that they should be flexible enough to allow the imple-

mentation of all the different kinds of security policies which we have so far dis-

cussed, and indeed it is our aim that this should be possible in a single system. In

other words we aim to produce a relatively small set of mechanisms which will

not only allow the implementation of many different policies and styles of secu-

rity systems, but to show that these can be implemented alongside each other in

a single computer system.

Part 2

Basic Computer Architecture and

Operating System Principles

 Chapter 6

A Brief Introduction to

Computer Architecture

This chapter briefly introduces some basic features of computer architecture

with the aim of providing non-specialist readers with enough background infor-

mation to understand the remaining chapters of the book.

1 The Structure of a Modern Computer

Modern computers, structured according to the principles laid down by John von

Neumann [34]
18

, consist of the following main components: at least one central

processing unit (CPU), a main memory (often called RAM) and some input-

output (I/O) devices (see Figure 6.1). The CPU carries out the actual calcula-

tions specified in a program by executing its instructions. The main memory

stores the program and its data during the computation. The I/O devices are used

for long-term storage of information (hard discs, flash memory sticks, CDs,

DVDs, etc.) and to provide a means of communication between the computer

and the outside world (monitors, keyboards, printers, etc.).

In a very loose way we can think of the CPU as the "brain" of the comput-

er, the main memory as its memory and the I/O devices as its sense organs for

communicating with the outside world. The different parts of the computer in a

classical von Neumann architecture communicate with each other via a bus,

which is a set of lines (wires) along which information flows, as is shown in

Figure 6.1. This can be thought of as the nerve system of the computer.

The main memory consists primarily of a sequence bits (binary digits),

each of which can hold the value 0 or 1. The CPU reads and writes bits in

groups of 32 or 64 bits, called words. It can interpret these as various kinds of

numbers (based on binary arithmetic) or as groups of bytes (each consisting of 8

18

 See https://en.wikipedia.org/wiki/Von_Neumann_architecture

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 66

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

bits) which can be interpreted as alphabetic or numeric characters, punctuation

marks and other symbols.

Each word in the memory has a unique numeric address (corresponding to

its position in the memory, starting at the address 0). This is used by the CPU to

identify the intended word when reading from or writing to the main memory.

The use of the bus is normally controlled by the CPU. Typically it has three

kinds of lines: address lines, data lines and control lines. The address lines are

used to pass memory addresses from the CPU to the main memory, indicating

which memory location is involved in a read or write operation. The data lines

are used for the actual transfer of data. The control lines indicate what kind of

operation is required (e.g. a write operation).

Accessing I/O devices can be, and often is, treated in a similar way to

memory accesses, with the address lines indicating not a main memory address

but a device buffer address. Not all computers treat I/O devices in quite this

way, but the differences are not important in this context.

2 Main Memory

A typical main memory has a number of important properties, some advanta-

geous and some not so advantageous.

• Main memory access times (i.e. the time to read or write a word of main

memory) are very fast. This enables the CPU to work at high speed.

• Information in the main memory can be accessed randomly, which means

that you don't have to work through the memory item by item until you can

Central Processing Unit

(CPU)

Main Memory
Input/Output

(I/O)

Figure 6.1: A "von Neumann" Computer

Bus

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 67

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

access the item you are seeking
19

. This random access characteristic of

main memory is extremely important, because the instructions and data

items needed for a computation are not stored in a single sequence.

• Main memory is a very expensive form of memory, much more expensive

per word of memory than a hard disc or a tape or a CD or DVD, etc.

• A further not so happy characteristic of main memory is that it is normally

not persistent. This means that, like most other electronic memory devices,

the information held in the memory is lost if the power is turned off. This

also contrasts with hard discs and other magnetic media.

It is necessary to keep track of where in the main memory particular pro-

grams and data items are stored. This means that the main memory itself not on-

ly holds program instructions, numerical values and characters and other data

items, but also memory addresses. Thus a particular word in the main memory

might contain the address of another word. For the present we shall assume that

such an address is simply a main memory address; however, we shall later en-

counter other possibilities. Addresses are normally stored in separate 32 or 64

bit words.

Since the main memory holds the currently active data and program in-

structions in use by the central processing unit it is important from a security

viewpoint and is therefore supplied with basic protection mechanisms which

will be discussed in more detail in later chapters.

3 The Central Processing Unit

The CPU is the unit which actually carries out instructions, and it therefore

needs access to the information held in the main memory. When a word is read

from the main memory into the CPU, there must be a small memory in the CPU

to receive it. Similarly before a write operation the word to be written back into

the main memory must be held in a small memory in the CPU. Usually the same

32 or 64 bit memory in the CPU, known as a memory buffer register (MBR for

short), is used for both purposes and is connected to the data lines of the bus.

Similarly the main memory address to be used for the read or write operation is

held in a memory address register (MAR), which is connected to the address

lines of the bus.

Somewhat simplified, the CPU of a modern computer typically consists of

two main parts, an arithmetic-logic unit (ALU) and a control unit (Figure 6.2).

19

 A device which cannot be directly accessed at any point with the same ease and speed,

but is only really fast when items are accessed in sequence, such as a magnetic tape, is

called a sequential access device. You can understand this difference by comparing the

time difference between searching for a song in the middle of a music cassette tape or in

the middle of a music CD.

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 68

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3.1 The Arithmetic-Logic Unit

The ALU contains the logic circuits for performing such operations as additions,

multiplications, comparisons, logical operations, etc. There is also a set of "reg-

isters" associated with the ALU. An ALU register is a memory location which is

actually held with the ALU rather than as part of the main memory of the com-

puter. Most ALU registers contain one word of information, i.e. their size corre-

sponds to the size of a word in the main memory. We have already seen two

special examples, the MAR and the MBR.

An important reason for having ALU registers is that they can be built from

components which have much faster access times than equivalent chips used for

implementing main memory. But like main memory chips they are not persistent

(i.e. they too lose their values when the power is off). ALU registers are consid-

erably more expensive than main memory chips.

The main reason for having ALU registers is that they can store a small

amount of information which is needed for immediate use in executing in-

structions in the CPU, and their access times are fast enough to allow the CPU to

execute at full speed. But by using the slower chips for the main memory it is

possible to build large main memories at an affordable price.

3.2 ALU Instructions

The ALU registers are used mainly to hold operands for instructions. These are

the values on which the instructions directly operate. An instruction usually has

an operation field and several operand fields, as is illustrated in Figure 6.3,

which shows typical instruction formats for a RISC (reduced instruction set

Figure 6.2: The Central Processing Unit of a Computer

Central Processing Unit (CPU)

Arithmetic-Logic

Unit

Registers for

Addressing

Data

Intermediate Results

...

Control Unit

Registers

Instruction Register

Program Counter

...

...

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 69

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

computer). The operation type tells the CPU what kind of operation should be

executed (e.g. ADD). The remaining fields specify the numbers of the ALU reg-

isters which hold the operands for the instruction (or hold an immediate value).

For example if the encoding for an ADD instruction is 37, then an instruction in

the form <<37, 3, 8, 5>> (using the first structure in the diagram) tells the CPU

to add the content of register 8 to the content of register 5 and to store the result

in register 3.

3.3 Load and Store Instructions

The ALU registers which serve as data operands must from time to time be

loaded with values from locations in the main memory. Similarly the results of

instructions held in registers must sometimes be stored back into locations of the

main memory. The usual way to achieve this on RISC computers is to have sep-

arate load and store instructions. These instructions themselves require operands

indicating which register is to be loaded (or stored) and which main memory

address is involved. Typical RISC load and store instruction formats are illus-

trated in Figure 6.4.

The first format specifies base and index registers, e.g. for working through

a list in the main memory. The base register holds a main memory address

which typically refers to the start of a structure such as an array, and the index

register holds a variable offset from that point, indicating how far into the array

the relevant item is. Using the second format, a literal value (a fixed value which

appears in the instruction itself) is added to a base register.

3.4 The Control Unit

As well as having instructions which directly perform arithmetic and logical op-

Operation

Type

Result

Register #

Operand 1

Register #

Operand 2

Register #

Figure 6.3: Typical RISC ALU Instruction Formats

Operation

Type

Result

Register #

Operand 1

Register #

immediate

value

Load/Store

Operation

Base

Register #

Operand

Register #
offset

Load/Store

Operation
Base

Register #

Operand

Register #

Index

Register #

Figure 6.4: Typical RISC Load/Store Instruction Formats

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 70

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

erations on values in registers, and having instructions for loading and storing

registers using main memory accesses, a computer needs a third kind of instruc-

tion in order to execute algorithms. To understand this we must now take a look

at the Control Unit component of the CPU.

From Figure 6.2 we see that the Control Unit also has at least two registers:

the instruction register (IR) and the program counter (PC). These two registers

are used to control the order in which the instructions in a program are executed.

The IR holds a copy of the content of the instruction which is currently be-

ing executed in the ALU. When an instruction is loaded into the IR the control

unit can decode and analyse it, sending appropriate control signals to the ALU to

tell it for example which kind of operation is to be carried out and which regis-

ters are to be used.

3.5 The Fetch-Execute Cycle

Before an instruction can be decoded it must be fetched from the main memory

into IR (via the memory buffer register MBR). Thus there are two basic phases

to the execution of an instruction: fetch the instruction, then execute it. This is

known as the fetch-execute cycle. In order to fetch the instruction the control

unit must know where it is located in the main memory. This is where the pro-

gram counter register PC comes into the picture: it contains the address of the

next instruction to be executed. While a program is being executed it is the job

of the control unit to keep updating this register.

3.6 Program Execution

In the normal case a program's instructions are executed sequentially, i.e. one

after the other in the sequence in which they appear in the main memory. Thus

as arithmetic and logical instructions or load and store instructions are being ex-

ecuted, the next instruction is found simply by adding a small number, corre-

sponding to the length of the current instruction, to the address currently held in

the PC register.

But of course programs do not simply execute in a straight line from start to

finish. They contain decisions and they contain repeated sections, both of which

require the control unit to have the ability to jump to an instruction which is not

the one physically following that just executed. For this purpose computers usu-

ally have two kinds of instructions, known as unconditional jumps and condi-

tional jumps. An unconditional jump instruction contains the address of the next

instruction as an operand, which is then loaded into the PC register. A condi-

tional jump also contains a condition to be tested (e.g. by comparing the values

in two registers); the result of the test then determines whether the next instruc-

tion is executed or whether the destination address provided in the instruction is

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 71

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

loaded into the PC register.

3.7 Routine Calls

It is frequently useful in a computer program to include routines (sometimes

called procedures, functions, subroutines or methods) which carry out a useful

subtask or calculation that may be needed several times in the program. The

same routine can be invoked from different points in a program; when the in-

structions in the routine have been executed it must return to the instruction fol-

lowing the instruction from which it was called. Most computers provide some

form of call instruction to assist this task. As a minimum the call instruction

jumps (as with an unconditional jump instruction) to the first instruction in the

subroutine, and at the same time it stores for later use the address of the instruc-

tion following the call instruction, called the return address.

As was already indicated, the instructions themselves are fetched from the

main memory. Recalling the interface which we described between the CPU and

the main memory, we can now see how this happens.

To fetch an instruction the control unit copies the value of PC (the program

counter) into MAR (the memory address register) and sends a read signal to

memory. When the read is complete, the next instruction has appeared in MBR

(the memory buffer register). This is then copied by the control unit into IR,

leaving MAR and MBR free to be used for some other purpose (e.g. for a load

or store operation).

4 Cache Memories

Before examining the third main component of von Neumann computers (the

input-output subsystem), it is appropriate to consider a technique used on mod-

ern computers for optimizing accesses to memory. It provides an effective solu-

tion for the problem which we mentioned earlier, namely that a CPU can exe-

cute instructions considerably faster than the instructions and their operands can

be fetched from the main memory. Without cache memories the CPU would on-

ly be able to execute at the rate at which instructions and data could be fetched

from main memory.

The idea, which its inventor, Maurice Wilkes, originally called a "slave

memory" when he proposed it in 1965 [35], is now generally known as a cache

memory. The word "cache" comes from the French word cacher, which means

"to hide". This name emphasizes that a cache memory, unlike the main memory

or the CPU-registers, is hidden from the assembler programmer's view. It is (al-

most) purely a hardware optimization.

The idea is that a memory unit considerably faster and smaller than the

main memory is placed close to the CPU (e.g. between the CPU and the bus). A

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 72

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

cache memory holds instructions and data which have recently been used (and

may be needed again). Once an item has been fetched from the main memory a

copy of it is stored into the cache. Thereafter it can be fetched from the cache

and access to the main memory becomes necessary in fewer cases.

Because the cache is significantly smaller than the main memory it obvi-

ously cannot hold a copy of all items in the main memory, so when it becomes

full a decision has to be made which item should be replaced to make space for

the new item. The strategy usually used is called "least recently used" (LRU).

The item selected for replacement is the item which has not been used for the

longest time. The success of this idea depends on the fact that items from the

main memory are frequently used several times over a short period of time and

also that neighbouring items in the main memory are often used together. It is

remarkable how successful this strategy is in practice. Modern computers often

achieve a "hit rate" of over 95 %, i.e. more than 95 % of all memory accesses

can be satisfied by the cache, so that actual references to main memory are rela-

tively infrequent. The result is that computations can proceed at very much fast-

er rates than in an equivalent system without a cache.

We need not concern ourselves here with the technical aspects of cache

memory implementation, but in the next chapter we shall introduce the idea of

virtual memory and virtual addresses. At that point it will be necessary to return

to the question of caches to discuss some issues which then arise.

5 The Input/Output Subsystem

The third main part of a modern computer is the input-output (I/O) subsystem.

This serves as the interface between the computer and the outside world. In

modern computers information is typically input into the computer via key-

boards (e.g. attached to terminals, or built into laptops, etc.) and more recently

via touch screens. Information is provided from the computer as printer output

or via monitor displays. There are other kinds of I/O devices which can be at-

tached to computers, such as scanners, graph plotters, fax devices, analogue-to-

digital and digital-to-analogue converters, and special equipment and instru-

ments for real-time systems. And of course there is usually an interface to con-

nect to a local area network (LAN) and/or the Internet.

The magnetic media memory devices, such as hard discs, CDs, DVDs,

magnetic tapes and on earlier computers magnetic drums, are also usually con-

sidered as I/O devices; the way they are controlled and accessed from the com-

puter is in fact very similar to the way other I/O devices are handled. But logi-

cally they have a role more analogous to the main memory, in that they are

memory storage devices which, in contrast say to printers, keyboards and

screens, cannot directly be read or written from the outside world. In this sense

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 73

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the analogy with the human memory is much more appropriate. At this stage we

shall include the magnetic memory devices in our discussion of the I/O subsys-

tem, but later we shall draw a clear distinction between their physical affinity to

external I/O devices and their logical affinity to the main memory.

The I/O subsystem plays a major role in so-called "mainframe" systems,

the large computers which are used mostly by companies and by government

departments, mainly because such organisations handle large amounts of data.

Consequently in mainframe systems the I/O subsystem can be rather compli-

cated and is usually an expensive part of the computer. In contrast the laptops,

personal computers, workstations and hand-held devices such as smartphones,

which many people now own, have a very much simplified I/O subsystem.

This difference is not important for our purposes. We do not need to dis-

cuss I/O devices and their controllers in great detail, because the important thing

from a security viewpoint is not really how these function individually, but how

their use is controlled from within the computer. Here the most important point

is that it is usual for the operating system to have complete control over the

transmission of data between the computer and the I/O devices. Let us now take

a look at how this works.

6 Overlapping I/O and CPU Operations

When talking about the I/O devices it is important to realize that there is an

enormous speed difference between the CPU and main memory on the one hand

and I/O devices on the other. Even with the fastest I/O devices, magnetic discs

and even solid state drives (SSDs), we are talking about a significant speed dif-

ference in the time it takes to access information. An implication of this speed

difference is that if the CPU were to stop processing and wait for each I/O oper-

ation to complete, then it would spend almost all its time waiting. For this reason

I/O operations are carried out in parallel with CPU operations. What normally

happens is that the operating system, after starting an I/O operation for a pro-

cess, puts the process which initiated it into a waiting state until the operation is

completed and then makes a process switch to a different process, which can

carry on using the CPU while the I/O operation for the other process is taking

place.

When the I/O operation comes to completion the I/O device (or its control-

ler) informs the CPU, so that the program which requested the I/O operation

may resume its work. In nearly all systems this is achieved by the I/O device or

controller causing an interrupt. After the CPU has been interrupted by an I/O

device completion signal, the process scheduler (that part of the operating sys-

tem which decides when which processes can use the CPU) can allow the pro-

cess which instigated the I/O operation to continue executing.

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 74

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

6.1 Kernel Calls and Interrupts

All of this is controlled by the operating system and remains invisible to the ap-

plication program, which treats an instruction for carrying out an I/O operation

just like a normal CPU instruction.

But in reality the I/O instruction which appears in the application program

is not a normal instruction at all. It is a special instruction for invoking the ser-

vices of a device driver in the operating system. Whenever an application pro-

gram wishes to invoke any operating system service (not just carry out an I/O

operation) it executes an instruction which we shall call a "kernel call" (It is

sometimes called a system call, supervisor call, or executive call). Such instruc-

tions have a special operation type which causes the CPU to activate a designat-

ed operating system routine, usually by making use of the interrupt mechanism.

6.2 Why Application Programs Do Not Have Direct Access to I/O Devices

There are several reasons why normal application programs do not contain in-

structions that directly activate I/O devices. One of these is that the actual con-

trol of I/O devices at the hardware level is usually fairly complex. For this rea-

son the operating system (or the device manufacturer) provides device drivers,

which are software modules capable of coping with this complexity but at the

same time providing a much simpler interface to application programs. Another

reason is that direct access by application processes to I/O devices could lead to

security breaches. This is obviously the case for shared devices such as hard

discs containing information belonging to different users. If any user could

simply access any part of any disc at will, then confidentiality, integrity and

availability of information belonging to others would all be at risk.

But also in the case of normally unshared devices, such as a printer, the op-

erating system has to maintain control. Without it, users could write to the print-

er at any time, interfering with each other's output. Furthermore if the use of de-

vices such as printers were not controlled, then solving the confinement prob-

lem, a security problem mentioned in Chapter 3, would become more difficult.

Consequently when an application program wishes to have an I/O operation

carried out it always does this by invoking the operating system, using a kernel

call. The appropriate operating system service routine carries out checks which

determine whether the application process (or the user on whose behalf it is exe-

cuting) is permitted to perform the required operation (e.g. use the printer) and if

so whether it is appropriate at this time (e.g. whether it is currently allocated for

use by another application process).

Having performed all the necessary checks and adjustments necessary, the

device driver eventually activates the appropriate I/O device. The form of an

actual I/O instruction to achieve this at the hardware level varies considerably

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 75

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

between different computers. One difference is apparent in the way the actual

device required is addressed by the CPU. In some cases devices use pseudo-

"main memory" addresses on the address bus to address the different devices.

This method, known as memory-mapped I/O, makes sense in that infor-

mation is transferred to devices via hardware registers or buffers, which can be

viewed as memory that can be read and written. Other systems use a separate set

of numbers, transmitted across the control lines of the bus, to signify which de-

vice is intended and which operation is required.

These different approaches are often reflected in the form of the hardware

instruction used to activate I/O devices at the hardware level. In one case I/O

instructions appear as normal read and write operations on defined (device buff-

er) addresses. In the other case there is a special "start I/O" instruction. There is

a corresponding difference in the way control is exercised over the use of such

instructions. If the I/O instruction reflects memory mapped I/O by using special

addresses, then the address checking hardware must recognize that an applica-

tion process is attempting to use an address which it is not allowed to use. On

the other hand if there is a special "start I/O" instruction then this has to be clas-

sified as a privileged instruction. In either case an illegitimate attempt to directly

use an I/O device will result in an interrupt, and the operating system interrupt

routine can then take appropriate action (e.g. by forcibly ending the application

process).

7 Magnetic Media Devices

The earliest computers were built primarily to carry out calculations. There was

little or no data stored permanently in the computers, there was no Internet and

nobody was producing proprietary software which needed to be protected. Con-

sequently there was no serious security problem. The primary aim of computer

designers was to build computers capable of carrying out ever faster scientific

and mathematical computations.

However, it was not long before computers began to be equipped with de-

vices which were capable of storing information and programs on a long term

basis. Magnetic drum stores and then magnetic tape devices were developed.

The drums had only a small data storage capacity and the tapes were very slow

if they were not used sequentially.

With the invention of magnetic discs it became possible not only to store

large amounts of data internally in the computer, but also to access such infor-

mation rapidly without a sequential search.

There are many differences between magnetic discs and main memory.

First, access to main memory is many orders of magnitude faster than access to

Chapter 6 A BRIEF INTRODUCTION TO COMPUTER ARCHITECTURE 76

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

even the fastest discs, so that disc memory cannot be regarded as an alternative

to main memory. (This point is not affected by the use of cache memory.) Sec-

ond, disc memory is much cheaper per word than main memory, so to store bulk

information on disc is much cheaper. Third, unlike conventional main memory,

disc memory is persistent (i.e. the information is not lost when the power is

turned off).

These differences, together with the fact that magnetic media memories

have mechanical components and are physically much more like I/O devices

than they are like main memory, led to what initially appeared to be a natural

division of information in the computer.

Since the late 1950s it seemed natural to use magnetic media as long term

storage devices and main memories as the vehicle for holding programs and

their data temporarily, while computations are being carried out. This in turn led

to what appeared to be an equally natural division in operating systems. One part

of the operating system is responsible for the execution of programs, and this

has control of the main memory, while another quite different (and usually ra-

ther larger) part, known as the file system, manages the long term storage of bulk

information and has control of the magnetic media.

However, this clear and simple division did not survive for very long. Be-

cause of the high costs of main memory in the 1960s, the idea of virtual memory

was introduced. This is a technique for allowing more and/or larger programs to

execute at the same time than would be possible in the main memory alone.

However, the division between computational (now virtual) memory and file

memory did. In the next chapter we shall take up this story, as it is very im-

portant for the implementation of security measures in computers.

Chapter 7

Virtual Memory

The two primary kinds of memory unit relevant to a discussion of virtual

are the main memory (also known as RAM) and magnetic memory devices (e.g.

internal and external hard discs). These have a number of different properties.

• Modern main memory is built from logic circuits which have very fast ac-

cess times, because they do not involve moving parts. Hard discs, by con-

trast, are very much slower because the information is usually stored on ro-

tating surfaces and usually also involves reading and writing heads which

have to be physically positioned to the right place.
20

• Main memory is very much more expensive per byte of storage capacity

than magnetic devices.

• Magnetic storage devices are persistent, which means that the information

stored on them does not disappear when the power is turned off. On the

other hand main memory is usually not persistent.

These differences have strongly affected the way they are used in computer sys-

tems.

1 Memory in Early Computer Systems

In early systems of the late 1950s and 1960s vintage the main memory was used

as a computational memory, i.e. the memory in which data and programs for ac-

tive processes
21

 were temporarily stored during actual program execution. On

the other hand the magnetic media devices were used as a file memory, i.e. a

memory in which information and programs could be stored on a long term ba-

sis. This difference is illustrated schematically (but not to scale) in Figure 7.1.

20

 Although modern SSD devices are electronic and do not rotate, they fall into the "disc"

category because they are slower than RAM and are organised to be used like discs.
21

 At this stage a process should simply be considered as an entity which defines a particu-

lar execution of a program. In the next chapter we discuss the concept of processes in

greater detail.

Chapter 7 VIRTUAL MEMORY 78

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

This use of the memory devices took advantage of their different proper-

ties. The high speed of the main memory (assisted by cache memory) was im-

portant for keeping the CPU supplied with the program instructions and data

which it needed while executing processes. But the lower cost and persistence

properties of disc devices allowed much more storage to be attached to the sys-

tem at a reasonable cost, and it also catered for the long term survival of data

and program files even when the power was switched off.

Of course when data and programs became active, these had to be copied

into the main memory. The data was brought into main memory by file system

mechanisms; usually only the active parts of a file were transferred into main

memory "buffers". Programs were typically copied in full into the main memory

by a program loader when the user activated a process.

2 The Transition to Virtual Memory

In the 1960s, when the commercial exploitation of computer had become a seri-

ous business proposition, it did not take long for user demands to stretch the lim-

its of the early model of memory use. This meant that as the possibilities for ex-

ecuting multiple processes in parallel on a single computer were improved, users

wanted ever more processes to be concurrently active. This led in principle to

the need for more main memory. To keep prices affordable, operating system

designers experimented with the idea of allowing users to partition their pro-

grams in such a way that individual partitions (known for example as "over-

lays") could be separately loaded into the memory as they were needed. Howev-

er, this was by no means an ideal solution, because it put a substantial burden on

user programmers to organise their programs carefully, and with the simple

memory protection mechanisms then available it could easily lead to errors. It

also considerably increased the complexity of operating systems.

By the mid to late 1960s it was evident that a radical change was needed,

and one after another manufacturers began to adopt an idea which had already

Main Memory Disc Subsystem

Computational

Memory

Figure 7.1: Computational and File Memory in Early Systems

File Memory

Chapter 7 VIRTUAL MEMORY 79

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

been around since the very beginning of the 1960s, virtual memory. In 1962

Kilburn and his colleagues at Manchester University in the U.K. had published a

description of the first paged virtual memory system, which they had imple-

mented in the Atlas computer [36]. At about the same time the Burroughs B5000

computer [37] was introduced in the U.S. with a rudimentary form of segmented

virtual memory. We shall discuss the differences between virtual memories

based on segments and on pages as the unit of organisation later in this chapter,

but before we do so it will help to get a more general feeling for the basic idea

underlying virtual memory.

3 Program Locality

The overlaying technique (which was replaced by virtual memory) was based on

the idea that a program could be decomposed into sections which need not all be

loaded into the main memory at the same time. The problem lay not in the basic

idea, but in its implementation.

It is not at all a serious problem that only parts of a program are available in

the main memory. This is because executing processes typically display an im-

portant property called locality [38, 39]. When a process is executing it general-

ly works through its algorithm in phases. During any particular phase it tends to

make memory references which are clustered together both in time and in

memory.

For example when a loop in the program code is being executed, the same

sequence of instructions is repeatedly used. If a loop of 500 instructions is exe-

cuted say 100,000 times then for a substantial time span (in terms of CPU and

main memory speeds) instructions need only be available in the main memory

from that section of program (which might be only a fraction of the size of the

entire program). There is no efficiency loss if the rest of the program code is on-

ly held on disc during this phase of the process execution.

A similar consideration applies to data. As an extreme example, consider a

loop counter (the variable which is used to count how many times a loop is exe-

cuted). This is accessed each time round the loop. There will of course be other

data references, which are also often repeatedly used over time.

Similarly data elements which are accessed, even if they are not individual-

ly used more than once, tend to be clustered in the same area of a program. Con-

sider for example a loop which accesses successive elements of an array or list

in each iteration. During the execution of the loop all the accesses to memory

will be concentrated around the code segment containing the loop, the data seg-

ment containing the array and a few other auxiliary variables such as a loop

counter. Provided that these are in the main memory during the phase corre-

Chapter 7 VIRTUAL MEMORY 80

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

sponding to the execution of the loop, it doesn't really matter that the rest of the

program is not in the main memory, provided that when this phase comes to an

end and another begins, the relevant segments for the new phase can be loaded

into the main memory.

In this sense the idea of overlaying was on the right track. It set aside an ar-

ea of main memory into which parts of a program could be loaded in succession.

Those parts of the program which were not needed remained on disc, whence

they could be loaded into the main memory when needed.

But there were some serious problems with overlaying. For example the

fixed length of an overlay area might not be the appropriate length for accom-

modating the various program segments at different phases of the program exe-

cution. An even more important problem was the addressing difficulties which it

created. Application programmer, compiler, linker and operating system all had

to be careful to get the addresses right and to ensure that nothing went wrong

when switching between overlays, because the same memory addresses were

used to address different overlays. Another problem was that addresses must not

be used as cross references between different overlays which might not concur-

rently be loaded into the main memory.

What was needed, and what virtual memory systems generally achieve, is

on the one hand a capability of allowing programs to be partly in the main

memory and partly on disc, but on the other hand to provide a technique which

solves the addressing problems of overlaying. We look at these issues in turn.

4 The Basic Idea behind Virtual Memory

The most fundamental difference between conventional virtual memory and the

earlier non-virtual memory systems is that the computational memory, i.e. the

memory in which computations take place, is no longer viewed as being identi-

cal with the main memory. The computational memory is extended by "stealing"

some of the disc space from the file system, as is shown in Figure 7.2 (not to

scale). This is normally used to hold a version of executing programs copied

from the file store by a loader. The operating system's virtual memory manager

transfers parts of these programs into the main memory as they are needed.

When a section is no longer needed in main memory it is copied back into the

extended computational area. Hence the extended computational area holds a

(partially) up-to-date copy of each process's program image as it is being exe-

cuted.

In modern computer systems this extended computational area is usually

held as part of a disc which is permanently on-line (i.e. an internal hard disc).

The rest of this disc and other discs associated with the system hold the file sys-

Chapter 7 VIRTUAL MEMORY 81

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tem space.

In most systems a clear logical distinction is drawn between the file system

memory and the extended computational memory, i.e. information on disc is

viewed as being in the file memory or in the virtual memory but not both at the

same time. But there are systems which allow program code to be viewed as be-

ing both in the virtual memory and in the file system memory at the same time,

in that a file is mapped into the virtual memory.

5 Virtual Memory Management

The idea of virtual memory changes nothing in terms of the CPU's need to have

rapid access to the main memory. The enormous difference in speed between

accesses to main memory and accesses to disc still means that it is quite infeasi-

ble for the CPU to fetch instructions and/or data directly from disc. But the least

it must achieve is to recognise when an instruction or data word which it is try-

ing to access is not currently available in the main memory and to organise that

it be brought into the main memory.

To achieve this almost all computers use a technique called virtual address-

ing
22

. Instead of using main memory addresses as cross references within pro-

grams, virtual addresses are used. These support a larger range of addresses than

can be accommodated by the main memory. They are used to address both in-

structions and data in programs, but the hardware provides an address transla-

tion unit (ATU) which rapidly converts these into main memory addresses.

When the ATU detects an attempt to access a virtual address which is not

currently in the main memory, it raises an interrupt, i.e. a signal from the CPU to

22

 Exceptionally, the Burroughs B5000 system and its successors (which first invented

segmented virtual memory), used a quite different technique, which was not very suc-

cessful and is of no further interest for our theme.

Main Memory Disc Subsystem

Computational

Memory

Figure 7.2: Conventional Virtual Memory Organisation

File Memory

Extended

Computational Memory

Chapter 7 VIRTUAL MEMORY 82

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the operating system which causes the currently executing process to be tempo-

rarily halted; this is called a virtual memory fault interrupt. It provides the oper-

ating system's interrupt routine with details of the problem, in particular with the

address which caused the fault. The interrupt routine then analyses this fault and

arranges that the missing code or data be brought from virtual memory on disc

into the main memory. It then restarts the process at the point where the fault

occurred.

In reality the handling of virtual memory fault interrupts is rather more

complicated. The operating system's virtual memory manager must find space in

the main memory for the missing program unit, if necessary discarding some

other program unit (possibly from another process) by writing this back to the

extended computational memory. It then reads the missing unit from the extend-

ed computational memory into the free main memory space. After that the pro-

cess can continue execution.

It is crucial that the algorithm which selects a program unit for discarding

makes a good choice. The best choice would be the program unit which is not

going to be needed for the longest period into the future, but as this would in-

volve crystal ball gazing, most systems settle for a good approximation, namely

the program unit which has not been used for the longest period in the past. An

efficient implementation of this algorithm, called the least recently used (LRU)

algorithm, requires some hardware assistance, usually provided in the form of a

used bit which we shall encounter later.

If a poor algorithm is used to select a victim program unit for discarding, a

condition known as thrashing can occur. This happens when units which will

soon be needed again are chosen for discarding. Then the computer begins to

chase its tail, managing to achieve nothing except handle virtual memory faults.

As disc I/O operations are "expensive" in terms of CPU speeds, a further

optimisation is often made. Since the extended computational memory contains

an image of the entire program, it already has an image of a victim program unit.

Consequently victim program units need only be copied back to the extended

computational memory if they have been modified since they were last loaded

into the main memory. In order that the virtual memory manager can check

whether this is the case there is often hardware assistance, this time in the form

of a changed bit (sometimes called a dirty bit). We shall also encounter this lat-

er.

6 What form of Virtual address?

In conventional computer systems three different forms of virtual addresses have

been used.

Chapter 7 VIRTUAL MEMORY 83

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

– Paged virtual addresses simply decompose a program into units of fixed

length, called pages. These are typically all the same length (but with sizes

varying between about 256 bytes and 16 KB in different computer sys-

tems).

– Segmented virtual addresses decompose a program into segments, which

are logical units corresponding to items in the program.

– Segmented and paged virtual addresses decompose a program into logical

units, which are then further decomposed into pages.

In the following sections we discuss each of these in turn, discussing their ad-

vantages and disadvantages, and then present an alternative, orthogonal segmen-

tation and paging, which eliminates all the disadvantages and introduces new

advantages.

7 Paged Virtual Memory

In a paged virtual memory, programs are decomposed into units of the same

fixed length, called pages, which are loaded into the main memory on demand.

The main memory is similarly divided up into page frames which have the same

length as pages. Thus when a virtual memory fault (which we can in this context

call a page fault) interrupt occurs, the virtual memory manager finds an empty

page frame (or makes one free by discarding a page already in the main

memory) and writes a copy of the requested page image from the extended

computational memory into the free page frame. This is a relatively straightfor-

ward procedure. Because all pages have the same size, any victim page (i.e.

page removed from the memory to make space for another) will do just as well

from the viewpoint of space availability, so the discard algorithm can concen-

trate entirely on other criteria, such as the length of time since pages were last

used and/or whether a victim page needs to be written back to disc or not.

In a paging system the programmer does not need to think about how his

program has to be composed into overlays and the compiler also just compiles

the program as for a non-virtual memory system, starting with an address of 0

for the first word of the program and continuing to allocate addresses in a single

linear sequence. In fact the compiler does not even have to be concerned wheth-

er the program is longer than the main memory.

A paged virtual address in a program looks just like a main memory ad-

dress in a non-virtual memory system, except that the virtual address may be

larger than a main memory address.

Let us now look at a virtual address in more detail. Suppose it is 32 bits

long and the page size of the system is 4 KB (= 212 bytes), then it is possible to

regard the 12 least significant bits of the address as an offset within page, and

Chapter 7 VIRTUAL MEMORY 84

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the most significant 20 bits as a page number (see Figure 7.3).

Such addresses are translated into main memory addresses by an address

translation unit (ATU). This is situated close to the CPU and is used by the CPU

to translate every virtual address which it uses.

The ATU for a paged virtual memory system in fact needs to translate only

the virtual page number part of a virtual address into a main memory page frame

number, since the offset in page remains the same. Figure 7.4 shows as a black

box what the ATU does. Notice that the ATU cannot always produce a valid

translation, because the virtual page number is larger than the main memory

page frame number. When an address cannot be translated the ATU causes a

page fault interrupt. Then the operating system takes over in order to bring the

required page into a page frame of the main memory, as was already described.

7.1 Inverted Page Tables

There is more than one way to implement the black box. The Atlas system [36]

used an inverted page table. This can be thought of as a table with one entry for

each page frame of the main memory. Hence the length of an inverted page table

is proportional to the length of the main memory. Each entry contains the virtual

Virtual Page Number Offset in page

20 bits

Figure 7.3: A Paged Virtual Address

32 bits

12 bits

Virtual Page Number Offset in page Virtual Address

Address Translation

Unit

Page Frame Number Offset in page

Page Fault

or

Main Memory Address

Figure 7.4: The Address Translation Unit as a Black Box

Chapter 7 VIRTUAL MEMORY 85

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

page number of the page currently resident in the page frame corresponding to

the entry (see Figure 7.5). Since there is not always a valid page in each page

frame, a valid bit is included with each entry.

The use bit is set by the hardware whenever a byte or word of the corres-

ponding page is accessed (read, write or execute access). The change bit is set

by the hardware when a process writes into the page.

A page need not always reside in the same main memory page frame. If it

is selected as a victim to be discarded, but is later required again, the virtual

memory manager can place it in any suitable page frame without consideration

for its previous location. Thus pages are completely relocatable in the main

memory.

An important point about inverted page tables in a multiprogramming sys-

tem is that they may contain entries for more than one process. If a virtual ad-

dress is an effective program address starting at 0 for each process, as is usual in

modern systems, then virtual page numbers are not unique! This means either

that addresses must in some way be made unique or that the valid bit must be

changed for many entries on a process switch, which adds an overhead to the

process switch operation. In a later research system developed at the University

of Manchester, the MU6-G, for example, the addresses in the inverted page table

were made unique by the addition of a process number [40].

Inverted page tables are the wrong way round to be indexed, yet it would

be far too slow to carry out a sequential search of each entry. In the Atlas system

an associative memory was used. This is a memory in which all entries are

searched by the hardware in parallel. This is a very expensive technique in terms

of hardware, since hardware for the comparisons must be duplicated for each

entry. Hence as memory prices reduced and main memories became larger, the

number of entries in such a table increased proportionally. This made the use of

associative memories far too expensive and so an alternative implementation of

Virtual Page Number in Frame 0 change use valid Entry for Frame 0

1 Entry for Frame 1

2
 Entry for Frame 2

Entry for last Frame

Inverted Page Table

Figure 7.5: An Inverted Page Table

Chapter 7 VIRTUAL MEMORY 86

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the ATU became widely used.

7.2 Conventional Page Tables

A conventional page table, hereafter simply called a page table, can be directly

indexed, using a virtual page number as its index. Hence the length of a page

table is in principle proportional to the size of the virtual memory. In practice

however, there is usually a separate page table for each process; consequently

the size of an individual page table is proportional to the length of the program.

An entry in a typical page table is illustrated in Figure 7.6.

With this model the ATU forms a main memory address from a virtual ad-

dress by using the virtual page number part of the address as an index to select

an entry in the page table. If the page is present in the main memory, this holds a

page frame number. The offset in page is concatenated with this page frame

number to produce a main memory address. This is illustrated in Figure 7.7.

An entry in a page table always has a present bit to indicate whether the

page described by the entry (i.e. the page which has a virtual page number in-

dexing the entry) is actually in the main memory or not. If it is not present in the

main memory, a page fault interrupt is caused. As with inverted page tables

there is usually also a use bit and a change bit.

Figure 7.6: A Typical Page Table Entry

Present

Bit

Use

Bit

Change

Bit
Page Frame Number

Figure 7.7: Using a Page Table to Translate a Virtual Address

Page Table

Main Memory

Word or Byte Addressed

Page 0

Virtual Page Number Offset in page

Virtual Address

used as index

into page table

used as offset

into frame

1

1 Frame #

0

1

Chapter 7 VIRTUAL MEMORY 87

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

7.3 Making Memory Accesses Efficient

With conventional paging systems the page tables cannot be efficiently imple-

mented in hardware, because they are too large, so they are usually placed in

main memory. In principle this means that for every useful main memory access

a further memory access is necessary in order to translate the address needed to

make the useful access. (This assumes that the page tables themselves can be

directly addressed using absolute main memory addresses. If the page tables get

too large to be permanently held in main memory, as happened in some systems,

they too had to be addressed using virtual addresses, i.e. further main memory

accesses may be necessary to address the page tables!)

To have two or more main memory accesses for each useful main memory

access would slow the computer down by a very serious amount, so that some

additional technique had to be used. The problem is solved in a manner analo-

gous to the way normal accesses to data and instruction accesses can be speeded

up, by the use of a cache memory. Since this is needed at a different point in the

execution of instructions and serves a different purpose to normal caches, a spe-

cial address translation cache, usually known as a Translation Lookaside Buffer

Virtual Page Number Offset in page Virtual Address

Figure 7.8: The ATU with a TLB using Conventional Page Tables

Page Frame Number Offset in page

Page Fault

or

Main Memory Address

Translation Lookaside Buffer (TLB)

TLB

miss

Access Page Table

Page Present

in Main Memory?

Load Page Table

Entry into TLB

TLB

hit

Address

Translation

Unit

Chapter 7 VIRTUAL MEMORY 88

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(or TLB for short), is placed in the CPU's Address Translation Unit. The tech-

niques used for implementing the data cache can also be used to implement a

TLB. An overview of the TLB's role in the ATU is shown in Figure 7.8.

The TLB caches entries from page tables, i.e. it provides a rapid mapping

from virtual page numbers to page table entries. The present bit need not be

cached, since the only entries in the TLB are for pages actually in the main

memory. But a valid bit is needed to indicate whether the entry in the TLB is

currently in use. Thus a TLB is remarkably similar to an inverted page table!

The main difference is that it is incomplete. In other words there is not an

entry in a TLB for every page frame. For this reason the functionality is less. If

an address cannot be translated by an inverted page table, the corresponding

page is not in the main memory. But if the TLB cannot translate an address, this

does not necessarily imply a page fault. It often simply means that the required

address mapping has to be placed into the TLB, even though the corresponding

page might already be in the main memory. But it might also imply a page fault.

In earlier computer designs the hardware or microcode was usually respon-

sible for managing the TLB. In some later systems (including RISC systems)

this responsibility has been moved into the software.

Finally, because each active process typically has its own page table, virtu-

al addresses (and therefore virtual page numbers) are not unique in conventional

paging systems. Hence entries in the TLB are ambiguous and can therefore only

be used in the context of the right process. This means that on each process

switch all the entries in the TLB (except for those of the selected process) must

be invalidated by the operating system.

7.4 Protecting Processes from Errors

Most paging schemes provide a process with some internal protection from er-

rors which might exist in the program code. The aim is to detect errors as soon

as possible to prevent unnecessary damage being done internally and to help the

programmer to debug (find and correct errors in) his program.

Internal protection against program errors involves the use of three addi-

tional bits in each page table entry: a read permission bit, a write permission bit

and an execution permission bit (see Figure 7.9). With each memory access the

kind of access requested is compared with the appropriate permission bit, and

the access is only permitted to proceed if it is of the appropriate kind. If an error

is detected, a memory protection interrupt is raised, causing the executing pro-

cess immediately to be halted.

With this approach it is possible to organize the object code of a program

into three groups: program code segments which need an execute permission bit

Chapter 7 VIRTUAL MEMORY 89

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(and possibly a read only bit), normal data segments which need both the read

and write permission bits, and constant (non-changeable) data segments protect-

ed by a read only bit.

8 Segmented Virtual Memory

The first computer system to support the idea of a segmented virtual memory

was the Burroughs B5000 system [37], designed in 1961, and its better known

successor, the B6700 [41]. Although the Burroughs systems included many in-

novative ideas, they had little direct impact on later computer systems. One rea-

son was undoubtedly that the underlying memory management model, based on

a segmented virtual memory without virtual addresses, led to complications

which could easily have been avoided by the use of virtual addresses. Further-

more it was not a very secure system, because its security depended on the cor-

rectness of approved compilers, and the decision to approve compilers rested in

the hands of the computer operators. We therefore describe a simpler model for

a segmented virtual memory which uses virtual addresses.

8.1 A Segmented Virtual Memory Model

In this simple model a program is decomposed into segments which correspond

to logical elements in a program's structure (e.g. individual code routines and

data structures). Using the analogy of paging (see Figure 7.3), 32 bit virtual ad-

dresses consist of the pair «segment number, offset in segment», cf. Figure 7.10.

Segmentation has a marginal advantage over paging for compilers, because

they do not have to linearize programs into a single sequence of virtual address-

es. As they encounter a logical structure in the program being compiled they can

allocate a segment number for it and produce offsets from that segment number

to allow individual parts of the segment to be addressed.

Because the number of bits used to implement a segment offset in a seg-

mented virtual address determines the maximum length of a segment, this field

Present

Bit

Use

Bit

Change

Bit

Read

Bit

Write

Bit

Execute

Bit
Page Frame Number

Figure 7.9: A Page Table Entry with Access Permission Bits

Figure 7.10: A Segmented Virtual Address

Offset in segment

32 bits

14 bits 18 bits

Segment Number

Chapter 7 VIRTUAL MEMORY 90

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

must be longer than the page offset field for a paged virtual address, since seg-

ments can be longer than typical page sizes. Some segmented systems decom-

posed 32 bit virtual addresses into a 14 bit segment number and an 18 bit seg-

ment offset. This allows a program to have a maximum of 214 = 16,384 seg-

ments, each of which can have a maximum length of 218 = 262,144 bytes or

words. Such a division results in a rather unhappy compromise. On the one hand

it leads to a quite restricted length for an individual segment. On the other hand

the number of segments is also quite restricted. The problem is that some pro-

grams are likely to have lots of small segments while others may have a few

large segments
23

.

In the segmented model each variable length segment can in principle be

loaded to start at any address in the main memory. This may at first sight appear

to be a very flexible approach, but in practice it creates a difficult problem for

managing the use of the main memory. As a result of segments having different

lengths, the memory becomes fragmented and difficult to manage. The gaps be-

tween segments in the main memory tend to become ever smaller (and therefore

less usable).

8.2 Segment Tables

The mapping of virtual addresses onto main memory addresses can be imple-

mented in a similar way to conventional page tables. Figure 7.11 shows how en-

tries in a segment table might look. These entries are considerably wider than

page table entries (cf. Figure 7.6) because of the need to store a length field in

addition to the full main memory address at which the segment starts (rather

than just the page frame number part of the address).

Figure 7.12 shows how a segmented virtual address is translated into a

main memory address (cf. Figure 7.7 for the equivalent paging diagram). As in

paging schemes the overhead of having to make a main memory access to trans-

late each virtual address can be avoided by means of a translation lookaside

buffer containing copies of the most recently used segment table entries. The

entries in the TLB, as in the segment table, are wider than those needed in the

23

 I am not aware that since the development of 64 bit computers any purely segmented

system has been suggested, which is scarcely surprising since pure segmentation is not

regarded as a good model for virtual memory in view of the memory management prob-

lem which it creates (see below).

Present

Bit

Use

Bit

Change

Bit

Read

Bit

Write

Bit

Execute

Bit
Segment Length

Figure 7.11: A Segment Table Entry

Start Address

in Segment

Chapter 7 VIRTUAL MEMORY 91

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

paging model, making the TLB more expensive to implement.

In contrast with a pure paging system, the protection bits in a segment table

entry (read, write and execute bits) map directly onto the properties of the logi-

cal segments which the entry describes, so that the compiler does not have to be

concerned about clustering segments with related properties together for protec-

tion reasons, as may happen in a pure paging scheme.

The appearance of a length field in segment table entries allows the hard-

ware to check that an effective program address (which includes an offset from

the start of a segment, Figure 7.10) is within the bounds of the segment. This is

essential to guarantee protection between different concurrently active process-

es, because the main memory word following the end of a segment may contain

another segment, possibly from some other program. This bounds check has the

further practical advantage that it helps to discover internal program errors

which involve attempts to address outside the range of individual segments. This

is an error which cannot be detected by hardware in pure paging systems.

9 Comparing Segmentation and Paging

There is widespread agreement that the biggest disadvantage of segmentation

lies in the difficulty of managing the underlying segmented main memory. This

is a much more difficult task for the operating system than it is in a scheme

which supports paging. For example, in choosing a victim segment to be dis-

carded when space has to be found for a new segment, it is not enough to con-

sider which segments have not been used for the longest time or which have not

Segment Table

3280

Main Memory

A segment of

another program

A segment of

a third program

Figure 7.12: Using a Segment Table to Translate a Virtual Address

Segment Number Offset in segment

Virtual Address

index into

segment table

used as offset

into segment

Unusable Gap

Segment 2 (length 3280)

Word or Byte addressed

Unusable Gap

1

1

0

1

Chapter 7 VIRTUAL MEMORY 92

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

been changed. It is equally important to consider which potential victim segment

will leave enough space for the new segment, and what effects choosing a victim

have on the main memory fragmentation problem. Consequently no modern

computers use a purely segmented virtual memory scheme.

A further disadvantage of segmentation in earlier systems was that a seg-

ment cannot be longer than the main memory, and in fact it may not be longer

than that part of the main memory available to user programs. (In a paging sys-

tem longer segments, which are invisible at the hardware level, are automatical-

ly decomposed into pages, so the problem does not arise there.) Even today,

with main memory as plentiful as it is, it would be a disadvantage to have to

place very large segments in the main memory without decomposing them into

pages, because the likelihood is that accesses concentrate around a particular

part of the segment, making it unnecessary for the rest of the segment to use up

main memory.

On the other hand segmentation was the preference of compiler writers in

earlier systems, because it nicely reflects the logical structure of programs and it

provides a better hardware framework for detecting program errors at an early

stage. (This is the reason why the B6700 designers implemented a segmented

virtual memory.) A further advantage of segmentation is that it is easier to delete

individual segments and create new ones.

It is therefore not surprising that researchers began to look for a scheme

which could effectively combine the advantages of both while avoiding their

disadvantages.

10 Combining Segmentation and Paging

There have been several attempts to combine segmentation with paging. How

researchers have approached this issue has usually been strongly influenced by

their understanding of what a segment should be. So far we have followed the

Burroughs philosophy (but not their implementation) in assuming that a segment

corresponds to a logical element in a program, such as an array or a procedure.

This approach leads to the view that segments will usually be very small, typi-

cally smaller than a sensible page size.

An alternative view was developed by the Multics designers [42], who re-

garded segments as an architectural vehicle for implementing files in the context

of their aim of achieving direct addressability (a theme to which we will return

in the Chapter 12). Their idea was that files in the file system should be mapped

into the main/virtual memory as segments. In this case many segments can be

expected to be considerably larger than a page. As they demonstrated, it is rela-

tively easy to treat a segment as an entity which can be composed into multiple

Chapter 7 VIRTUAL MEMORY 93

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

pages. This has become a common approach and the next section describes it as

a model which extends the paging and the segmentation models presented so far.

10.1 Paged Segments

The starting point for understanding the conventional way of combining seg-

mentation and paging is the virtual address structure which it typically uses (see

Figure 7.13). The basic new idea compared with the models which we have pre-

viously described is that a segment can be decomposed into pages. So we have a

segment number, as in the segmented model, a page number within the segment,

and an offset within the page. The page number and offset parts are in fact

viewed by the compiler simply as an offset within the segment, since paging is

invisible to it. Thus the compiler in principle has all the advantages of seg-

mentation, except that if he uses this scheme to implement individual small pro-

gram units in separate segments then much memory space will be lost to internal

fragmentation!

All three parts of the virtual address are visible to the operating system and

to the address translation unit. This is because the virtual memory translation

tables are organized in two parts. For each program there is a segment table,

which is indexed by the segment number part of the virtual address. In contrast

with the pure segmentation model this segment table does not contain the ad-

dress of the segment in main memory; this now becomes the address of the start

of the page table for that segment. The page table is then indexed by the page-in-

segment part of the virtual address. As in the conventional paging model this

page table holds the page frame number in the main memory holding the page.

The address translation procedure is illustrated in Figure 7.14.

One advantage of this structure is that the logical properties of segments

can be held in segment table entries (where they logically belong) while the

memory management properties can be held in the page table entries (where

they logically belong). Figure 7.15 illustrates what these entries might look like

in terms of our previous models.

32 bits

14 bits 10 bits

Figure 7.13: A Segmented Virtual Address

Segment Number

8 bits

Page in

Segment

Offset in

Page

Chapter 7 VIRTUAL MEMORY 94

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Each kind of table entry can have its own present bit. In the case of the

page table entry this indicates whether the page in question is in the main

memory or not. But there are two possible interpretations for a present bit in the

segment table entry. The most obvious one is that it indicates whether the page

table for the segment is present in the main memory. This would allow page ta-

bles themselves to be discarded from the main memory.

But the present bit in the segment table can also be used for a different pur-

pose, more in the sense of a valid bit, indicating whether the entry in the seg-

ment table is actually in use. This interpretation allows segments to be bound

dynamically into a process's address space.

The segment length field in the segment table entry can also be used in two

ways. The most obvious use is to hold the actual full segment length in words or

bytes. In that case it serves exactly the same purpose as the length field in a

Segment Table

length

Figure 7.14: Segment and Page Tables to Translate a Virtual Address

Virtual Address

index into

segment table

offset into

page frame

Segment Number Page in segment Offset in Page

Frame #

Main Memory

Word or Byte

Addressed

Page Table

index into

page table

1

1

0

1

1

1

0

1

Figure 7.15: Segment and Page Table Entries

in a Segmented and Paged Model

Present

Bit

Use

Bit

Change

Bit
Page Frame Number

A Page Table Entry

Present

Bit

Read

Bit

Write

Bit

Execute

Bit
Segment Length

Start Address

of Page Table

A Segment Table Entry

Chapter 7 VIRTUAL MEMORY 95

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

purely segmented system. But it can be kept shorter if it is regarded as a count of

the number of pages in the segment. This second possibility ensures that a pro-

cess cannot access beyond the last page of the segment, which is important to

guarantee protection between processes. But it does not ensure that an effective

address remains within the logical bounds of a segment, since the latter may not

occupy the entire last page, and so it loses one of the advantages of pure seg-

mentation.

10.2 Making Memory Accesses Efficient

Logically the translation of a virtual address into a main memory address re-

quires that the address translation unit make two additional main memory ac-

cesses, one to the segment table entry and one to the page table entry. (If, as is

found in some systems of this kind, the virtual memory tables are themselves

addressed by virtual addresses, even more main memory accesses may be re-

quired to carry out an address translation.) This might appear to be a disad-

vantage compared with both of the simpler models, but in reality it is not very

significant, because most address translation operations are fully handled by the

TLB. Furthermore support for combined segmentation and paging does not sub-

stantially complicate the TLB, because the latter does not need to have a three

part view of virtual addresses. Its task is simply to determine whether a page is

in the main memory. From its viewpoint the pair «segment number, page in

segment» can be viewed as a single virtual page number, just as in a paging sys-

tem, provided that it maintains the logical protection bits and the memory man-

agement bits with each entry. Thus the TLB for a combined segmentation and

paging scheme turns out to be exactly like that for a simple paging scheme. If

this has a high hit rate (in modern systems the hit rate reaches about 98 %), the

occasional extra reference to the main memory is not very significant.

10.3 Evaluation of Paged Segments

It seems at first sight that this model effectively combines the advantages of

both the paging and the simple segmentation models while avoiding their disad-

vantages. Memory management is based on paging, which is much more effec-

tive than segmentation. Thus the main memory can be divided into fixed length

page frames and these can be matched easily to fixed length sectors of disc in

the extended computational memory. Similarly it is possible to take advantage

of the logical properties of segments, so that internal protection works well in

terms both of the use of bounds checks on segment lengths and the checking of

basic access modes, without explicitly having to cluster similar segments to-

gether, as was necessary with the simple paging scheme.

The combined scheme even introduces a new advantage. In a purely seg-

Chapter 7 VIRTUAL MEMORY 96

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

mented memory it is not easy dynamically to extend the length of a segment,

because of the problems this causes in the main memory, but in a system in

which segments are paged, there is no problem in adding new pages at the end,

because these are separately paged in, exactly like any other page.

However, our discussion has so far made an important assumption, viz. that

segments are typically large entities, following the Multics idea that they can be

used to map files from the file system directly into the virtual memory. Hence-

forth we refer to such segments as architectural segments. But studies of pro-

grams segmented for the Burroughs B5500 have shown that typical segments, in

the sense of logical program units, are in fact very small on average. In one

study, Batson, Ju and Wood [43] measured segment sizes in a collection of sam-

ple programs and found that 60 % of all segments use less than 40 words, and

that the largest average segment size for the various classes of segment which

they considered was only 181 words. A similar study a few years later by Batson

and Brundage [44] on a different program sample confirmed that segment sizes

on the B5500 are very small.

If we apply such figures to the combined segmentation and paging scheme

just described, then we find that the result is disastrous in terms of internal

fragmentation. To put this into perspective let us first consider the loss to inter-

nal fragmentation in the conventional paging model. This is on average a half

page per program (since the final page of the program is usefully used up to an

arbitrary point). Even if the compiler clusters segments with similar properties

together to take advantage of protection bits, the loss through internal fragmen-

tation is only half a page per property group (altogether one and a half pages if

executable code, constants and writeable data appear in a single object pro-

gram). But in the combined scheme just described it is at the very best an aver-

age of a half page per segment (which assumes that segments are much larger

than page size), and if segments are on average less than half a page long, as the

Burroughs studies suggest, then internal fragmentation can lead to programs

which are more than double their natural length! What is equally unfortunate in

this case is that the page tables are almost entirely wasted, since almost all of

them contain only a single entry! For this reason researchers continued to seek

for alternative ways of combining the advantages of segmentation and paging in

ways which eliminate this problem.

11 Conclusion

In this chapter we have introduced the most commonly used techniques for

managing virtual memory. As described, the situation is not particularly satisfac-

tory from the viewpoint of security. There are at least two reasons for this.

First, the conventional virtual memory approach, whereby a part of the disc

Chapter 7 VIRTUAL MEMORY 97

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

memory is "stolen" by the virtual memory management system to serve as an

extension of the main memory, results in considerable duplication of mecha-

nisms. Disc space is handled in two quite separate ways. One the one hand part

of the disc space serves as a basis for a file system which takes substantial re-

sponsibility for security issues at the "higher" level of a system. On the other

hand part of the disc space is managed in a quite different way by lower level

software, which is equally responsible for security, but at the level of executing

programs. This duplication is part of the reason why systems are extremely inse-

cure, because, like the Berlin Wall, it offers hackers with opportunities to play

off one part of the security mechanism against another, and it is an understate-

ment to assert that the end result is complicated. In fact it is very complicated.

This leads to even further duplications. For example, programming lan-

guages are forced to handle access to data which "belongs" to a program in one

way, while resorting to quite different mechanisms to handle data which is

stored in file systems. We will take up such issues in a later chapter, where we

will also show that a much simpler, more efficient and, most important, a more

secure way of organising virtual memory is possible.

The second major problem with conventional virtual memory is that it is

not capable of effectively handling small segments. At first sight this might not

seem to be important, but as will become clear in a later chapter, this deficiency

eliminates the possibility of efficiently implementing an important class of sys-

tems which are capable of enormously enhancing the security of operating sys-

tems. This is also an important theme which is taken up in a later chapter.

Chapter 8

Processes

Support for parallel activities within a computer system is one of the key func-

tions of any operating system, because

– computer installations are often required to support more than one user in

parallel,

– even in single user systems the user expects to carry out activities in paral-

lel,

– the hardware of the computer can carry out activities in parallel.

This means that the operating system must not only be able to manage and con-

trol parallel activities, but it must also be able to react to parallel events (e.g.

hardware interrupts indicating that an input-output operation has completed).

The hardware of a computer system consists of various components which

can operate in parallel with each other (e.g. CPU, disc and printer activities can

overlap in time) and these operate at quite different speeds. The speed differ-

ences can be very significant, e.g. a modern CPU can carry out billions of in-

structions in a single second, a modern disc (HDD) cannot carry out a read or

write operation in less than about 3 to 10 milliseconds (i.e. at most ca. 330 to

100 operations per second)
24

, while a printer may take several seconds to print a

page. Consequently if a CPU were to execute one program at a time, waiting for

its I/O operations to complete, most of its available processing time would be

lost in the idle state. Hence multiprogramming, i.e. allowing many programs to

be executed quasi in parallel on a single processor, is absolutely essential. To

achieve this, a central component of the operating system, called a process

scheduler or thread scheduler), maintains a pool of processes, from which it se-

lects individual processes to be executed. Ideally this pool contains a mixture of

24

 SSD devices can operate about 100 times as fast as traditional discs, but this is still very

slow in relation to processor speed. For a comparison between HDD and SSD devices

see https://www.storagereview.com/ssd_vs_hdd

Chapter 8 PROCESSES 99

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

I/O intensive processes (which require a substantial amount of I/O activity) and

CPU intensive processes (which spend most of their time performing CPU cal-

culations). Given such a mix the process scheduler will normally give priority

to the I/O intensive processes, which will only need a small amount of CPU time

between activating and waiting for I/O devices, allowing the CPU intensive pro-

cesses to execute while the I/O intensive processes are waiting for their input-

output operations to terminate.

1 Scheduling Algorithms

To determine which process can actively use the CPU the process scheduler uses

a process scheduling algorithm. Here we describe by way of example some as-

pects of a scheduling algorithm on a general purpose system where a wide varie-

ty of user applications might co-exist. The likelihood that all the applications

described would coexist in practice in a single node is not particularly high, but

is not impossible. We use this application mix to illustrate that even extreme ex-

amples can be combined into a single scheduling algorithm.

1.1 High priority real time processes

It is essential that some applications processes have absolute priority over other

activities at a node. Suppose for example that a process is responsible for check-

ing and controlling the temperature of the key units in an atomic power station.

It is self-evident that this process should be able to gain control of a CPU in or-

der to carry out its checks at regular short intervals, probably measured at the

millisecond level
25

. The only thing that such a process needs to do in the normal

case is to scan the readings of all its measuring devices and then go to sleep for a

short interval. Of course it is a different matter if the readings are not within the

expected range, and the process will then need to activate alarms, etc.

In other words there are some processes which mostly need only a little

CPU time but which should be immediately scheduled at regular (short) inter-

vals and should be permitted to keep control of the CPU as long as they need it.

When they complete a regular short activity they will normally wish to go

dormant for a short time and then be re-awakened when their next activity

should be started.

From this it is obvious that a process should be able to deactivate itself (we

refer to this as short-suspend) and in this example specify a time interval be-

fore it is re-activated.

25

 I am not an expert in nuclear power station control. This example is simply used to il-

lustrate that it is really important for some applications to be favoured by a process

scheduling algorithm over all others.

Chapter 8 PROCESSES 100

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.2 Medium priority I/O intensive processes

Some processes carry out many input-output (I/O) operations and need to be ac-

tivated when each such I/O operation completes, in order to initiate the next I/O

operation. A common example is a spooler process, which has the task of max-

imising the use of a printer device. Many applications must print from time to

time, and the relationship between their processing time (to produce a printable

result) and the frequency of printing can vary enormously, depending on their

purpose. For example a weather forecasting application must carry out an enor-

mous amount of processing before it produces printable results, but a request for

a data base application to print information from the database needs very little

processing time before it can print the next line.

The idea behind spooling is that the use of a printer can be optimised by

preventing applications from directly printing to a printer device (which in the

case of weather forecasting might result in a printer sitting idle for minutes or

even hours at a time) and instead for them to "print" their results to a file. Put

simply, instead of writing its results to a printer, an application stores them in a

file and when the file is complete it sends a request to a spooler module to print

them. This queues such requests and prints them when a printer is available.

Hence when an application's results file reaches the top of the spooler's

queue, these are read from the module in which they are stored and are written at

full speed to the printer. In this way the printer is used optimally.

Of course the spooler can organise its printing queue according to priori-

ties, taking into account users who need rapid results, but such details need not

concern us here. The important point is that from the viewpoint of process

scheduling a spooler uses a minimal amount of CPU time (e.g. to read infor-

mation from a print file and pass this to the printer); it must then wait until the

information has been printed before it can print more.

Thus spooler processes (usually one per printer) and other processes which

have similar CPU and I/O characteristics need a relatively high priority (to keep

the printer or other I/O device working at full speed), but of course they should

have a lesser priority than high priority real time processes. Because the CPU

time needed by them is very short, giving them a quite high priority scarcely af-

fects processes which have a lower priority.

1.3 Interactive Processes

In real-time transaction processing systems such as airline reservation systems,

where for example travel agents sit at terminals attached via a network to a cen-

tral computer in order to make bookings for their clients, this style of interaction

usually requires a small amount of CPU time to handle a transaction and then,

Chapter 8 PROCESSES 101

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

from the viewpoint of CPU time, a huge waiting period until the next transaction

is entered from the same user. The transaction itself typically requires a very

small amount of CPU time and a few database accesses. From the user's view-

point the important issue is that he is not kept waiting for more than a second or

two between inputting a request and receiving his answer.

1.4 CPU-intensive processes

Some computations (e.g. many scientific applications, including for example

weather forecasting) need enormous amounts of CPU time and only occasional-

ly (in terms of CPU time) need to output a result before continuing their calcula-

tion, and as indicated above, their output operations are converted into virtual

memory accesses.

1.5 Combining the above Requirements into a Single Process-Scheduling

Algorithm

While the likelihood that all the above requirements would occur in a single

computer system is relatively small, to design a CPU scheduling algorithm

which caters for them all is not particularly difficult.

The first step is to organise the processes into different priority levels. Here

we envisage four such priority levels, numbered say from 0 to 3. Priority 0 (the

highest priority) is used for high priority real time processes, priority 1 for me-

dium priority I/O intensive processes, priority 2 for interactive processes, and

priority 3 (the lowest priority) for CPU-intensive processes.

We then apply the rule that at all times the CPU is allocated to the process

of the highest priority which is in the ready state (i.e. is able to execute, see next

section).

It is obvious why high priority real time processes should have the highest

priority, but why for example should spooling processes have the next highest

priority? The first part of the answer is that it is important for such processes

(e.g. spoolers) to keep their I/O devices (e.g. printers) running at full speed. But

it is also important that they usually require only a trivial amount of CPU time,

so that they scarcely affect the CPU usage of lower priority processes, while at

the same time can keep their I/O devices active.

The interactive processes are placed below the medium priority I/O inten-

sive processes because they sometimes require more than just momentary use of

the CPU (normally in contrast with the first two categories), and so can make

good use of the CPU for somewhat longer time intervals. However the issue of

fairness is especially evident here. If one transaction monopolises the use of the

CPU for too long then this will cause other transactions (and therefore users at

other terminals) to wait for a possibly intolerably long period without receiving

Chapter 8 PROCESSES 102

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

a response. To avoid this, the priority 2 queue can be organised on the basis of

time slicing, i.e. a CPU time slice of a few milliseconds is determined as the

maximum time limit for a process to hold the CPU. If this time slice expires the

CPU is forcibly taken from the process and the next process at this level is al-

lowed to run. If there is no priority 2 (or higher) process in the ready state, the

first ready process in the priority 3 queue, i.e. a CPU-intensive process, is se-

lected.

The above process scheduling algorithm is just an example of a scheduling

algorithm. Computers used for different purposes may need more specialised

algorithms, so it would be a mistake to think that the same algorithm will suit all

computer systems.

2 Process Scheduling States

From the viewpoint of process scheduling, a process can be classified as being

in one of four states: inactive (when the process is doing nothing, which in con-

ventional systems usually means that the process does not exist), ready (when it

can execute but has not yet been assigned to a CPU by the scheduler), running

(when it is currently active on a CPU) and blocked (when it is waiting for some

condition to be fulfilled, e.g. completion of an I/O operation). Figure 8.1 illus-

trates these states and possible the transitions between them.

The ready state indicates that the process can be executed (i.e. be placed in-

to the running state) when the scheduling algorithm selects it. In this case the

scheduler allocates a CPU to it.

A process in the running state can forcibly lose the CPU as a result of an

interrupt (e.g. because its time slice has expired). In this case it is returned to the

ready state. Alternatively it can voluntarily relinquish control of the CPU (e.g. in

order to wait for the completion of an I/O operation which it has initiated), in

which case it enters the blocked state. It is released from the blocked state, re-

deallocate

Figure 8.1: Process/Thread States and Transitions between States

inactive ready running

logout

login allocate

blocked
block unblock

Chapter 8 PROCESSES 103

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

turning to the ready state, when an interrupt indicates that the reason for it being

blocked has been lifted.

The important purpose of the process scheduler is to carry out reschedule

operations, i.e. to select a process from the ready state and put it into the running

state. This can occur as a result of a process being added to the ready queue or as

a result of a process being unblocked following an interrupt.

3 Process State
26

A process should not be confused with a program. It is not a program as such,

but is the execution of a program on a CPU. A program is merely an algorithm,

i.e. a recipe for carrying out a computation. When a program is executed, it has a

process state, which from the viewpoint of the process scheduler defines those

aspects of the process's activity which must be preserved when the process is not

actually executing on the CPU. The most important part of a process's state,

from the process scheduling viewpoint, is the values in its CPU registers.

When the process scheduler makes a process switch, it must store the cur-

rent register values in a data structure associated with the process which has

previously been running and then reload the registers with the values associated

with the process now selected to run on the CPU.

Thus the process scheduler must maintain a list of processes, containing the

saved register values for each process along with other relevant items of infor-

mation (e.g. the time consumed so far by each process as it runs, its priority,

etc.).

4 Program Structure

In preparation for the following discussion about processes we must now make a

short digression to describe an important aspect of program structures.

Normally a program, unless it is very simple, is decomposed into smaller

units which we call routines. A routine, variously called a procedure, function,

subroutine or, in object oriented programming, a method, contains instructions

for carrying out a part of the program's task. This not only helps the programmer

to break down his program into smaller, easily intelligible parts, but it can define

a subtask which may have to be performed several times during the execution of

the program. We then speak of a program calling or invoking a routine. Such a

routine might be defined along the following lines (using a pseudo programming

language which is much simpler than real programming languages).

26

 The term process state as used in this section should not be confused with a process's

scheduling state, described in the previous section.

Chapter 8 PROCESSES 104

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

routine identifier (parameters)

begin

 programming statements

end

The identifier is the name of the routine. The parameters allow different values

to be passed each time the routine is called (invoked), thus allowing the routine

to perform different variants on the same task. Statements are the instructions

which define how the routine's task is to be carried out. These may, but need

not, contain a return statement. The routine returns to the caller either when it

has executed all the statements to the end, or when it encounters a return state-

ment.

A routine can be called several times in a program, and each invocation

causes the same code to be executed. When it has completed it returns to the

calling code at the point following the call.

Suppose a graphics program contains a routine called draw_circle which

has three parameters. The first two define the position of the centre of the circle

as integer coordinates, and the third defines the radius, this could be invoked by

the following statement:
draw_circle (13, 17, 5)

which would draw a circle at the coordinates 13, 17 with a radius of 5 (using

whatever unit size is assumed, e.g. centimetres).

Here is an example of how a program using this routine might look.
program my_drawing_program

begin

 initial statements

 draw_circle (13, 17, 5)

 more statements

 draw_circle (24, 37, 10)

 final statements

end

Figure 8.2 shows how this would execute in a running process. The blue arrows

represent the progress of execution in the main program. The green and red lines

represent the invocation and execution of the routine for the first and second

program my_drawing_program

begin

 initial statements

 draw_circle (13, 17, 5)

 more statements

 draw_circle (24, 37, 10)

 final statements

end

routine draw_circle (int, int, int)

begin

 draw_circle statements

end

Figure 8.2: A Program Invoking the Same Routine Twice

Chapter 8 PROCESSES 105

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

times respectively.

Each time the routine returns, it must jump back to the instruction follow-

ing the invocation, which is different for each invocation of the program. Hence

at the time of each invocation the return address must be stored in such a way

that it can be recovered when the routine is ready to return.

5 Process (or Thread) Stacks

Compilers are programs which translate a computer program defined in a high

level language (e.g. C++ or Java) into the low level instructions which the CPU

can understand and execute. Most compilers organise the calling of routines by

means of a data structure called a process stack. A stack, in general terms, is a

data structure which can grow and shrink at one end (the top), just as a stack of

trays in a self service restaurant grows and shrinks only at the top. In computing

circles we talk about pushing items onto a stack and popping them off. In the

case of a process stack each time a routine is called a stack frame is pushed onto

the stack and each time a routine returns, its stack frame is popped. Process

stacks can support a number of useful facilities, as we now describe.

5.1 Routine Linkage

As is evident from Figure 8.1, each time a routine returns back to the calling

program, it returns to a different place, namely to the instruction after the call

instruction. Consequently the compiler must add code to the compiled program

(known as run-time code) which, each time the routine is called, records the ad-

dress to which it must return. It records this information at the base of the new

stack frame which it creates for the routine call. Hence when the routine returns,

the address in the program at which the calling program must be re-activated is

available on the stack.

The routine linkage segment on the stack must also hold information about

where the previous stack frame begins. Usually this is addressed via a register,

so that the address in this register (which we will call F for frame
27

) is also

stored in the linkage segment. Other information may also be stored in the link-

age segment to help with the return operation.

5.2 Parameters and Local Variables

Since the parameters passed to the called routine can change with each call, they

must be recorded at a point on the stack where the called routine can locate

them. Similarly the called routine will need its own set of working values (called

local variables) which can change with each call.

27

 In some computers this register is a special register, but it can also be one of the general

purpose registers.

Chapter 8 PROCESSES 106

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The compiler therefore provides run-time code which places a parameter

segment above the linkage segment on the stack. Before the call this area can be

addressed by the calling routine to set up the parameter values, and when the

call has taken place the called routine can address the same segment to access its

parameters. Then immediately above the parameters the run-time code also pro-

vides space for the routine's own local variables.

5.3 Expression Evaluation

Sometimes a calculation, as expressed in a high level language, requires some

intermediate results which the programmer has not explicitly named and which

therefore no local variable has been declared which would provide space to store

the value until it is needed. For example if the programmer writes:
a = (b + c) * (d - e)

the run time code will provide space for the local variables a, b, c, d and e in the

stack frame, but when the calculation is carried out there is no space for the re-

sult of evaluating (b + c) or (d - e).

This problem is also solved by using a process stack, such that these re-

sults, as they are calculated, can be pushed onto the top of the current stack

frame and once they are used they can be popped from the stack.

This implies that the top of the stack is not always at the same point in a

stack frame, which means that in order to keep track of this another register is

needed, which we call TOS (top of stack)
28

. Like F, TOS must also be stored in

the linkage segment.

We now see that a stack frame can basically be viewed as consisting of four

28

 Like F, TOS might be implemented as a special register or it might just be a general

purpose register maintained by run-time code.

Computational Area
TOS

Local Variables

Parameters from

calling routine
F

Linkage back to

calling routine

Figure 8.3: A Stack Frame

Chapter 8 PROCESSES 107

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

parts: a linkage segment, a segment for parameters, a segment for local variables

and an expression evaluation area (see Figure 8.3).

5.4 The Stack Structure

So far the impression may have been given that the stack has only two levels: a

main program and a routine called from the main program. However, that is not

the case. Routines can be called not only from a main program but also from

within other active routines. Thus a process stack can have many levels of stack

frames. Each stack frame, together with its linkage segment, provides enough

information for the corresponding routine to carry out its own task, possibly call

other routines and when it has completed its task, to return to its caller (see Fig-

ure 8.4).

This structure also supports recursive routines, i.e. routines which call

themselves in the middle of their computation. Programmers must take care,

when defining recursive routines, that the recursion has a termination condition,

otherwise the stack would grow "endlessly".

The same structure also supports re-entrant code, i.e. code which can be

executed simultaneously by multiple processes, provided that each process has a

separate process stack, and that the program code is not modified.

6 Global Variables and Parameters

So far the impression may have been given that a routine uses only its own local

variables and the parameters directly passed to it. In practice this is often not the

case. Many high level programming languages are defined in such a way that a

routine can address both its own locally declared variables and a set of variables

which have been globally declared at the start of the program. This means that it

TOS

Figure 8.4: A Process Stack

F

previous F

previous F

Chapter 8 PROCESSES 108

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

has to be possible to use addresses which are not relative to the current stack

frame register F. A simple way to achieve this is to have a similar register,

which we shall call G, for addressing the global variables of a program. G ad-

dresses the variables in the first stack frame of a dynamically executing pro-

gram. At any given point the currently executing routine can then use addresses

relative to F or to G. The linkage at the bottom of the stack indicates that the end

of the program execution has been reached.

7 Calling the Operating System

Most conventional systems have a special mechanism which allows a process to

call the operating system. However, another interesting idea which was used in

some systems (e.g. Burroughs B6700 [41], Multics [42], ICL2900 [45, 46]
29

)

was to implement calls from application programs to the routines of the operat-

ing system more or less in the same way as routine calls within the user's own

program. In other words the invocation of an operating system service routine

takes place on the process stack of the application process.

Although this is in principle very similar to the stack technique which we

have already seen, there is one major difference. The operating system is com-

piled separately from its application programs and therefore should not need to

address the global variables of an application program. Instead it possibly has its

own global variables, which must become addressable when one of its routines

is invoked.

When the operating system comes into the picture we realize that there are

actually two different kinds of global variables which may need to be addressed.

29

 The second reference for the ICL2900 is a reprint of the first.

TOS

Figure 8.5: A Process Stack with Global Parameters and Variables

F

previous F

previous F

G

Chapter 8 PROCESSES 109

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The operating system has some data structures which must be persistent and

which need to be addressable from all processes as long as the system is run-

ning. (As an example of such a data structure, consider the queues of files which

a printer spooler has to manage.) Such data structures must survive at least as

long as the system is running, and they cannot be put onto the stack of an appli-

cation process. For this reason it is useful to have a further addressing base reg-

ister. Let us call this the P register, where P is short for "persistent". This will

point to data items which are not on an application's process stack.

An operating system routine can receive its parameters from the application

program using the same parameter passing mechanism as is used for passing

parameters between local routines of an application process. However, the call

to an operating system service routine and the linkage at that point on the stack

have to be rather special, because the P register has to be set up and because the

return mechanism must – for protection reasons – invalidate this.

8 Handling Interrupts

Not all the routines of an operating system are invoked directly by application

processes. In particular, interrupt routines are activated directly by the hardware

at arbitrary points in the execution of other processes when an interrupt pending

signal is detected (e.g. to indicate that an I/O operation has completed). Yet

symmetry (for example in order to keep the compiler of the operating system

routines simple) suggests that these should also be handled using stack frames.

The B6700 designers were consistent in this respect and used a slight variation

of the same routine calling mechanism to implement interrupt routines.

What they did was logically very simple. They treated an interrupt as if it

were a forced routine call. The currently executing process (whatever process

that might be) was stopped, its program counter value and other contextual in-

formation were stored (as normal linkage) on its stack at the location above the

address in the TOS register, so it appeared that the application process had

called the interrupt routine. The interrupt routine then used a new stack frame on

the application process stack. When the interrupt routine completed and exited,

this then appeared like a normal routine return, so the interrupted application

process could continue as if it had never been interrupted.

But there is a catch in treating interrupts as forced routine calls. What hap-

pens if the interrupt has been caused because there is no more space on the

stack? In the B6700 there was in fact another ALU register, called SL (stack

limit), which in principle defined the last memory address for the current stack.

Each push operation on a process stack was checked to see if the resulting TOS

value would go beyond SL. If it did, a stack overflow interrupt was signalled.

This is where the danger lay, because the stack has no more space on which to

Chapter 8 PROCESSES 110

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

execute this interrupt.

Not to be deterred by this problem the B6700 designers worked out the

maximum number of words needed by this interrupt routine, and actually set the

SL value to where it should have been minus this amount. In the later B7700

system this was one of the few things changed in the architectural design. In that

system a separate stack was activated whenever an interrupt occurred. (This had

the advantage that higher priority interrupts can interrupt lower priority ones and

still have stack space, providing this is kept to a reasonable level.)

9 Processes and the Operating System

There are some interesting implications of handling operating system routines

on application process stacks. The first of these is that at least in theory no oper-

ating system processes are needed. However, in most practical systems, even in

those which support the execution of operating system routines on an applica-

tion process stack, there are usually some additional operating system processes

for carrying out activities which perform tasks that are independent of a particu-

lar application process.

There are in fact two models for decomposing an operating system into

processes. The simplest involves having a separate process for carrying out each

operating system activity; this is a standard technique used in very many operat-

ing system designs. We refer to this kind of design as out-of-process, because

operating system services are provided for an application out of the application's

process, in a separate process. The technique is sometimes called message-

oriented, because the application process must pass its parameters as a message

Process

Stack

for Module

Operating System Module

 Process

Stack for

Application

Application Process

Message Queue for

Operating System Module

Request for a service of

Operating System Module

Figure 8.6: Communication in the Out-of-Process Model

Chapter 8 PROCESSES 111

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

from one process to another. This is illustrated in Figure 8.6.

The alternative is the technique implemented in the B6700, where operat-

ing system services are provided in the process belonging to the application. We

refer to this kind of design as in-process; it is sometimes also called procedure-

oriented, because the operating system routine is implemented as a routine (see

Figure 8.7).

In an interesting paper by Lauer and Needham [47] these two techniques

were compared. The authors reached the conclusion that they were duals of each

other. However, they overlooked two significant points, which are discussed in

detail in my former student Kotigiri Ramamohanrao's PhD thesis [48]. First, as

we shall see later, there are some fundamental differences when it comes to the

issues of protection and security. Second, the two models are not equivalent in

terms of their dynamic properties, e.g. with respect to the level of parallelism

attainable in each.

Since a process is the unit of execution on a computer it is easy to fall into

the trap of thinking that the fewer the number of operating system processes, the

less concurrent or parallel activity can be achieved in carrying our operating sys-

tem tasks. In fact this is quite the opposite of the truth. In a system in which

there is a process statically assigned to provide a particular service (i.e. the out-

of-process model), this service must be used serially by different applications.

This is because the server process examines its input message queue, selects a

request, and then services it. When it has finished it selects another request, etc.

Meanwhile all the application processes which have requested this service are

Stack

Frame of

Process

Stack for

Application

Operating System Module

Stack

Frame of

Process

Stack for

Application

Application Process

Figure 8.7: Communication in the In-Process Model

Parameters
and

Linkage

Chapter 8 PROCESSES 112

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

usually blocked waiting for the service
30

.

In contrast, in the in-process model no application processes are automati-

cally blocked (also less work for the process scheduler!) since they can all con-

currently call the same routine of the operating system and execute in parallel

with each other, using their own process stacks. So there are fewer processes but

at the same time there is more potential for parallelism.

This does not imply that it is always possible to achieve full parallelism in

an in-process system. The difficulty comes when these processes have to access

the same data structure. This would happen for example when two operating

system routines address shared operating system data using the P register which

we introduced. If they are both only reading the data there is no problem, but if

they need to modify it, then the data structure can become inconsistent, leading

to wrong results. We discuss this and other synchronisation problems at the end

of the chapter.

The important point here is that operating system processes executing in

the same module in an in-process system do not always have to take turns to use

the same module. First, not all data structures accessed by these processes are

shared. Even if they are executing in the same routine, they may only need to

access data via the F and G registers, which is not shared and therefore causes

no problems. But even if they are accessing shared data (in our model via the P

register) they may not be modifying it but only reading it. So in practice more

parallelism can be achieved in an in-process design.

A final point is that when processes cooperate with each other, such as

when operating system routines are active on different stacks, they may want to

communicate not only implicitly via shared variables but also explicitly by send-

ing signals to each other. Most operating systems have an interface which allows

signals to be sent between processes to allow them to cooperate. This is an area

which can easily lead to security breaches if it is not handled properly. The

problem is that cooperating processes have to trust each other and rely on each

other sending the right signals at the right time. If the system does not have a

mechanism for ensuring that only the right processes are allowed to communi-

cate with each other, then for example a process receiving a signal on trust, but

sent by a malicious process, might take some actions which it would not other-

wise have taken.

10 Multiple Processes

The discussion has so far assumed that within a single program the only parallel-

30

 It is possible to associate more than one process with each operating system module, but

that creates new problems which are not important for the present discussion.

Chapter 8 PROCESSES 113

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ism which can occur is when users activate different processes. However, there

are some programming activities where it makes sense for a single activation of

a process to split into multiple tasks (hereafter called threads), which can be car-

ried out in parallel. This means that an application program can be written as a

parallel program (using a parallel algorithm), which can be decomposed dy-

namically into several threads that can be multiprogrammed with each other.

The form which this sometimes takes is that a routine declared in a program can

be invoked either by using a normal routine call (as we have been discussing in

the last few pages) or as an activation of a separate thread.

Different programming languages often define different semantics for par-

allel programming. For example some programming languages (e.g. Burroughs

Extended Algol) allow an initial thread to create child threads which share the

data of their parent thread. Each new thread has a separate stack which is created

when the thread is activated. The first stack frame of this "child" stack contains

the parameters and local data of the routine which has just been invoked as a

thread. Its linkage points back to the creating ("parent") stack. As a routine can

access not only its own variables (for which space is created on the new stack in

the usual way) but also more global variables, it must be possible for the child

thread also to address variables on the parent stack. In other words, the F register

of the child thread points to locations on the new stack while its G register

points to locations on the parent stack. Both threads can proceed to execute as

normal. Both can call new routines, they can call the operating system, and they

can even create further new threads.

The threads can communicate with each other either explicitly (by sending

signals using an operating system interface) or implicitly (by changing values in

the globally shared data on the parent stack). If shared data structures are used,

access to these must be synchronised in a manner similar to the way just de-

scribed for the case where threads synchronise access to data accessed via the P

register.

A problem arises if the parent thread terminates before the child thread

completes its task, because this results in the destruction of the stack frame con-

taining the global data which should still be accessible to the child thread. In the

B6700 this problem is solved by destroying the child thread. This is not as bad

as it sounds, because the threads can cooperate with each other via signals

and/or shared data, and so they can arrange to terminate in the right order. If

necessary the creating thread can ask the thread scheduler to block it until all the

threads which it has created have terminated.

11 Synchronisation: Mutual Exclusion

The above discussion of the merits of in-process vs. out-of-process systems

Chapter 8 PROCESSES 114

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

raised the issue of process synchronisation. This is an important issue, because a

failure to understand synchronisation issues can often lead to errors in the design

of operating systems and that in turn can create security loopholes.

11.1 The Basic Problem

At the hardware level the modification of variables (e.g. additions and subtrac-

tions) normally take place in the ALU registers. Values are brought from

memory into registers (as operands) and the results of operations are written

back to registers. The results are later written back to the main memory.

Suppose that two processes (or threads) each wish to execute the same

piece of code to increment a counter by one. At the assembler/machine level this

might be achieved using three instructions:

LOAD R1, COUNTER {load the value of the memory variable

 called counter into register 1}

ADD R1, 1 {add 1 to the value in register 1}

STORE R1, COUNTER {store the value of register 1 back into counter}

where R1 is an ALU register which is available to programs and counter is a

shared operating system variable addressable via P. This may at first sight seem

quite harmless, but consider what happens when two processes execute it in par-

allel. Each has its own register set, so each process's R1 is a different version of

R1. Suppose the counter starts off with the value 3, and the actual timing of the

sequence of code for the two processes turns out as follows:
Process 1 Process 2

LOAD R1, COUNTER {R1 for process 1 now contains 3}

 LOAD R1, COUNTER {R1 for process 2 now contains 3}

 ADD R1, 1 {R1 for process 2 now contains 4}

 STORE R1, COUNTER {COUNTER now contains 4)

ADD R1, 1 {R1 for process 1 now contains 4)

STORE R1, COUNTER {COUNTER now contains 4}

The surprising result is that each of two processes intended to add one to a coun-

ter which had an initial value of 3, and the result turns out to be 4, not 5! This is

a simple form of synchronisation problem which can arise when several pro-

cesses attempt to modify the same shared variable. Such a situation can arise in

practice in a single processor system, if the first process is interrupted after exe-

cuting the LOAD instruction and the process scheduler then selects process 2 to

run before process 1. In a multiprocessor system it can happen anyway, if two

processors execute different processes using the same shared data.

There is of course a solution. Such a section of code is called a critical sec-

tion. Critical sections where processes write to the same variables (whether us-

ing the same or different code sections) can only sensibly be executed in se-

quence; the first must finish before the second starts.

Chapter 8 PROCESSES 115

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

11.2 Mutual Exclusion

The synchronisation problem just described requires mutually exclusive access

to the variables in question (here COUNTER), i.e. when one process is access-

ing the critical section, all other processes must be excluded from that section.

To achieve this, a process, when it attempts to enter a critical section, must

execute an entry protocol indicating that it wishes to enter the section. If the in-

structions executed in the entry protocol allow this, then the process enters the

section, changes the variable(s) and then uses an exit protocol to say that it is no

longer in the critical section, thus allowing some other process to enter the sec-

tion, i.e. it executes the following sequence:

entry protocol

critical section

exit protocol

In order to implement the entry/exit protocols some hardware support must be

provided.

11.3 Dekker's Algorithm

The absolute minimal hardware support necessary is that when a word of

memory is modified by a CPU instruction this must be achieved indivisibly, i.e.

nothing must be allowed to interrupt the hardware writing process. The Dutch

mathematician Th. J. Dekker is accredited (by Edsgar W. Dijkstra [49]) with the

first correct solution for this problem, using only the indivisibility of write oper-

ations to a single word. However, his solution is only of academic interest, be-

cause

– it only works for two processes,

– the entry and exit protocols are different for the two processes, and

– it involves busy waiting.

Busy waiting describes an entry protocol where a process must continuously

loop, consuming CPU time and making continuous memory accesses, until the

other process exits from the critical section. It is also not a fair scheduling tech-

nique, since an unlucky process may be starved of useful use of the CPU over a

long period. Furthermore a risk of deadlock
31

 arises when a priority scheduling

algorithm is used, if a low priority process successfully enters a critical section,

but loses the CPU to a process of higher priority which is executing a busy wait

loop. Hence more support is needed from the hardware in real systems.

31

 A deadlock arises when two or more processes are waiting for each other to release

some resource, with the result that they will wait forever.

Chapter 8 PROCESSES 116

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

11.4 Turning Off Interrupts

In the past some systems solved the problem by turning off interrupts. This

means that in a single CPU system a process can proceed without interruption to

its completion on the CPU. Other processes cannot be scheduled on the CPU

because the scheduler cannot be activated. But this simple technique has several

problems, e.g.

– Turning off interrupts affects a particular active CPU, but does not have a

global effect on other CPUs. Thus in a genuine multiprocessing (i.e. multi-

CPU) system this solution is ineffective.

– If interrupts are turned off for too long, information can be lost (for exam-

ple – but not only – in real time systems).

– In almost all systems the "turn off/on interrupts" instruction is a privileged

instruction (because it can lead to loss of data, etc.). Consequently this

method is not available for use by non-privileged processes, i.e. user level

cooperating processes.

11.5 Busy Wait Instructions

Some CPUs provide a test-and-set instruction, which is easier to understand and

use than Dekker's algorithm, but this also results in processes having to busy

wait until the critical section is free. In more modern systems this instruction has

generally been replaced (e.g. in IBM mainframe systems) with a compare-and-

swap instruction
32

, which also relies on busy waiting.

11.6 Semaphores

In 1965 Dijkstra developed a new idea for solving synchronisation problems,

called a semaphore. It is based on the idea that counting variables should be im-

plemented indivisibly.

A semaphore sem is a structured abstract variable on which two special op-

erations can be indivisibly carried out. It consists of an integer (sem.counter) and

an associated queue of waiting processes (sem.queue).

The first operation is a P operation (the entry protocol). (P is the initial let-

ter of the Dutch word "passerem" (to pass); the P operation determines whether

a process may pass a point in the code or should wait.) The second is a V opera-

tion, the exit protocol. (V is the initial letter of the Dutch word "vrygeven" (to

release); the V operation releases the critical section when completed.)

For practical purposes the operations (on a semaphore sem) are defined as

follows:

32

 see for example http://en.wikipedia.org/wiki/Compare-and-swap

Chapter 8 PROCESSES 117

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

P (sem) =>

 [[sem.counter = sem.counter – 1;

 if sem.counter < 0 then suspend (sem.queue)]]

V (sem) =>

 [[sem.counter = sem.counter + 1;

 if sem.counter ≤ 0 then activate (sem.queue)]]

The bracket pair [[...]] is used to indicate that the bracketed instructions are car-

ried out indivisibly

Put simply, the P operation decrements the counter and if the result is nega-

tive the process is placed into the related queue of waiting processes. The V op-

eration increments the counter and if the result is not positive a waiting process

is activated (made ready).

Using these operations the solution to the mutual exclusion problem is triv-

ial:

Semaphore sem = 1 {a semaphore variable sem initialised to the value 1}

P(sem)

critical section

V(sem)

This solution avoids the problems of the other attempts to solve the mutual ex-

clusion problem: there is (apparently) no busy waiting, it can be used for any

number of processes, and the solution is the same for all processes.

11.7 Implementing Semaphores

An important issue is how semaphores can be implemented indivisibly. We con-

sider two possibilities.

a) The Process Scheduler implements semaphores using techniques described

earlier, or

b) Special instructions are provided to implement semaphores.

Process Scheduler Implementation of Semaphores. In this case application

and/or operating system processes invoke operations of the process scheduler to

carry out P and V operations. The process scheduler uses one of the techniques

described above (e.g. compare-and-swap operations or turning off interrupts) to

ensure that indivisibility is guaranteed. This represents an improvement because

– the time required in the mutual exclusion state (e.g. busy waiting, interrupts

off) is only for the duration of the P and V operations, not for the entire pe-

riod of the application's critical section, and

– the process scheduler retains control over the turning on and off of inter-

rupts (if that is how the process scheduler achieves mutual exclusion).

But the disadvantage is that each time a process enters and exits a critical section

the process scheduler must be called. This is quite costly, since on many occa-

sions there may be no clash between processes wishing to use the same critical

section (i.e. no queuing operation may be necessary).

Chapter 8 PROCESSES 118

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Semaphore Instructions. It is not normally feasible to implement the entire code

of a semaphore operation (especially the queuing part) as an ALU instruction,

but it is feasible to implement the counter manipulation part. In the ICL2900

Series [46], for example, two indivisible ALU instructions were provided, along

the following lines
33

.

a) Decrement & Test (counter, local) is equivalent to the first part of the P op-

eration, and is defined as follows:

DECT (counter, local) =>

 [[counter := counter - 1; local := counter]]

This instruction indivisibly decrements a shared counter variable and copies the

result to a process-local variable.

b) Test & Increment (counter, local) is equivalent to the first part of the V op-

eration, and is defined as follows:

TINC (counter, local) =>

 [[local := counter; counter := counter + 1]]

This instruction indivisibly copies the value of counter to local then increments

the shared counter variable.

The user code can then combine these machine instructions with normal

process scheduler operations (here suspend and activate) as follows to imple-

ment P and V operations:

P (sem) =>

 DECT (sem.counter, local);

 if local < 0 then suspend (sem.queue);

V (sem) =>

 TINC (sem.counter, local);

 if local < 0 then activate (sem.queue);

Suspend and activate must be indivisible operations (as is usual in the process

scheduler).

Although both the instructions and the scheduling operations are indivisi-

ble, an interrupt can occur between these two parts of a P or V operation. This is

not a problem provided that the process scheduler's suspend and activate opera-

tions are commutative, i.e. the order in which suspend and activate operations

occurs has no effect on the final result, e.g. if the following scheduler calls are

made in sequence and the process involved is already active
activate – process continues

activate – process continues

suspend – process continues

suspend – process continues

33

 The actual ICL2900 implementation reverses the counter values, i.e. a mutual exclusion

semaphore is initialised to -1 and is incremented by the equivalent of the P operation,

while the V equivalent operation decrements the counter. This is logically equivalent to

Dijkstra's approach, but we follow Dijkstra's suspend and activate instructions conven-

tion to avoid confusion. For a more general description see [131].

Chapter 8 PROCESSES 119

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

suspend – process is suspended

The advantages of this implementation are as follows:

– DECT and TINC are not privileged instructions. They can be used in user

programs.

– If the appropriate condition is satisfied, then there is no call to the operation

system (suspend/activate); this is very efficient.

– The process scheduler routines are short and simple: no extensions are

needed for the basic process scheduler model discussed earlier.

Nevertheless the fact remains that the actual scheduler operations must be syn-

chronised using one of the more primitive methods discussed earlier, i.e. turning

off interrupts or busy waiting, assuming that the hardware does not have a spe-

cial instruction for this (which may be necessary in a multi-CPU system).

12 Further Synchronisation Problems

One aspect of semaphores was not considered in the last section, where it was

assumed that the semaphore's value is initialised to 1. Such a semaphore is

called a binary semaphore. But it is possible, and often sensible, to initialise

semaphores to other values. In general the current value of a semaphore can be

understood as follows:
> 0: the number of resources currently free

= 0: no resources free and no waiting processes

< 0: the number of processes waiting for a resource.

The mutual exclusion problem is a particular example, where the semaphore is

set to 1 because processes are competing for a single resource, the critical sec-

tion. We now consider briefly some important problems which can be solved by

semaphores.

12.1 Bounded Buffers

When parallel processes cooperate with each other they must communicate ei-

ther by sharing variables in memory (e.g. in an in-process system), or by sending

messages to each other (e.g. in an out-of-process system).

If the operating system provides processes with a message passing facility

(such as that illustrated in Figure 8.6) this must be implemented using shared

memory. We now consider how such a message passing facility can be imple-

mented (from the viewpoint of synchronisation).

The problem to be solved is in fact a more general problem, which can ap-

pear in many aspects of operating systems, database systems, etc. It is caller the

producer/consumer problem and the shared memory is called a bounded buffer.

We begin with the simple case of one producer process (which adds new entries

to the buffer) and one consumer process (which removes entries from the buff-

Chapter 8 PROCESSES 120

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

er). Since the buffer cannot be infinitely long, it is called a bounded buffer. Sup-

pose such a buffer has space for eight entries (see Figure 8.8). The first is entry

0, the second entry 1, etc.

The producer process can fill all these entries in turn, starting at entry 0, but

when he attempts to add an entry after entry 7, he must wait until the consumer

has removed entry 0, freeing it up to be used as entry 8, etc. The two processes

work at their own speeds and so it is possible that a producer attempts to add a

new entry to a full buffer, or a consumer attempts to remove an entry from an

empty buffer. The synchronisation problem is to ensure that the producer must

wait to add an entry to a full buffer and that a consumer process must wait if it

attempts to remove an entry from an empty buffer.

The solution is quite straightforward if general semaphores, i.e. sema-

phores which can be initialised to any value, are used. It requires two sema-

phores. We call the first empty, and the second full. Assuming that the buffer is

empty when the processes start, the semaphore empty is initialised to 8 (despite

the numbering of the buffers!), because there are 8 empty buffer slots (i.e. 8

empty resources); the second semaphore (full) is initialised to 0, because there

are no full slots at the start.

Apart from the buffer itself and the two semaphores, 2 further shared varia-

bles are needed. We call the first of these integers nextfree, because it holds the

index value (i.e. the entry number as it appears in Figure 8.8) of the next free

buffer (so that the producer knows which entry to use). The second is called

nextfull, as this tells the consumer where to find the next full slot.

The solution of the problem for a bounded buffer with eight entries is as

follows. Initially both nextfree and nextfull are set to 0.

The producer code, which is designed as a loop to be executed as many

times as there is something to produce, is as follows:

Figure 8.8: A Bounded Buffer with Eight Entries

Entry 0

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

Entry 6

Entry 7

Chapter 8 PROCESSES 121

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Producer algorithm:
produce an entry

use the semaphore operation P(empty) to claim an empty slot

insert the new entry into the slot indicated by nextfree

add one to nextfree modulo 8, i.e. if the result of adding 1 causes

 nextfree to exceed the value 7, divide the result by 8 and

 store the remainder in nextfree

use the semaphore operation V(full) to release a full slot

Repeat these steps as often as necessary, each time filling a slot.

Consumer algorithm:
use the semaphore operation P(full) to claim a full slot

remove the entry from the slot indicated by nextfull

add one to nextfull modulo 8, storing the remainder in nextfull

use the semaphore operation V(empty) to release an empty slot

consume the entry

Repeat these steps as often as necessary, each time emptying a slot.

Notice that whenever the buffer is full (i.e. the semaphore empty reaches

the value 0) the producer process will wait. It will be activated as a result of the

consumer executing the V(empty) instruction, i.e. releasing a full slot.

Similarly whenever the buffer is empty (i.e. the semaphore full reaches the

value 0) the consumer process will wait. It will be activated as a result of the

producer executing the V(empty) instruction, i.e. releasing an empty slot.

While the buffer is neither full nor empty both process can work in parallel

on different slots, without having to wait. Figure 8.9 shows the state of the buff-

er after 3 entries have been produced and one of these has been consumed.

The reason why this solution is only guaranteed to work with a single pro-

ducer and a single consumer is that if for example there are two or more produc-

ers they must share the use of the variable nextfree. To guarantee that they do

not try to fill the same slot (which is determined by the value of nextfree) they

must have mutually exclusive access to this variable. To achieve this, a binary

semaphore (initial value 1) can be shared by the producers. We call this pmutex

Entry 0

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

Entry 6

Entry 7

nextfree = 3

nextfull = 1

semaphore empty = 6

semaphore full = 2

Figure 8.9: A Bounded Buffer with Two Full Entries

Chapter 8 PROCESSES 122

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(indicating producer mutual exclusion). In this case a P(pmutex) instruction

must be inserted between steps b) and c) of the producer algorithm and a

V(pmutex) after step d), thus causing the steps c) and d), which use the nextfree

variable, to be treated as a critical section for the producer processes. (Notice

that step b) must be outside the critical section, otherwise a deadlock situation

could arise, in which the producers wait for each other forever. In contrast the

order of the V operations is not so important, because a V operation does not

cause processes to wait.)

A similar situation arises for multiple consumers, this time with the varia-

ble nextfull, This can be solved in the same way, this time by introducing a sem-

aphore cmutex (for consumer mutual exclusion), with a P(cmutex) instruction

after step a) and a V(cmutex) after step c). A similar deadlock situation would be

possible if the P(cmutex) instruction is placed before step a).

Notice that pmutex is not required if there is a single producer and multiple

consumers, nor is cmutex required if there is a single consumer but multiple pro-

ducers.

Finally it is worth pointing out that the bounded buffer problem arises in

many situations in the design of operating systems where processes cooperate

with each other by passing messages.

12.2 Readers and Writers

A common problem occurs when some processes wish to read from a database

(i.e. group of variables) while others wish to modify it. Processes in the first

group are called "readers" and in the second group "writers".

If only readers are present there is no consistency problem (and therefore

no exclusion problem). Readers can share access to the database without creat-

ing problems. However, writers must exclude not only other writers, but also

readers.

The first and simplest solution to this problem was published by Courtois et

al. [50]; it gives readers priority over writers, i.e. readers must only wait when a

writer is writing, but writers must wait until no reader is reading. The solution

requires a variable shared by readers, readcount. This holds a count of the num-

ber of readers which are reading in parallel, and is initialised to 0. Two binary

semaphores are also required. The first, wmutex (writer mutual exclusion), pre-

vents readers and other writers from accessing the database while a writer is ac-

tive. The second, rmutex (reader mutual exclusion) is claimed by the first reader

and released by the last reader and allows shared reading to be coordinated.

Writer algorithm:

Chapter 8 PROCESSES 123

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

use the semaphore operation P(wmutex) to claim access to the database

use the database in writer mode

use the semaphore operation V(wmutex) to release the database

This is of course the simple mutual exclusion algorithm.

Reader algorithm:
use the semaphore operation P(rmutex) to gain exclusive access

 to the variable readcount.

add 1 to readcount.

if the current value of readcount = 1 (i.e. if this process

 is the first reader)

then use the semaphore operation P(wmutex) to see if a writer is active.

 (If so the reader waits, otherwise it continues.)

Each further reader also adds 1 to readcount and then continues

 without the P(wmutex) operation.

use the semaphore operation V(rmutex) to release access to readcount.

use the database in reader mode.

use the semaphore operation P(rmutex) to regain exclusive access

 to the variable readcount.

reduce the count of readers by 1.

if the result is 0 (i.e. this process was the last reader)

 use the semaphore operation V(wmutex) to release the database

 for readers or a writer

use the semaphore operation V(rmutex) to release access to readcount.

If the aim of this algorithm is always to guarantee that readers are given

priority over writers and if (as is normally the case) no priority mechanism is

built into the semaphore queues, then a small modification of the algorithm is

necessary (as my former students and I have noted [51]).

The problem arises because when a writer issues a V(wmutex) operation,

the queue of processes which are waiting to access the database can contain both

a reader and multiple writers. Since there is no guarantee that a reader process

will be selected, reader priority is not guaranteed.

To avoid this problem we proposed that an extra binary semaphore should

be introduced (which we call extra). This is used only by writers and nests the

writer algorithm described above within a P(extra)-V(extra) pair, i.e. the P oper-

ation precedes the first step and the V operation follows the last step. This en-

sures that when a writer is writing, other writers are queued not on wmutex but

on extra. Hence the next writer can only be scheduled after the writer has not

only released wmutex but also extra.

This illustrates how difficult it can be to use semaphores to solve apparent-

ly simple problems. Curtois et al. also presented a writer priority solution in the

same paper. This is somewhat more complex and need not be presented here.

12.3 Private Semaphores

A semaphore has a related queue. For many problems it is not important in what

sequence the waiting processes are reactivated. Mostly a FIFO (first-in first-out)

queue is used in practice. But Dijkstra's definition of semaphores does not define

a specific ordering, so that an arbitrary order of waiting processes must be as-

Chapter 8 PROCESSES 124

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

sumed.

However, in some cases the order in which processes are reactivated is im-

portant, as we already saw for the reader-writer problem. This problem can be

solved in a general way using Dijkstra's semaphores.

To achieve this each process has a private semaphore. A private semaphore

is a normal semaphore, which is typically initialised to 0. Thus if a process is-

sues a P operation on its own private semaphore, this gets the value -1 and the

process waits. The process is activated when another process issues a V opera-

tion on its private semaphore.

Suppose for example that a computer program, written as a parallel pro-

gram, is designed to simulate a simple board game such as ludo, a game with its

own board and special rules (which need not concern us here – the result of a

dice throw distinguishes the individual turns). The important point is that each

of four players (or two players each playing two opposite colours, which we ig-

nore for the sake of simplicity), has four coloured tokens of the same colour

(blue, red, green or yellow), and each plays in turn.

In the program there would be a representation of the board, with the cur-

rent positions of the four tokens of each player on the board, together with the

following semaphores:

– a mutual exclusion semaphore, which we call mutex, initialised to 1

– an array of four private semaphores, each initialised to 0

After the initialisation each player would have a separate process which contin-

uously executes the following instructions (until the game is won):

throw dice

select and move counter on board according to rules

change board display accordingly

if game won, finish;

 otherwise issue V operation on next player's semaphore

issue P operation on own private semaphore

This is just one of many examples of the use of private semaphores.

Finally, semaphores and their implementation are further discussed in chap-

ter 21, where further research results are described in the context of the

SPEEDOS system.

13 Scheduling Resources

Finally, we consider how the scheduling of resources (e.g. determining which

process can next use a printer) can be organised, since many readers who are

only familiar with out-of-process systems may at first find this puzzling. For

such readers it seems natural to have a separate process which decides when an-

other process is given the go-ahead to use the resource.

Chapter 8 PROCESSES 125

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The solution is actually straightforward and is based on the use of private

semaphores. Each process that wishes to claim the resource in question invokes

a scheduling module (in his own process) which has the task of determining the

order in which each process can use the resource. If the resource is free, then a

requesting process can proceed immediately. Otherwise the process must wait

(on its own private semaphore) in a pool of waiting processes until the schedul-

ing module determines that it can use the resource. When the process using the

resource returns to the scheduling module (in its own process) this indicates that

it has finished using the resource. The scheduling module (still executing in the

process of the resource which has just freed the resource) then determines ac-

cording to its algorithm
34

 which process waiting in the pool can proceed next. It

then releases the private semaphore of the chosen process, removes its entry

from the pool of waiting processes and exits from the scheduling module. The

chosen process, now activated, can now use the resource. When it has finished

using the resource it returns to the scheduler module and releases the resource as

described above.
35

14 Conclusion

This chapter has not directly discussed security issues, but it has laid down an

important foundation for understanding SPEEDOS and for solving some very

significant security issues which will be discussed in later chapters.

34

 In the case of a printer scheduler, for example, the algorithm might adopt a policy of

giving priority to short print jobs, or it might select print jobs based on the seniority of

the requester or simply on a first in first out basis, etc.
35

 For an example from SPEEDOS see chapter 33.

Chapter 9

Protection and Sharing

in Conventional Systems

Having considered how virtual memory can be organised and also how ex-

ecuting processes can be implemented, we are now in a position to discuss the

important issues of protection and sharing. In this chapter we review attempts to

achieve these aims in the context of the various memory management models

previously presented.

1 Protecting Processes from Each Other

In a multiprogramming system which uses conventional page tables or segment

tables each process has its own range of virtual addresses, always beginning at

0. Thus virtual addresses in such systems are not unique. However, each process

has its own page or segment table. Since different page tables are held in differ-

ent parts of the main (or virtual) memory a mechanism is needed which enables

the appropriate table for the currently active process to be located. This is usual-

ly held in a CPU register, which, in the case of paging, we call the Page Table

Base Register (PTBR) or in the case of segment tables the Segment Table Base

Register (STBR).

The PTBR/STBR contains not only the address of the beginning of the ta-

ble for the currently active process, but also its length. When translating a virtual

page/segment number the ATU uses this length field to check that the selected

unit is within the bounds of the table. If not, this means that the process is trying

to address a (non-existent) memory unit (page or segment) which is beyond the

program's last real page or segment. Such an error results in a memory violation

interrupt.

Like other CPU registers, the PTBR/STBR is part of the state of a process,

but this is nevertheless a system register which cannot be accessed by the appli-

cation program. Whenever a process switch is made by the process scheduler,

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 127

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the corresponding values for the old process are saved and the register is loaded

with the appropriate values for the new process. This is illustrated in Figure 9.1

for page tables, on the assumption that Program B is currently active. A corre-

sponding illustration for segment tables would show that the table entries would

point to variable length units in the main memory, and in the case of paged seg-

ments the segment tables point to page tables which in turn point to different

pages in the main memory.

An advantage of this scheme is that the pages of different processes are au-

tomatically protected from each other without needing a further protection

mechanism, such as existed for example in the IBM S/360 storage key/

protection key scheme [52, 53]
36

. This is because any virtual address which a

process tries to access is interpreted as being one of its own addresses (using its

own table). It cannot address beyond its own range of addresses, because of the

length field in the PTBR/STBR. So there is no way it can formulate addresses

associated with other processes.

2 Protecting the Operating System

If the operating system were to have its own page or segment table then it too

would be protected from user processes. Unfortunately this simple solution has

some practical disadvantages. The most important of these is that operating sys-

36

 The second citation is a reprint of the first.

1

1

0

0

Page Table for

Program A

Page Table for

Program B
0

1

0

1

Page Table

Base Register

Main Memory

Figure 9.1: Page Tables in a Multiprogramming System

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 128

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tem designers like to be able to address not only their own pages, but also those

of user processes – at the same time as they can also address their own pages!

This is necessary for example when the operating system wishes to access the

parameters supplied by an application process in a request for an operating sys-

tem service, since the application can store these only in its own memory space.

Consequently another scheme was sometimes adopted for protecting the operat-

ing system.

First we have to look at how the addressing works. Since the aim is to al-

low the operating system to address information stored in a user process, it is

clear that the applications process's page or segment table must be active. To

address the operating system means that a page table for this must also exist and

be addressable at the same time. The first step towards achieving this is to have

two PTBRs or STBRs, one each for the operating system and the application.

There now remains only one problem: how do we choose between them? A so-

lution which is sometimes adopted is to "steal" the most significant bit of all vir-

tual addresses for the purpose. If the top bit of the virtual address is set to 0 then

it is a virtual address of the application process, so the application's register is

used to translate such an address. But if it is set to 1, then the address is regarded

as an operating system address and the operating system's PTBR/STBR is used

to find the page table. This effectively means that the maximum size of pro-

grams has been halved. Figures 9.2 and 9.3 illustrate how this works for a paged

system. For segmentation and paged segmentation the same principle applies.

However, an application should not be permitted arbitrarily to address op-

erating system pages or segments. This can be prevented, for example, if ad-

dresses beginning with a 1-bit can only be used only in privileged mode. Anoth-

er possibility is to invalidate the system's PTBR/STBR when an application pro-

cess is active. However, a different kind of solution is sometimes used in prac-

tice, involving a hierarchical protection scheme.

3 Protection Rings

This idea was first implemented in the Multics system, and has since been im-

plemented in other systems (e.g. the ICL2900 Series). Basic protection between

separate processes is achieved, as in the conventional paging model and in the

simpler segmentation model, by each process having a separate address space

Figure 9.2: A Paged Virtual Address with Operating System Addressing

32 bits

19 bits 12 bits 1 bit

Virtual Page Number Offset in page
System

Bit

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 129

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

which is controlled by the operating system switching the value in a segment

table base register whenever a process switch occurs. Also as in the simpler

models the operating system shares the address space of each process by using

addresses with the top bit set.

What makes protection interesting in systems which have been influenced

by Multics is the way the operating system is protected. It is based on the idea of

hierarchical privilege, which can be seen as a reflection of a software system

design philosophy that came into fashion in the late 1960s as a result of a paper

by E. W. Dijkstra [54], sometimes known as layered design.

The ring protection mechanism assumes that an operating system is struc-

tured as a series of layers, and that a lower numbered layer is more privileged

than a higher numbered layer. If we consider the hardware as layer 0 (which will

shortly turn out to be advantageous in practice) the first software layer, often

called the kernel, is layer 1. The number of layers varies in different systems. In

the ICL2900 Series, for example, four bits are set aside for this purpose, so there

may be up to 15 software layers (plus the hardware). The higher numbered lay-

ers (from 8 to 15) are not needed for the operating system and can be used to

structure an application program into several layers.

The basic hierarchical protection rule is that a process executing software at

layer n may access segments defined to belong to layer n and to all outer layers

(i.e. those with higher numbers), but not those belonging to layer n-1 or less.

This means that the operating system need no longer be privileged as a mono-

lithic entity. The inner level modules (i.e. those with the lower numbers) are the

most crucial modules, controlling the hardware resources and managing the vir-

1

1

0

0

Page Table for an

Application Program

Page Table for the

Operating System

0

1

0

1

System Page Table

Base Register

Application Page

Table Base Register

Figure 9.3: Addressing the Operating System

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 130

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tual memory tables. These are protected from accesses by the outer layers of the

software. However, the outer layers are not similarly protected from the inner

layers. The rationale for this lies with the rule for invoking software at different

layers.

In keeping with the idea of layers as abstract machines, an outer layer may

invoke the interface of inner layers, i.e. a layer may make routine calls to soft-

ware at layers with lower numbers. These are sometimes called "inward calls".

They must be accompanied by a change of privilege to reflect that a lower layer

has been entered. The later return from the procedure back to its caller in a high-

er layer (an "outward return") must restore the old situation, i.e. reduce privileg-

es.

The implementation of this ring protection scheme in the ICL2900 Series

involves having a field called the access control register (ACR) in a protected

system register. This indicates the layer at which the current process is currently

executing, and information in each segment table entry shows the layer to which

the segment belongs.

Entries in the segment tables in fact contain two such fields (see Figure

9.4), which replace the read permission and write permission bits found in the

simpler models. The read access key (RAK) holds the layer number valid for

read accesses to the segment. When a read operation on a word in this segment

occurs, the hardware compares RAK with ACR. If RAK is greater than or equal

to ACR the read access is permitted, otherwise a protection violation interrupt is

caused. Similarly there is a write access key (WAK) which determines by a

similar test whether a write access is permitted. Usually RAK and WAK have

the same value for data segments which are writable, or RAK contains a layer

number and WAK is set to zero (remember that the first software layer is 1), if

the segment contains constants. However, other values are possible.

There is also an execute permission bit in a segment table entry which indi-

cates, as in simpler models, whether a segment may be executed as code. The

value in ACR, which determines the current level of a process, is set by the op-

erating system by reference to its internal tables when a system call is made.

The main software advantage of hierarchical ring protection is that it allows

the operating system (and application programs) to be structured using the layer-

Figure 9.4: A Segment Table Entry with Ring Protection

Present

Bit RAK WAK
Execute

Bit

Segment Length

Start Address

of Page Table

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 131

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ing technique. However, this design methodology, like many other software de-

signs which are based on a hierarchical concept, has some problems (see e.g.

[55]) and is largely being replaced by object-oriented design techniques, which

we shall discuss later. These do not map onto ring protection particularly well.

The main hardware advantage is that it allows a measure of protection for

the operating system against itself, in that less privileged parts of the operating

system cannot accidentally or deliberately corrupt data belonging to more privi-

leged parts, and the application process cannot corrupt operating system seg-

ments at all. Similarly the application program can be decomposed into parts

which are hierarchically protected.

But why should protection be hierarchically organised? In principle it

would appear at least as sensible to organise protection so that each layer is pro-

tected fully from each other layer. One answer can be found once again in the

issue of how parameters can be passed. The inward system calls, from the appli-

cation to operating system routines (or from outer layers of the operating system

to inner layers), are only useful if parameters can be passed, often by reference,

i.e. by passing addresses of information to be accessed by the inner layer. This

would not work if the layers were regarded as absolutely self-contained. In other

words an operating system service routine executing with an ACR value of say 3

has to be able to access parameters in segments at levels 4 and above. We see

once again that parameter passing strongly influences the protection mechanism.

You will recall that this was exactly the same reason why the operating system

shares the same virtual address space as user processes (using the top bit of the

address to distinguish its segment table). The effect of this is that in fact an inner

layer has access not only to its parameters, but to all the information held in

segments of outer layers!

Apart from this logical weakness in the mechanism there are further practi-

cal problems
37

 which we do not discuss in detail here.

4 Sharing

So far we have looked at memory management models which by and large as-

sume that information in the computational memory is not shared between pro-

cesses, except at the operating system level. The advantage of this is that protec-

tion between concurrently active processes in the virtual memory can in practice

be achieved by placing firewalls between the processes which are extremely dif-

ficult to cross. The usual way of implementing such firewalls, as we have seen,

37

 For example, to which layer does a stack frame belong? The mechanism also opens up

some problems which hackers can exploit. And it is difficult to assign an ACL level to

library routines needed at several levels.

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 132

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

is to use context dependent virtual addresses, which are meaningful only while

the corresponding process is active. With this kind of scheme it is impossible to

address the virtual memory of some other process.

However, in reality such firewalls are far too restrictive, because in practice

sharing in the computational memory is necessary. Consequently practical

schemes usually include some tricks to allow a limited form of sharing. The

most obvious example, as we have seen above, is the need for the operating sys-

tem to be able to address parameters passed to it by application processes. The

trick which we saw used in this case is to have two page or segment table base

registers, one for the application process and one for the operating system, and

using a bit in the virtual address to determine which is used. The practical effect

is that the operating system and the application share the same virtual address

space, thus allowing parameters to be passed without difficulty.

This trick works for the purpose intended, but it brings with it two new

problems:

 — How can the application process be prevented from addressing and chang-

ing operating system segments, since these are now within its range of

manufacturable virtual addresses? The usual solution is the hierarchical ring

protection model.

 — How can the operating system be prevented from accessing sensitive in-

formation of the application process? This problem is left unsolved by the

ring mechanism.

But the approach has a further disadvantage. It is a trick used only to solve a

special problem. It does not solve the general problem – how software entities

can be shared in a general way in the computational memory.

We now establish a need for a general model which allows software entities

to cooperate by sharing segments, and we shall then see to what extent this need

has been met in both conventional systems and in systems designed especially to

allow controlled sharing of information.

5 Shareable Segments

The appropriate units for sharing memory are segments. If we reject the special

solution which places the operating system in the virtual address space of each

process, then the problem which it was designed to solve still remains. Segments

containing parameters to be passed from an application process to the operating

system must in the general case be possible. These are segments which are typi-

cally created by the application but must be addressable from within the operat-

ing system. Such segments, or at least references to them, should be on the ap-

plication's thread stack if the in-process model is used.

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 133

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

A different form of shared data which we encountered in connection with

thread stacks is that declared by a program in more global stack frames, which –

depending on programming language scope rules – is often accessible to a pro-

cedure executing with a higher stack frame. In the more general model we sup-

ported this by means of a register which we called the G register.

On the other hand, not all information on a thread stack should be address-

able to the currently active routine. For example, if an operating system's com-

mand language interpreter (CLI), or a graphical equivalent to this, invokes an

application program on the same thread stack on which its own stack frames are

held, these are exposed to danger in systems which give the currently active rou-

tine free access to stack frames lower down the stack.

These three issues (passing parameters to the operating system, access to

more global stack frames of the current program and protection of stack frames

such as those of the CLI), taken together, suggest that the decision to regard a

process stack as a single segment – a decision which is found in several in-

process systems – is unsatisfactory. This suggests rather that a stack should be

viewed as a physical entity which contains a number of logical segments that

need separate protection (the CLI problem) but which also possibly have to be

shared in special ways (the parameter problem and the global frame problem).

The process stack is not the only example of a need for sharing segments in

the computational memory. We have already seen that the code segments mak-

ing up a program or algorithm, provided they have been compiled as re-entrant

code, can be used concurrently – and therefore need to be shared concurrently –

by different threads in different processes. In this case the issue even involves

threads which are not explicitly cooperating or need even be aware of each oth-

er's existence!

We have also encountered a further need for sharing access to segments.

The operating system, executing concurrently on different stacks, needs access

to its own persistent data structures (e.g. process tables and queues, directories

of files). To handle this in our general model we introduced the P register. This

is another example of segments which should be shared concurrently by differ-

ent processes.

It appears then that there is a general need for sharing segments (a) on the

stack, (b) as off-stack code segments and (c) as off-stack data segments. The aim

of this chapter is to look for a general model which flexibly allows segments to

be shared where this is appropriate but which at the same time provides ade-

quate protection where sharing is not necessary. As a starting point for this it is

instructive to consider the consequences of trying to use the conventional seg-

mentation models in a more general way to achieve sharing. We begin with the

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 134

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

simple segmentation model.

6 Addressing Shared Segments

Figure 9.5 illustrates a possibility for sharing segments in the simple segmented

virtual memory model. With this approach the operating system organizes the

segment tables in such a way that segment table entries for different processes

can refer to the same real segment in the main memory.

This approach works in simple cases, and it has one advantage. It allows

different processes to have different views of a segment, for example in the form

of different access rights for the shared segment. But its severe organisational

disadvantages more than outweigh this advantage.

The first problem is that details of the current memory management status

of a shared segment (its present bit, its address in main memory, its length) are

held at the same time in several segment table entries. These must be kept con-

sistent with each other when changes are made, which brings an undesirable or-

ganisational and run-time overhead. One possibility for reducing the consistency

problem is to introduce an indirection, so that instead of the process segment

table entries for shared segments containing pointers to the segment in main

memory they point to a master segment table entry, perhaps held in a special

shared segment table (see Figure 9.6). However this obviously creates other or-

ganisational problems, for example by making it necessary to manage the shared

Segment Table for Process A

Process A Segment n-1

 (length 2764)

Process A Segment 0

(length 4867)

Figure 9.5: Sharing in a Segmented Virtual Memory

Segment Table for Process B

Segment 0

Segment 1

P AR Length Start
Main Memory

Process A Segment 2

Process B Segment 1

(length 5070)

 Segment 2

Segment n-1

1

1

0

0

Ex

RW

Ex

RW

4867

5070

Segment 0

Segment 1

Segment 2

Segment n-1

0

0

1

1

Ex

RO

Ex

RW

5070

2764

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 135

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

segment table, including allocating entries. Furthermore it involves an additional

main memory access to bring an entry into the TLB.

But there is a more serious problem than these. The difficulty arises when a

shared segment itself contains a reference to another shared segment, e.g. in the

implementation of a linked list. An address in one logical segment which refers

to another logical segment has the usual form of a virtual address, i.e. a segment

number and offset (with the offset possibly zero). What segment number do we

use in such a case? Remember that each virtual address is translated in the con-

text of the segment table of the currently active process. The problem is that the

entry for a shared segment can appear at a different position in each segment

table. For examples of this kind of problem, see Fabry's discussion of capability

based addressing [56].

It is tempting to suggest that the problem can be avoided by organizing the

segment tables for those processes which are sharing segments in such a way

that they always use the same segment numbers. This would be a difficult under-

taking if several independent processes are involved, but it is especially difficult

if logical segments can be created and deleted dynamically by different process-

es. This means that they would not only have to synchronize with each other but

that they also have to arrange to use the same segment table entries dynamically

Segment Table for Process A

Figure 9.6: Indirection via a Shared Segment Table Entry

Main Memory

Shared Segment

Table

Segment Table for Process B

"Share" shows which segments are shared

Share P AR Length Start

1

 5070

P Length Start

0

1

2

n-1

0

1

2

n-1

0

0

–

1

Ex

RO

Ex

RW

2764

0

0

1

0

1

–

0

0

Ex

RW

Ex

RW

4867

–––

0

1

0

0

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 136

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

in each process. What happens if a segment table entry is already in use?

And there is another problem, this time involving the copying of segments,

even in a single process. Suppose that an application wishes to make a copy of a

complex data structure, say a linked list (consisting of two or more logical seg-

ments that are linked to each other) with the intention of producing a similar list.

The linking addresses will consist of virtual addresses of the form «segment

number, offset in segment». Although all the segments in the list may be copied,

they must be allocated new segment numbers. But a general copy operation can-

not know which parts of the segments contain references to other segments, so

the result is that the old linking addresses get copied. Now the first copied seg-

ment is linked to the second old segment, and so on!

We have seen enough of this approach to the issue of sharing in segmenta-

tion schemes to recognise that it is neither efficient nor organisationally easy.

This is probably one of the reasons why conventional computer architectures no

longer attempt to support (and therefore protect) small segments. In the hope of

finding a better general solution, we now consider how things look in systems

which combine segmentation and paging in the conventional way.

7 Sharing Paged Segments

Intuitively one might think that it makes no difference to the issue of shared

segments if the conventional segmentation and paging model is used rather than

just the simple segmentation model. But surprisingly there is a difference.

Sharing of small logical segments is not realistic in systems such as Multics

and the ICL2900 Series, because a container holding a segment at the architec-

tural level is physically one or more pages long. Consequently a segment which

is much smaller than a page (as in Burroughs systems) leaves most of the page

unused. Hence architectural segments are used as a kind of container for holding

collections of logical segments, with the consequence that the individual small

segments are not protected from each other. Nevertheless this approach opens up

the possibility of solving the last two problems which we have just been consid-

ering.

One of two situations can arise when a logical segment contains a reference

to another logical segment. The linked logical segments may either be located in

the same architectural segment, or they may appear in different architectural

segments. In the former case, which is probably the normal case, the address

linking the two logical segments need not be a full virtual address at all. It is suf-

ficient to store the offset part of the address, with an implicit agreement between

those sharing the segment that all such short addresses are interpreted as offsets

within the current segment, whatever its segment number might be for the cur-

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 137

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

rent thread.

This scheme has several advantages. First, it allows logical segments being

shared to contain references to other logical segments, provided that these are

held in the same architectural segment. This is because the different threads use

their own current segment number and an internal offset to follow the pointers.

Second, it allows an architectural segment to be copied (as an entire unit), leav-

ing it still usable, without the addresses linking its internal logical segments hav-

ing to be located and modified, provided of course that these linking addresses

are only offsets within the architectural segment. Third, it makes such addresses

shorter. (This final point is perhaps not very important in the present context, but

we shall later see that it turns out to be an important advantage later.)

These advantages arise only if offsets are used as inter-segment addresses

for linking logical segments which appear in the same architectural segment, and

only if entire architectural segments are copied. How likely is this?

First, let us consider code segments. The compiler typically produces a file

containing compiled object code. This is normally held in the file memory. It is

then loaded from there into the virtual memory when it is needed. This requires

an address space in the virtual memory into which the code segments can be

loaded, and which can be shared by all the processes wanting to execute the

same program. Usually the code of an entire program is shared, so there is no

disadvantage in the individual code segments being located together in a single

architectural segment, corresponding to the code file. With regard to copying,

this usually takes place at the file system level, e.g. for archival purposes or to

transfer the code to another computer. So the use of within-segment offsets is

also appropriate.

Although in a segmented and paging scheme it is normal to regard a pro-

cess (or thread) stack as a single segment, it contains many different logical

units (e.g. stack frames) which can be regarded as logical segments. These are of

course to a large extent interrelated.

Similarly a heap, which is an area set aside by the compiler to allocate

segments dynamically, consists of related collections of logical segments which

can take advantage of short pointers. Stacks and heaps, if they are copied at all,

will usually also be copied as an entirety, typically for check-pointing purposes.

(Check-pointing is a mechanism which involves making a copy of a process at

predetermined points, known as checkpoints, so that after an error has occurred

the computation can be resumed at a checkpoint rather than having to be repeat-

ed from the beginning.)

We shall return to these issues later. But meanwhile it is clear that it is quite

realistic to find systems placing collections of related logical segments into ar-

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 138

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

chitectural segments, linked by short pointers. However, this does not mean that

there are no sharing problems with the conventional segmentation and paging

model.

There remains a mapping problem at a higher level with respect to inter-

segment links, this time at the level of architectural segments. Suppose for ex-

ample that a program has been compiled and placed into an architectural seg-

ment of a process. While the process is executing this code, it decides to call a

separately compiled subroutine library which is sitting in a different architectur-

al segment of the same process. Ideally it should be possible to embed a static

reference in the program to the subroutine library, but this would require that the

subroutine library is loaded at the same architectural segment number in each

process. This can be very difficult to arrange in a system which, for example,

allows users to change their environment interactively. Instead a more costly

dynamic linking mechanism has to be provided by the operating system. (This

would be a much greater problem with respect to operating system segments if

the operating system were not shared in each application process's virtual ad-

dress space, using the addressing trick which we have seen.)

Another sharing issue with the conventional segmentation and paging

scheme is the management of the page tables for shared segments. Clearly there

should only be one page table for a shared segment, to avoid consistency prob-

lems. But this raises the issue how the shared page table is addressed. Should the

segment table entries of the separate processes sharing an architectural segment

each hold a pointer to this page table, or to a shared segment table which further

points to the page table? If each process segment table entry refers directly to the

page table, each has its own length field, which becomes a problem when one of

the processes wishes to change the length of the segment. On the other hand if

there is a shared segment table this itself becomes a management problem (e.g.

with respect to the allocation of entries) and a run-time overhead (complicating

the address translation logic needed for resolving TLB misses).

Furthermore all the problems discussed earlier with regard to the conven-

tional segmentation and paging scheme, for example adequate protection for

logical segments and the addressing of the operating system, still remain. In ad-

dition the one advantage has been lost which the pure segmentation model offers

with respect to sharing: the support for different views of a logical segment via

the different segment table entries for a shared segment.

Thus we see that neither of the conventional segmentation models (with or

without paging) provide a satisfactory solution to the sharing problems, although

we have clearly seen that in this respect the embedding of logical segments into

architectural segments has some clear advantages over pure segmentation.

Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 139

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

8 Conclusion

The conventional memory management models are very effective at protecting

running processes from each other. By providing processes with separate pag-

ing/segmentation tables which are used to interpret virtual addresses they can

very effectively ensure that an executing process cannot access the pag-

es/segments of other executing processes. In fact this technique is so effective

that it is difficult to allow processes to share information. This is like building a

house without doors or windows to ensure that thieves cannot break in. But the

problem then is that it is also difficult to allow friends into the house, or leaving

the house oneself.

This chapter has reviewed some of the main attempts to solve this problem.

We have seen how computer architects have resorted to tricks to allow sharing

where it is absolutely necessary (e.g. to allow the operating system to access pa-

rameters from application processes), but it is quite evident that these tricks do

not achieve the aim of providing sharing in a general way. For example the solu-

tions which allow the operating system to access parameters from an application

process in fact provide total access to the application's memory space, making it

easy for an operating system to spy on the business secrets of its customers.

In the next chapter we continue the search for providing a model which al-

lows both protection and sharing to be organised in a more satisfactory manner.

 Chapter 10

Protection and Sharing

in Capability Systems

The concept of a capability was first suggested by Dennis and van Horn in

1966 [57]. In Chapter 2 a capability was described as a unique identifier for an

object together with an associated set of access rights for that object. An im-

portant feature of the concept is that it is the possession of a capability which

implies the right to access the object in the ways defined by the access rights.

This makes a capability rather like a bunch of keys which will open some of the

doors in a building. The building is the object; the doors which can be opened by

the keys are defined by the access rights.

Chapter 2 described the capability idea primarily in terms of file system

concepts, but it is in fact a more general idea which can also be applied to ad-

dressing at the level of computer architectures, cf. especially [56, 58]. It was one

of the leading ideas in the development of several operating systems in the

1970s, the most well-known of which were Hydra [59, 60] and CAL [61]. The

first hardware supported capability based system was the Plessey System 250

[62], which was developed as a special purpose computer for supporting tele-

phone networks. A further important hardware development was the CAP sys-

tem, developed at Cambridge University [63, 64].

The announcement at the beginning of the 1980s of the Intel iAPX432 pro-

cessor [65, 66] was greeted as the high point of hardware-based capability sys-

tem development. This system was inspired both by the software implementa-

tion of capabilities in the Hydra kernel and by the aim of supporting the ADA

programming language, which at that time was being very strongly pushed by

the U.S. Department of Defense [67].

This combination of operating system and programming language concepts

was typical of the background of capability research. For at least a decade there

had been a strong association between the capability idea and high level lan-

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 141

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

guage concepts for supporting modularity and an emerging form of what has

since become known as object-oriented languages. One of the reasons for this

connection was the idea that the access rights in a capability could be nicely

formulated in terms of the operations on an object, as was already illustrated in

Chapter 2 (see especially Figures 2.7 and 2.8). However, the emphasis on

providing direct support for programming languages in the hardware resulted in

poor performance and led to the virtual abandonment of the capability idea in

the late 1980s.

Its demise was largely due to two related factors, the rise of the RISC (Re-

duced Instruction Set Computer) design philosophy [68, 69] and the break-

through with very large scale integration of computer circuitry. IBM had been

working since the mid-1970s under the leadership of John Cocke on the design

of a prototype RISC computer, the IBM 801 [70], which was built using older

technology. But it was the prospect of building a complete commercially viable

CPU on a single chip that provided the real fuel which led to the subsequent

dominance of the RISC movement in computer hardware design.

From the 1960s up to the 1980s the design of computer instruction sets had

become increasingly complex. This in turn had led to unnecessary complexity in

the design of the CPUs which implemented these instruction sets. There were a

few exceptions, such as the CDC 6600 and its successors [71, 72], which served

as a source of inspiration for the RISC movement.

The complex computer designs were in retrospect dubbed CISC (Complex

Instruction Set Computers). These included most general purpose computer ar-

chitectures, such as the IBM S/360 and its successors and the DEC VAX 11 se-

ries, but also computers which were specifically designed to support high level

languages, such as the B6700 and Symbol [73, 74]. In fact high level computer

architectures became a special target of criticism from RISC advocates [75]. In

this climate the idea of capability based computers, with their links to program-

ming language concepts and their poor performance achievements – as was am-

ply confirmed by Intel's iAPX 432 – had no chance of surviving. In the 1980s

the validity of the claims of the RISC proponents, that higher performance could

be achieved by using simple and orthogonal instruction sets, were demonstrated

beyond all question. A new generation of computers appeared, bringing hitherto

unthinkable performance improvements. In doing so they all but destroyed the

capability idea. And computer architects all but forgot protection as a research

theme, which is scarcely mentioned in publications of the RISC advocates.

Nevertheless the ideas behind capability based computer systems are not

unimportant for us, as these are the systems which have taken the problems of

protection and controlled sharing in computers more seriously than most other

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 142

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

systems. In the following sections we shall therefore review their most important

ideas but at the same time it will be necessary to establish the reasons for their

poor performance. We begin by considering how capability systems solved the

sharing issue.

1 Capabilities and Sharing

In its most general form a capability consists of a unique object identifier and a

set of access rights (Figure 10.1).

The object identifier must contain sufficient information to locate the ob-

ject, and the access rights determine which operations the possessor of the capa-

bility may carry out on the object. In later sections we shall look into such issues

as protecting capabilities, locating objects and making object identifiers unique.

At this point the crucial issue for us is that the object identifier is unique. Here

"unique" means that it is non-ambiguous and context independent. This is what

most distinguishes them from the other schemes which we have so far consid-

ered. The access rights determine the operations that the possessor of the capa-

bility may carry out on the object.

Figure 10:1 A Capability

Access Rights Unique

Object Identifier

Figure 10.2: Selecting a Capability from a C-List

Capability List

Access Rights Unique

Object Identifier

Access Rights Unique

Object Identifier

Access Rights Unique

Object Identifier

Access Rights Unique

Object Identifier

Access Rights Unique

Object Identifier

Offset Capability

Selector

Object

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 143

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

An object reference in a capability based addressing system sometimes

consists in principle of a pair «capability selector, offset». A capability selector

is normally an index into a capability list (C-List), as is shown in Figure 10.2. In

its most flexible form the C-List is held not in a system table but in the applica-

tion's addressing space. How such a C-List can be protected will be considered

later.

The object identifier which appears in the C-List entry (i.e. in the capabil-

ity) uniquely identifies the object. In fact there are capability systems which al-

low capabilities to be stored as single entities rather than in C-Lists, in which

case the capability selection takes place in some other way, i.e. using a different

kind of addressing mode. These are more flexible, since capabilities can then be

used as freely as simple pointers. Hence the use of a capability selector as an

index into a C-List is not the important thing. What is important is the capability

itself, because the object identifier which it contains is unique.

The standard way of converting an object identifier into a main memory

address is to have an indirection through a central object table, which is shared

by all processes in the system. This translation process is illustrated in Figure

10.3. (As unique identifiers are usually very large the central object table is usu-

ally implemented as a hash table.) As we shall see shortly, not all objects are

simply logical segments, but those relevant to machine level addressing are, and

the object table entries for them are analogous to segment table entries.

In this sense the unique object identifier in a capability for a segment is

equivalent to a conventional segment number, in that it is used to select a seg-

Figure 10.3: Locating an Object via a Central Object Table

Access Rights Object Identifier

705981

Object
705981

Selected Capability

Central Object Table

Details of Object 371054

Details of Object 705981

Details of Object 114562

Details of Object 967457

(hashed)

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 144

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ment table entry – but remember that this object number is a context independ-

ent segment number. This means that it is interpreted independently of a particu-

lar process context and that it has the same meaning in every process. The con-

sequence of this is that – unlike the conventional virtual memory models which

we have considered – protection between processes/threads is not achieved by

giving different meanings to the same addresses when they are used in different

process contexts. Instead inter-process protection is achieved by allowing ad-

dresses to be formed only from those capabilities which the application can ac-

cess. In other words, if a process or one of its threads can select a capability it

can access the segment which the capability describes

 This means that the context of a process/thread is defined by the capabili-

ties which it possesses, not by its virtual memory translation table, i.e. not by the

global central object table. An important advantage of this is that the sharing of

segments can be naturally achieved, simply by providing each process sharing

the segment with a capability for it (see Figure 10.4).

This arrangement makes it possible to store inter-segment references as ca-

Protection Domain

of Process A

C-List

A

C-List

B

705981

RW

114562

RW

Figure 10.4: Protecting Processes in Capability Systems

Object

705981

Central Object Table

Details of Object 371054

Details of Object 705981

Details of Object 114562

Details of Object 967457

Object

967457

Shared

Object

14562
Protection Domain

of Process A

114562

RO

C-List

A

C-List

B

967457

Ex

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 145

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

pabilities containing unique object identifiers. Hence the problem described in

Chapter 9 (where a reference from one segment to another means different

things in different processes) no longer exists in a capability based system. As

was mentioned earlier, that problem is in fact just the tip of an iceberg of such

problems, as Fabry has well illustrated in a paper which advocates the use of

capability based addressing to solve them [56].

However this is not the whole story. There is a downside which is often not

mentioned. If inter-segment addresses are always unique, which is otherwise the

main strength of capability systems, then the copying problem described in

Chapter 9 section 6 appears again!

2 Protecting Capabilities

One key issue in any capability based system is how the capabilities, or the C-

Lists in which they are usually held, are protected. The system must in some

way guarantee both that existing capabilities cannot be modified in arbitrary

ways and that new capabilities cannot be arbitrarily manufactured or forged.

This implies that the system must provide special operations for creating

new capabilities and for modifying existing capabilities in controlled ways, and

it must oversee the right to execute such operations. But at a more basic level the

system must also provide a mechanism which ensures that the normal read and

write operations used for manipulating other data structures cannot be used to

modify or forge capabilities. How it protects the special operations depends to a

large extent on how it ensures that normal instructions cannot be used on capa-

bilities. Various capability protection techniques have been employed in differ-

ent capability based systems. We now consider the main options.

2.1 Protection in the Operating System Space

Perhaps the simplest solution is to protect capabilities in the same way as seg-

ment and page table entries are protected in conventional systems, by storing

them in C-Lists in the operating system's private data space. In this case the cre-

ation and modification of capabilities can only be carried out by the operating

system, at the request of users making system calls which can be checked for

validity. An application indicates which capabilities it wishes to use by means of

parameters in the system calls. In effect these are capability selectors indexing

into the C-Lists.

The main disadvantages of this solution are a performance overhead when

the user accesses his capabilities and a lack of flexibility in the way he can or-

ganize them into lists. It is rather like having a bunch of keys which is compul-

sorily held by a porter who will open and close your room for you whenever you

ask him, but you always have to go to him to get things done.

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 146

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2.2 Password Protection

A technique known as password capabilities, implemented in the Monash Ca-

pability System
38

, allows capabilities to be stored in the user's address space

while using conventional computer hardware [76]. Rather than holding a set of

access rights the capability in this case contains a password, which is a large in-

teger value (see Figure 10.5).

This password, which in the Monash Capability System was 64 bits long, is

a system generated random number. The idea is that the number must be large

enough that it cannot easily be guessed or systematically generated. The capabil-

ity is stored in user space and is not protected from being modified using normal

instructions. (That is why it works using conventional hardware.) However, it

can only be used as a capability in calls to the operating system, and at that point

its validity is checked.

The operating system has an internal table in which the object name, the

password and the permitted access rights are stored. When it receives a request

to carry out an operation the operating system checks the object name and pass-

word fields against entries in its table. If it finds a match, the capability is valid

for the access rights stored in the table. If the requested operation conforms to

these access rights the operation may proceed (see Figure 10.6). Different sets of

access rights have different passwords.

This solution has the advantage that capabilities may be stored flexibly in

user address space. But it implies that each use of a capability must be made via

an operating system call – which makes it unsuitable as an addressing mecha-

38

 Not to be confused with the Monads System, which is the forerunner of Speedos.

Figure 10:5 A Password Capability

Large Random Password Unique

Object Identifier

Operating System Capability Table

Unique Object Id Password Rights

Password Capability

875610492

Figure 10:6 Validating a Password Capability

6043119752

6043119752 R, Ex 875610492

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 147

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

nism – and that there are additional tables in the operating system. (This makes

it difficult for example to store capabilities on an external disc and use them lat-

er on a different computer.) It is like having a piece of paper with a password on

it, which the porter checks before taking his key to open a door for you.

2.3 Protection by Tags

Another approach, which allows capabilities to be stored freely in the applica-

tion address space and which avoids the problems associated with password pro-

tection, is to use tag bits to identify capabilities. This was the solution adopted in

the IBM S/38 computer system [77, 78], which was a latecomer into the capabil-

ity scene, as we shall see later. The tagging solution involves having an addi-

tional bit or bits associated with each word in the main memory. If these hidden

tag bits are set to 0 the remainder of the word is a normal data or instruction

word, but if it is set to 1 the rest of the word is part of a capability. Because a

capability might take up several words of memory, the address at which it actu-

ally begins can be recognized by its byte position, i.e. capabilities must start at

fixed byte positions. The tag bits can only be set and unset when the system is in

privileged mode.

With this solution the CPU can check, when it is executing instructions,

whether these are being applied to capabilities or to normal data and instruction

words. To create a new capability the normal user must call the operating system

because he cannot set the tag bits. Similarly attempts to modify a capability us-

ing normal instructions will be detected by the hardware.

More recent attempts to build secure systems have also used variants of this

approach, e.g. CHERI [79], Mondrian memory protection [80, 81], Hardbound

[82], Intel's iMPX Memory Protection Extension
39

 and the M-Machine [83].

Tagged capability protection is more flexible and far more efficient than

the earlier solutions, since there are no tables in the operating system, but it is

achieved at the cost of extra bits of memory for each word. What is particularly

unfortunate is that these extra bits have to be copied to disc whenever a program

segment is discarded from the main memory to make room for another. Disc

blocks are usually organized into sizes which are powers of 2, which creates dif-

ficulties when words in memory have extra tag bits. This is rather like having to

use keys which are too big to fit into your pocket.

39

 According to the Wikipedia article https://en.wikipedia.org/wiki/Intel_MPX "Intel MPX

claimed to enhance security to software by checking pointer references whose normal

compile-time intentions are maliciously exploited at runtime due to buffer overflows. In

practice, there have been too many flaws discovered in the design for it to be useful, and

support has been deprecated or removed from most compilers and operating systems.

Intel has listed MPX as removed in 2019..."

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 148

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2.4 Protection by Partitioning Segments

A fourth solution is the use of partitioned segments [84]. Here the idea is to al-

low normal data and capabilities to coexist in a single segment, but to segregate

them into two parts of the segment. Normal data words are addressed by positive

offsets from a base register, while capabilities exist at negative addresses, below

the address at which the base register is pointing. The instruction set of the com-

puter is so organized that negative addresses either cause an exception into the

operating system, which can then validate the action required in relation to the

capability, or that special capability instructions which use only negative offsets

can be supported at the architectural level (see Figure 10.7).

The use of partitioned segments makes it easy to organize linked data struc-

tures in the application address space using capabilities as the links, and it has

none of the disadvantages of the other solutions. There are no operating system

tables or hardware tags. In this case the keys fit conveniently into your pocket

and you can put them away as a bunch in a convenient filing cabinet or pocket,

wherever is convenient.

2.5 Protecting Capabilities via Capabilities

Finally, there is another solution for protecting capabilities: use capabilities to

protect other capabilities. This relies on the fact that another solution already

exists, so it may seem to contain a circular argument. But if, as we shall later

argue, there should be more than one kind of capability, then this solution also

makes sense. This is like being able to lock a box containing your keys for safe

keeping.

3 Unique Object Identifiers

In order to make the capability technique work, it is essential that object identi-

fiers can be made unique. It might at first appear that there is a simple way to

make them unique, by prefixing them with a process/thread number. But then

negative offsets

(adjusted for system information)

Partitioned Segment
positive

offsets Base Register

Data

Data Length

Count of Capabilities

Capabilities

Figure 10:7 Partitioned Segments

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 149

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

there is a problem with sharing objects between processes: which process prefix

does a shared object have? As it is an important aim of capability systems to al-

low sharing between processes, this solution is clearly unsatisfactory.

What earlier capability systems therefore did was to allocate object identi-

fiers independently of process numbers. A simple way of doing this is to have a

counter which is incremented by one each time a new object is created. The

counter must be large enough count up to the maximum number of objects.

In order to determine how large such a counter must be, we must first have

a clear notion what an object is. So far we have more or less assumed that it is a

segment. But this was not the answer in the classical capability systems, at least

not the whole answer. An object in these systems is anything which might be

potentially shared between processes. If we were to take this to its absolute ex-

treme, we would have to say that any variable (e.g. an integer or boolean varia-

ble) can be shared between processes. This would mean that every small varia-

ble in the system would need a unique identifier. Advocates of capability sys-

tems did not go quite this far. But at the next level up – the logical segment –

there is a stronger case. A segment might for example contain a routine, which is

a good candidate for being shared by many processes/threads. Or it might con-

tain a data record, which can also be usefully shared between processes/threads.

In fact sharing segments also allows for the possibility of sharing smaller

entities if necessary, since a segment might simply contain one word of memory.

There is at least one kind of very small object which only makes sense when it is

shared, viz. a synchronisation variable, which explicitly exists to allow con-

trolled sharing.

On the other hand not all shareable objects are simple segments. A sharea-

ble object might also be a composite object (e.g. a program, which consists of

many procedures and constant segments, or an abstract data structure which

consists of a data segment and the code segments which access it). Since such

larger objects can be shared in their entirety they too each need an object identi-

fier in a classical capability system.

If objects as small as logical segments can be shared it is clear that capabil-

ity systems must be prepared to handle a large number of small objects which

need unique identifiers, so the counter which is used to allocate object numbers

must be large. It also has to be large for another reason. The problem of unique-

ness is not just a question of how many objects exist at a particular time, but

how many might exist over the lifetime of the system. So we have to reckon

with very large object identifiers, for example implemented using 64 bit num-

bers. (A 64 bit object space allows for up to 2
64

 objects, which is rather more

than 16 x 10
30

 or 16,000,000,000,000,000,000,000,000,000,000 objects.)

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 150

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

If in terms of addressing segments we have addresses which consist of a

pair «unique object identifier, offset in object» (by analogy with «segment num-

ber, offset in segment»), these enormous addresses somehow have to be trans-

lated into main memory addresses. As mentioned above, the classical capability

systems used a central object table for this purpose. But unlike conventional

paging and segment tables this cannot be a table indexed by unique object num-

ber, because if would be far too large to fit into any memory (whether main or

virtual), since an indexed table needs an entry for each of the 2
64

 possible index

values. Fortunately such a long table is not needed in practice, because most of

its entries would not contain useful information for the address translation pro-

cess, as most of the possible segment numbers would not map to existing seg-

ments. So another technique had to be used.

The usual technique in capability systems, as in most situations where an

entry has to be found quickly in a large sparse name space, is hashing. Some of

the bits of the object number are used as an index into a much smaller table, and

the remaining bits are treated as a tag (not in te sense discussed in the previous

section) which is placed in the entry indexed via the index part. If the tag match-

es then the required entry has been found. Otherwise an overflow technique

must be used to find the real entry somewhere else in the table.

But then another problem was encountered in realistic capability systems.

The number of entries in the object table at any time (i.e. for existing objects)

was usually too large to allow the complete table (even implemented as a hash

table with overflow) to be permanently held in the main memory. Consequently

some kind of special mechanism was needed to allow parts of the object table to

be held on disc. Furthermore, the management of the table was made more diffi-

cult by the fact that so many entries had to be dynamically created and deleted at

very frequent intervals.

A further source of inefficiency arose from the fact that entries for both

segments and for composite objects were held in the same table, with the result

that these could hold quite different items of information. For example an entry

for a segment would need to look like a segment table entry in a conventional

system (with present bit, start address, etc.), while an entry for a composite ob-

ject would need to hold quite different information about its structure and its

component parts.

None of these design problems harmonises well with fast and efficient ad-

dress translation and main memory accesses. But on top of this there is the gen-

eral point that the use of very wide virtual addresses considerably increases the

cost and affects the efficiency of a Translation Lookaside Buffer, if the system

has one at all. (The data and instruction cache(s) need not be affected, if the sys-

Chapter 10 PROTECTION AND SHARING IN CAPABILITY SYSTEMS 151

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tem caches these on the basis of main memory addresses.)

Then there is a reliability question. The object table is a system-wide table,

the correctness of which is essential to the reliability (and protection) of the en-

tire system. In contrast conventional virtual memory schemes have separate ta-

bles for each process, so that a corruption in one table does not adversely affect

the reliability or security of other processes (unless the operating system's page

table goes wrong). It is not even easy to take a checkpoint of a single process,

because the table contains entries for all processes.

Some of these implementation problems have been discussed in more detail

elsewhere [85]. Apart from the memory management problems, which were

similar to those in more conventional systems aimed at supporting the sharing of

individual logical segments, the main additional problems in capability systems

were (a) the use of a single central table, (b) the decision to manage different

kinds of objects which have quite different properties as though they are all

comparable objects organized in a single table, and (c) allowing the addressing

of items in the main memory to be affected by this table. Together these prob-

lems accounted for many of the performance problems in capability based sys-

tems.

There is one final problem with the uniqueness of names. In the 1970s most

computer systems were independent of each other, but in today's world comput-

ers are, or can be, linked together via local area networks and over the world-

wide Internet. For this reason the related themes of security, protection and shar-

ing have become ever more important. But if the vehicle to be used to imple-

ment these is uniqueness of object identifiers, then even 64 bit numbers are not

large enough! Try to imagine not only how many logical segments exist at any

one time on all computers linked into the Internet, but how many might exist

into the distant future! Then there is the question, even if we use numbers which

are large enough, how the idea of a central object table could be implemented

worldwide, or how the unique identifiers can be allocated. For the present we

leave such difficult questions aside, and return to our main theme.

4 Conclusion

This chapter has reviewed the key features of capability systems. These provide

a quite different approach and insight into the issues of protection and sharing.

But, like the more conventional approaches discussed in chapter 9, capability

based systems have a number of drawbacks. However, these are mainly issues

which are associated with efficiency, rather than with basic principles.

Part 3

A Memory Structure

for SPEEDOS

Chapter 11

An Architectural Basis

for SPEEDOS

The question of how to combine segments with paging was not adequately

solved by the conventional paged segment model described in Chapter 7. Alt-

hough variants of it have influenced the thinking of computer manufacturers

even until the present time, there has remained a feeling of dissatisfaction be-

cause it implies either that logical segments (i.e. segments as seen by compilers,

which are typically considerably smaller than a page) have to be abandoned or

that they must incur a high penalty in internal fragmentation. For SPEEDOS, as

will become evident in later chapters, a solution which allows individually pro-

tected segments, regardless whether small or large, to be efficiently paged, is

very important. Consequently the issue is pursued further in this chapter, begin-

ning with attempts by others to solve the problem.

1 Combining Segmentation and Paging Efficiently

This section discusses the most significant attempts to solve the problem.

1.1 Multiple Page Sizes

Perhaps the simplest idea is to support more than one page size. This idea was

already implemented in the General Electric 645 architecture, which was used as

the basis for Multics. In its hardware design two page sizes were available, a

larger page size of 1024 words and a smaller size of 64 words. In such a system

it is possible to use the small page size for small segments while the larger page

size is used to decompose a large segment, with the last part possibly being

placed in a small page or pages.

But this kind of scheme has two problems. First it complicates memory

management and virtual memory tables compared with the simplicity of a single

page size. Second, it is difficult to know how small a small page should be. Pro-

fessor Brian Randell of the University of Newcastle-upon-Tyne took this idea a

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 154

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

stage further by proposing a scheme which flexibly allowed multiple page sizes

[86]. But the more page sizes there are the more complex the memory manage-

ment becomes.

1.2 Segmented Pages

A different possibility is to switch around the relationship between segments and

pages, by having a virtual address consisting of the triple «page number, seg-

ment number, offset in segment», such that instead of a segment being decom-

posed into pages, a page is decomposed into segments. But this is not really sat-

isfactory, since it only copes with small segments, and it can still lead to sub-

stantial fragmentation if segment sizes happen not to be convenient. Further-

more it adds to the work of the compiler, since the latter has to be concerned

with how to fit segments into pages.

For a long time it seemed to be impossible to fully reconcile all the re-

quirements of compiler writers, of programmers and of the operating system.

Let us now look at the main requirements again, from these different viewpoints.

2 A Review of the Requirements

Compiler writers work with logical segments. Ideally they would like to have

addressing modes which express addresses in terms of logical segments and off-

sets. This means that they do not have to have a phase at the end of the compila-

tion in which memory management considerations (such as linearizing the ad-

dresses in the program or placing segments with similar properties together). In

addition they would like hardware bounds checking on the offsets for these logi-

cal segments, in order to save the generation of code for achieving this, especial-

ly in cases where the lengths of logical segments cannot be determined at com-

pile-time.

Depending on the language being compiled, compiler writers sometimes

have another requirement, which we have not yet discussed. That is to have dif-

ferent views of a logical segment. To illustrate this, consider the kind of routine

in Timor [87] called an enquiry, which is a method that returns information

about an object while guaranteeing that the state of the object (represented in

logical data segments) is not modified. This may seem to be a trivial thing which

can be checked at compile time, but unfortunately that is not always possible.

What it implies is that a data segment be viewed by some processes as a writable

segment but by others as a segment of constants. Even the segmentation

schemes which put protection bits in the segment tables cannot handle this re-

quirement in a reasonable way.

What requirements does the programmer have? An important consideration

is that his errors are detected as soon as possible, which means that he would

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 155

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

like to have protection at the logical segment level in terms of basic access rights

and in terms of bounds checking. In so far as this involves runtime checks, he

would prefer these to be carried out by hardware rather than by instructions in-

serted into his program by the compiler, as that results in his program executing

more quickly (and the compiler can also compile his program more quickly).

The operating system designer has quite different requirements. He wants

to be able to view a program as a set of pages, without the logical structure inter-

fering with memory management. He wants this to be as simple as possible, for

example using only a single page size. He would also like the use and change

bits to help with his memory management problem. And he would like to have a

simple and consistent protection scheme which is uniform and easily organized.

And from the protection viewpoint he wants flexible support for segments with

differing contents.

Finally, by far the most flexible implementation technique for capability-

based systems is the use of partitioned segments, which allow a (typically small)

segment to be partitioned such that the application process can have direct ac-

cess to the data partition, while the pointer partition remains protected.

It may seem a tall order to achieve all of these requirements in a single

memory management model, but it is not impossible. In 1980 the author pub-

lished a paper outlining a memory management model which met all of these

requirements [88]. The essentials of this model are now presented.

3 Orthogonal Segments and Pages

When problems become complicated the reason is often that things which are

not really related to each other are being mixed up together. This is what has

happened with the ideas described earlier for combining segmentation and pag-

ing. In particular it has been assumed that the virtual address must in some way

be reducible into a part which describes segments and another part which de-

scribes pages. This approach inevitably implies that segments are decomposed

into pages (an assumption which does not work out well for small segments) or

that pages must be decomposed into segments (which is just as bad for large

segments). In practice there are certainly more small segments in most programs

than there are large segments, but large segments cannot be ignored. What hap-

pens if we try to keep the two ideas as separate as possible?

We start with the idea that the address which a compiler wants to produce

is a two part address, which we shall initially think of as the pair «segment num-

ber, offset». This is an effective program address, which says nothing about

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 156

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

page boundaries and nothing about how the offset is derived
40

.

This kind of address can be translated by reference to a segment table (Fig-

ure 11.1). Thus far we appear to be following the pure segmentation model dis-

cussed at the beginning of the chapter. But here is the twist. Instead of regarding

the entry in a segment table as containing either a main memory address or the

address of a page table, we simply assume that it contains a virtual address. This

means that we are now drawing a distinction between effective program ad-

dresses and virtual addresses (see Figure 11.1). (Note: In the earlier (conven-

tional) models, the virtual address was at the same time an effective program

address.)

From the segment table we acquire a virtual address defining where a seg-

ment begins. To this is added the offset from the beginning of the segment, tak-

en from the effective program address. This gives us another address – this time

the effective virtual address of the word we wish to address. It is this address

40

 The latter is a question for the instruction set's addressing modes (e.g. by using index

registers and/or literal offsets).

Segment Table

AR length

Segment Number Offset in segment

Effective Program Address

index into

segment table

added to

segment start

start

Offset within segment

Virtual Start Address

Effective Virtual Address

Virtual Page Number Offset in page
Effective

Virtual Address

Address Translation

Unit

Page Frame Number

Page Fault

or

Main Memory Address Offset in page

Figure 11.1: Translating an Effective Program Address in the

Orthogonal Paging and Segmentation Model

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 157

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

which has to be translated into a main memory address. As we want a paged vir-

tual memory, this translation can be achieved in one of the usual ways, by using

either a conventional page table or an inverted page table. This is illustrated in

Figure 11.1.

Notice that the segment table can contain information about the logical

properties of the segment (i.e. its length and its access rights), while the ATU

can hold information useful for paging, such as a use bit and a change bit.

Let us now consider what this means for the layout of a program. First we

consider a simple program which contains all three kinds of segments. Figure

11.2 shows how the segment table and the program both appear. We see from

this that there is no difficulty in placing segments of different types adjacent to

each other. We also see that a segment can span multiple pages but also that

multiple segments can be placed in a single page, in any arbitrary combination.

Main Program

Record 1

Subroutine 1

Subroutine 15

Array 7

Constants 4

Long Array 1

Long Array 1

(cont)

Array 8

Program Layout

Figure 11.2: A Program Decomposed into Segments and Pages

Segment Table

Ex Main Program

AR length of ... start

RW Record 1

Ex Subroutine 1

RW Long Array 1

Ex Subroutine 15

RW Array 7

RO Constants 4

RW Array 8

Page Boundaries

Ex

RW

RO

execute access

read/write access

read only access

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 158

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Furthermore, the problem of internal fragmentation has been restricted to

the final page. Recall that this is a serious disadvantage of the conventional

segmentation and paging model, assuming that small segments are considered

relevant. Like the conventional paging model, the orthogonal model achieves the

minimum possible fragmentation of a half page per program on average.

If a conventional page table is used, only one such table per program is re-

quired (rather than one per segment). But as the diagram in Figure 11.1 (cf. Fig-

ure 7.4) makes clear, conventional page tables need not be used at all. It is

equally possible to use inverted page tables with this model.

The key feature of the orthogonal model is that it makes paging and seg-

mentation independent of each other. It allows a number of logical segments to

be placed contiguously in the same page. Whereas the conventional segmenta-

tion and paging model treats all logical segments in an architectural segment as

sharing the same access rights and does not provide information about the length

of logical segments, the orthogonal model allows each logical segment to have

its own access rights and length information, although it does not define how

this information is stored.

At this point it is useful to introduce a new term to define the entity which

in the orthogonal model is paged and which holds a group of related segments;

we call this a container
41

. It can be considered comparable to an architectural

segment in the conventional model except that this does not have – and does not

need – associated protection information used directly by the hardware.

4 Implementing the "Segment Table"

A significant feature of the orthogonal model, which will play an important role

in our emerging protection model, is the assumption that protection information

is provided to the hardware only when an instruction is being executed. As de-

scribed in Figure 11.1 this information is derived from a segment table, the en-

tries of which each contain a segment start address, a segment length and access

rights for the segment.

However, a number of advantages are gained if we now redefine the seg-

ment table simply as a bank of segment registers
42

 in the ALU, which can only

be loaded by kernel instructions.

The first advantage is that this provides the software with considerable

freedom by leaving open how the structures from which information is loaded

41

 In the MONADS literature, which successfully implemented the orthogonal model, this

was called an address space.
42

 In the MONADS literature these were called capability registers. Another suitable name

would be address registers or addressing registers.

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 159

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

into the segment registers can be defined. One possibility is of course a segment

table along the lines of that in the simple segmentation model, but another is that

the special instructions use information based on the partitioned segment idea

which we described in connection with the implementation of capabilities in

Chapter 10. In fact at the virtual memory level there is no need to restrict the

implementation to any particular technique, provided that at the kernel level of

the system the mechanisms used are secure.

The second advantage is that ALU registers can be accessed far more

quickly than information in the main or virtual memory (e.g. segment tables).

The third advantage is that this technique fairly closely corresponds to the

fact that addressing in conventional computers is often defined as offsets from

general purpose ALU registers, though the latter have the comparative disad-

vantage that they do not contain length or access rights information.

Each segment register has the format shown in Figure 11.3. A valid bit in-

dicates whether the register's contents are currently valid. The segment registers

are implemented as dedicated registers. These are registers which, in contrast

with general purpose registers, can be used only for the purpose of addressing

and can only be used as operands in certain instructions. This is important be-

cause the integrity and security of the system depend on the correct information

being loaded into segment registers and on the hardware only using them for the

purpose to which they are dedicated, i.e. protected addressing.

Finally, it is worth mentioning that using dedicated registers for addressing

is not a new idea, and need not compromise the efficiency of a system. For

many years the world's fastest computers were designed by Seymour Cray, ini-

tially at Control Data Corporation (e.g. the CDC6600 supercomputer [71]) and

later by his own company (e.g. the CRAY-1 [89, 90]
43

.). These computers were

designed with registers which were dedicated to holding addresses. For example

the first of these (the CDC6600 [72]) had 8 address registers. However, they did

not include the security features which we now envisage, namely length infor-

mation and access rights.

In the MONADS Project [91, 92, 93, 94]
44

, a major project which the au-

thor established at Monash University in Australia in 1976, the technique de-

43

 The second reference for the CRAY-1 is a reprint of the first.
44

 see http://www.monads-security.org, where more publications are listed.

Figure 11.3: A Segment Register

Start

Address

Length/

Limit
Access

Rights

Valid

Bit

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 160

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

scribed here (including the protection aspects) was successfully used, especially

in the MONADS II and in the MONADS-PC systems; these systems successful-

ly tested the ideas in a non-RISC environment.

5 Segment Registers and RISC Systems

Chapter 10 described how the RISC movement, which became a serious force in

the field of computer architecture in the early 1980s, virtually killed experimen-

tation in the area of capability-based computer architectures, largely because of

their association with CISC architectures which were sometimes designed to

support high level languages. In doing so the RISC movement in effect killed

experimentation in architecturally based security, although this was almost cer-

tainly not intended by the RISC proponents.

It is therefore especially interesting to note that in their discussion of pro-

tection in the 5
th
 edition of their standard textbook on computer architecture two

leading advocates of RISC, John Hennessy and David Patterson, wrote:

"Security and privacy are two of the most vexing challenges for information tech-

nology in 2011. Electronic burglaries, often involving lists of credit card numbers,

are announced regularly, and it's widely believed that many more go unreported.

Hence, both researchers and practitioners are looking for new ways to make com-

puting systems more secure. Although protecting information is not limited to

hardware, in our view real security and privacy will likely involve innovation in

computer architecture as well as in system software." [8, p. 105]

I believe that this sought after innovation in computer architecture can be pro-

vided by the orthogonal paging and segmentation model using the segment reg-

ister implementation described above. This combination, referred to as S-RISC

(as an abbreviation for "secure RISC"), is now presented in the context of RISC

architectures.

5.1 Paging

RISC systems are based on paging. This fits well with the orthogonal model,

which also uses paging as its basic virtual memory management technique.

5.2 Segmentation

RISC systems provide no architectural support for segmentation. This is where

the innovation occurs. However, it is important to introduce segmentation in a

form which corresponds to the RISC philosophy.

5.3 RISC Philosophy

RISC systems achieve their very high performance primarily as a consequence

of implementing very simple instruction sets. Instructions in RISC systems nor-

mally have a single fixed length and the formats of instructions are simple and

consistent. Instructions which process data do so in general purpose registers,

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 161

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

although there is usually also a separate set of floating point registers. A large

number of general purpose registers (usually 32) is available. A typical ALU

(computational) instruction uses three registers: a result register and either two

source registers or a source register and an immediate value (see Figure 11.4).

Information is never processed in conjunction with main memory accesses

(in contrast with many CISC systems). Instead there are special load and store

instructions for copying information between registers and memory. The ad-

dressing modes used in these instructions are simple. The address held in a base

register is added to an offset held in an immediate field or in an index register to

produce an effective address, which is then used as the load or store address

(Figure 11.5).

5.4 The Proposed Innovation

The proposed innovation simply replaces the base register on Figure 11.5 (which

in normal RISC systems is a general purpose register) with a segment register

(Figure 11.3). The execution of a load or store instruction involves not only cal-

culating an effective address (using the start address as a base address) but also

checking that this is in the range of permitted addresses (i.e. within the seg-

ment). The segment length field is compared with the offset field or index regis-

ter value in Figure 11.5. This comparison can be carried out in parallel with the

generation of an effective address. Similarly the access rights field can be

checked in parallel with the calculation of the effective address. Hence the speed

of execution need not exceed that of a normal load or store instruction, given

appropriate hardware. Hence the security advantages which we will illustrate in

later chapters can be obtained with RISC efficiency.

Operation

Type

Result

Register #
Operand 1

Register #

Operand 2

Register #

Figure 11.4: Typical RISC ALU Instruction Formats

Operation

Type

Result

Register #

Operand 1

Register #

immediate

value

Load/Store

Operation

Base

Register #
Operand

Register #
offset

Load/Store

Operation

Base

Register #

Operand

Register #

Index

Register #

Figure 11.5: Typical RISC Load/Store Instruction Formats

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 162

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Similar considerations apply to the addressing of code. In this case a single

register, which we call the Code Segment Register, is needed. This defines the

bounds of the current code segment and has an access rights field which will

typically be set to allow code execution and the reading of (constant) data. This

is complemented by a Program Counter (PC) register, which plays a role equiva-

lent to index registers for the data segment registers.

6 Implementing Address Translation

An inverted page table was successfully implemented fully in hardware in the

MONADS systems [95, 91, 96], using a hashing technique with overflow. This

allowed us to take advantage of the fact that the structure of the underlying page

tables could be kept flexible. However the technique used cannot reasonably be

scaled up to support large modern main memories. Nevertheless, a similar effect

can be achieved in modern computers by using the ATU technique implemented

in the DEC Alpha computers [97] and in other RISC computers, where the entire

ATU consists simply of a translation lookaside buffer (TLB). Figure 7.8 (repeat-

ed here as Figure 11.6) helps to explain how this works. This shows how in ear-

lier systems a TLB was first accessed. If the required information was not found

in the TLB the hardware then searched the appropriate page table and then load-

ed the required information into the TLB.

With the S-RISC scheme now being described, the ATU is reduced simply

to the TLB, which can be loaded by kernel software. Consequently the algorithm

in the white box in Figure 11.6 is relegated to the kernel software, as is illustrat-

ed in Figure 11.7, where the blue box represents kernel software.

With this implementation, which fits well with the RISC philosophy, we re-

tain the main advantage of the MONADS systems' solution, i.e. that the struc-

ture of page tables is of no concern to the hardware, but can be flexibly handled

in (kernel) software.

7 Conclusion

In this chapter an alternative model for combining paging and segmentation has

been presented, which allows small and large segments to coexist in the same

container with full protection both in terms of access rights and bounds check-

ing. This model fulfils all the requirements set out earlier in the chapter. But at

least as significant, it can be integrated into the RISC concept and hence does

not fall into the category of "inefficient" security. On the contrary, it demon-

strates that security and efficiency are not inimical concepts. Henceforth it is

assumed that the design ideas presented in following chapters are implemented

on an S-RISC system.

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 163

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Virtual Page Number Offset in page Virtual Address

Figure 11.6: The ATU with a TLB using Conventional Page Tables

Page Frame Number Offset in page

Page Fault

or

Main Memory Address

Translation Lookaside Buffer (TLB)

TLB

miss

Access Page Table

Page Present

in Main Memory?

Load Page Table

Entry into TLB

TLB

hit

Address

Translation

Unit

Virtual Page Number Offset in page Virtual Address

Figure 11.7: The TLB as the entire ATU

Page Frame Number Offset in page

Translation Lookaside Buffer (TLB)

TLB miss

Access Page Table

If page not present

bring it into main memory

Load Page Table

Entry into TLB

TLB hit

Main Memory Address

Software code

Chapter 11 AN ARCHITECTURAL BASIS FOR SPEEDOS 164

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

That such systems will in future become available is a realistic possibility,

because the S-RISC architecture is not only capable of supporting SPEEDOS

(and other capability based systems), but can do so in such a way that the many

applications which currently exist on current RISC systems could be supported

without change, except for a re-compilation with modified compilers. Hence

manufacturers of current RISC systems can in future build S-RISC systems

without fearing the loss of their current customers, but at the same time offer

them more security, as I have shown in a recent paper entitled "S-RISC – Add-

ing Security To RISC Systems", which can be obtained from the SPEEDOS

website
45

.

45

 https://www.speedos-security.org/

Chapter 12

Direct Addressability and

Persistent Virtual Memory

In the previous chapter an alternative way of organising paging and seg-

mentation was presented and we showed how this approach, known as the or-

thogonal model for paging and segmentation, can be implemented as a relatively

small extension to RISC systems. The resulting S-RISC systems provide a very

flexible way of supporting segmentation and paging, leaving the kernel of such a

system with complete freedom to organise both page tables (mappings from vir-

tual page numbers to disc addresses) and segment tables in any manner which

the kernel designer chooses.

This gives us the freedom to begin a more constructive phase in which we

consider how a secure software architecture might be designed. This involves

taking a fundamentally different view of virtual memory, as persistent virtual

memory. First the idea of direct addressability is introduced. This idea was first

implemented in the Multics system and can be considered as a forerunner of

persistent virtual memory.

1 Direct Addressability

In the mid-1960s, when mainframe computer systems carried out their work in a

batch processing mode and personal computers had not yet been invented, com-

puter architecture researchers at MIT in Cambridge, Massachusetts, developed a

significant research system called Multics [98, 42]. Its aim was to demonstrate

ideas relevant for time-sharing, i.e. for computer systems where individual users

sit at terminals and interact directly with the (shared) computer.

Among the many revolutionary design ideas which appeared in Multics

was one which will play a central role in the rest of this book. This was referred

to as "direct addressability" by Multics designers. What they aimed to achieve

with this idea was to allow all the information in a system to be directly address-

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 166

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

able in the virtual memory, including information held in the file system. The

fundamental advantage which they saw was that it avoids much copying of in-

formation between the file system and the computational (virtual) memory. The

lack of success of this idea – in my view the most significant of all the Multics

ideas – in the last six decades is due not to a fault in the basic idea, but in the

way it had to be implemented on the hardware available at that time.

2 Advantages of Direct Addressability

Before looking at various attempts to implement a suitable environment for sup-

porting the Multics idea of direct addressability, let us pause to consider what

potential advantages it has and how it might ideally look.

When virtual memory was first conceived, little thought was given to the

duplications that the conventional models caused – and still cause in current sys-

tems. This solution for the application programmer's overlay problem was only

achieved at the price of severely increased complexity in the operating system.

For a start, the way disc space is organised in the extended computational

memory is generally quite different from the way it was organised in the file

system, so that different parts of the operating system (the virtual memory man-

ager and the file system's disc manager) end up both managing disc space (in

quite different ways).

Furthermore an enormous amount of copying of information takes place

between the file memory and the computational memory, which in fact often

simply leads to the unnecessary movement of data from one location on disc to

another. This is the point which the designers of the Multics system most em-

phasised, describing the avoidance of copying as the fundamental advantage of

direct addressability of information [99].

They pointed out for example that with direct addressability the program

code files located in the file system could be directly used for executing pro-

grams, without first having to load them into the computational virtual memory.

This idea had also appeared in the design of the Burroughs computer systems.

Being able to access program files directly in the file system is important

not only as a general way of improving system throughput; it can also affect us-

ers directly interacting with a computer system, whether they are sitting at ter-

minals connected to a central computer or are using personal computers or

workstations. If you have ever become impatient about the time it takes your PC

to start executing your program, the main reason is usually that the latter is be-

ing copied from the file memory into the computational virtual memory. In most

systems the entire program is copied from disc into the main memory and from

there it is discarded to the disc space of the extended computational memory.

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 167

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Put simply, the program is first copied from disc to main memory and then again

from main memory to disc! This is illustrated in Figure 12.1.

Almost all this copying can be avoided if the individual program units

(segments or pages) can be directly addressed in the file memory, using virtual

addresses rather than file system mechanisms. With this arrangement, starting a

process means that the first statement in the program can be directly executed in

the virtual memory. This causes a virtual memory fault requiring only the unit

containing this statement to be read into the main memory (assuming it is not

already in main memory, for example because another user has run the program

recently or is concurrently using it). Thereafter only the units which are actually

required need be brought on demand into the main memory. This in turn means

that the process can start executing immediately instead of the user having to

wait a couple of minutes while all the unnecessary copying takes place.

The conventional virtual memory technique of loading an entire program

from the file memory into the computational memory is an overkill solution for

another reason. A well-designed robust program contains a very substantial

amount of code which is designed to cope with and recover from errors that in

practice only rarely occur. On most of the occasions the program runs, these er-

ror-handling procedures are (hopefully) never used. So copying these pages at

the beginning can be an absolute waste of effort. Similarly programs such as text

editors, spread sheets and the like contain a bewildering variety of optional fea-

tures which many users often never use. It is also a waste of time to copy the

code for all these features into the virtual memory.

There is thus little room to doubt that the direct addressability of program

object code is both more efficient and at the same time more convenient for us-

Main Memory Disc Subsystem

File System

Figure 12.1: Copying Programs in a Conventional Virtual Memory

Computational Memory

Extended

Program

Computational

Memory

Program
Program

Step 1

Step 2

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 168

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ers. And there is a final advantage: by eliminating the load operation from file

memory into the virtual memory the need for the loader software itself disap-

pears, thus making the operating system simpler.

Similar considerations apply also to the use of files containing data rather

than programs. In most computer systems access to data in files is a rather tortu-

ous activity. Data in the file system cannot normally be directly addressed. In-

stead the application process calls routines of the file system to request that data

be read from a file. Such data transfers usually take place via an intermediate

buffer area (a group of memory locations set aside for this purpose) in the com-

putational memory. If information is modified by the application it must then be

passed back to the file system in a similar way, first being copied into an inter-

mediate buffer and then written back to disc.

In a modern database system the management of the intermediate buffers

can itself be a complex problem. Such complexity becomes particularly appar-

ent, for example, if many different transactions have on-line access to a shared

database. A former Ph.D. student and I have discussed in detail some of the

problems associated with this, as well as some of the corresponding advantages

of being able to address information in files directly in database systems [100].

A technique which is sometimes used in an attempt to improve efficiency

in accessing files is to implement memory-mapped files. This basically involves

copying an entire file into the main or virtual memory, so that subsequent ac-

cesses are direct and the file system interface is avoided. But the initial act of

copying the file into the computational memory and the subsequent recopying of

it back to the file memory after the application has finished using it result in

very similar copying overheads to those we have already described for program

code.

A further advantage of direct addressability which was mentioned by the

Multics designers was the promise of a very attractive reduction in program

complexity for the programmer. This results from the elimination of the quite

separate and distinct techniques used in conventional programming languages

and software systems for managing information in the computational memory

and for managing information in the file memory. This is an issue which has

been tackled by the persistent programming community.

3 Persistent Programming

Conventional programming languages usually provide features for manipulating

temporary data structures which are generally straightforward and convenient

for programmers to use. These include structures such as arrays, records and

linked lists. However, these convenient programming constructs cannot be di-

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 169

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

rectly used for accessing persistent information held in the file system. (This

reflects the fact that information in the file system cannot be directly addressed

by user programs.) Instead the programmer accesses the latter via a special file

interface provided by the programming language, which is then transformed into

the operating system's interface routines. There are several disadvantages in hav-

ing one style of interface for file data and another for temporary data.

First, the temporary data structures in a program are not stored in compati-

ble formats with the persistent data structures. Second, storing temporary data

structures into files is often not a straightforward task, not only because of the

different formats, but also because pointers consisting of addresses in the virtual

memory cannot simply be copied into the file system and later reused, because

the underlying main memory or virtual memory addresses may be different at a

later time. This problem is further complicated by the fact that files are com-

monly used concurrently by several application processes.

 This theme was taken up in the early 1980s by M.P. Atkinson and his col-

leagues at the University of Glasgow together with R. Morrison and his group at

the University of St. Andrews. In order to avoid having two different approaches

for programming temporary and persistent data, they developed a programming

technique known as persistent programming, based on the use of orthogonal

persistence [101]. They argued inter alia that the same data structuring mecha-

nisms should be used to program temporary data structures in the computational

memory and to program persistent data structures. To demonstrate this idea they

developed the programming language PS-Algol [102]
46

 and later a new persis-

tent programming language called Napier [103].

The persistent programming groups set about demonstrating the feasibility

of persistent programming by implementing "persistent object stores" for PS-

Algol and Napier above conventional hardware, using the basic facilities of con-

ventional file systems. Such a software-oriented approach, which inevitable has

a high performance overhead because it had to be implemented in a convention-

al virtual memory environment, was forced upon them by a lack of appropriate

hardware.

4 More Advantages of Direct Addressing

The management of large bulk data files has become a specialized activity,

known as database management, and this has resulted in the development of

special database languages which have tended to use quite different data models

from those underlying the design of programming languages. Hence these too

have quite different interfaces from the programming language data structures.

46

 see also https://en.wikipedia.org/wiki/PS-algol.

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 170

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

While such database systems tend to provide much more powerful facilities than

basic file systems they add yet another layer of complex software which adds to

the inefficiency of data accesses. Thus although in the final analysis the applica-

tion manipulates its persistent data – like its temporary data structures – in the

virtual memory, it may have to do this indirectly via database routines which

themselves may call file system routines.

The sharp division in most systems between a computational virtual

memory and a file and/or database system gives rise to at least two further areas

of duplication and unnecessary complication: synchronisation and protection.

With regard to synchronisation, the CPU normally provides simple and efficient

mechanisms, but above this the file system provides further synchronisation

mechanisms, and then on top of that there are often additional database mecha-

nisms to achieve synchronisation. This is necessary because the CPU instruc-

tions cannot act directly on synchronisation variables in the file or database sys-

tem, since the latter cannot be directly addressed in the virtual memory.

And perhaps most significantly from our current perspective, the conven-

tional virtual memory organisation leads to a multiplicity of protection mecha-

nisms. This is inevitable if data in the file and database systems cannot be direct-

ly addressed. This additional complexity is more likely to assist security breach-

es than to hinder them.

What all of these points clearly indicate is that enormous benefits could be

gained if it were possible to address both non-persistent (computational) and

persistent (file and database system) data structures in the virtual memory in a

uniform manner. How then can such a directly addressable file system be im-

plemented?

In the following sections we shall first present an ideal model for imple-

menting direct addressability. Then we shall consider various hardware attempts

which have been made to support it, beginning with Multics. With a knowledge

of the pitfalls and strong points we can then look again at whether and how di-

rect addressability can be effectively implemented.

5 An Ideal Persistent Virtual Memory

The fundamental feature of direct addressability is exactly what its name im-

plies: the ability directly to address not only computational data but all persistent

information (conventionally held in file systems). With hindsight it is very easy

to see where the conventional model for virtual memory went wrong: it left in-

tact the distinction, which had been traditionally present in pre-virtual memory

systems, between a computational memory and a file system.

This distinction originally arose because of the different characteristics of

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 171

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

main memory and discs. Main memory is fast, expensive and usually non-

persistent. Disc memory (along with similar magnetic media) is much slower,

much cheaper per byte or word stored, and is persistent. Furthermore, discs are

attached to computers in a similar manner to I/O devices. All of these things

made it natural in the early systems to keep the two kinds of memory distinct.

The problems really began with the half-hearted virtual memory solution,

which simply "stole" some (but not all) of the disc space. All the problems dis-

cussed in the previous section point to the need for a much more radical solu-

tion: the entire memory should be viewed as a single uniform persistent virtual

memory, which has a single virtual addressing mechanism. We call this a persis-

tent virtual memory because, unlike conventional virtual memory, it holds the

persistent data and programs (i.e. the files) of the system as well as the computa-

tional objects. Put simply, the persistent virtual memory includes the entire disc

space and thereby effectively renders the file system (in its conventional form)

unnecessary. The idea behind persistent virtual memory is illustrated in Figure

12.2, which should be compared with the equivalent diagrams for conventional

memory (Figures 7.1 and 7.2).

We have seen in the last few pages some of the benefits which can be de-

rived from this memory model. It promises a vastly reduced amount of copying

of information and a much more attractive persistent programming environment.

As our story unfolds further we shall encounter several other benefits. These in-

clude much simplified software, and some surprising new benefits, including

security benefits, which arise from the fact that the computational memory has

become persistent and there is no separate file system.

We shall also have to consider some new problems which the model raises.

For example, how can a non-persistent main memory (which in this model in

effect functions as a cache for the information on disc) become a component of a

Figure 12.2: Persistent Virtual Memory

Virtual

Memory

Main Memory Disc Subsystem

Computational

Memory

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 172

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

persistent virtual memory? But for the present we leave all these interesting is-

sues aside, until we have a solution for a more fundamental question. How can a

persistent virtual memory be addressed?

6 Direct Addressing in Multics

As its hardware base Multics used the General Electric 645, which had a virtual

memory system based on paged segments. The fundamental difference between

Multics and other systems of the 1960s was the decision to make files from the

file system directly addressable as segments in the virtual memory. However, to

achieve that with the GE 645 architecture was by no means a straightforward

matter. The fundamental problem was the insufficiency of the available virtual

addressing range.

The strategy was to map files from the file system into paged segments of

virtual memory. The segment size limited the maximum size of an individual

directly addressed file to about 1 MB. This is far too small to implement the

business files of a modern database system, although it was probably not a se-

vere problem in the Multics environment, where timesharing users typically

have relatively small files (e.g. source programs, object programs, text docu-

ments and similar).

A more difficult problem arises with the number of files which may need to

be directly addressed as segments. In a timesharing system such as Multics there

may be many users, each with say 1,000 files. With 1,000 users one would have

to think in terms of at least 1,000,000 files concurrently existing in the file sys-

tem. But using the virtual address in the obvious way would have led to a limit

of 16,384 files. So there was a problem with addressing all the files uniquely. It

was this problem which caused many, in fact most, of the complications we are

about to encounter.

What Multics actually did was to take advantage of the fact that no process

ever wants to access all the files in the system at the same time. In fact no nor-

mal process ever wants to access even 16,384 files at the same time. Conse-

quently it was possible to link files to processes dynamically, allocating and de-

allocating segment numbers for them as needed. On the surface this seems a rea-

sonable solution but in fact it is fraught with problems, because it relies on the

use of potentially ambiguous identifiers (the same segment numbers used by dif-

ferent processes).

The first problem, which the Multics designers recognized from the begin-

ning, was that if the same file is used by several processes concurrently then it is

to be anticipated that they will use different segment numbers to address it. In

other words while Process A is accessing File F using segment number 3187,

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 173

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Process B might be accessing the same file using segment number 5940.

In fact the problem is worse than this. How can a code segment know at all

which segment numbers to use to address its files? Clearly addresses containing

segment numbers cannot be embedded in program code segments.

The Multics designers also foresaw another problem. Code segments are

often recompiled (for example to correct errors). This can lead to the individual

code segments beginning at different offsets in an architectural segment in dif-

ferent versions of the same program code. This means that not only do the archi-

tectural segments have different numbers, but the offsets needed for inter-

segment references (i.e. references to the logical segments within the architec-

tural segments) may also change.

In order to overcome these problems Multics used some extremely complex

linking mechanisms, which we have chosen not to describe here. But although

the solutions were quite ingenious they were also quite cumbersome. It is pre-

sumably because of this complexity that most designers of later operating sys-

tems did not follow the Multics philosophy of making files directly addressable

in programs. This is unfortunate because the basic idea of direct addressability

has many advantages, both in terms of execution efficiency and programmer

convenience. In the present author's view the basic concept was the best idea

which came from the Multics designers, but as a result of the implementation

difficulties it is the one which later received the least attention. However, some

years later another attempt was made to harness these advantages, and it came

from a rather surprising quarter.

7 Direct Addressing in the AS/400 Family

In reflections on their earlier design of the DEC PDP-11 systems, Bell and

Strecker commented:

"There is only one mistake that can be made in a computer design that is difficult

to recover from – not providing enough address bits." [104]

This was a mistake which the designers of the IBM System/38 and its successors

in the AS/400 family wanted to avoid. When IBM announced the System/38 to

the world on 24th October 1978 there was considerable surprise that it contained

64 bit "pointers" and 48 bit virtual addresses. What is perhaps even more sur-

prising is that one of the major technical aims of this system was to provide di-

rect addressability to files. The way IBM intended to solve the addressing prob-

lems created by direct addressability was to make virtual addresses large enough

to be usable as unique names.

The System/38 was not a very successful system commercially. In the early

days it had severe performance problems, and it was too expensive for IBM's

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 174

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

System/3 series customer base. However, in 1988 IBM announced an apparently

new system, the AS/400, but under the covers the design was actually based on

the System/38.

In 1991 IBM reached an agreement with Apple Computer and Motorola to

develop the PowerPC as a common architecture for computer processors with a

wide range of aims and performance capabilities. The PowerPC was planned as

a RISC processor architecture and the initial IBM input to the project was based

on their previous mainstream RISC development, the RS/6000, which itself

came out of an IBM RISC tradition going back to the PC RT and ultimately the

IBM 801.

The AS/400, which by this time had become a successful product line, had

a quite different background and tradition within IBM, as a commercial database

computer, where high processor performance was not as important as good da-

tabase performance. Not surprisingly the AS/400 team was reluctant to join the

PowerPC alliance at first. But under pressure from IBM top management they

got involved at a fairly late stage, and managed to influence the design in some

important ways. This has resulted in the use of PowerPC processors in later

AS/400 systems. This story is entertainingly told by Frank Soltis, chief architect

of the System/38 and AS/400 in his fascinating book [105].

The original System/38 actually had a virtual address size of 48 bits. Al-

though its software designers had intended to have a 64 bit virtual address, with

the intention of never running out of addresses, engineering decisions forced

them to accept a 48 bit address. They therefore used some tricks to make this

appear as a 64 bit address when used in a "pointer".

The way the hardware organised the use of virtual addresses gave the sys-

tem just over 4 billion
47

 segments, each segment having a maximum size of 64

KB. The software designers were not happy about either of these limitations.

They therefore chose to define the pointer part of system pointers, as a 64 bit

virtual address. They used two tricks to achieve this. The first theoretically in-

creased the apparent number of segments in the system to 248, which is a little

more than 256 thousand billion segments. The second trick theoretically in-

creased the effective segment length from just over 64 KB to more than 16 MB.

The designers originally calculated that the system could run without prob-

lems for about 180 years, basing this on the expectation that there would be one

restart of the system per day for 365 days per year. Since nobody expected the

System/38 to be around as long as that, there seemed to be no problem.

47

 There is considerable confusion about the meaning of the word billion, see https://

en.wikipedia.org/wiki/Billion. In this book I use the short scale billion, i.e. one thousand

million.

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 175

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

But the way that the software designers actually implemented the system

led to much severer restrictions. One of the tricks involved dividing segments

into different types. Consequently only a little over 4 million jobs could be start-

ed and only 4 million temporary files could be used over the life of the system.

To make matters worse some installations often left the system running over

night, with the consequence that much more than a day might elapse between

system restarts. According to Soltis larger customers actually began to run out of

temporary segments. Their only recourse was to close the system down and rei-

nitialize it. The software was changed in later releases, but in the end the prob-

lem was only completely solved by the appearance of the PowerPC with a genu-

ine 64 bit address space. When used in an AS/400 system the PowerPC virtual

address is split into a 40 bit segment number and a 24 bit offset, which is what

the System/38 software designers wanted from the beginning.

The System/38 designers faced similar problems with the allocation of

segment numbers for persistent files. At the hardware address level only one

quarter of the possible segment numbers could be allocated to permanent files,

and the use of segment groups (the second trick) had the effect of reducing this

even further. Thus a maximum of about 4 million segment numbers were avail-

able for persistent files. This is not a very large number of files over the lifetime

of a system.

A new trick was used to allow up to about 4 million new persistent objects

to be created in each run of the system (i.e. between initializing and closing

down the system). But there was a catch. No two persistent objects could exist at

the same time if they had the same 48 bit address, because at the hardware level

only 48 bit addresses were used. The solution for this problem entailed never

completely deleting a persistent segment, even if the owning user had actually

"deleted" it. Instead – in the System/38 and earlier AS/400 systems – the some

management information was stored in the segment header of a segment con-

taining a persistent object, and this segment header was not destroyed.

The end effect of this was that up to a total of 238 (about 256 billion) persis-

tent segments could be created over the life of a system provided that no more

than 222 (about 4 million) existed at the same time. Soltis mentions on p.201 of

his book how IBM (artificially) limited the amount of disc space that could be

attached to a system to ensure that they would not run out of segment identifiers

for persistent files.

The above description in fact oversimplifies the problems, but if you want

to know more you can read the full details in Soltis's book.

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 176

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

8 Persistent Virtual Memory

Despite the apparent implementation problems the idea of direct addressability,

when taken to its logical conclusion, simplifies so many problems that it should

clearly be strived for. At this point we have not yet described sufficient of the

SPEEDOS software architecture to explain how the problems discussed above

can be solved, but with the confidence that none of these problems is insur-

mountable, we now present the basic model of direct addressability which will

form the basis for the rest of the book.

The proposed solution is quite radical in that in contrast with the systems

discussed earlier in this chapter it totally eliminates the existence of a separate

file system. The basic idea is that instead of "stealing" a part of the file system's

disc space (and otherwise leaving the file system intact), we redefine the entire

disc space as a persistent virtual memory which encompasses the entire magnet-

ic media in a system, including devices such as external discs, as was already

illustrated in Figure 12.2.

In fact we take a further bold step by defining this virtual memory as not

being confined to a single computer but as encompassing the entire magnetic

media (and other storage devices such as flash memory) in all systems which

participate in the SPEEDOS architecture.

The conventional view of networked systems is illustrated in Figure 12.3.

In a SPEEDOS environment each node in the network, instead of being

viewed as a separate computer, with its own virtual memory, is seen by other

computers which participate in the same concept as a set of remote discs which

can be accessed by a SPEEDOS process, see Figure 12.4.

This view of virtual memory eliminates a myriad of duplications and com-

plications which are found in conventional systems, by supporting all those

points mentioned above as advantages of direct addressability, but also by great-

ly simplifying the problems associated with networking and limiting protection

issues to the virtual memory.

Figure 12.3: Conventional Networks

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 177

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Of course we will have to provide evidence in future chapters that such a

scheme can be implemented, but at this stage we must ask readers to have faith

that these proofs will be provided. It can already be said, however, that a limited

early version of the idea was successfully tested in the MONADS Project, the

major project which the author established at Monash University in Australia in

1976. This included both the general idea of a persistent virtual memory and a

limited form of networking in a local area network of four computers.

The main relevant features of the MONADS-PC system were as follows.

i) Virtual addresses were 60 bits wide.

ii) The top two bits indicated which of four networked MONADS-PC

systems was being addressed.

iii) The addresses were unique across the four computers.

iv) The memory consisted of three basic kinds of address spaces

(equivalent to containers in SPEEDOS): file address spaces (holding persistent

file data), code address spaces (holding the code of compiled programs) and

stack address spaces (for holding process stacks).

Although this system successfully tested the basic concept of a uniform

persistent distributed virtual memory, some of the techniques which were used

are not scalable to modern day needs, mainly as a result of the need for unique

addressing and distribution throughout the Internet. However, solutions have

been found and will be explained in volume 2, with some hints being provided

in this volume in chapter 16.

9 Conclusion

This chapter has described an important basis for implementing secure computer

systems. Computer memory is where hackers find the information which they

wish to steal, modify or even destroy. We have taken a schematic look at con-

ventional memory, i.e. how current computer systems organise their memory,

and have found that its interactions with conventional file systems create many

Figure 12.4: The SPEEDOS View of Networks

Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 178

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

duplications and problems. This recalls the situation described in Chapter 1 with

the Berlin Wall. The approach to be pursued in the rest of the book can be con-

sidered, from the viewpoint of its conceptual simplicity, as more comparable

with the Alcatraz approach to prison security.

However, it still remains for us to demonstrate that a simple implementa-

tion of the persistent virtual memory concept is possible. Before we can do this,

it is first necessary for us to describe some further unusual and unconventional

concepts. To this end the next chapter describes how the persistent distributed

virtual memory can be populated with software without resorting to a conven-

tional file system.

Part 4

The SPEEDOS

Software Model

Chapter 13

Software Structures

Recent chapters have concentrated primarily on the hardware features

which might serve as a base on which to build secure computer systems. How-

ever, although an appropriate hardware design plays a significant role in the de-

velopment of secure systems, this alone is not enough. The security of a system

depends equally on the strategies adopted in the design of the software system

(and of course on the correct implementation of these strategies). In this chapter

we examine some ideas for structuring software. In the next chapter we shall

then develop a general software model which can serve as a flexible and modu-

lar base on which a variety of different security models can be implemented.

An important prerequisite for designing secure and reliable software sys-

tems is the existence of a simple and efficient structural framework for the soft-

ware itself. Such a framework must above all take into account the fact that

large and complex software systems cannot be produced by a single person. A

complex software system, such as an operating system or an airline reservation

system or a banking system, contains millions of lines of program code. The de-

velopment of such a system involves hundreds or even thousands of program-

mers working together over several years to produce a single software product.

For this reason any large system must be decomposed into separate units which

can be programmed by different programmers and programming teams.

In the 1950s and the 1960s, when the first large software systems were de-

veloped, software designers had little knowledge or experience of how to go

about the task of breaking large systems into smaller units. The pattern which

they followed was based largely on their experience with designing individual

application programs. The results of this approach are still very much with us

today. Large application systems are typically decomposed primarily into two

kinds of software units: programs and files. The programs contain the code to be

executed, the files contain the data on which the programs operate. This may

seem to be a very reasonable way to decompose systems, but in fact it leads to

Chapter 13 SOFTWARE STRUCTURES 181

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

lots of problems, as we shall now see.

1 The Software Crisis

In the early days of computing, during the 1940s and early 1950s, software de-

velopment was regarded as a relatively simple and straightforward task. In that

period the real focus of interest was centred on the computing machinery itself.

The programs which were developed to execute on early computers were by

modern standards relatively straightforward and unambitious. Programming

mistakes were made, of course, but there was a general feeling that this was due

simply to lack of practice. In retrospect we realize that such an attitude was un-

duly optimistic, if not naive.

During the 1950s and 1960s the potential uses of the computer were in-

creasingly recognized and ambitious projects were undertaken to realize this

enormous potential. Some of these were application projects, concerned with

producing useful end products, such as the development of banking systems and

systems to control the reservation and booking of airline seats. Others were sys-

tem software projects, concerned with improving the use of the computer itself.

These included the construction of compilers for high level languages, and of

operating systems for improving the throughput of the computer by the use of

multiprogramming techniques. As the ambitions of users and programmers

grew, so did the complexity of the systems which attempted to realize these am-

bitions. And as the complexity of the systems increased, their poor quality be-

came increasingly evident.

By the mid-1960s the software industry was in a chaotic state. Systems

were delivered late, often several years late. They were unreliable – the MTBF

(mean time between failure) for many systems actually delivered to customers

could often be measured in minutes! Attempts to rectify errors frequently suc-

ceeded often only in creating new errors. Attempts to extend the use of a system

or adapt it to solve a different but related problem were often doomed to failure.

The idea of trying to transport a large program, such as a compiler or an operat-

ing system, for use on a different type of computer was completely out of the

question. As a result of all these problems the costs of software systems soared

well above the cost of the hardware on which they were executed.

By the late 1960s the software crisis had grown to such proportions that the

N.A.T.O. Science Committee organized two international conferences. The first,

held in Garmisch, West Germany in 1968, was a working conference on "Soft-

ware Engineering", the title being provocatively chosen to focus attention on the

need for software development based both on theoretical foundations and on

practical disciplines, as in the established branches of engineering. Practitioners

with first-hand practical experience of the problems were prepared to air these

Chapter 13 SOFTWARE STRUCTURES 182

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

problems in public, and the conference focused largely on the nature of the prob-

lems, rather than on possible solutions. This was followed by a second confer-

ence in Rome, Italy in 1969, at which the focus of attention was to be on the

technical problems of large software projects. However, according to the Con-

ference Report editors, the most important outcome was the recognition of the

significance and extent of the communication gap between the academics and

the "real-world" practitioners [106, p. 145]. It is interesting to consider the rea-

sons for this communication gap, because they explain to some extent (although

not entirely) subsequent developments in software technology.

On the one hand, academics tend to concentrate on solutions to small, rela-

tively manageable, problems which can be tackled in a university environment.

As a result the 1970s and 1980s witnessed a good deal of progress in the area of

program development. Techniques such as structured programming [107], step-

wise refinement [108], abstract data types [109], object oriented programming

[110], together with improved programming language designs (e.g. Simula 67

[111], Pascal [112], Smalltalk-80 [113] and Modula-2 [114]) and improved veri-

fication techniques, have all played a significant role in raising the quality of

modern software.

But despite these very important developments many of the problems expe-

rienced in the 1960s are still with us today, during the third decade of the twen-

ty-first century. The main reason for this is that most of the problems stem not

from the individual programs which constitute a software system, but from the

structure of the system itself.

This explains why academics and practitioners often found that they were

talking at cross-purposes. Academics tend to emphasize the program level, be-

cause this is the level with which they can come to grips, given the very limited

resources available in universities. But practitioners are more concerned with the

problems of system design for systems which might involve thousands of man

years of development effort [115] or occupy many megabytes of memory. Aca-

demics sometimes express the opinion that the problems are really the same, but

the fact is that many of the programming techniques cannot simply be scaled up

to solve system problems on a large scale. A bigger structured program, or more

verification effort, or a better programming language, is simply not the solution

to the most pressing system design problems. These techniques can contribute

significantly to the quality of the individual programs which form the building

blocks for larger systems. But improving the quality of bricks, or even doors and

windows, does not solve the architect's problem of how to design a well-

structured house!

The analogy is of course exaggerated. Programs may have a more signifi-

Chapter 13 SOFTWARE STRUCTURES 183

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

cant role in software system structures than bricks in house design, and on the

other hand there is no doubt that some software architects are trying to build

cumbersome and bizarre systems. But the facts remain that software systems are

not simply scaled-up programs and that large systems do have an important role

to play in modern society.

2 Software Systems

A conventional software system is not merely a scaled up computer program. It

is a complex entity consisting of many programs which interact with each other,

primarily using data structures (usually in the form of files) as their common

interfaces. The programs in a software system are not all executed together.

Some programs are run frequently, others are run say once a week or once a

month, while yet others are executed perhaps only once a year.

For example in a typical banking system those programs which carry out

the normal everyday banking transactions (such as recording deposits and with-

drawals) are usually executed each night in a batch processing system or they

may run throughout the day in an on-line banking system. But there are other

programs which are run at less frequent intervals. For example some programs

run once a month (e.g. to calculate interest payments or charges, or to provide

management reports), while others may be executed quarterly (e.g. to calculate

account fees and provide yet more reports), and yet others are needed only once

a year (e.g. in connection with taxation requirements and end of year account-

ing). It is important to realize that all these programs, independently of the ques-

tion how often or when they run, largely make use of the same set of files.

This situation is not something special about banking systems. It is typical

of commercial data processing systems (e.g. airline reservation systems, insur-

ance systems, building society systems) and of computer systems used by gov-

ernment departments, etc. In fact this pattern of usage applies to virtually all

computer systems where security is a major issue.

The suite of programs making up such a computer system is not designed

and programmed once and for all and then never changed after it has been deliv-

ered to its users. A computer system exists to serve an organization, and its pro-

grams must be frequently modified to reflect the changing needs and circum-

stances of that organization. For example if a bank introduces a new kind of

bank account, its daily programs must either be changed or new programs added

(or both). Similarly a change in the tax law might require the banks to change

their annual programs. Or management might decide that it needs a different

kind of report, this time affecting one of the quarterly programs.

What often starts out initially as a relatively small and simple application

Chapter 13 SOFTWARE STRUCTURES 184

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

suite is gradually transformed into a monster software system, existing in several

versions, in a state of constant change, lacking a master plan, and costing more

annually in "maintenance" programming than was originally envisaged as the

total system cost. This is a story which almost every experienced software de-

velopment manager will tell you. Getting the initial software developed is only

the tip of the iceberg. The majority of the cost of computer systems goes into

software maintenance.

3 Software Maintenance

Maintenance is the name loosely used throughout the software industry to de-

scribe the activity of making changes of any kind to programming systems after

the initial development is complete. It includes making changes which are need-

ed to correct errors found in the original programs, making improvements and

extensions to reflect the changing needs of an organization, carrying out modifi-

cations which become necessary because the programs have to run on a new

hardware system, and so on.

Software maintenance costs make up a very significant proportion of data

processing department budgets. But that is not all. They often account for a sig-

nificant slice of the entire budgets of companies and even of the national budg-

ets of the advanced and developing nations. This makes software maintenance a

significant problem, not only for the software industry, but also for company

managers and politicians alike. Since the 1990s this problem was increasingly

recognized and research funding was earmarked for this neglected area of soft-

ware technology, for example as part of the European Esprit research program.

Software maintenance has been a cinderella for many years both in the

software industry, where the mistake is often made of leaving the relatively un-

interesting work of software maintenance to trainee programmers, and in aca-

demia, where it has long been seen as a relatively unfruitful area for research. So

perhaps we should welcome the idea of research funding being earmarked for

bringing improvements in an area such as software maintenance, an area which

has proved to be such a drain on national economies. However, such funding

schemes can only be given a qualified welcome. The reason is that the funda-

mental problems which arise in software maintenance have been created in the

software design process
48

, not the maintenance process! In this respect it is

worth bearing in mind that maintaining software is not an activity comparable

with maintaining physical objects. Software does not need to be oiled regularly,

or reconditioned, or cleaned, etc.

48

 A problem which we do not consider further here is that there are very many systems

still in use which have been built over the last six decades or so. An improved design

method does not solve the maintenance problem for these systems.

Chapter 13 SOFTWARE STRUCTURES 185

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Instead software maintenance really boils down to two activities. First there

is the problem of removing errors which were introduced in the design and im-

plementation process. In this case we are not really talking about problems with

a maintenance activity as such, but about problems with an inadequate design

and implementation process. If the design and implementation had been done

better in the first place, software would not need this kind of maintenance. In

fact this is even truer than is the case in conventional engineering projects in-

volving the manufacture of physical objects, where errors and faults can also

creep in during the manufacturing process, because there is no equivalent manu-

facturing process in software. Once the software has been designed and imple-

mented it is simply copied from one disc to another, using a process which is so

reliable that the introduction of copying errors is negligible.

The second software maintenance activity involves extending and modify-

ing existing systems to suit new requirements. This also is basically a design

issue. The really important point in this situation is that the original system

should have been designed in an extensible and modular fashion. Although the

word modularity is one of the catch cries of the software industry, genuinely

modular design is an art which is scarcely practiced in any significant sense.

In other industries modularity usually implies inter alia that a system can

be constructed from components which have been separately designed and im-

plemented according to standard specifications. In most cases such components

are general purpose, designed to be incorporated into many different products.

For example, in the automobile manufacturing industry the designer of a

new car model does not normally produce his own new designs for the tyres, or

for the electric light bulbs to be used in the headlights, or for the spark plugs,

etc. He can take advantage of the fact that such components already exist and

that they are manufactured by secondary industry to a specification which al-

lows them to be used in many models of car and sometimes in other products.

In contrast the software system designer and his implementation team usu-

ally create an entire software system from scratch. It is hardly surprising that

such a method produces many errors. If components are designed and imple-

mented anew with each system, usually ignoring the work done on other soft-

ware systems, then there is much more scope for error than if the same well tried

and tested components are reused in many systems.

Similarly if a design is based on the use of modular components it is usual-

ly much easier to extend or adapt this to new circumstances. The automobile

industry does not produce new models out of thin air; it takes an existing basic

design, then adapts and improves it as required.

Modularity is one of the key features contributing to the success of other

Chapter 13 SOFTWARE STRUCTURES 186

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

engineering systems. We now consider what this should and could mean for the

software industry.

4 Software Modularity

Although system designers and programmers talk readily of decomposing their

software systems into modules and even regard modularity as an essential or a

highly desirable aim, in practice there is no widespread agreement about what

constitutes a module or what criteria should be used in the design of modules.

As this is not a book about software engineering, we shall not embark on a long

discussion about different views of software modularity. Instead we shall use a

simple working definition which will help to develop our theme.

Most software designers and programmers will probably at least agree that

modules are the building blocks out of which software systems should be con-

structed. Most will probably also be prepared to regard a module as an in-

dependent component which marks the transition between the work of the sys-

tem designer and that of the programmer. In other words a module can be re-

garded as an object which is specified in a system design stage, and which is

then handed over to a programmer or programming team whose responsibility is

to implement it.

But that is probably about all that will be widely agreed upon about the

meaning of software modularity. For example, there is sometimes discussion

about how "big" a module should be. Some will say that it should be a program

small enough to fit onto one side of a sheet of A4 paper (thus giving the pro-

grammer an overview of the design of the entire algorithm). Others have argued

that a module is the same thing as a procedure. Yet others would view a collec-

tion of procedures (e.g. a subroutine library) as a module.

But such discussions are quite futile. Why should there be a single "size"

for a module? In other engineering systems larger components are constructed

from smaller components, which may in turn be constructed from yet smaller

components, and so on. Similarly there seems to be no reason to exclude the

possibility that software modules can be constructed from other software mod-

ules of smaller granularity, and so on.

It is more important to consider the implications of having modules with

different granularities than to argue about what the "right" granularity should be.

In particular, it is relevant for our discussion to consider where the knowledge of

modules of different granularities resides in a computer system.

As we have already seen, there are small software components in a system,

such as procedures, records and arrays. These can map onto logical segments at

the architectural level of a computer system, assuming that the architecture sup-

Chapter 13 SOFTWARE STRUCTURES 187

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ports logical segments. If it does not then these are managed entirely within the

compiler.

The more interesting issue is, what software structures correspond to larger

components? Traditionally operating systems have supported a variety of larger

software structures. The most obvious of these are programs and files. But there

are several other larger structures that are often explicitly supported in various

ways by operating systems. For example most systems distinguish between pro-

grams and subroutine libraries. Programs traditionally have a single entry point

(where the program execution begins), whereas a subroutine library is a collec-

tion of related subroutines which usually provide similar or related functions

(e.g. statistical, trigonometric or financial subroutine libraries). In contrast with

programs, a subroutine library usually has a separate entry point for each func-

tion. In older systems overlays, which we briefly encountered in Chapter 7, were

regarded as modules. Another kind of module is an operating system module,

which is usually managed and organized separately from application modules.

Whatever the definition of a module, the emphasis has in one way or an-

other been on units which primarily contain code. This was undoubtedly influ-

enced by the fact that programmers think of themselves mainly as designers of

algorithms. Producing programs is their job, and the dynamic flow of control of

the code is generally uppermost in their minds when they think about computing

issues. Data on the other hand is what an application program or an operating

system program produces. This can simply be stored in files or in operating sys-

tem tables, etc.

This separation of software structures into programs and other code mod-

ules on the one hand and into files and other data structures on the other hand

has determined the entire structure of software systems. As we have seen, the

operating system itself is usually regarded as consisting of two main parts: the

part which manages the computational memory and the part which handles files

(i.e. the file system). Similarly database systems traditionally consist of a code

part which implements the data base and a part holding the data of the data base.

Application systems likewise consist on the one hand of programs and code

modules and on the other hand of the files which they manipulate. Let us now

look at some of the problems which arise when this approach is adopted.

5 Flow of Control Modules

Module decomposition influenced exclusively by algorithm design and other

dynamic flow of control considerations inevitably leads to the design of systems

which allow several modules to access the same data structure. As an example

of this we consider an operating system design approach which was common in

the 1960s for mainframe computers. A typical operating system from that period

Chapter 13 SOFTWARE STRUCTURES 188

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

includes various data structures representing the state of particular aspects of the

system.

A common example is a table defining the properties of the system's input-

output devices. This data structure must be accessed by several modules. As

Figure 13.1 illustrates, these might for example include:

 (a) device drivers which perform the actual input-output operations;

(b) file system modules which need to know the properties of the disc drives

and the identities of mounted discs;

(c) virtual memory modules concerned with the discs holding the extended

computational memory;

(d) modules which allocate input-output devices to user programs;

(e) spooling modules which read and write data for slow devices;

(f) archiving modules which transfer files between magnetic tape and disc.

A number of serious problems arise in such a situation:

(i) The specification of the system design is difficult. Each major data structure

in the system must be specified down to the last byte and bit at a very early

stage. This in turn means that the system designers must anticipate many

details of the design of the algorithms which access such structures. Conse-

quently there is a strong risk that changes will have to be made to the speci-

fications when the algorithms are eventually developed.

(ii) Communication between the implementers of separate modules is high. It is

impossible with present specification methods to achieve an absolutely un-

ambiguous specification for a raw data structure, particularly in terms of the

Device

Drivers

Device

Allocators

File System

Modules

Virtual Memory

Modules

Modules

Spooling

Modules

Archiving

Modules

Input-Output

Device Table

Figure 13.1: Flow of Control Modules in an Operating System

Chapter 13 SOFTWARE STRUCTURES 189

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

interpretation of the values which it contains. Consequently the implement-

ers of the modules which access it often need to spend an excessive amount

of time discussing the details (without any certainty that they finally reach a

common understanding). Misunderstandings of this kind inevitably result in

programming inconsistencies.

(iii) Inconsistent modules create difficult debugging problems. Because each

module accessing a shared data structure relies on the correctness of other

modules, an error in one module often manifests itself as strange behaviour

by another module (which may itself be correct). Detecting the source of

such an error can be a very difficult task, because it may involve a careful

examination of all the modules which access the structure.

(iv) Verification is difficult. Verification of the correctness of the system, either

by formal proof or by testing, is extremely difficult if several modules ac-

cess a common data structure, because the validity of assumptions which a

module makes about the data structure depends on the actions of other

modules.

(v) Synchronisation problems easily arise. If the separate modules can execute

concurrently, access to the data structure must be properly synchronised to

ensure that its contents remain consistent. This means that each accessing

module must contain the correct synchronisation protocols. If one of the

programmers forgets this, or gets it wrong, then the system will once again

be in error.

(vi) Maintenance of the system is difficult. Apart from the debugging problem

mentioned above, maintenance becomes a difficult problem, especially if it

is not carried out by the original system programmers, because the mainte-

nance programmer is faced with the formidable task of understanding many

complex indirect interactions between the various modules.

(vii) Extension/adaptation of the system is difficult. Changes to the system de-

sign are extremely difficult to make without errors both because of the

complexity of the interactions and because a change to a shared data struc-

ture incurs the risk of requiring changes to all the modules which access it.

(viii) Optimisation of the system is difficult. Optimisation, e.g. to improve sys-

tem performance, often involves changes to the underlying data structures.

In this case the problems which arise in system extension or adaptation

arise here also.

These are among the more serious of the problems which gave rise to the soft-

ware crisis that has been with us since the 1960s and which the N.A.T.O Con-

ferences [106] did not succeed in solving. Among the systems most affected at

that time were those major operating systems which were designed according to

the above technique, relying on a system decomposition based on flow of con-

trol considerations and the extensive use of shared tables as major interfaces be-

Chapter 13 SOFTWARE STRUCTURES 190

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tween modules.

It is not difficult to see where the basic weakness of such a design method

lies. The fundamental problem is that there are many complex interactions

which take place indirectly (via the shared data structures) between apparently

independent modules.

Since the 1960s some progress has been made in modular design tech-

niques. This is particularly true of the object oriented design approach, which

has been applied with some success to the design of a few newer operating sys-

tems (but not those widely in use). Unfortunately it has not been widely recog-

nized that the same problems occur in other systems, particularly in commercial

data processing systems, which are similarly decomposed primarily into pro-

grams and code modules. Interactions between the programs take place indirect-

ly, as in the operating system example just discussed, via independent accesses

to major data structures – in this case in the form of files. This approach to sys-

tem design continues to result in expensive, poor quality software which is er-

ror-prone and difficult to maintain, to extend and to adapt to other environments.

Even the appearance of object oriented databases has not provided the necessary

breakthrough, because the objects in that approach correspond by and large not

to the larger granularity units under consideration here, but to the smaller objects

such as the database records.

In the rest of this chapter we shall consider the main ideas behind object

oriented programming, since this offers the most promising basis for finding a

solution to software system design problems. But in the course of this review the

reader should bear in mind that in general the object oriented programming ap-

proach has in the past been used mainly as a technique for structuring individual

programs, not entire systems. In other words, the "objects" in object oriented

programs are modules of small or medium granularity that are contained within

programs, not the programs and files themselves.

6 The Information Hiding Principle

Before exploring the idea of object oriented design in more detail, it is worth

considering an important forerunner of this approach, the information hiding

principle, to see how the problems associated with flow of control modularis-

ations can be solved. The information hiding principle was proposed as a soft-

ware decomposition technique by D.L. Parnas in the early 1970s [116].

Observing the excessive amount of communication which had to take place

among implementers of separate modules [117], the tendency of programmers to

take advantage of detailed implementation information about other modules, and

the problems of specifying module interfaces [118], Parnas proposed that all de-

Chapter 13 SOFTWARE STRUCTURES 191

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

tailed items of information in a system or program should be hidden within a

module, and that this module should present a relatively simple interface to oth-

er modules. He went on to illustrate how this can be achieved by placing togeth-

er into a single module both a major data structure and the routines which access

it. Other modules which need access to the information in the data structure ob-

tain this indirectly by calling the interface routines of the module.

If the information hiding rule about data structures is strictly enforced

throughout a system the consequence is that all inter-module interfaces can be

expressed in terms of routine calls. For example, suppose that some program

(e.g. a compiler) needs to store items (say integers) in a queue, then the queue

(called a First In First Out – or for short FIFO – Queue) can be built as a sepa-

rate information-hiding module, with the following interface routines:

(a) an operation "enqueue", which puts an element at the end of the queue,

(b) an operation "dequeue", which removes the element at the beginning of the

queue,

(c) an enquiry "first", which returns the value of the first element without

changing the state of the queue, and

(d) an enquiry "length", which returns the number of elements in the queue

without changing its state.

This is illustrated in Figure 13.2. Hereafter, diagrams of this kind are used to

represent information hiding modules.

A crucial advantage of this technique is that all the major implementation

decisions remain hidden from users of the module. There is no indication what-

soever in the interface definition of the queue module (which consists of a list of

routines with their parameters) how the data structure is implemented. It could

be an array, but it could equally be a linked list. And if a linked list, it might be

maintained by single links, by double links, or in a circular structure, etc.

The great benefit of this approach is that if the implementation details are

hidden from client modules, the programmers of these client modules cannot

Stack Data

Structure

Enqueue

Dequeue

First

Length

Figure 13.2: A Simple Information Hiding Module – A FIFO Queue

Chapter 13 SOFTWARE STRUCTURES 192

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

take advantage of them. For example the user of such a module cannot directly

read the value of a variable defining the current length of the queue. Such a vari-

able might possibly exist in the implementation of the queue, but it is equally

possible for example that in an array implementation the "length" enquiry calcu-

lates this value by subtracting a base of queue pointer from a top of queue point-

er
49

. Thus the information hiding principle gives the implementer of such a

module considerable freedom both to choose a suitable implementation and to

change that implementation later – without affecting the client programs or

modules using the queue module via its interface routines.

Although this technique is remarkably simple to state and is usually easy to

use, it was ignored for many years by most system designers, who in general

preferred the flow of control decomposition technique. Most importantly, it goes

a long way towards eliminating the many problems associated with the flow of

control technique discussed in the previous section.

A simple-minded application of the information hiding principle to the in-

put-output device table problem discussed in the previous section would result

in the introduction of a new module with interface routines which include en-

quiries for providing the remaining modules with indirect access to the infor-

mation they require and with operations which on request modify the infor-

mation. In reality there would be much to criticize in such a simple-minded de-

sign, as will become evident later, but these criticisms are unrelated to the in-

formation hiding principle.

Despite its shortcomings a decomposition of the system which simply hides

the details of the input-output device tables would already solve most of the

problems which arise in its flow of control counterpart, as we shall now show,

using the same enumeration as was used to describe the problems.

(i) The first problem which we encountered was that the specification of the

system design decomposed according to the flow of control principle is dif-

ficult, because every detail of the very complex table would need to be

specified. While we have not discussed specification techniques in any de-

tail, readers will realize that a specification which is expressed in terms of

routine calls is much simpler to achieve than one which involves the exten-

sive use of shared tables. For example it is much easier to convey the mean-

ing of two routines for allocating and deallocating devices expressed along

the lines:

 routine allocate_device (device#:int)

 routine deallocate_device (device#: int)

49

 In fact the calculation is a little more complicated than this if the queue is allowed to

wrap around in the array, but that does not affect our point.

Chapter 13 SOFTWARE STRUCTURES 193

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

 than it is to convey the significance of the setting and unsetting of bits (or

the noting of job numbers to which devices are allocated, etc.) in tables.

Nevertheless, the information hiding technique does not fully solve the

specification problem, which is a difficult issue that we shall shortly discuss

in more detail.

(ii) In the flow of control approach the level of communication between the

implementers of separate modules is likely to be high, because of the need

to clarify ambiguities in the meaning of values in the shared data structure.

But with the information hiding principle the input-output device table is no

longer visible to the designers of other modules, and the routine interface is

likely to be much easier to understand. Consequently it is to be expected

that the need for communication between implementers of separate mod-

ules will be greatly reduced. Long discussions about the precise signifi-

cance of particular values of words and bits in tables are avoided.

(iii) The difficult debugging problems which arise when an error in a data struc-

ture caused by one module manifests itself as an apparent error in another

module sharing the same data structure do not occur in an information hid-

ing system, because there is only one module which accesses each major

data structure and which can therefore be responsible for errors in the data

structure. Consequently the search for the error is confined to a single mod-

ule and to one programmer who understands the module. (Here we are as-

suming here that the computer's basic protection mechanisms ensure that no

other module can directly access the internal data structures of another

module. It will be shown in a later chapter how this is achieved.)

(iv) In an information hiding environment, the verification of module correct-

ness is much easier than in systems which use the flow of control tech-

nique. On the one hand testing environments can be constructed which are

based simply around a generalised routine call mechanism rather than

around specific data structures. On the other hand formal program proofs

become easier (though not easy) because all the relevant information is col-

lected together in a single module, and the program prover need not be con-

cerned with side-effects from other modules.

(v) Synchronisation problems, which can become very complex when several

distinct modules attempt to access a shared data structure, are likewise easi-

er to handle. Because all access to the data is confined within a single mod-

ule, a single programmer has an overview of all the interactions which need

to be synchronized. This is the basis on which synchronisation techniques

such as "monitors" [119] and "path expressions" [120] are based.

(vi) The difficult task of the maintenance programmer becomes easier when the

information hiding technique is used, because related definitions (of both

data and code) are contained in a single module, which can therefore be un-

derstood without reference to the texts of a large number of other modules.

Chapter 13 SOFTWARE STRUCTURES 194

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(vii) Adapting and extending systems designed according to the information hid-

ing principle promise to be easier, because both modules and the interac-

tions between them are easier to understand, and because in many cases a

change to a data structure will have only local effects on the information

hiding module and on a new client module which needs the additional in-

formation. It also becomes straightforward to add additional routines to a

module interface without affecting existing software.

(viii) Finally, in contrast with systems designed around the flow of control

technique, optimisation of a data structure and its related access routines

can be undertaken with the confidence that only a single module need be

changed. Provided that the new version faithfully implements the same in-

terface as the former version, other modules remain unaffected.

Compared with the flow of control technique for module decomposition, the in-

formation hiding technique offers many benefits, at least for systems which ma-

nipulate substantial data structures. The reason for this is clear. The information

hiding technique is an expression of the central idea in general systems design

that the complexity of interactions in a system is kept within manageable bounds

by clustering together into a single subsystem the components which have the

greatest need to interact with each other.

In this case the components which clearly have the most intensive inter-

actions with each other are the major data structures and their access routines.

The main mistake in the flow of control decomposition method is to separate

these strongly interacting components into different modules.

7 Abstract Data Types

The key concepts of the information hiding principle reappear in an idea known

as abstract data types. This takes the further step of allowing a module that has

been defined according to the information hiding principle to be treated as a type

definition.

Just as in normal conversation the word "type" is used to indicate the com-

mon features of similar objects, so in programming language jargon a type defi-

nition defines the features of variables with similar characteristics. Given a type

definition, a programmer can declare individual instances of that type and thus

determine their behaviour.

"Typed" programming languages are languages which support such a con-

cept. However, not all typed languages support abstract data types. Most of the

conventional programming languages, for example Pascal, C, Fortran and

Cobol, support only certain standard in-built types. These are types the behav-

iour of which is fixed by the definition of the programming language, such as

booleans, integers, reals, and characters (which usually map directly onto the

Chapter 13 SOFTWARE STRUCTURES 195

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

types supported at the hardware level).

A type definition principally determines the range of values which an ob-

ject or variable can validly have and the operations which may be validly carried

out on them. For example variables of the type integer have a fixed range of val-

id values (usually determined in practice by the size of a computer word) and

there is a fixed set of valid operations defined for integers, such as addition, sub-

traction, multiplication, and so on. The compiler for a typed language can usual-

ly determine at compile time whether the operations on variables which appear

in the program that it is compiling are valid. For example the statement

a = b + c

is valid if a, b and c are integers. This statement means that the integer values

stored in b and c should be added together and the result stored in an integer var-

iable called a. It is valid because there is an addition operation defined for the

type integer. (In fact the compiler can determine at compile time that the opera-

tion is a valid operation but it is only possible at run time – when the addition is

carried out – to determine if the result of the addition is within the range of val-

ues determined by the type integer.)

On the other hand the compiler can at compile time recognize that the

statement

a = b ÷ c

is invalid if a, b and c are integers, because the normal division operation taught

in schools is not guaranteed to return a valid integer value. This is because the

result of dividing one integer into another integer can result in a fraction. For

example 2 ÷ 3 gives a result which is a fraction, not an integer (recall that an in-

teger is a whole number). Thus the "normal" division operation is usually not

defined as a valid operation for the type integer (but it is for the type real) and

the compiler can recognise mistakes of this kind at compile time.

Languages which are defined in such a way that type rules are always rig-

orously enforced by the compiler are called strongly typed languages. There are

weakly typed languages (such as C) which are not quite so rigorous, and there

are some completely typeless languages, where anything goes, such as Small-

talk.

A language supporting abstract data types allows the programmer to go a

step further by introducing new types to supplement the in-built types. For ex-

ample if the definition for a queue module which we used in Figure 13.2 is re-

garded as an abstract data type, this can then be used to define not only a single

queue, but a type of object called a queue type. Then the programmer can de-

clare many queues in his program (just as he can declare many integers), all of

Chapter 13 SOFTWARE STRUCTURES 196

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

which can be operated on only by calling its routines, i.e. the operations

enqueue, dequeue, length and first.

To illustrate this idea further let us now define a bank account type as an

abstract data type. We base this on the example which was already used when

we were discussing protection models, and which was illustrated diagrammat-

ically in Figure 2.7. A simplified version of this is now shown in Figure 13.3.

There are several important advantages to be gained by the use of abstract

data types in programs. These include the following.

Routines and their associated data structures are defined together as a

recognisable structural element of the program. This is important for those –

such as maintenance programmers – who need to understand a program. It is

usually not possible in programming languages which do not support abstract

data types, such as Pascal or C.

Data structures are hidden from other parts of a program, being accessible

only indirectly via the interface routines of the type. This is the information hid-

ing principle showing through, and brings the benefits which we have already

described.

The same definition can be used for the declaration of many variables. For

example, many bank accounts can be created and accessed using the definition

in Figure 13.3.

The definition can be framed in terms of "semantic" operations. The opera-

tions defined for the type bank account, for example, correspond to the "real

life" operations on bank accounts. (At least they are intended to. If they don't it

is only because I am not an expert in banking systems!) This again makes it eas-

ier to understand programs.

Inappropriate operations are excluded. The compiler can check that only

the operations defined as interface features of the abstract data type can be in-

voked in programs.

Deposit

Withdraw

Add
Interest

Account
Balance?

Authorise

Overraft

Open
Account

Overdraft
Limit

Close
Account

A Bank

Account

Figure 13.3: A Bank Account as an Abstract Data Type

Chapter 13 SOFTWARE STRUCTURES 197

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

8 Specifications and Implementations

There is one further advantage which I would like to have been able to add to

the list of benefits of abstract data types. That is, that abstract data types offer an

attractive way of defining components which can be widely re-used in many

programs. This would be comparable for example with the way an electrical en-

gineer uses electronics components. If he needs an AND gate or a multiplexer or

a ROM or a seven segment number display, he looks in the appropriate data

books for a suitable component, finds what he wants and then incorporates it

into his system.

In the same way, we could imagine that programmers who need a queue

module or a bank account module or a calendar module, etc. could look up defi-

nitions for appropriate abstract data types in software data books, order the code

and use it in their programs. But this unfortunately does not happen in practice.

There are many reasons for this, most of which need not be discussed here. But

one of them is important: most languages which support abstract data types (and

most object oriented languages, which we shall discuss shortly) do not provide a

clear separation between the specification of a type and the code implementation

of it. This is unfortunate, for at least four reasons.

First, without a separate interface specification it is difficult to produce use-

ful software data books. To include the entire implementation code is undesir-

able, because it does not provide a clear overview of the module. Furthermore, it

would then be possible for potential customers simply to copy the code, so no-

one would actually have to buy it, which is unlikely to encourage the develop-

ment of a software components industry!

Second, the absence of a separate specification is not conducive to the idea

of using different implementations of a module in different situations (e.g. one

version optimized for speed and another for memory usage, or one version suit-

able for a module containing only a few elements and another capable of hand-

ling large numbers of elements). In order to make such different imple-

mentations interchangeable they must have a common specification.

Third, without a clear specification technique it is difficult for a system de-

signer to define the types which he needs and then hand over a specification for

them to the programmers whose job it is to provide an implementation.

Fourth, without an interface specification the programmer of a client mod-

ule must examine the code of the modules he uses in order to know how to use

the interface.

One of the reasons why most languages do not clearly distinguish between

specifications and implementations is, as we mentioned earlier, that complete

formal specifications are feasible only for relatively small and simple modules.

Chapter 13 SOFTWARE STRUCTURES 198

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

However, there is an alternative – to use those parts of a type definition which

define how to use the interface (e.g. the routine headings) as a partial spec-

ification, and to supplement this with further useful information that can be pro-

vided formally and/or informally. Supplementary formal information can for

example be provided to define pre- and post-conditions for routines (i.e. condi-

tions that must hold before and after their execution) and also as invariant condi-

tions for the entire type (which must always be true). Supplementary informal

information can be supplied in the form of comments, describing in natural lan-

guage aspects of the specification which cannot be expressed formally.

9 Object Oriented Programming

Abstract data types have also been incorporated into object oriented (OO) pro-

gramming languages such as C++ and Java. The terminology changes a little but

most of the ideas of abstract data types are carried over. Instead of talking about

types it is usual to refer to classes. Similarly the instances of a class are called

objects rather than variables. This emphasises the idea that the instances of an

abstract data type can represent real world objects. The routines associated with

a class are called its methods.

Unlike abstract data types, classes in most OO languages have unfortunate-

ly dropped the strict information hiding requirement of permitting only routines

in the interface definitions, by allowing data types to be declared alongside

methods. This saves programmers a little work in some cases, but it has the un-

fortunate effect that a class, unlike an abstract data type, cannot have different

implementations. (This is also excluded by the fact that a class serves both as a

type and an implementation.)

The most interesting new step which was introduced through OO program-

ming is "inheritance". The basic idea of inheritance is that the objects of a class

can "inherit" features from another object class. (We shall call the class from

which features are inherited the parent class, and the class which inherits them a

child class.) The relationship between these parent and child classes is often de-

scribed as an "is-a" relationship. For example we might say that a student (child

class) is a person (parent class) or that a savings account (child class) is a bank

account (parent class). Typically OO (object oriented) languages allow parent

classes to be extended and hence specialised in child classes. (A student is a spe-

cialised kind of person, a savings account is a specialised kind of bank account.)

In this way a class person, for example, can be specialised in many different

ways, e.g. as a student, a teacher, an administrator, etc. This allows the parent

class defining person be re-used in all the various child definitions. And child

classes can be treated in programs as if they were the parent class. Thus for ex-

ample if a university wishes to send a letter to all persons connected with the

Chapter 13 SOFTWARE STRUCTURES 199

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

university, it could obtain their addresses (which would be part of the parent

class person) using the same code, regardless whether they are in fact students,

academics or administrative staff. This is an example of the more general idea

called polymorphism.

10 Qualifying Types

Qualifying types, an extension of object oriented programming, is the name of a

software structure which is currently not widely known, but which will play a

significant role in our later discussions of security and protection. An initial ver-

sion of the idea was published in 1997 [121] under the name attribute types. The

idea has since been extended considerably and incorporated into the Timor pro-

gramming language, a new OO language developed to provide SPEEDOS with

programming language support for the novel features which cannot be pro-

grammed in normal programming languages. An overview of Timor appears in

[87]. In accordance with the above discussion (and in contrast with OO lan-

guages such as Java and C++) it strictly enforces the information-hiding princi-

ple.

Timor differs from other programming languages in that it supports not on-

ly the normal OO concepts but also qualifying types [122, 123] (and many other

protection-related features needed for SPEEDOS [124, 125, 126]).

A qualifier is an instance of a qualifying type which has all the normal fea-

tures of objects, including its own data and methods. But it also has some special

methods, known as bracket methods, which are designed to bracket the code of

other objects. There are two kinds of bracket methods, call-in and call-out

brackets, which are activated differently from normal methods.

10.1 Call-In Bracket Methods

When one object calls a method of another, this can be represented as shown in

Figure 13.4:

A qualifier can be associated with a target object such that its call-in brack-

et methods can "catch" a normal method invocation before it reaches the target

object (i.e. its qualified object), i.e. instead of the code of the method of the tar-

get being invoked, the code of the appropriate call-in bracket method is invoked

method invocation

Client

Object

method return

Figure 13.4: A Normal Method Invocation

Target

Object

Chapter 13 SOFTWARE STRUCTURES 200

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

[122] (see Figure 13.5).

Depending on how it has been defined, the bracket method may have ac-

cess to the parameters which the client object intended to pass to the qualified

object. But it has no access to the data of either the client object or of the quali-

fied object.

10.2 The Body Statement

A call-in bracket method contains normal code, but it has one extra feature,

called a body statement. The effect of this is to call the method of the qualified

object which the client originally intended to call. This organisation of bracket

methods gives its programmer a number of interesting options.

10.3 Augmenting Bracket Methods

Additional code can be added before calling the qualified object (in the part of

the bracket method called a prelude). This code might for example access syn-

chronising variables in the data of the qualifier, thus causing an unsynchronised

qualified object to be synchronised [127]. Or from the security viewpoint it

might for example maintain a log of calls to the qualified object which can later

be printed out or analysed by another computer program to detect attempts to

hack the qualified object.

When the method of the qualified object has completed its task, it returns to

the postlude section of the call-in method (i.e. the statements following the body

call). In the postlude section it can, for example, reset the synchronisation varia-

Client

Object

Qualified

Object

Bracket

Method

Qualifier

Object

Figure 13.5: A Qualifying Type with a Call-In Bracket Method

Client

Object

Qualified

Object

prelude;

body;

postlude;

Qualifier

Figure 13.6: An Augmenting Bracket Method

Chapter 13 SOFTWARE STRUCTURES 201

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

bles. This option, which augments the qualified object, is shown in Figure 13.6.

10.4 Testing Bracket Methods

Code in the prelude can check some condition (e.g. a security condition) and

depending on the result might decide not to invoke the interface method of the

qualified object. The result might be that the target object is not called at all.

This is illustrated in Figure 13.7.

10.5 Replacing Bracket Methods

Finally, the bracket method need not contain a body call at all (not even in a

conditional statement). In this case the target object is in effect replaced by the

qualifying object. One possible use of this is to set up a qualifier as a decoy

which can be used as a disinformation technique. Figure 13.8 illustrates this pos-

sibility.

10.6 Multiple Qualifiers

More than one qualifier can be associated with a qualified object. In this case

there is a defined order such that the first is invoked as a result of a routine call

from a client object, the next is then invoked if this makes a body call, etc.; a

body call from the final qualifying object (if it ever happens) results in the target

object being called. The postludes are executed in reverse order.

Client

Object

Qualified

Object

prelude;

if test passed

body

else ...

postlude;

Qualifier

Figure 13.7: A Testing Bracket Method

Client

Object

Qualified

Object

prelude;

return

postlude;

Qualifier

Figure 13.8: A Replacing Bracket Method

Chapter 13 SOFTWARE STRUCTURES 202

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

10.7 Call-Out Bracket Methods

The principle of call-out bracket methods [123] is similar to that of call-in meth-

ods, except that

a) they are triggered by a call from a qualified object to some other object (the

call-out object);

b) a call statement (cf. the body statement for call-in methods) is used if the

call-out bracket decides to pass the call on to the call-out object.

The basic concept is illustrated in Figure 13.9, where a qualifying object has

both call-in and call-out bracket methods. However, a qualifier can be pro-

grammed to have only call-in or only call-out routines if that is appropriate.

Call-out brackets can be freely programmed to include or omit a call state-

ment, and can optionally place it in a conditional statement.

At first sight it might be thought that call-out routines are superfluous, with

the argument that they could be implemented as call-in brackets of the call-out

Figure 13.9: A Qualifier with Call-In and Call-Out Bracket Methods

Qualified

Module

Client

Module

Called

Module

prelude;

body;

postlude;

A CALL-IN

BRACKET

prelude;

call;

postlude;

A CALL-OUT

BRACKET

Qualifier

Figure 13.10: A Client with Call-Out and a Target with Call-In Brackets

Client

Module

prelude;

call;

postlude;

A CALL-OUT

BRACKET

Client

Qualifier

Qualified

Module

prelude;

body;

postlude;

A CALL-IN

BRACKET

Target

Qualifier

Chapter 13 SOFTWARE STRUCTURES 203

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

object. However, this is not the case, because a call-in bracket is activated

whenever the qualified object is called, while a call-out bracket is activated each

time the qualified object makes a call to another object, not each time the called

object is invoked. However both a client object and its qualified object can be

qualified (usually, but not necessarily, by different qualifier objects), as is shown

in Figure 13.10.

11 Conclusion

In this chapter we have discussed the software crisis which became apparent in

the 1960s and is still largely with us today, despite many advances in software

technology. A major reason for limited success of current software technology is

that researchers have focused almost entirely on achieving improvements at the

level of individual programs, whereas a major cause of the problems lies in the

conventional methods used to structure software at the system level.

We have spent a good deal of space in describing both currently used ob-

ject oriented programming techniques and an extension to the OO technique,

called qualifiers, a feature of the Timor programming language which is not

found in conventional OO programming languages. Although object oriented

techniques, like most other software techniques which have been developed

since the N.A.T.O. Conferences in the late 1960s, have been produced primarily

to solve problems involving small and medium level software components, we

shall see in the next chapter that these, unlike many other techniques, can be

scaled up to provide solutions for the larger problems of software structuring at

the level of operating system design.
50

 What is even more important is that they

also turn out to provide a framework which makes it relatively easy to improve

vastly the security of future software systems, as we shall also see in the next

chapter.

50

 If an application program is programmed in Timor it is possible to use qualifiers both

within the individual program (implemented by the Timor compiler) and at the inter-

module call level.

Chapter 14

Modules and Protection

This chapter builds on the ideas of information hiding, abstract data types

and object orientation, discussed in the previous chapter, to develop a frame-

work which will allow entire systems – not merely the content of individual

programs – to be flexibly decomposed into modules with properties which not

only eradicate the fundamental structuring problems in current systems but

which can make a significant contribution to improving the security of software

systems.

But before embarking on this task we observe that there are two quite sepa-

rate and orthogonal aspects to software structuring which are often confused in

practice. First there is the static structure of a software system, which is con-

cerned with its decomposition into modules. These static modules can be viewed

in isolation from each other as components which are separately programmable.

In principle, and often in practice, it should be possible to re-use the same mod-

ules as components of different systems and to replace these modules with new-

er versions, for example to improve the efficiency of the system.

These modules can be compared with the physical components of other

systems, such as the motor or the electrical system of a car. And like such major

components of a car, major software modules are themselves decomposable into

modules of smaller granularity. The use of object orientation as a method for

decomposing large granularity modules into smaller granularity objects was dis-

cussed in the previous chapter. In this chapter we tackle the issue how complex

software systems themselves can be decomposed statically into major units.

Independently of their static structure, software systems also have a dynam-

ic structure, which is visible during the execution of code in a system. This is

concerned not with modules but with processes. This dynamic aspect of systems

is not discussed in the present chapter, but will be the subject of the following

chapter.

Chapter 14 MODULES AND PROTECTION 205

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1 Programs and Files

The ideas of information hiding, data abstraction and object orientation repre-

sent interesting and fruitful developments in the quest for better software struc-

tures. But they have been developed and used primarily as techniques concerned

with the internal structuring of individual programs. In other words they have

been used to shape the components into which traditional programs are decom-

posed, but they have scarcely influenced the structural design of large software

systems. The conventional decomposition of software systems (as programs and

data files) is still that in common use, and is the only approach supported by

conventional programming languages, operating systems and computer architec-

ture.

However, the decomposition of application systems into programs and data

files as separate units is particularly harmful, because it creates separate major

system components which have to interact with each other in an extraordinarily

detailed manner. With programs serving as the major modules at the system lev-

el, interactions in the system take the form of file reads and writes. Consequent-

ly interfaces have to be precisely defined in terms of detailed file data structures

which are used by programs that may otherwise execute independently of each

other. The result is that instead of complex interactions being hidden within a

module, they are visible on the interfaces between different modules.

This raises some interesting questions. Can the information hiding, data ab-

straction and object orientation techniques which are effective at the program

component level scale up for use in substantial software systems? Can they

serve as criteria for determining the major units when decomposing entire sys-

tems?

As we consider these questions it should be kept in mind that we are

searching for software structuring techniques which will function well in a very

large persistent virtual memory (see Chapter 12). It will therefore be helpful to

free our thinking from the traditional dichotomy created by conventional com-

puter architectures and by conventional operating systems, which divides the

memory of computer systems into a computational virtual memory and a file

system. A uniform persistent virtual memory gives us much more freedom to

think about supporting unconventional software structures.

What happens if we use these software structuring techniques at this higher

level of system decomposition? The most obvious change is that conventional

data files can be replaced by information hiding, object oriented abstract data

types. This is an idea which I first published with a research student as long ago

as 1982 [128]. One of its major advantages is that it creates the possibility of

basing file protection and security on the semantic operations associated with

Chapter 14 MODULES AND PROTECTION 206

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the file. This results in a much more powerful form of protection than conven-

tional file system protection based on the right to read and/or to write files. That

is a theme which will be developed in later sections. First we first mention some

of the advantages which it brings in terms both of software engineering and of

simplifications to the structure of operating systems.

2 Object Oriented Files

An object oriented file is in principle very similar to the small grained object

oriented program components which we already considered earlier, except that

the files which are most vulnerable to security problems often consists of a col-

lection of smaller items, which we here call records. Thus instead of having a

type definition which describes a single object, e.g. a single bank account (cf.

Figure 13.3), a type definition for a file may (but need not) describe an object

which consists of a whole collection of smaller objects, e.g. a file of bank ac-

counts (cf. Figure 14.1). Several of the routines on the file interface are similar

to those for an individual bank account, except that an additional parameter is

needed to identify the account on which a particular operation is to be carried

out. A further routine (coloured grey) has been added which operates on the file

as a collection of accounts.

No attempt at completeness has been made in this illustration. The im-

portant point is to see that it is possible, and relatively straightforward, to define

a typical data processing file as an information hiding object with semantically

appropriate interfaces.

With this approach the operating system no longer views files as raw data

structures. Instead they appear as modules consisting of several code routines,

which have separately defined entry points, together with an internal data struc-

ture that is not directly accessible to other modules. Furthermore, the code rou-

tines represent an implementation of an abstract type which can be used to de-

fine and implement many different file instances.

Figure 14.1: A File of Bank Accounts

Deposit

Open

Account

Close

Account

Total

Balance

Account

Balance?

Authorise

Overdraft

Withdrawal

Add

Interest

A Set of Bank

Accounts

A Set of Bank

Accounts

Chapter 14 MODULES AND PROTECTION 207

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

What effects does this approach imply for the design of conventional pro-

grams? First, they become smaller. Much of the code which is held as internal

routines of conventional programs (see Figure 14.2) is transferred into file mod-

ules (see Figure 14.3).

But that is not the end of the story. In conventional systems the semantic

routines appear as internal subroutines; hence they need never appear in a speci-

fication. This explains to some extent the mismatch which is commonly found

between the application user's expectations of a system and the actual imple-

mentation. If the most important operations do not appear in software specifi-

Deposit Withdraw Open

Account
......

The Manager's Program The Tellers' Program

The Accountant's Program

Conventional

Bank Accounts

File (Data Only)

Figure 14.2: A Conventional View of a Bank Accounts File

Close

Account

Add

Interest

Account

Balance?

Total

Balance?
......

Open

Account

Close

Account

Open

Account

Authorise

Overdraft

Deposit

Withdraw

The

Manager's

Program

The Tellers' Program

The Accountant's Program

Figure 14.3: The Information Hiding Solution

Deposit

Open

Account

Close

Account

Total

Balance

Account

Balance?

Authorise

Overdraft

Withdrawal

Add

Interest

A Set of Bank

Accounts

A Set of Bank

Chapter 14 MODULES AND PROTECTION 208

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

cations, how can they be expected to be correctly implemented? What is worse,

the same operation often appears (probably with different implementations) in

several programs, as Figure 14.2 shows. The reason is that in conventional sys-

tems the semantic operations associated with a particular human activity or work

role are collected together into a single program, because only entire programs –

not semantic operations – can be protected in a conventional system. Since the

same operations are often needed by several types of user with different protec-

tion requirements (in our example bank tellers, branch managers and head office

accountants) they must appear in each of these programs. On the other hand the

semantic operations on files appear only once in the scheme proposed above, i.e.

within the file itself, as Figure 14.3 shows.

One effect of this structure is that programs can become much simpler,

consisting largely of control routines which invoke the semantic operations of

files. It is the absence of such a division of labour between programs and files

which makes the maintenance of software systems far more difficult than it need

be. This can be illustrated by considering the changes which banking systems,

for example, have undergone over the last few decades as a result of a series of

technological changes.

Early banking systems, like other early commercial data processing sys-

tems, were batch processing systems. In such a system information about bank

accounts was typically held on a magnetic tape, called the "master" file, in a

fixed sequence (ordered for example by increasing bank account number). The

day's banking transactions were collected together each evening, they were en-

coded onto punched cards and then were read into the system. There the transac-

tions were checked for consistency, reasonableness and so, and after that they

were copied onto a second magnetic tape and sorted into the same order as the

master file. In the next step the master file update program would read the trans-

action file and the main file together, and created from them a new master file

on a different magnetic tape. This program included the code for processing the

individual transactions and modifying the banking data, recording deposits,

withdrawals and transfers, authorizing overdrafts, etc. In the final stage relevant

information was printed about the day's transactions. On the next evening the

transactions for that day were vetted, sorted and read against the master file, and

yet another new master file was created.

The control code in the master file update program basically consisted of a

large loop in which the next transaction was read and the appropriate routine for

the deposit, the withdrawal, etc. was invoked. It was in this program that the se-

mantic routines were buried. Since they did not appear on the interfaces of the

programs they did not need to be specified in the design documentation.

Chapter 14 MODULES AND PROTECTION 209

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

The whizzing tapes seen in computer rooms in science fiction films are re-

minders of that era. These were eventually replaced by files on disc, but alt-

hough disc accesses need not be sequential they were often used as if they were

sequential tapes to minimize the changes to the system.

The next stage in the development of banking systems was the introduction

of on-line terminals for the bank staff. For those banks adventurous enough to

introduce on-line updating of the master files on disc, a transaction processing

monitor program was needed, which would read transactions from terminals,

process them and update the master file – by this time a disc file with the rele-

vant accounts being accessed directly. Different control routines were needed in

the transaction processing monitor, but although the basic semantic file opera-

tions (deposit, withdraw, etc.) had not changed, new routines to implement them

were needed in the transaction processing monitor.

The next development was the introduction of ATMs (automatic teller ma-

chines), from which customers can directly initiate transactions. New programs

were needed with new control routines to read in the customers' plastic cards, to

check PIN numbers etc. And again the basic banking operations, although these

had not changed, had to be incorporated into new programs, which typically

meant that they also had to be rewritten.

Then on-line customer banking from home computers was introduced, once

again requiring new programs to access the banking files. This time other pro-

tection requirements had to be built in, but although the basic banking opera-

tions did not change, these once again had to be incorporated into the new pro-

grams.

In the final banking development (at the time of writing) customers were

given the opportunity to access their accounts from their smartphones. This im-

plied yet another set of software developments in which banking routines had to

be incorporated into new programs.

We see from this example how the separation of software into monolithic

programs and data files is not adequate as a structuring tool. The alternative

which we are proposing, i.e. associating files with their semantic operations and

having separate programs which primarily consist of control code, is a natural

consequence of rigorously following the information hiding principle. The re-

sulting clear separation between semantic operations and control code makes it

straightforward to modify the file modules when banking operations change or

the control modules when for example the technology changes. Such a separa-

tion of concerns would go a long way to reducing the maintenance costs of

SPEEDOS systems.

Chapter 14 MODULES AND PROTECTION 210

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

3 Protection Advantages

The substantial advantages of using semantic routines as a basis for defining

semantic access rights was already pointed out in chapter 2 section 3.2. Later in

this chapter we will see how SPEEDOS uses semantic access rights as one of the

foundations of its protection mechanisms (see also [23]).

4 A Uniform Module Structure

In the previous sections we developed the view of a persistent file as an infor-

mation hiding object which is characterised, from the viewpoint of the operating

system, as a module with multiple code entry points and a hidden persistent data

structure. As we shall now see, such a framework can be used not only to im-

plement file objects, but can provide a general software structuring framework

to implement any kind of major software resource which might be needed.

4.1 Programs

A program fits very nicely into this framework. Although conventional pro-

grams do not always need a persistent data structure, their structure can be re-

garded as a rudimentary form of the module structure under discussion. In fact

most programs need some sort of a heap for storing data structures. Furthermore

there are often special files associated with programs, such as a "preferences" or

an "options" file, defining what options a particular user prefers when he is edit-

ing (e.g. default font, character size, style settings) or drawing diagrams (e.g.

centimetres or inches, page size, guidelines and rulers) etc. Such information can

be accommodated in the proposed module structure as a persistent data structure

of a "program". In this case the program effectively plays the role of type man-

ager for the preferences information. (Of course if such a data structure is non-

trivial it should itself be implemented as a separate information-hiding file.)

The design of conventional programming languages and operating systems

usually restricts programs to having a single entry point. However, the module

structure under discussion can easily support multiple entry points. Assuming

that an operating system design allows programs to have many entry points,

which can for example be invoked by a command language interpreter (or an

equivalent graphical interface), this will turn out to be very useful in practice.

For example instead of having two nearly identical programs for calculating sal-

aries, one for those employees who are paid weekly and another for those paid

monthly, it becomes possible to have a single program with two (or more) entry

points. Similarly a provider of software games need not produce separate pro-

grams for chess, draughts, fox and hounds, etc. He can instead sell a single pro-

gram with different entry points for these games. When he develops this multi-

ple entry point program it needs only one common graphics routine for drawing

Chapter 14 MODULES AND PROTECTION 211

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

the chess board, for example. The interface for a games compendium is illustrat-

ed in Figure 14.4. Allowing a program to have multiple entry points can only

make it more flexible!

Another point should be considered if programs are to be integrated into the

same module structure as files. The single program entry point supported by

conventional languages and operating systems is restricted by programming lan-

guages and operating systems to be either completely parameterless or to have a

very special "parameter" mechanism, which for example only allows an input

and an output "file" to be nominated. In practice it would be far more useful to

allow a wider range of parameters, specified in the same way as parameters for

other routines. Then it would become feasible for example to develop a "pocket

calculator" program with multiple entry points, such that each entry point corre-

sponds to one of the calculator operations with its input and its result being pro-

vided as normal parameters.

4.2 Subroutine Libraries

We now begin to see that the distinction between a program and a subroutine

library, supported as a separate mechanism by most operating systems, is rather

artificial. After all, a pocket calculator is just a simple subroutine library. The

principle characteristic of many subroutine libraries is that they provide a related

collection of routines which have entry points that can be independently in-

voked, and which simply carry out calculations. For such subroutine libraries the

proposed module structure can be used without adding or changing anything.

We refer to these as external subroutine libraries.

However there are subroutine libraries which have a somewhat different

character, although they can still be adequately defined as information hiding

modules. These are libraries which manipulate or help to organise the – often

persistent – data of a client module (e.g. a character string library, a collection

library). These need the ability to access and modify the data of some other

module, and efficiency dictates that this access should be direct. The best way to

Chess Board

Chess Program

etc.

Fox and Hounds

Program

Draughts

Program

Figure 14.4: A Compendium of Games

Chapter 14 MODULES AND PROTECTION 212

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

view such libraries is not as independent libraries but as useful extensions to the

code module of the file module for which they provide a useful service. In the

sequel these are called internal subroutine libraries.

4.3 Operating System Modules

In conventional systems, operating system modules are usually handled by spe-

cial mechanisms. With the proposed module structure, this becomes unneces-

sary. Let us consider a few examples, starting with a process scheduler module.

Figure 14.5 gives an impression of how this can be implemented using a uni-

form module structure.

Another kind of operating system module, a file directory (sometimes

called a folder, but which we now call a module directory), is rather like a file. It

also fits nicely into this structure, as Figure 14.6 illustrates.

Yet a third kind of operating system module, a command language inter-

preter (CLI) is structurally more like a program in older systems
51

. This too can

be easily implemented within the uniform module framework under discussion.

51

 In modern systems the graphical interface also needs a mechanism to invoke programs.

Suspend

Activate

Claim

Semaphore

Release

Semaphore

etc.

etc.

Create

Process
Delete

Process

Process List

Figure 14.5: A Process Scheduler Module

Change

AR

Reorder

List

Entries

Rename

Module

etc.

etc.

Create

Entry

Delete

Entry

List of

Modules

Figure 14.6: A Directory Module

Chapter 14 MODULES AND PROTECTION 213

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

In fact the functionality of a CLI can very usefully be extended slightly in a sys-

tem of the kind now under discussion. In particular much can be gained if the

CLI is capable of invoking a selected entry point not just of a program, but of

any module, and of passing to it the appropriate parameters. In this way any en-

try point of any module can be regarded as a potential command which can be

directly invoked by the user.

To achieve this technically is not particularly difficult. The details need not

concern us here. A similar uniform module structure was realised in the MON-

ADS systems. The resulting environment is one in which programs are not spe-

cial entities. Any entry point of any module in the system can be invoked as a

command, provided that certain template information has been supplied to allow

the command name and the parameters to be converted into an appropriate in-

ternal format [129].

This kind of CLI has the advantage not only that any entry point of any

module can be viewed as a command, but also that the CLI becomes a general

module testing tool, because it is able to invoke any of the interface routines of

any module under test. Even those entry points of modules which are never

normally invoked as commands can be called in a straightforward manner and

passed parameters to test their correct functioning. In contrast the testing of any

kind of module except a program in a conventional system usually requires the

tester to do considerable work to construct a suitable test environment.

4.4 Device Drivers

Hardware devices, such as printers, keyboards and monitor screens, are usually

interfaced to the rest of an operating system and/or to application programs by

software modules called device drivers. Such drivers are specialised software

modules usually provided by the manufacturers of the hardware or by the oper-

ating system supplier. The interface between the device driver and the device

itself can be quite complicated, but there is no reason why the driver itself can-

not be designed as an information hiding module.

5 The Proposed Module Structure

The uniform module structure described above requires that all modules, how-

ever simple or complex, in principle require only two containers
52

, viz.

– a data container, which may hold persistent data, but also temporary data

created during the course of a computation carried out within the module,

and

52

 Containers were introduced at the end of chapter 11 as a paged unit of virtual memory

into which segments can be placed.

Chapter 14 MODULES AND PROTECTION 214

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

– a code container, which holds the code segments of a module, but which in

practice can include a mechanism for switching control to certain subrou-

tine libraries that provide assistance in manipulating and organising infor-

mation in the data container.

How such containers are organised will be discussed in later chapters.

6 Simpler Operating Systems

Through adapting the ideas of information hiding, data abstraction and object

orientation we have arrived at a module structure capable of implementing any

kind of software resource needed as a major component of a software system.

This framework has the remarkable property that it can equally well be used to

implement files, programs, subroutine libraries and even operating system mod-

ules.

In conventional systems these different kinds of modules are usually im-

plemented using quite different operating system mechanisms and thus make

operating systems far more complicated than is really necessary. Part of this un-

necessary complexity arises not only from implementing different module struc-

tures as such, but also from the fact that further mechanisms have to exist in or-

der to allow these different kinds of modules to interact with each other. For

each pair of module types which can be linked, at least one linking mechanism

is necessary. These linking mechanisms are often all different. To link a pro-

gram to a subroutine library is usually quite different from linking it to an oper-

ating system module and this is different again from linking it to a file, etc. In

conventional operating systems the number of potential linking mechanisms

grows as the square of the number of kinds of modules.

Not all potential linking mechanisms are implemented in practice in con-

ventional operating systems. For example a subroutine library may normally not

invoke a program and an operating system module may not invoke a subroutine

library routine. So in practice the operating system is complicated not only by

the fact that it implements modules in different ways but also that it has to pro-

vide a variety of different linking mechanisms. And even then it does not allow

all linking possibilities!

By contrast the uniform module structure proposed in this chapter requires

only one kind of mechanism to implement the module and only one mechanism

to link any module to any other module, namely a mechanism which allows the

code of a module to invoke an entry point of another module. Strange as it may

sound, a "file module" can now call the operating system, or a subroutine library

can invoke a program, etc. without any special mechanisms (but subject to the

usual protection rules).

Chapter 14 MODULES AND PROTECTION 215

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

7 Protecting Modules

But what has all this to do with security and protection? The answer is that this

single linking mechanism can be extended to create a powerful basis for check-

ing access rights, and so provide a single very straightforward protection mech-

anism when any kind of software unit is called. A hint of this possibility was

already given in Chapter 2 in the initial discussion of semantic access rights.

Semantic access rights determine which semantic routines may be invoked,

i.e. which semantic routines of major modules of a system as discussed in earlier

sections of this chapter. A uniform protection mechanism based on semantic ac-

cess rights can be embodied in the module invocation mechanism. That is, when

a process executing in the code of a major module invokes a semantic operation

of another module its right to make the call can be checked by the kernel. The

implementation of such checks can in principle be based either on capabilities or

on access control lists.

8 Capabilities or Access Control Lists?

As was described in Chapter 2, capabilities are stored with subjects and they

name the objects to be protected, while ACLs reside with the objects and contain

lists of subjects. Maintaining lists of subjects is potentially a rather complex

matter. Subjects, as we saw in Chapter 2 and will see in more detail in the sec-

ond volume, are not necessarily simply users. When a module is invoked, the

right to invoke it may be vested in the user process, in the file module making

the call or even in the code module implementing its semantic routines.

For example in a banking system security might be enhanced by ensuring

that the right to call some semantic interfaces of a bank accounts file does not

(only) depend on the identity of the calling user, but also (or only) on the identi-

fier of the code module accessing the interfaces, thus ensuring that these are not

being called from a hacker's program.

From the viewpoint of the kernel's design, carrying out such extensive

checks based on access control lists would lead to an extremely complicated

kernel. This complexity can be avoided if the checking of access rights is based

on capabilities rather than ACLs (provided capabilities can easily be associated

with different kinds of subjects, which we shall demonstrate later).

For this reason the protection of modules in SPEEDOS is based on the pos-

session and presentation of capabilities for modules, not on ACLs. We now con-

sider some of the implementation issues involved in this decision.

9 Module Capabilities and Inter-Module Calls

A module capability (see Figure 14.7) consists of a unique module identifier, an

Chapter 14 MODULES AND PROTECTION 216

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

associated set of permissions and some status bits. The list of permissions can be

divided into three basic groups. The first group contains the list of permissions

to call the entry points of the semantic routines associated with the module
53

, the

second contains generic access rights associated with the module and the third

contains the metarights associated with the capability itself (see Chapter 2). In

Chapter 16 these fields are discussed in more detail.

In earlier capability systems the capabilities were normally stored in capa-

bility lists (C-Lists). However, they can be more flexibly used if they can be

stored like other data in user modules. This is possible using the idea of parti-

tioned segments (discussed in Chapter 10 section 2.4), which allow not only

simple pointers (as discussed there) but also capabilities to be stored in any

segment of any container. They are protected from arbitrary changes by the fact

that they can only be created and managed by the SPEEDOS kernel, which only

makes the data sections of partitioned segments directly accessible for normal

user access.

In order to make an inter-module call (i.e. to invoke a semantic routine of

some other module) the calling process/module must provide the SPEEDOS

kernel with a capability which (a) uniquely identifies the module to be called

(i.e. the unique module identifier in Figure 14.7) and (b) contains a list of the

entry points which it may legally access (i.e. the semantic access rights in Figure

14.7). Thus the module capability is used as an operand for the inter-module call

instruction. As a second operand the caller nominates the particular semantic

operation to be invoked. It then becomes a function of the kernel to implement

the inter-module call instruction in such a way that the call may proceed only if

a permission for the requested semantic operation is contained in the list of se-

mantic access rights.

A simple implementation of this might involve numbering the entry points

of each major module with integers starting at zero. Taking the bank account file

module in Figure 14.1 as an example the operation "open account" might be

53

 This implies that, in accordance with data abstraction and information hiding principles,

the interface of a major module is always framed in terms of semantic routines. Direct

access by one module to the internal data of another module is not permitted (in contrast

with the laxer conventions used for small grain objects in most OO programming lan-

guages.

Unique Module

Identifier

Semantic

Rights

Generic

Rights

Meta-

rights

Status

Bits

Figure 14.7: The Basic Structure of a Module Capability

Chapter 14 MODULES AND PROTECTION 217

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

numbered 0, "close account" 1, "deposit" 2, "withdraw" 3, and so on. Then the

semantic access rights in the module capability are implemented as a "bit list" in

which each bit represents an entry point. Bit 0 in the list indicates whether the

operation "open account" can be called, the next bit whether "close account"

may be called, and so on. If the appropriate bit is set to one the presenter of the

capability has permission to invoke the corresponding entry point of the module,

but if it is set to zero the entry point may not called. This is illustrated in Figure

14.8. The unique identifier in the capability indicates the container for the file

data of the module. (From this the code container can then be located.)

10 Protecting File Modules

One of the basic ideas behind the object oriented philosophy is that a system

may contain many objects which are instances of the same type. This principle

applies not only to the small and medium granularity objects found in conven-

tional object oriented programs, but also when object oriented techniques are

used as a tool for decomposing systems into major objects. For example, there

may be many bank account files in a system (e.g. files for each branch of a

bank). Thus the protection of semantic operations must be organized on the ba-

sis of individual files rather than on the basis of the code module implementing

the operations.

This implies that the module number in a file capability (i.e. a module ca-

pability for a module with persistent data) refers to the unique identifier of the

Deposit

Withdraw

Add

Interest

Total

Balance?

Account

Balance?

Authorise

Overraft

Open

Account

Close

Account

A Set of Bank

Accounts

Figure 14.8: A File of Bank Accounts

Unique Module Identifier Semantic Rights

00110010

A Module Capability for a File of Bank Accounts

Entry Point 0 Entry Point 1

Entry Point 5 Entry Point 4

Entry Point 2

Entry Point 3

Entry Point 7

Entry Point 6

Chapter 14 MODULES AND PROTECTION 218

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

container holding the persistent data structure part of the module, i.e. a persistent

heap container number. From this the inter-module call mechanism must then be

able to locate the container of the associated code module (i.e. a code execution

module produced by a compiler) in order to activate the required entry point

(subject to the access rights held in the capability) but of course only in associa-

tion with the appropriate file. This is illustrated in Figure 14.9.

Notice that with this organisation the right to access a file module implies

the right to use the associated code module. This is essential to guarantee pro-

tection based on the information hiding principle. If the caller of a file module

were permitted to nominate an arbitrary code module for use with a file then the

entire basis of semantic protection would be undermined. The kernel design

must guarantee that this requirement conforms with the protection of proprietary

software at the time a link is set up between a file module and its code module,

which implies that the pointer to the code module should be a code capability.

When a semantic routine is activated, the calling process is given access to

the persistent data in the file container. The run-time code created by the com-

piler can also set up an internal process stack, etc. in the file container. Infor-

mation about the code organisation (e.g. entry points for the semantic routines)

is held in the code container and the kernel activates the appropriate semantic

routine.

11 Protecting Code Modules

The simplest kinds of modules in a system of the kind envisaged in this chapter

are code modules, i.e. those code modules which do not encapsulate a persistent

data structure (other than constant segments). If used directly (rather than via a

file capability) these correspond to both programs and subroutine libraries in

Figure 14.9: Calling a File Module

Unique Module Identifier Semantic Rights

A Module Capability for a File

Container

Holding

File Data

Container

Holding

Code

Code Capability

Chapter 14 MODULES AND PROTECTION 219

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

conventional systems, since they may have more than one protected entry point.

For them the protection mechanism is very straightforward. Assuming that all

code is re-entrant, there is no need to create a separate "instance" of the module

before invoking one of its entry points. However each such code module does

have a single "temporary" data file permanently associated with it, in which the

temporary information generated by processes (e.g. internal process stack) is

stored as the code is executed. In this case the unique module identifier supplied

as an operand to the inter-module call mechanism identifies the temporary con-

tainer.

This mechanism can be used to validate the right to use proprietary soft-

ware. In order to invoke a code module the caller (e.g. a CLI on behalf of a user)

must present a module capability containing the correct access rights to make

the requested call. Thus only a user who actually has permission to invoke the

appropriate entry point into a program can do so. If he has no right to access

proprietary software (or if the access rights limit him to a subset of the routines)

then the inter-module call mechanism prevents the misuse of the software by

refusing to carry out an invalid call.

12 Protecting Internal Objects

With the decision to provide a basic protection mechanism which works at the

file level, it might appear that we have created a different problem. It could be

argued that the objects which require protection are not the file objects in a sys-

tem but the smaller granularity objects within the files. For example, it may

seem that what needs to be protected in a banking system are not bank account

files but the individual accounts in the files. While this view has some merit, we

must keep firmly in mind that the discussion in this chapter is concerned solely

with the basic protection mechanism which is centrally implemented to control

interactions between the major modules of a system. A central protection mech-

anism in a kernel must provide certain basic guarantees about the security of a

system, but it cannot be treated as a substitute for application implemented secu-

rity measures. What is important is that the central mechanism does not interfere

with or restrict such additional measures.

13 Conclusion

We have now established an alternative framework for statically decomposing

software in a secure system. It involves defining all modules as information hid-

ing object oriented modules in the persistent virtual memory. In this way higher

level protection can be based on the right to invoke the semantic operations of

modules (with the memory architecture guaranteeing that a process executing

within a module is confined to accessing only segments related to that module).

Chapter 14 MODULES AND PROTECTION 220

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

But the significance of this model is not merely that access rights have been

defined in terms of semantically appropriate operations. Although this alone rep-

resents a significant step towards building secure systems, it also has some fur-

ther advantages which should not be overlooked.

First, it binds a specific code module to a specific file. The significance of

this should not be underestimated. In conventional systems there is no rule about

which code modules can be used with which files in the file system, and that

goes a long way towards explaining how hackers can write their own "hacking"

programs and then use them to access files.

Second, in one fell swoop an enormous amount of complexity which exists

in conventional systems has been eliminated. The file system has all but disap-

peared. The complex handling routines for different kinds of software units in

conventional systems (and the mechanisms for linking between them) have also

been replaced by a single module structure and a single linking mechanism (i.e.

the inter-module call mechanism). As was argued in Chapter 1, a good part of

the security problem is created simply by the existence of multiple mechanisms

and the complexity which goes with it.

Third, the issue of structuring the data efficiently for "files" (e.g. indexed

sequential, B-Trees, etc.) has now been relegated to the compilers. To see how

this can be done, see the Timor language description [87]
54

.

Fourth, although we still have to discuss how the persistent virtual memory

can be efficiently implemented, we have at least in principle eliminated the inef-

ficiencies of conventional memory by providing direct addressability.

We now turn to the question of organising processes in the virtual memory.

54

 The Timor language description can be downloaded at the Timor website

(https://www.timor-programming.org/)

Chapter 15

Processes and Protection

The previous chapter emphasised the static aspects of a system, showing

how information hiding modules can form a basis for designing secure systems.

But that is only one side of the coin. To be useful the software must be executed

on a CPU. Here we consider in more detail than previously how this more dy-

namic aspect of a system might be organised in a secure way.

1 Process Structures

In Chapter 8 section 9 two ways of decomposing an operating system into pro-

cesses were described. The first and most widely used technique (out-of-

process) involves having a separate process for carrying out each operating sys-

tem activity. Applied to the concepts developed in the previous chapter it would

mean that a separate process is needed for each major (code, operating system

and file) module in a system.

The alternative is the technique implemented in the B6700 (in-process),

where operating system services are executed in the application's own process.

This means that the major modules of a system do not each have a process of

their own but are invoked as routine calls within the application process requir-

ing their services.

Lauer and Needham [47] concluded that these alternative process models

are duals of each other. But as was already mentioned in Chapter 8, they have

some fundamentally different characteristics both with respect to protection and

security and with respect to their dynamic properties. Before examining the se-

curity aspects we take a more detailed look at some of the more important dy-

namic properties of the two models.

1.1 Dynamic Process Properties

With the out-of-process model each module provides a set of services in its own

process, i.e. out of the application process and on its own stack. When a module

Chapter 15 PROCESSES AND PROTECTION 222

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

(the client module) requires the services of another module (the server module)

it creates a message indicating which service is required, followed by further

information relevant to the request.

The equivalent in-process action is for the client module to call a routine in

the application process (i.e. on the stack of the application process) where the

required service corresponds to the destination routine of the service module,

and provides as parameters on the stack further information relevant to the re-

quest.

 In the out-of-process case a process stack is associated with each module

whereas an in-process stack potentially contains information relating to many

modules. As was explained in Chapter 8, the in-process organisation also poten-

tially leads to greater parallelism.

But more significantly from the viewpoint of protection, an out-of-process

module is normally executed as a continuous loop, taking messages from clients

one after another out of its message buffer (see Figure 8.6), analysing these in

turn to determine which service is required and then processing them one by

one. Consequently the individual services are not visible at the architectural lev-

el, but only within the module's request analysis code. However the services cor-

responding to these encoded messages are in fact equivalent to semantic rou-

tines. But since they are not visible at the architectural level they cannot be pro-

tected at the architectural level in the manner described in the last chapter.

On the other hand, if a module is defined as an information hiding module,

the semantic routines are visible as interface routines of the module, and can be

directly invoked individually. This corresponds well with the in-process model,

because in that also modules are invoked via their individual routines.

A further significant point is that in its normal implementation the out-of-

process model requires a separate process for each service module. With the in-

troduction of a persistent virtual memory, each file in the system in effect be-

comes a service module for its users. The implication of this is that each file in

an out-of-process system would also have its own process. Consequently the

process scheduler (the most important module in the system from the viewpoint

of efficiency) would either be cluttered up with an extra process for each file in

the system, or would have to create and delete processes dynamically as users

open and close files!

We conclude therefore that the in-process model and the idea of infor-

mation hiding modules are natural partners which both lead to greater efficiency

(through greater potential parallelism and less process scheduler overheads) and,

above all, to better protection (through semantic routines).

Chapter 15 PROCESSES AND PROTECTION 223

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

1.2 Further Advantages of the In-Process Technique

Some further characteristics of processes are affected by the choice of process

structuring model. For example, in a system where users are charged for the

CPU time they use or have a limited budget of CPU time at their disposal, the

process scheduler must keep a record of how much time is consumed by each

user. In an in-process system the time used by an application process corre-

sponds to the sum of the CPU time spent executing his own program and that

spent on his behalf in operating system service routines (and, in our model,

while accessing files), because the process scheduler is not involved in module

invocations and therefore cannot (but also need not) record these. The effect is

that the process scheduler records the amount of time each user genuinely costs

the system.

But in an out-of-process system the CPU time used by an operating system

process cannot easily be charged to the user who requests operating system ser-

vices, because an operating system service runs continuously regardless of the

user for whom the service is being performed, and therefore the amount of CPU

time consumed by different users is not known to the process scheduler. To pro-

vide a more accurate measure based on individual users would create even fur-

ther inefficiency in the system. While the amount of time spent in operating sys-

tem modules by all applications taken together (which would be what the pro-

cess scheduler can easily calculate in an out-of-process system) may be of inter-

est for statistical purposes, it is useful neither for budgeting nor for charging

purposes.

Similarly the priority of a process in an in-process system represents the

user's priority, regardless whether it is executing in the application program it-

self or in an operating system routine. But in out-of-process systems it is usual

to give operating system processes a higher priority than user processes. To un-

derstand why the in-process form is the natural choice, consider the (deliberately

unrealistic) example of a system in which a nuclear power station is being con-

trolled and a payroll application is also active in the same system. It is self-

evident that the nuclear power station application should always take precedence

over the payroll application, even when the payroll application is using operat-

ing system services. (In fact the arguments are rather more complex than I have

suggested, but the main point is evident.)

These points suggest that the dynamic properties of the two process struc-

turing models are not only different, but also that the more efficient and more

natural model is the in-process one, which forms a natural partner with infor-

mation hiding modules.

Chapter 15 PROCESSES AND PROTECTION 224

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

2 Managing Inter-Module Calls

The stack structure needed conceptually to support an inter-module call is

shown on Figure 15.1.

2.1 Linkage

The linkage segment contains the information which is later needed to enable

the kernel to complete the corresponding inter-module return instruction. This

will include at least the following items:

– the unique identifier of the calling module,

– the number of the calling module's calling routine,

– the offset within the calling routine at which execution should be resumed

on return,

– sufficient information to allow the calling routine to reload its former regis-

ter values.

At this stage it is not necessary to determine the exact details of the linkage. For

example there are a number of possibilities for determining how the former reg-

ister values can be restored. Such details are determined by an actual kernel de-

sign and are discussed for SPEEDOS in chapter 20 in volume 2.

2.2 Parameters

The parameter segment contains the parameters which will be made available to

the called routine of the new module. These can be module capabilities or val-

ues. However, within-container pointers may not be passed as parameters, since

that would give the called routine access to the internal data of the calling mod-

ule. Not only would that be an infringement of the information hiding principle,

but it would also lead to a situation in which individual containers could not be

independently garbage collected. That is an especially significant point in a sys-

tem which supports a world-wide persistent virtual memory. It will be shown in

Local Data

of Called Module

Parameters from

calling routine

Linkage back to

Calling Routine of

Calling Module

Figure 15.1: Stack Support for an Inter-Module Call

Chapter 15 PROCESSES AND PROTECTION 225

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

later chapters that this apparent restriction is a non-problem.

As in the case of linkage, the details of how parameters are passed are not

relevant at this point. For example, the RISC philosophy requires that as far as

possible these should be passed in registers (which in our case means the normal

general purpose registers). However it is already clear that just as pointers may

not be passed as parameters, so also segment registers must be invalidated on an

inter-module call. It is also clear that module capabilities passed as parameters

must be passed in a segment on the stack, since there is no provision for special

registers for these.

2.3 Local Data of Called Module

The kernel must set up an appropriate environment in which the semantic rou-

tine of the called module can begin to execute, including where appropriate

providing access to its persistent data. The organisation and stack structure of

the local data will be left to the various compilers and will be held as part of the

module's data, i.e. not on the process stack (see section 4 below).

3 Persistent Processes

The rest of this chapter uses a minimal notation, which we call a module stack

frame, as shown in Figure 15.2, which is all that is necessary to discuss the sig-

nificance of making processes persistent.

A process is defined as a module in a container of the virtual memory

which holds its stack(s)
55

. Since containers are implemented in the persistent

virtual memory, an interesting new property emerges. Process modules, like

other modules, persist over time, i.e. they are persistent processes. (In conven-

tional systems processes cannot be regarded as persistent because they exist only

in the computational virtual memory, which is not persistent.) Furthermore a

user (given a capability with the appropriate permission) can have multiple per-

sistent processes in separate process modules. This arrangement introduces some

new possibilities, including a much better protection against breaking into pro-

55

 In SPEEDOS a process is defined to consist of one or more threads, each of which has a

thread stack.

Figure 15.2: A Module Frame

Module Frame of

<module name>

Linkage and

Parameters

Chapter 15 PROCESSES AND PROTECTION 226

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

cesses.

Let us suppose that an initial process is created for a user when he is first

introduced into a system. This can then continue to be used by him as needed

throughout the entire time he is authorised to use the system. A variant of this

idea of persistent processes was already implemented successfully in the MON-

ADS systems [23, 24]. We now consider the interesting effect which it can have

on logging in and logging out of processes.

3.1 Logging in and Logging out

When a conventional operating system detects new activity at a terminal it es-

tablishes the authenticity of a user (usually by requesting him to provide a

username and password) and then creates a process for the following terminal

session. Using implicit command files (such as .login and .cshrc in Unix for

example) and explicit commands (e.g. cd in Unix) the user then establishes the

working environment which he needs for his process and invokes a further

command or commands to begin the activity which he wants to carry out.

The creation of a process and then tailoring it to the required environment

can involve considerable processing time and file activity, which usually mani-

fests itself to the user as a delay before he can begin his real work.

Suppose, however, that the user has a persistent process in the persistent

virtual memory, waiting to be activated. The considerable activity involved in

process creation can be saved (because the process already exists) and – depend-

ing on the state of the inactive process – the time spent in tailoring it to the re-

quired environment can also be saved in part or in full. To understand this we

first consider the state of an inactive process before logging in takes place, and

how it got into that state. In other words we first need to consider what happens

to a process when a logout command is issued in the previous session.

3.2 Executing Commands

Before looking at the logout command we need to understand how a normal

command is executed. When the user issues a basic command (or its equivalent

via a graphical interface) he will normally be communicating with a command

language interpreter (CLI), or in modern systems a graphical form thereof, so

that the module frame at the top of the stack will be that of the CLI. In order to

read a command, the CLI will call a device driver to read the command from the

user's terminal or equivalent device. During the reading of the command the de-

vice driver module will have a stack frame above that of the CLI, but this will be

deleted when the command has been passed back to the CLI. The stages through

which the stack progresses during this command-reading process are illustrated

in Figure 15.3.

Chapter 15 PROCESSES AND PROTECTION 227

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

If the command just read were a command to edit a file the CLI would

then invoke the edit module on the stack, which would in turn invoke the file

module for the file to be edited, as shown in Figure 15.4.

3.3 The Logout Command

Having seen in principle how the stack is used by the CLI to read commands

and to execute them, we can consider how it implements a logout command.

From the viewpoint of the CLI this can be implemented in a persistent system

(in contrast with a conventional system) like any other command, so the module

frame for the logout module is invoked above the CLI module frame on the

Figure 15.3: CLI Invoking a Device Driver on a Persistent Stack

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

Device Driver

Module Frame

>
Linkage and

Parameters

1. Stack when

CLI active

2. After CLI

calls Device Driver

3. After CLI has

received command

Figure 15.4: CLI Invoking an Editor on a Persistent Stack

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

Editor Program

Module Frame

Linkage and

Parameters

Edited File

Module Frame

Linkage and

Parameters

Chapter 15 PROCESSES AND PROTECTION 228

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

stack, just as the edit command was.

What now happens depends on the code of the logout command. After it

has done some housekeeping activities (such as releasing the terminal) this does

not return to the CLI like other commands, but instead it calls a special opera-

tion provided by the kernel, which we call its "long suspend" function, as is

shown in Figure 15.5.

The long suspend function of the kernel advises the process scheduler that

the process is to be deactivated, and in the normal course of virtual memory

management the stack's page frames in the main memory will be copied back to

disc and released for other use. This is the state of a logged out process.

When at some later time the kernel detects that the user wishes to log in

again, it advises the process scheduler that the process can now be scheduled in

the usual way. In a timesharing or transaction processing system it may be nec-

essary to change the command input device to that at which the user now logs

in. The kernel then exits from the long suspend routine, leaving the user process

free to execute the next instruction in the logout module. When this exits back to

the CLI (which is unaware that the process has been logged out) the latter re-

quests the next command in the usual way.

This scheme is efficient in that it saves the CPU processing time and disc

accesses involved in creating and deleting a new process for each terminal ses-

sion and in setting up the process to suit the user's particular requirements.

It is possible to take this idea a step further. The logout module is itself a

normal module so that it can be called from any other module which has the ap-

Figure 15.5: Logging Out a Persistent Stack

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

Logout

Module Frame

Linkage and

Parameters

Logout

Module Frame

Linkage and

Parameters

Kernel

Long Suspend

Linkage and

Parameters

Chapter 15 PROCESSES AND PROTECTION 229

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

propriate permissions, not just from the CLI. This means, for example, that if an

editor provides its users with a facility to log out in the middle of an edit session,

then the invocation of the logout module can take place without returning to the

CLI. This is illustrated in Figure 15.6. It means that even less processing time is

required to re-establish the user's work, and it provides a very convenient work-

ing environment for the user himself.

3.4 Identification and Authentication

So far we have completely ignored the important questions of the identification

and authentication of users when they log into a system. It would of course be

possible to build into the kernel's long suspend routine some conventional tests

such as the checking of a password. However, the new framework provided by

persistent processes offers a much more powerful and at the same more flexible

possibility for guaranteeing the security of access to processes.

The basic idea is to separate identification from authentication, leaving the

kernel to carry out the relatively simple task of identification and giving the user

the opportunity to define his own authentication protocol. This is very simple to

achieve in the SPEEDOS environment. When a user wishes to log in, the kernel

must in any case determine which persistent process is to be activated. This cor-

Figure 15.6: Logging Out a Persistent Stack from an Editor

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

Logout

Module Frame

Linkage and

Parameters

Kernel

Long Suspend

Linkage and

Parameters

Editor Program

Module Frame

Linkage and

Parameters

Editor Program

Module Frame

Linkage and

Parameters

Chapter 15 PROCESSES AND PROTECTION 230

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

responds to the initial identification of a user by a username in a conventional

system. Thus the kernel needs to have a mapping between user names and per-

sistent process names or numbers
56

. When a user identifies himself to the system

the kernel activates the corresponding persistent process, as described in the

previous section. Thus the long suspend routine exits back to the user logout

module (in the logout routine) without any authentication checks having been

carried out. This may appear to be a foolhardy approach. But as we shall now

see, it can be used to good advantage to improve security, as follows.

When the logout routine is reactivated this is the point at which to authenti-

cate the user who is attempting to log in. How this is achieved is not dictated by

the system, as the logout routine is a user module like any other
57

. This means in

principle that each user can himself determine what authentication tests are to be

carried out on persons attempting to log into his process.

In Chapter 4 it was argued that leaving the authentication of users to the

operating system is a root cause of weak security, because it gives the hacker

several advantages. First, he knows what he has to do to penetrate the system.

Second the central repository of authentication information (e.g. the password

file) implied by a centralized authentication system provides him with an ideal

target. Both these advantages for the hacker are removed if each user can carry

out his own authentication in whatever way he sees fit. With arbitrary user au-

thentication procedures in operation the hacker doesn't know whether he has to

crack a simple password, a dynamic password, a cognitive password and/or

whether he has to conform to some required actions. The possibilities are end-

less.

In keeping with the principles of modularity, it is unwise to pack the actual

authentication procedures into the logout module, which has important system

housekeeping activities to carry out, such as the de-allocation and re-

establishment of the user terminal as the command source. Instead the logout

routine simply needs the possibility to invoke a separately programmed user au-

thentication module, which carries out the tests and advises of the result. In this

way each user can link a different authentication module to the logout module.

This would lead to the authentication module being invoked above the log-

out module on the process stack (see Figure 15.7). It could be organised that re-

gardless how the authentication module carries out its work, it returns a simple

binary message to the logout module, where the value true indicates that the au-

56

 If a user has multiple persistent processes (e.g. for different projects or activities on

which he is working), then he must identify the process to be activated.
57

 This does not exclude the possibility that standard logout modules are made available

by the operating system or can be bought from component suppliers.

Chapter 15 PROCESSES AND PROTECTION 231

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

thentication is successful, while false indicates that it failed.

The very simplest module would be one which always returns the value

true. In other words no authentication whatsoever takes place. This might be

useful for cases where a public service is provided by the process (e.g. a process

for interrogating a library catalogue). More complex modules might use any of

the authentication techniques discussed in Chapter 4 (or any combination there-

of) or any other way of authenticating users which might in future be devised.

You might now ask what happens when a user forgets how to authenticate

himself. In conventional systems this is usually where a superuser has to be

called in, but that is not necessary if users themselves prepare in advance for this

situation. A user might for example entrust a friend with a module capability

which provides access to an entry point of the authentication module that resets

the protection (e.g. by changing a password or by linking it to another checking

routine). And if he doesn't completely trust a friend he might involve two

friends, each of whom has a module capability allowing half a password to be

changed (just as in bank vaults two keys are often necessary to unlock the vault).

Alternatively he might have his own further persistent process(es) with a differ-

ent authentication module which can make the necessary changes or allows him

to be reminded of a password (for example). The possibilities are endless, and a

privileged superuser is certainly not needed for this purpose.

4 Implementing a Process as Threads

When a process is created it is assigned a new persistent container. The process

Figure 15.7: Authenticating a User at Login

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

CLI

Module Frame

>
Linkage and

Parameters

Logout

Module Frame

Linkage and

Parameters

Logout

Module Frame

Linkage and

Parameters

Authentication

Module

Linkage and

Parameters

Chapter 15 PROCESSES AND PROTECTION 232

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

can thereafter be identified by the unique number of this container. The process

itself does not have a separate stack. It can be viewed as a persistent "file" in

which one or more threads can be created. Each thread has its own stack, which

is identified by its unique thread number, consisting of the unique container

number and its thread index, a small integer starting with 0 for the first thread

created, 1 for the second and so on.

The primary purpose of a thread stack is to provide the linkage and parame-

ters needed for inter-module routine calls. In contrast with the stack structure

discussed in Chapter 8 it does not hold the local variables of the routines which

are invoked from it. The reasons for this are that

a) different high level languages have different scope roles which can affect

the stack structure and the organisation and addressing of their on-stack da-

ta, and

b) as the advocates of the RISC philosophy argued, it is more efficient for

compilers to have the freedom to organise their stacks internally, rather

than imposing on them an architecturally enforced structure.

Hence the main purpose of a thread stack is to provide a framework allowing

– the interface routines of a module to be invoked, and parameters passed to

it; and conversely

– the transition back to the calling routine from an interface routine of a re-

turning module, together with the return parameters.

Since all the thread stacks of a process are organised in this way, each thread can

invoke modules (whether operating system modules, file modules or other ap-

plications) independently of each other. However, they will often cooperate with

each other within the same module.

While a thread is active within a module it will typically have a "continua-

tion" of its stack in the data container of the module, which has a structure de-

termined by the compiler generated run-time code. Each thread active in the

module has its own root segment, which is separate from the root segment for

the persistent data of the module, but nevertheless in the same container. When

the kernel executes an inter-module call, part of its work is to create a root seg-

ment for the thread. This persists so long as the thread is active in the module

(even after it has called further modules), and it is deleted by the kernel when

the thread makes an inter-module return from the module.

As part of the inter-module call the kernel sets up a segment register which

allows the module's code to address the persistent data while the thread is active

and a further register to address thread-related temporary data. Both kinds of

data are held in a single heap. While executing in the module the thread can cre-

Chapter 15 PROCESSES AND PROTECTION 233

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

ate new segments in the heap and can link these into its own temporary data

and/or the persistent data. Those segments which are only temporary are deleted

when the thread returns back to its calling module, but any segments which it

has linked into the persistent data structure continue to exist independently of

the thread.

In principle any thread can log out without causing other threads of the

same process to be suspended. However, sometimes threads will synchronise

their activities such that they are all deactivated together by a single thread when

it logs out. This need not be the thread with index 0.

5 Multiple Processes

As hinted above, a user is not limited to having a single process module. Hence

he can carry out independent activities in parallel (e.g. writing a letter or docu-

ment, processing email, using a spreadsheet and carrying out banking transac-

tions). By extending the model to allow a user to have any number of persistent

processes (each potentially with several threads) he can dedicate each to a sepa-

rate use, leaving each in a different unfinished state when he logs them out.

6 Conclusion

A framework for structuring software in a secure system has now been devel-

oped. It involves defining all modules as information hiding modules and im-

plementing all processes as persistent processes in the persistent virtual memory.

In this way higher level protection can be based on the right to invoke the se-

mantic operations of modules (with the memory architecture guaranteeing that a

process executing within a module is confined to accessing only the segments of

that module).

It has also been shown how persistent stacks can be used to detach authent-

ication checking mechanisms from the operating system, providing the user with

more flexibility, the hacker with less knowledge and the system with more over-

all security against hackers.

Chapter 16

Architectural Implications

of the Software Model

Chapters 14 and 15 outline the basic software model used to structure the

SPEEDOS system. This model does not go into detail, but in the second volume

a more detailed picture of the kernel and of basic operating system modules will

emerge and a few extensions will be made, for example to introduce n-ary rou-

tines
58

, to integrate qualifiers (see chapter 13) into the model, to describe syn-

chronisation and to support internal subroutine libraries. To have described such

features here would have led to a good deal of detail which is best left to volume

2. However, we have now provided sufficient background information to allow

us to complete the architectural picture which was started in earlier chapters.

1 Containers in SPEEDOS

Containers were introduced at the end of chapter 11 as a paged unit of persistent

virtual memory into which segments can be placed
59

. Here we assume that mod-

ules and processes are held in segmented and paged containers. Since a contain-

er must potentially be capable of holding very large data structures for file mod-

ules, we provisionally define its maximum length as 2
64

 bytes. In reality most

containers will be very much smaller than this, so that the paging mechanism

must be capable of handling both small and large segments. How containers are

structured internally will be described in Chapter 23.

2 Worldwide Unique Addresses

We recall from Chapter 14 that module capabilities hold a unique module identi-

fier (see Figure 16.1, which repeats Figure 14.7).

58

 N-ary routines operate on two or more file modules at the same time, e.g. to convert the

data from one format to another or to compare two files.
59

 In the literature on the MONADS systems, which first implemented the orthogonal

model, containers were called address spaces.

Chapter 16 ARCHITECTURAL IMPLICATIONS OF THE SOFTWARE MODEL 235

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Mindful both of Bell and Strecker's comment:

"There is only one mistake that can be made in a computer design that is difficult

to recover from – not providing enough address bits." [104].

and also of the fact that the identifier should be large enough to identify unique-

ly every future SPEEDOS module in the world, we now consider how large the

unique module identifier should be, and how it can be structured.

Since it would be totally infeasible to have a single central registry for all

modules, a module must be locatable from its identifier. The module identifier

therefore includes the actual number of the container in which the module re-

sides (e.g. in the case of a file module, the container holding the file data.)

As they appear in capabilities, container identifiers are very large numbers

which must be unique across all SPEEDOS nodes in the Internet. Because such

numbers need to be allocated at different individual SPEEDOS nodes, they can

be structured rather like telephone numbers (see Chapter 2), thus enabling each

node locally to allocate and manage its own range of numbers. Thus as a first

approximation a container number can be defined as a pair «unique node #, con-

tainer # in node».

Similarly node numbers can be kept unique if each company which manu-

facture SPEEDOS systems has a unique "manufacturer number" which is pre-

fixed to a unique "node number within manufacturer" for each new node.

Containers are not simply associated with nodes, but reside on particular

discs at a node. Hence in order to help locate a container it is helpful for the

"container # in node" part of a container identifier to be decomposed further into

a disc number part and a container number within disc. This leads to the struc-

ture for a container identifier illustrated in Figure 16.2.

Allocating numbers for discs locally at a node can be organised simply by

adding one to the last disc number allocated. Here the oversimplifying assump-

tion is made that a disc has a fixed association with a particular node and that it

is never used on different nodes. While this assumption often corresponds to

Unique Module

Identifier

Semantic

Rights

Generic

Rights

Meta-

rights

Status

Bits

Figure 16.1: The Basic Structure of a Module Capability

SPEEDOS Node Number Disc # in Node Container # in Disc

Figure 16.2: A SPEEDOS Container Identifier

Chapter 16 ARCHITECTURAL IMPLICATIONS OF THE SOFTWARE MODEL 236

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

practice, it is not always true; we consider this issue in volume 2, chapter 27
60

.

Allocating numbers for the containers on a disc can be undertaken by in-

crementing the last container number used on the relevant disc, in this case by

the Disc Directory Manager for the disc in question.

It is important to avoid the ambiguities which can arise in a telephone sys-

tem, where numbers are reallocated as users no longer need their telephone, etc.

SPEEDOS avoids this problem by making all three parts of the identifier suffi-

ciently large that it will not be necessary to re-use them. We here assume that

each part is 64 bits long. In volume 2, chapter 23 the actual details are discussed.

3 Translating Virtual Addresses

Logically a SPEEDOS container identifier can be considered to be the first part

of a worldwide unique SPEEDOS virtual address, which consists of the pair

«container identifier, offset in container». From the viewpoint of page manage-

ment in the main memory the "offset in container" part of a virtual address itself

decomposes into the pair «page # in container, offset in page», see Figure 16.3.

Assuming that a virtual address is as described above then a virtual page

number has the structure shown in Figure 16.4. In principle the task of an ad-

dress translation unit (ATU) for SPEEDOS is to map very large virtual page

numbers onto main memory page frames.

In the MONADS systems the ATU actually achieved the equivalent of this.

Each virtual address in the MONADS local area network was unique, and David

Abramson designed an ATU, based on a hash table implemented in hardware,

which could translate any virtual page number in the network to a page frame

number (or cause a page fault interrupt) [95].

That was in the late 1970s/early 1980s. Since then the size of main memo-

ries has increased enormously, making such an implementation economically

infeasible. But not only that; MONADS had only 60 bit virtual addresses (in-

60

 In chapter 6 of his thesis [130] Frans Henskens addresses this issue in detail from the

perspective of a future MONADS system.

Node Number Disc # in Node Container # in Disc Page# in Container Offset in Page

Figure 16.3: A SPEEDOS Full Virtual Address

Container Identifier Page # in Container

Figure 16.4: A SPEEDOS Virtual Page Number

Chapter 16 ARCHITECTURAL IMPLICATIONS OF THE SOFTWARE MODEL 237

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

cluding two bits to indicate on which of the four nodes in the network the con-

tainer resides), whereas in SPEEDOS we are discussing very much larger unique

virtual addresses.

These parameters create two sets of problems for a SPEEDOS implementa-

tion based on the MONADS ATU technique. First, the increased size of main

memories means that the number of entries in an ATU would increase very con-

siderably. Second, because the width of SPEEDOS virtual addresses is vastly

greater than that of MONADS virtual addresses, the width of entries in an ATU

would also be significantly greater.

The first problem alone makes a MONADS style implementation infeasi-

ble, but the second problem creates substantially greater problems. Hence a dif-

ferent approach is adopted in order to translate SPEEDOS virtual page numbers

into main memory page frame numbers. In the next two subsections we consider

these two problems in turn. The aim is to achieve the translation of SPEEDOS

virtual addresses in about the same time as the simpler addresses of current sys-

tems are translated.

3.1 Managing the Number of Entries in the Main Memory Page Table

At the time the RISC idea was becoming popular (in the early 1980s) the prob-

lem of increasing main memory sizes had already begun to emerge. In Chapter

11 it was illustrated how RISC designers began to cope with the problem by de-

signing systems in which the entire address translation hardware consists simply

of a translation lookaside buffer (TLB), which did not have enough entries to

translate all virtual page numbers in the main memory. Figure 11.7, which for

convenience is repeated here as Figure 16.5, indicates the task of the software in

this RISC scenario.

Translated into SPEEDOS terms the core kernel software is responsible for

the mechanism aspects of the software code functionality shown in blue in the

diagram. Because the TLB is too small to provide a mapping for each page

frame in the entire main memory, a complete mapping from page frames to vir-

tual pages (i.e. an inverted page table
61

, in SPEEDOS terminology the Main

Memory Page Table, MMPT) must also be maintained in software.

61

 In this context the use of the name inverted page table is not intended to imply a specif-

ic implementation, merely the principle that the actual data structure implemented can

rapidly translate a virtual page number into a main memory page frame number, without

holding information about virtual pages not currently in the main memory. This might

for example be a software implemented hash table which has the same functionality as

the MONADS ATU mentioned above.

Chapter 16 ARCHITECTURAL IMPLICATIONS OF THE SOFTWARE MODEL 238

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

When a TLB miss occurs the hardware interrupts into the core kernel code.

This first examines the inverted page table to establish whether the miss oc-

curred simply because the TLB is not large enough to hold an entry for each

page. If that is the case, it updates the TLB using the information in the inverted

page table and loads the appropriate information into the TLB, allowing the pro-

cess/thread to continue execution without being suspended.

If on the other hand the TLB miss arises because a genuine page fault has

occurred, the kernel must undertake steps to resolve the fault. This activity can-

not take place synchronously, because the effect would be that all other process-

es would be held inactive until the page fault is resolved. The details will be

clarified in more detail in volume 2 chapter 23, in the more detailed discussion

of virtual memory organisation.

3.2 Managing the Width of TLB Entries

The second ATU problem for SPEEDOS systems is the width of entries, which

arises primarily because a unique logical SPEEDOS address would require very

wide TLB entries. This follows from the decision to support unique internet-

wide container numbers. Providing an implementation of this in the TLB would

be especially costly because for each TLB entry a separate comparator is needed

in hardware for each bit in the virtual page number. Hence an alternative solu-

tion must be found.

In practice TLBs can be implemented in different ways. In some conven-

tional systems an address space identifier (ASID) can be associated with virtual

Virtual Page Number Offset in page Virtual Address

Figure 16.5: The TLB as the entire ATU

Page Frame Number Offset in page

Translation Lookaside Buffer (TLB)

TLB miss

Access Page Table

If page not present

bring it into main memory

Load Page Table

Entry into TLB

TLB hit

Main Memory Address

Software code

Chapter 16 ARCHITECTURAL IMPLICATIONS OF THE SOFTWARE MODEL 239

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

page numbers in each TLB entry, thus making addresses belonging to different

programs unique (within the TLB), with each currently active process using a

different address space identifier. On other systems the TLB restricts access to a

single address space, so that the TLB has to be flushed on each context/process

switch.

This is not the place to provide a definitive solution for this problem, since

an actual solution must depend on what actual TLB hardware is available. For

illustration purposes we now describe the more difficult case: how SPEEDOS

can effectively use a TLB which supports only a single address space.

3.3 TLBs Supporting Only a Single Address Space

If the TLB hardware assumes that only one address space is mapped into the

TLB at a time and that on a context switch the TLB is flushed, then this raises a

special problem for SPEEDOS, because a SPEEDOS container is never active

alone. However, thanks to the rigid enforcement of the information-hiding prin-

ciple, normally there are three active containers at any point in time: a pro-

cess/thread container, a code container and a persistent data container. Under

some circumstances, there may be more concurrently active containers.

– A module may need access to one or more library code containers.

– A need for more data containers can arise if a module provides n-ary func-

tionality (e.g. to allow two sets of file data to be merged into a third, or to

compare two sets of file data).

It therefore makes sense to support up to, say, eight containers concurrently

in a TLB which is flushed on each context switch. To achieve this, a kernel de-

signer could use the three top bits of a virtual address to act as a short container

identifier (SCID). Figure 16.6 shows how eight containers can be addressed

simultaneously in what the TLB views as a single address space.

The actual mapping of the 3 bits might by kernel convention be defined as

is shown in Figure 16.7. Of course the state of a thread must include not only

this mapping but also a set of pseudo-registers (which we call Container Regis-

ters) that contain the full meanings of the SCIDs. These must be saved and re-

stored by the kernel on context switches.

within container address SCID

Figure 16.6 Prefixing an Address with a Short Container Identifier

Chapter 16 ARCHITECTURAL IMPLICATIONS OF THE SOFTWARE MODEL 240

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

This approach might appear to be rather similar to the Multics mapping of

architectural segments onto an address space. But there are some very signifi-

cant differences.

(a) In contrast with Multics, which used 18 bits of a virtual address as a seg-

ment number, only three bits are needed in SPEEDOS for the equivalent

mapping, thanks to the orderly (information hiding) use of containers to

implement SPEEDOS modules. This leaves far more bits for use as within

container addresses, which in any case are likely to be significantly larger

as a result of 64 bit addressing.

(b) Whereas the attempt to map files onto architectural segments led to severe

complications in the management of addressing in Multics, the mapping of

containers to actual container numbers in SPEEDOS is a trivial activity

which the kernel can organise as part of inter-module calls and returns,

thread switches and in association with the loading of segment registers.

(c) On an inter-module call and also on a thread switch between two threads of

the same process, the stack address space does not need to be flushed.

(d) It would be a straightforward matter to improve efficiency by implementing

separate TLBs for stack, data and code addressing.

In contrast with MONADS, it is necessary on each process switch and on each

inter-module call to flush the TLB and caches, just as occurs in conventional

systems when process switches and operating system calls occur
62

.

4 Segment Management

Since S-RISC addressing is based on the use of protected segment registers (see

Chapter 11), the SPEEDOS kernel is free to organise segments into three parti-

tions: for data, pointers and module capabilities (cf. Figure 16.8). The pointer

and module capability partitions are protected by the kernel in that the latter

never makes these partitions addressable to normal users, i.e. it never loads a

segment register to allow such access, but only loads segment registers to pro-

62

 On an inter-module call/return, TLB and cache entries for the stack address space need

not be flushed. It would also be possible for hardware designers to optimise the address

translation process (e.g. by using different TLBs and caches not only for code and data

but also for stacks). However such optimisations are not further considered here, as it is

not our intention at this point to provide a detailed hardware design for SPEEDOS.

000 identifies the process address space of the currently active thread.

001 to 011 identify the currently active code address spaces, i.e. for the

 main code address space and up to two active code libraries.

100 to 111 identify up to four data address spaces.

Figure 16.7 A Possible Allocation of Short Container Identifiers

Chapter 16 ARCHITECTURAL IMPLICATIONS OF THE SOFTWARE MODEL 241

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

vide processes with access to data partitions. It also checks that the pointer parti-

tion is empty for parameter segments on inter-module calls and returns
63

.

There are separate kernel calls for accessing pointers and for accessing

module capabilities. In each case the user must provide

– the number of a segment register which already addresses the segment in

question; and a

– a non-negative integer which selects the pointer or module capability.

The kernel calls provide a range of protected functions such as following point-

ers, making inter-module calls and returns, reducing the access rights in module

capabilities, etc.

5 Conclusion

In this chapter we have built on the descriptions of the basic hardware features

described in Chapters 11 and 12, presenting an overview of the hardware and

complementary software needed to support a SPEEDOS system and have shown

that efficient implementations of the hardware are possible.

63

 This helps to enforce the information-hiding principle and at the same time avoids a

worldwide garbage collection problem!

Figure 16.8: SPEEDOS Partitioned Segments with Module Capabilities

Segment register Red Tape

Data Partition

Pointer 0

Pointer 1

Pointer 2

Module Cap 0

Module Cap 1

 References

[1] J. L. Keedy, “S-RISC: Adding Security to RISC Computers,” SPEEDOS

Website (https://www.speedos-security.org/), 2023.

[2] C. Stoll, “Stalking the Wiley Hacker,” Communications of the ACM, vol.

31, no. 5, pp. 484-497, 1988.

[3] U.S. Department of Defense, “Trusted Computer System Evaluation

Criteria,” 1985.

[4] S. J. Gould, The Panda's Thumb, Norton, 1992.

[5] S. J. Gould, Bully for Brontosaurus, Norton, 1992.

[6] J. Cohen and I. Stewart, The Collapse of Chaos, Penguin, 1994.

[7] J. Dewey, Experience and Education, Collier Books, 1938.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, 5 ed., Elsevier, 2012.

[9] B. W. Lampson, “Protection,” ACM Operating Systems Review, vol. 8, no.

1, pp. 18-24, January 1974.

[10] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathematical

Foundations,” Mitre Corp, Bedford, Massachusetts, 1973.

[11] R. M. Needham, “Capabilities and Security,” in Security and Persistence,

International Workshop on Computer Architectures to Support Security

and Persistence of Information, Bremen, Germany, 1990.

[12] M. Evered and J. L. Keedy, “A Model for Protection in Persistent Object-

Oriented Systems,” in International Workshop on Computer Architectures

to Support Security and Persistence of Information, Bremen, Germany,

1990.

[13] B. Thuraisingham, “Mandatory Security in Object-Oriented Database

Systems in 'Proceedings of the International Conference on Object-

Oriented Programming Systems, Languages and Applications',” ACM

Sigplan Notices, 1989.

[14] D. Denning, “A Lattice Model for Secure Information Flow,”

Communications of the ACM, vol. 19, no. 5, pp. 236-243, 1976.

[15] K. Biba, “Integrity Considerations for Secure Computer Systems,” USAF

Electronic System Division, 1977.

[16] D. Clark and D. Wilson, “A Comparison of Commercial and Military

Computer Security Policies,” in Proceedings of the IEEE Symposium on

Security and Privacy, 1987.

[17] J. Lanier, Ten Arguments for Deleting your Social Media Accounts right

now, N.Y.: Henry Holt and Company, 2018.

[18] National Bureau of Standards, “Data Encryption Standard,” Washington,

D.C., 1977.

 REFERENCES 244

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

[19] R. Rivest, A. Shamir and A. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” Communications of the ACM,

vol. 21, no. 2, pp. 120-126, 1978.

[20] T. Mark, A. Lomas, L. Gong, J. H. Saltzer and R. M. Needham,

“Reducing Risks from Poorly Chosen Keys,” ACM Operating Systems

Review, pp. 14-18, 1989.

[21] R. Morris and K. Thompson, “Password Security - A Case History,”

Communications of the ACM, vol. 22, no. 11, pp. 594-597, 1979.

[22] B. L. Riddle, M. S. Miron and J. A. Semo, “Passwords in Use in a

University Timesharing Environment,” Computers and Security, vol. 8,

no. 7, pp. 569-579, 1989.

[23] J. L. Keedy, “A Model for Security and Protection in Persistent Systems,”

Microprocessors and Microsystems, vol. 17, no. 3, pp. 139-146, 1993.

[24] J. L. Keedy and K. Vosseberg, “Persistent Protected Modules and

Persistent Processes as the Basis for a More Secure Operating System,” in

Proceedings of the 25th Hawaii International Conference on System

Sciences, 1992.

[25] S. R. Ames, M. Gasser and R. R. Shell, “Security Kernel Design and

Implementation: An Introduction,” IEEE Computer, vol. 16, no. 7, pp. 14-

25, 1983.

[26] L. J. Fraim, “Scomp: A Solution to the Multilevel Security Problem,”

IEEE Computer, vol. 16, no. 7, pp. 26-46, 1983.

[27] J. K. Millen, “Security Kernel Validation in Practice,” Communications of

the ACM, vol. 19, no. 5, pp. 243-250, 1976.

[28] G. J. Popek, M. Kampe, C. Cline, A. Stroughton, M. Urban and E. J.

Walton, “UCLA Secure Unix,” in Proceedings of the AFIPS National

Computer Conference, 1979.

[29] L. W. Schiller, “The Design and Specification of a Security Kernel for the

PDP 11/45,” Report Number ESD-TR-75-69, Bedford, Mass., 1975.

[30] M. D. Schroeder, D. D. Clark and J. H. Saltzer, “The MULTICS Kernel

Design Project,” in Proceedings of the Sixth Symposium on Operating

System Principles, 1977.

[31] K. G. Walter, S. I. Schaen, W. F. Ogden, W. C. Rounds, D. G. Shumway,

D. D. Schaeffer and F. T. Bradshaw, “Structured Specification of a

Security Kernel,” in Proceedings of the International Conference on

Reliable Software, 1975.

[32] B. Freisleben, P. Kammerer and J. L. Keedy, “Capabilities and

Encryption: The Ultimate Defence Against Security Attacks?,” in

Proceedings of the International Workshop on Computer Architectures to

Support Security and Persistence, 1990.

[33] B. W. Lampson, “Computer security in the real world,” IEEE Computer,

vol. 37, no. 6, pp. 37-46, 2004.

 REFERENCES 245

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

[34] A. W. Burks, H. H. Goldstine and J. von Neumann, “Preliminary

Discussion of the Logical Design of an Electronic Computing Instrument,”

Report to the U.S. Army Ordnance Department, 1946.

[35] M. V. Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE

Transactions on Electronic Computers, vol. 14, no. 2, pp. 270-271, 1965.

[36] T. Kilburn, D. Edwards, M. Lanigan and F. Sumner, “One Level Storage

System,” I.R.E. Transactions on Electronic Computers, vol. 11, no. 2, pp.

223-235, 1962.

[37] W. Lonergan and P. King, “Design of the B5000 System,” Datamation,

vol. 7, no. 5, pp. 28-32, 1961.

[38] P. J. Denning, “The Working Set Model for Program Behaviour,”

Communications of the ACM,, vol. 11, no. 5, pp. 323-333, 1968.

[39] P. J. Denning, “Virtual Memory,” ACM Computing Surveys, vol. 2, no. 3,

pp. 153-189, 1970.

[40] D. B. G. Edwards, A. E. Knowles and J. V. Woods, “MU6-G: A New

Design to Achieve Mainframe Performance from a Mini Sized Computer,”

in Proceedings of the 7th Annual Symposium on Computer Architecture,

1980.

[41] E. I. Organick, Computer Systems Organization, the B5700/6700 Series,

N.Y.: Academic Press, 1973.

[42] E. I. Organick, The Multics System: An Examination of its Structure,

Cambridge, Mass.: MIT Press, 1972.

[43] A. P. Batson, S. Ju and D. Wood, “Measurements of Segment Sizes,”

Communications of the ACM, vol. 13, no. 3, pp. 155-159, 1970.

[44] A. P. Batson and R. E. Brundage, “Segment Sizes and Lifetimes in Algol

60 Programs,” Communications of the ACM, vol. 20, no. 1, pp. 36-44,

1977.

[45] J. L. Keedy, “An Outline of the ICL2900 Series System Architecture,”

Australian Computer Journal, vol. 9, no. 2, pp. 53-62, 1977.

[46] J. L. Keedy, “An Outline of the ICL2900 Series System Architecture,” in

Computer Structures: Principles and Examples (ed. Siewiorek D.P., Bell,

C.G. and Newell, A.), N.Y., McGraw-Hill, 1982, pp. 251-259.

[47] H. C. Lauer and R. M. Needham, “On the Duality of Operating System

Structures,” ACM Operating Systems Review, vol. 13, no. 2, pp. 3-19,

1979.

[48] K. Ramamohanarao, “A New Model for Job Management Systems,” PhD.

Thesis, Monash University, Australia, 1980.

[49] E. W. Dijkstra, “Cooperating Sequential Processes,” in Programming

Languages, ed. E. Genuys, Academic Press, 1968, pp. 43-112.

[50] P. J. Courtois, F. Heymans and D. L. Parnas, “Concurrent Control with

Readers and Writers,” Communications of the ACM, vol. 14, no. 10, pp.

667-668, 1971.

 REFERENCES 246

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

[51] J. L. Keedy, J. Rosenberg and K. Ramamohanarao, “On Synchronising

Readers and Writers with Semaphores,” The Computer Journal, vol. 25,

no. 1, pp. 121-125, 1982.

[52] G. A. Blaauw and F. P. Brooks, “The Structure of the System/360: Part I -

Outline of the Logical Structure,” IBM System Journal, vol. 3, no. 2, pp.

119-135, 1964.

[53] G. A. Blaauw and F. P. Brooks, “The Structure of the System/360: Part I -

Outline of the Logical Structure,” in Computer Structures: Principles and

Examples (ed. Siewiorek, D.P., Bell, C.G. and Newall, A.), New York,

McGraw-Hill, 1982, pp. 695-710.

[54] E. W. Dijkstra, “The Structure of the THE Multiprogramming System,”

Communications of the ACM, vol. 11, no. 5, pp. 341-346, 1968.

[55] D. L. Parnas, “On a Buzzword: Hierarchical Structure,” in Information

Processing 74, IFIP Congress 74, 1974.

[56] R. S. Fabry, “Capability Based Addressing,” Communications of the ACM,

vol. 17, no. 7, pp. 403-412, 1974.

[57] J. B. Dennis and E. C. Van Horn, “Programming Semantics for

Multiprogrammed Computations,” Communications of the ACM, vol. 9,

no. 3, pp. 143-155, 1966.

[58] H. M. Levy, Capability-Based Computer Systems, Bedford, Mass.: Digital

Press, 1984, p. 220.

[59] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson and F.

Pollack, “HYDRA: The Kernel of a Multiprocessor Operating System,”

Communications of the ACM, vol. 17, no. 3, pp. 336-345, 1974.

[60] W. A. Wulf, R. Levin and S. P. Harbison, HYDRA/C.mmp: An

Experimental Computer System, New York: McGraw-Hill, 1981.

[61] B. W. Lampson and H. Sturgis, “Reflections on an Operating System

Design,” Communications of the ACM, vol. 19, no. 5, pp. 251-265, 1976.

[62] D. M. England, „Architectural Features of System 250,“ in Infotech State

of the Art Report/Operating Systems Vol. 14, 1972, pp. 395-426.

[63] R. M. Needham and R. D. H. Walker, “The Cambridge CAP Computer

and its Protection System,” in Proceedings of the 6th ACM Symposium on

Operating System Principles, 1977.

[64] M. V. Wilkes und R. M. Needham, The Cambridge CAP Computer and its

Operating System, Oxford: North Holland, 1979.

[65] Intel Corporation, Introduction to the iAPX432 Architecture, 1981.

[66] A. Valenzano, Advanced Microprocessor Architectures, Addison-Wesley,

1987.

[67] U.S. Department of Defense (ed.), Programming Language ADA:

Reference Manual, vol. Lecture Notes in Computer Science vol. 106,

Springer-Verlag, 1981.

[68] J. L. Hennessey, “VLSI Processor Architecture,” IEEE Transactions on

 REFERENCES 247

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Computers, Vols. C-33, no. 12, pp. 1221-1246, 1984.

[69] D. A. Patterson, “Reduced Instruction Set Computers",” Communications

of the ACM, vol. 28, no. 1, pp. 8-21, 1985.

[70] G. Radin, “The 801 Minicomputer,” in Proceedings of the First

InternationalSymposium on Architectural Support for Programming

Languages and Operating Systems, Palo Alto, 1982.

[71] J. E. Thornton, “Parallel Operation in the Control Data 6600,” in

Proceedings of the Fall Joint Computer Conference, 1964.

[72] J. E. Thornton, Design of a Computer: The Control Data 6600, Glenview,

Illinois: Scott Foresman & Co., 1970.

[73] T. A. Laliotis, “Architecture of the SYMBOL Computer,” in High-Level

Language Computer Archecture (ed. Y. Chu), New York, Academic Press,

1975, pp. 110-185.

[74] W. R. Smith, R. Rice, G. Chesley, T. A. Laliotis, S. F. Lundstrom, M. A.

Calhoun, L. D. Gerould and T. G. Cook, “SYMBOL: A Large

Experimental System Exploring Major Hardware Replacement of

Software,” in Proceedings of the Spring Joint Computer Conference,

1971.

[75] D. R. Ditzel and D. A. Patterson, “Retrospective on High-Level Language

Computer Architecture,” in Proceedings of the 7th Annual Symposium on

Computer Architecture, ACM Computer Architecture News, La Baule,

France, 1980.

[76] M. Anderson, R. D. Pose and C. S. Wallace, “A Password Capability

System,” The Computer Journal, vol. 9, no. 1, pp. 1-8, 1986.

[77] V. Berstis, “Security and Protection of Data in the IBM System/38,” ACM

Computer Architecture News, vol. 8, no. 3, pp. 245-252, 1980.

[78] M. E. Houdek, F. G. Soltis and R. L. Hoffman, “IBM System Support for

Capability Based Addressing,” in Proceedings of the 8th SIGARCH

Symposium on Computer Architecture, 1981.

[79] R. N. M. Watson, S. W. Moore, P. Sewell and P. G. Neumann, “An

Introduction to CHERI,” University of Cambridge, September 2019.

[80] E. Wichel, J. Cates and K. Asanovic, “Mondrian memory protection,”

Communications of the ACM, vol. 37, no. 10, 2002.

[81] E. Witchel, J. Rhee and K. Asanovic, “Mondrix: Memory isolation for

Linux using Mondrian memory protection,” in Proceedings of the 20th

ACM Symposium on Operating System Principles, October 2005.

[82] J. Devietti, C. Blundell, M. M. K. Martin and S. Zdancewic, “Hardbound:

architectural support for spatial safety of the C programming language,”

SIGARCH Comput. Archit. News, vol. 36, no. 1, pp. 103-114, March 2008.

[83] N. P. Carter, S. W. Keckler and W. J. Dally, “Hardware Support for Fast

Capability-based Addressing,” SIGPLAN Notices, no. 11, vol. 29, no. 11,

pp. 319-327.

 REFERENCES 248

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

[84] A. K. Jones, “Capability Architecture Revisited,” ACM Operating Systems

Review, vol. 14, no. 3, pp. 33-35, 1980.

[85] J. L. Keedy, “An Implementation of Capabilities without a Central

Mapping Table,” in Proceedings of the 17th Hawaii International

Conference on System Sciences, 1984.

[86] B. Randell, “A Note on Storage Fragmentation and Program

Segmentation,” Communications of the ACM, vol. 12, no. 7, pp. 365-369,

1969.

[87] J. L. Keedy, Timor: An Object- and Component Oriented Language, 2020.

[88] J. L. Keedy, “Paging and Small Segments: A Memory Management

Model,” in Proceedings of the 8th World Computer Congress, Melbourne,

Australia, 1980.

[89] R. M. Russell, “The CRAY-1 Computer System,” Communications of the

ACM, vol. 1, no. 21, pp. 63-72, 1978.

[90] R. M. Russell, “The CRAY-1 Computer System,” in Computer Structures:

Principles and Examples (ed. Siewiorek D.P., Bell, C.G. and Newell, A.),

N.Y., McGraw-Hill, 1982, pp. 743-752.

[91] J. Rosenberg and D. A. Abramson, “MONADS-PC: A Capability Based

Workstation to Support Software Engineering,” in Proceedings of the 18th

Hawaii International Conference on Systems Sciences, 1985.

[92] D. A. Abramson and J. Rosenberg, “Supporting a Capability Based

Architecture in Silicon,” in Proceeding of the 4th Microelectronics

Conference, 1985.

[93] J. Rosenberg and J. L. Keedy, “Object Management and Addressing in the

MONADS Architecture,” in Proceedings of the International Workshop

on Persistent Object Systems, 1987, Appin, Scotland, 1987.

[94] J. L. Keedy and J. Rosenberg, “Support for Objects in the MONADS

Architecture,” in Proceedings of the International Workshop on Persistent

Object Systems, Newcastle, Australia, 1990.

[95] D. A. Abramson, Computer Hardware to Support Capability Based

Addressing in a Large Virtual Memory, Melbourne: Ph.D. thesis, Monash

University, Dept. of Computer Science, 1982.

[96] J. Rosenberg, J. L. Keedy and D. Abramson, “Addressing Mechanisms for

Large Virtual Memories,” The Computer Journal, vol. 35, no. 4, pp. 369-

375, 1992.

[97] R. L. Sites, Alpha Architecture Reference Manual, Digital Press, 1992.

[98] F. J. Corbato and V. A. Vyssotsky, “Introduction and Overview of the

MULTICS System,” in Proceedings of the 1965 Fall Joint Computer

Conference, 1965.

[99] A. Bensoussan, C. T. Clingen and E. C. Daley, “The MULTICS Virtual

Memory: Concepts and Design,” Communications of the ACM, vol. 15,

no. 5, pp. 308-318, 1972.

 REFERENCES 249

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

[100] J. L. Keedy and P. Brössler, “Implementing Databases in the Monads

Virtual Memory,” in Proceedings of the Fifth International Workshop on

Persistent Object Systems, Design Implementation and Use, San Miniato

(Pisa), Italy, 1992.

[101] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott and R.

Morrison, “An Approach to Persistent Programming,” The Computer

Journal, vol. 26, no. 4, pp. 360-365, 1983.

[102] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott and R.

Morrison, “PS-Algol: A Language for Persistent Programming,” in

Proceedings of the 10th Australian National Computer Conference,

Melbourne, Australia, 1983.

[103] R. Morrison, A. Brown, R. Carrick, R. Connor, A. Dearle and M. P.

Atkinson, “The Napier Type System,” in Proceedings of the 3rd

International Workshop on Persistent Object Systems, 1989.

[104] G. Bell and W. D. Strecker, “Computer Structures: What Have We

Learned From The PDP-11?,” in Proceedings of the 3rd Annual

Symposium on Computer Architecture, 1976.

[105] F. G. Soltis, Inside the AS/400, Loveland, Colorado: Duke

Communications International, 1996.

[106] “Software Engineering: Concepts and Techniques,” in Proceedings of the

NATO Conferences, New York, 1976.

[107] O. J. Dahl, E. W. Dijkstra and C. A. R. Hoare, Structured Programming,

New York, 1972.: Academic Press, 1972.

[108] N. Wirth, “Program Development by Stepwise Refinement,”

Communications of the ACM, vol. 14, no. 4, pp. 221-227, 1971.

[109] J. Guttag, “Abstract Data Types and the Development of Data Structures,”

Communications of the ACM, vol. 20, no. 6, pp. 396-404, 1977.

[110] P. Wegner, “Concepts and Paradigms of Object-Oriented Programming,”

ACM SIGPLAN OOPS Messenger, vol. 1, no. 1, pp. 7-87, 1990.

[111] O. J. Dahl, B. Myhrhaug and K. Nygaard, The Simula 67 Common Base

Language, Oslo: Norwegian Computer Centre, 1968.

[112] K. Jensen and N. Wirth, Pascal User Manual and Report, 2nd ed., New

York: Springer, 1978.

[113] A. Goldberg and D. Robson, Smalltalk-80: The Language and its

Implementation, Reading, Mass.: Addison-Wesley, 1983.

[114] N. Wirth, Programming in MODULA-2, Springer, 1982.

[115] F. J. Brooks, The Mythical Man Month: Essays on Software Engineering,

Addison Wesley Publishing Co., 1975.

[116] D. L. Parnas, “On the Criteria to be Used in Decomposing Systems into

Modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,

1972.

[117] D. L. Parnas, “Information Distribution Aspects of Design Methodology,”

 REFERENCES 250

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

in Proceedings of the 5th World Computer Congress, 1971.

[118] D. L. Parnas, “A Technique for Module Specification with Examples,”

Communications of the ACM, vol. 15, no. 5, pp. 330-336, 1972.

[119] C. A. R. Hoare, “Monitors: An Operating System Structuring Concept,”

Communications of the ACM, vol. 17, no. 10, pp. 549-557, 1974.

[120] R. H. Campbell and A. N. Habermann, “The Specification of Process

Synchronisation by Path Expressions,” in Lecture Notes in Computer

Science, Vol. 16, Springer, 1974.

[121] J. L. Keedy, M. Evered, A. Schmolitzky and G. Menger, “Attribute Types

and Bracket Implementations,” in 25th International Conference on

Technology of Object Oriented Systems, TOOLS 25, Melbourne, 1997.

[122] J. L. Keedy, K. Espenlaub, G. Menger and C. Heinlein, “Qualifying Types

with Bracket Methods in Timor,” Journal of Object Technology, vol. 3,

no. 1, pp. 101-121, 2004.

[123] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, “Call-out Bracket

Methods in Timor,” Journal of Object Technology, vol. 5, no. 1, pp. 51-

67, 2006.

[124] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, “Persistent

Objects and Capabilities in Timor,” Journal of Object Technology, vol. 6,

no. 4, pp. 103-123, May-June 2007.

[125] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, “Persistent

Processes and Distribution in Timor,” Journal of Object Technology, vol.

6, no. 6, pp. 91-108, 2007.

[126] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, “Security and

Protection in Timor Programs,” Journal of Object Technology, vol. 7, no.

4, pp. 123-138, 2008.

[127] J. L. Keedy, G. Menger, C. Heinlein and F. Henskens, “Qualifying Types

Illustrated by Synchronisation Examples,” in Net.ObjectDays, Erfurt,

Germany, 2002.

[128] J. L. Keedy and I. Richards, “A Software Engineering View of Files,”

Australian Computer Journal, vol. 14, no. 2, pp. 56-61, 1982.

[129] J. L. Keedy and J. V. Thomson, “Command Interpretation and Invocation

in an Information Hiding System,” in Proceedings of the IFIP TC-2

Conference on the Future of Command Languages: Foundations for

Human-Computer Communication, Rome, Italy, 1985.

[130] F. Henskens, A Capability-Based Distributed Shared Memory, Newcastle,

N.S.W.: Ph.D. thesis, University of Newcastle, NSW, Australia, 1991.

[131] J. L. Keedy and B. Freisleben, “On the Efficient Use of Semaphore

Primitives,” Information Processing Letters, vol. 21, no. 4, pp. 199-205,

1985.

 Acknowledgements

I would like to thank all my PhD students who have either directly contributed

to the design of SPEEDOS, or indirectly via the MONADS design and imple-

mentations. Key contributions were made by the following.

MONADS Design and Implementations

The original work on MONADS was carried out at Monash University and the

University of Newcastle, NSW in Australia primarily in conjunction with my

following former PhD students:

– John Rosenberg, who later became Professor at the University of Sydney,

Dean of the Information Technology Faculty at Monash University, Deputy

Vice-Chancellor at the Universities of Deakin and then Latrobe.

– Kotagiri Ramamohanarao, later Professor of Computer Science at the

University of Melbourne, Head of Computer Science and Software Engineer-

ing, Head of the School of Electrical Engineering and Computer Science at the

University of Melbourne and Research Director for the Cooperative Research

Centre for Intelligent Decision Systems.

– David Abramson, later Professor and Head of Department at Monash Uni-

versity, then Director of Research at the Research Computer Centre of the Uni-

versity of Queensland (Co-supervisor Professor Chris Wallace).

– Frans Henskens, later Associate Professor at the University of Newcastle,

NSW; Head of the Discipline of Computer Science and Software Engineering,

Deputy Head of School of Electrical Engineering and Computer Science, Assis-

tant Dean (IT) in the Faculty of Engineering and Built Environment and subse-

quently Professor in the Faculty of Health and Medicine at the University of

Newcastle (Supervisor Prof. John Rosenberg).

Further Work on Operating Systems Design

During my period as Professor of Operating Systems at the University of Darm-

stadt in Germany some advanced synchronisation techniques were developed for

MONADS by my PhD student

– Bernd Freisleben, later Professor of Distributed Systems at the University

of Marburg in Germany.

At the University of Bremen in Germany the following contributed further ideas

to the design of operating systems and database systems:

– Karin Vosseberg, later Professor of Software Technology at the Universi-

ty of Applied Sciences, Bremerhaven in Germany and Deputy Director for

 ACKNOWLEDGEMENTS 253

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Study and Teaching.

– Peter Brössler, later a manager in various companies and then a Freelance

Management Adviser in Munich in Germany.

Engineering Support for the MONADS Systems

Special mention is due on the engineering side to David Koch at Monash Uni-

versity and the University of Newcastle, and to Jörg Siedenburg at the Universi-

ties of Bremen and Ulm.

Design of SPEEDOS

Many important contributions to SPEEDOS were made by my PhD student

– Klaus Espenlaub, now Software Development Director, Oracle VM Vir-

tualBox, Oracle Corporation.

Design of Timor

In parallel with the SPEEDOS Project I led a programming language design pro-

ject for an object-oriented language called TIMOR (Types, Implementations and

More) at the University of Ulm. Since an important aim of this project was to

provide a programming language suitable for implementing SPEEDOS, there

was much interaction between the SPEEDOS project and the members of the

TIMOR team, to whom my thanks are also due for their indirect and direct con-

tributions to the SPEEDOS ideas.

Valuable contributions to TIMOR were made by

– Mark Evered, later Senior Lecturer at the University of New England,

NSW Australia and Researcher at the Department of Primary Industries NSW.

– Axel Schmolitzky, later Professor at the University of Applied Sciences,

Hamburg, Germany.

– Gisela Menger, now retired.

– Christian Heinlein, later Professor at the University of Applied Sciences,

Aalen, Germany and Dean of Studies.

I would also like to thank all the students who worked on MONADS, SPEEDOS

and/or TIMOR.

My work has been supported over the years by several competent secretaries,

and my special thanks in this respect are due to Renate Post-Gonzales for organ-

ising the 'International Workshop on Computer Architectures to Support Securi-

ty and Persistence' in Bremen in 1990.

Thanks are also due to the Australian Research Grants Committee for their fi-

nancial support of the MONADS Project at Monash and Newcastle.

 ACKNOWLEDGEMENTS 254

 SPEEDOS – MAKING COMPUTERS SECURE © 2012, 2021 J. L. Keedy

Above all I am enormously grateful for the love, patience and support which I

have received from my wife Ulla and also from my son Nicolas.

	Table of Contents
	List of Figures
	Preface
	Part 1 Introductory Concepts
	Chapter 1 Computer Security: an Ongoing Problem
	1 Complexity and Simplicity
	2 The Role of Computer Architecture

	Chapter 2 Basic Security Concepts
	1 Lampson's Matrix
	1.1 Subjects and Objects

	2 Unique Names
	2.1 Hierarchical Names
	2.2 Timestamps

	3 Access Rights
	3.1 Basic Access Rights
	3.2 Semantic Access Rights
	3.3 Generic Access Rights
	3.4 Metarights
	3.5 Mandatory Access Controls
	3.6 Discretionary Access Controls

	4 Implementing Lampson's Matrix
	4.1 Capability Lists
	4.2 Access Control Lists
	4.3 Differences Between ACLs and C-Lists

	Chapter 3 More Security Concepts
	1 The Confinement Problem
	2 Rule-Based Access Rights
	3 The Access Rule Model
	4 The Bell-LaPadula Security Model
	5 The Biba Security Model
	6 Protection Domains

	Chapter 4 External Security Threats
	1 Threats from Outside
	2 Avoiding Eavesdropping
	3 Encryption of Information on Disc
	4 Authentication of Users
	5 Password Systems
	6 Improving the Security of Passwords
	6.1 Password Length
	6.2 Range of Characters
	6.3 Complicated Password Requirements
	6.4 Dynamic Passwords
	6.5 Cognitive Passwords
	6.6 Required Actions

	7 Alternatives to Passwords
	7.1 Plastic Cards or Other Similar Objects
	7.2 Personal Characteristics

	8 A Fundamental Weakness

	Chapter 5 Internal Security Threats and Weak Mechanisms
	1 Threats at the Program Level
	1.1 Bugs
	1.2 Viruses
	1.3 Worms
	1.4 Trojan Horses
	1.5 Direct Attacks

	2 Security as a Compiler Issue
	3 Security as an Architectural Issue
	4 Security as an Operating System Issue
	5 Privileged Mode
	6 Security Kernels
	7 Inadequate Security Policies
	7.1 The Superuser Role
	7.2 Simplistic Access Control Policies
	7.3 The Authenticity of Logged in Users

	8 Gathering the Evidence
	9 Too Many Cooks

	Part 2 Basic Computer Architecture and Operating System Principles
	Chapter 6 A Brief Introduction to Computer Architecture
	1 The Structure of a Modern Computer
	2 Main Memory
	3 The Central Processing Unit
	3.1 The Arithmetic-Logic Unit
	3.2 ALU Instructions
	3.3 Load and Store Instructions
	3.4 The Control Unit
	3.5 The Fetch-Execute Cycle
	3.6 Program Execution
	3.7 Routine Calls

	4 Cache Memories
	5 The Input/Output Subsystem
	6 Overlapping I/O and CPU Operations
	6.1 Kernel Calls and Interrupts
	6.2 Why Application Programs Do Not Have Direct Access to I/O Devices

	7 Magnetic Media Devices

	Chapter 7 Virtual Memory
	1 Memory in Early Computer Systems
	2 The Transition to Virtual Memory
	3 Program Locality
	4 The Basic Idea behind Virtual Memory
	5 Virtual Memory Management
	6 What form of Virtual address?
	7 Paged Virtual Memory
	7.1 Inverted Page Tables
	7.2 Conventional Page Tables
	7.3 Making Memory Accesses Efficient
	7.4 Protecting Processes from Errors

	8 Segmented Virtual Memory
	8.1 A Segmented Virtual Memory Model
	8.2 Segment Tables

	9 Comparing Segmentation and Paging
	10 Combining Segmentation and Paging
	10.1 Paged Segments
	10.2 Making Memory Accesses Efficient
	10.3 Evaluation of Paged Segments

	11 Conclusion

	Chapter 8 Processes
	1 Scheduling Algorithms
	1.1 High priority real time processes
	1.2 Medium priority I/O intensive processes
	1.3 Interactive Processes
	1.4 CPU-intensive processes
	1.5 Combining the above Requirements into a Single Process-Scheduling Algorithm

	2 Process Scheduling States
	3 Process State
	4 Program Structure
	5 Process (or Thread) Stacks
	5.1 Routine Linkage
	5.2 Parameters and Local Variables
	5.3 Expression Evaluation
	5.4 The Stack Structure

	6 Global Variables and Parameters
	7 Calling the Operating System
	8 Handling Interrupts
	9 Processes and the Operating System
	10 Multiple Processes
	11 Synchronisation: Mutual Exclusion
	11.1 The Basic Problem
	11.2 Mutual Exclusion
	11.3 Dekker's Algorithm
	11.4 Turning Off Interrupts
	11.5 Busy Wait Instructions
	11.6 Semaphores
	11.7 Implementing Semaphores

	12 Further Synchronisation Problems
	12.1 Bounded Buffers
	12.2 Readers and Writers
	12.3 Private Semaphores

	13 Scheduling Resources
	14 Conclusion

	Chapter 9 Protection and Sharing in Conventional Systems
	1 Protecting Processes from Each Other
	2 Protecting the Operating System
	3 Protection Rings
	4 Sharing
	5 Shareable Segments
	6 Addressing Shared Segments
	7 Sharing Paged Segments
	8 Conclusion

	Chapter 10 Protection and Sharing in Capability Systems
	1 Capabilities and Sharing
	2 Protecting Capabilities
	2.1 Protection in the Operating System Space
	2.2 Password Protection
	2.3 Protection by Tags
	2.4 Protection by Partitioning Segments
	2.5 Protecting Capabilities via Capabilities

	3 Unique Object Identifiers
	4 Conclusion

	Part 3 A Memory Structure for SPEEDOS
	Chapter 11 An Architectural Basis for SPEEDOS
	1 Combining Segmentation and Paging Efficiently
	1.1 Multiple Page Sizes
	1.2 Segmented Pages

	2 A Review of the Requirements
	3 Orthogonal Segments and Pages
	4 Implementing the "Segment Table"
	5 Segment Registers and RISC Systems
	5.1 Paging
	5.2 Segmentation
	5.3 RISC Philosophy
	5.4 The Proposed Innovation

	6 Implementing Address Translation
	7 Conclusion

	Chapter 12 Direct Addressability and Persistent Virtual Memory
	1 Direct Addressability
	2 Advantages of Direct Addressability
	3 Persistent Programming
	4 More Advantages of Direct Addressing
	5 An Ideal Persistent Virtual Memory
	6 Direct Addressing in Multics
	7 Direct Addressing in the AS/400 Family
	8 Persistent Virtual Memory
	9 Conclusion

	Part 4 The SPEEDOS Software Model
	Chapter 13 Software Structures
	1 The Software Crisis
	2 Software Systems
	3 Software Maintenance
	4 Software Modularity
	5 Flow of Control Modules
	6 The Information Hiding Principle
	7 Abstract Data Types
	8 Specifications and Implementations
	9 Object Oriented Programming
	10 Qualifying Types
	10.1 Call-In Bracket Methods
	10.2 The Body Statement
	10.3 Augmenting Bracket Methods
	10.4 Testing Bracket Methods
	10.5 Replacing Bracket Methods
	10.6 Multiple Qualifiers
	10.7 Call-Out Bracket Methods

	11 Conclusion

	Chapter 14 Modules and Protection
	1 Programs and Files
	2 Object Oriented Files
	3 Protection Advantages
	4 A Uniform Module Structure
	4.1 Programs
	4.2 Subroutine Libraries
	4.3 Operating System Modules
	4.4 Device Drivers

	5 The Proposed Module Structure
	6 Simpler Operating Systems
	7 Protecting Modules
	8 Capabilities or Access Control Lists?
	9 Module Capabilities and Inter-Module Calls
	10 Protecting File Modules
	11 Protecting Code Modules
	12 Protecting Internal Objects
	13 Conclusion

	Chapter 15 Processes and Protection
	1 Process Structures
	1.1 Dynamic Process Properties
	1.2 Further Advantages of the In-Process Technique

	2 Managing Inter-Module Calls
	2.1 Linkage
	2.2 Parameters
	2.3 Local Data of Called Module

	3 Persistent Processes
	3.1 Logging in and Logging out
	3.2 Executing Commands
	3.3 The Logout Command
	3.4 Identification and Authentication

	4 Implementing a Process as Threads
	5 Multiple Processes
	6 Conclusion

	Chapter 16 Architectural Implications of the Software Model
	1 Containers in SPEEDOS
	2 Worldwide Unique Addresses
	3 Translating Virtual Addresses
	3.1 Managing the Number of Entries in the Main Memory Page Table
	3.2 Managing the Width of TLB Entries
	3.3 TLBs Supporting Only a Single Address Space

	4 Segment Management
	5 Conclusion

	References
	Acknowledgements

