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 Preface 

 

Clarification: We first clarify what is meant in this book by computer security. 

When used in the context of computer systems, and in particular computer operat-

ing systems, the word "security" can have (at least) three quite different meanings. 

It can mean that the operating system code has been proven "correct", in the quasi 

mathematical sense that a specification exists and that the code of the operating 

system has been proven to conform to the specification. This is the sense in which 

the word "secure" is sometimes used, for example, in association with the claim 

that Sel4 (https://sel4.systems/) is the "world's most highly assured OS kernel". 

This is not the meaning of "secure" when we describe SPEEDOS as secure. 

Similarly the reliance on encryption techniques to guarantee security is not the 

sense in which the word security is used here, although SPEEDOS actually uses 

such techniques for transferring information over the Internet and for accessing 

discs. 

In this book and in other documents on SPEEDOS the word security is used in the 

architectural sense, i.e. with respect to the hardware instruction set design and the 

operating system design (especially but not exclusively the design of the kernel). 

As will become evident, the SPEEDOS architecture is radically different from that 

of conventional systems. 

 

This book records the main results of an Odyssey which has lasted for more 

than fifty years of my life, beginning with my work in the design team of the 

VME operating system for the ICL 2900 Series of computers in Kidsgrove, Eng-

land. This was followed by my founding the MONADS operating system group 

at Monash University in Melbourne Australia, with follow up work on MON-

ADS in the groups which I later led at the University of Darmstadt in Germany, 

the University of Newcastle, N.S.W., Australia and the University of Bremen in 

Germany. My final professional move was to the University of Ulm in Germa-

ny, where I founded the SPEEDOS project and the Timor project
1
 in the De-

partment of Computer Structures. Since my retirement I have continued to de-

velop the SPEEDOS ideas, considerably extending and improving on the origi-

nal version and working out how to implement some of the wilder concepts, 

such as the world-wide unique virtual memory and addressing incorporated into 

SPEEDOS. 

                                           
1
 Timor is an object-oriented and component-oriented programming language designed to 

accompany SPEEDOS, see the Timor website https://www.timor-programming.org/ 



  xii 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

Whereas my team at Monash actually built several prototypes for the 

MONADS-PC system which were then used later in Newcastle, Bremen and 

Ulm, there is no prototype implementation of SPEEDOS, partly due to a lack of 

funding. Nevertheless I have formulated a plan which I believe will convince 

computer manufacturers to make a small modification to their RISC computer 

designs which will both (a) enable SPEEDOS systems to be built and (b) at the 

same time allow existing RISC applications to execute without modification ex-

cept a re-compilation. This hardware modification is particularly significant 

since it allows capability systems (such as SPEEDOS) to be built which not only 

improve the way that access rights can be formulated and controlled but also can 

provide a solution for the confinement problem, thus making computers far 

more secure than conventional systems. This modification is described in detail 

in [1], which can be downloaded from the SPEEDOS website
2
. 

It need hardly be said that current systems are riddled with security loop-

holes and that attempts to close these are usually only partially successful. This 

is a nuisance for normal users (to say the least), but it is far more serious in some 

areas, especially national security, where espionage and cyber warfare could at 

any time lead to a total disaster, and in hospital systems, in electricity supply 

systems and similar public utilities which are vulnerable to attack. For this rea-

son I would recommend that the first SPEEDOS systems are built with such ap-

plications in mind. 

The book is in two volumes. The first volume is an introductory walk-

through of most of the fundamental technical ideas that form the basis upon 

which the SPEEDOS design is built. Some of the ideas are well known and a 

few are less well known. What makes them interesting is that almost none of the 

best of them are to be found in the major operating systems in current use. I ex-

plain a concept, e.g. virtual memory, which is in use but where several decisions 

are possible. I explain why one choice is better for security than the others, and 

yet almost invariably a worse alternative has been chosen for implementation in 

current systems. And it also turns out, almost without exception, that the good 

choice for security is the most efficient solution! 

For this reason volume 1 can have a dual purpose. It serves first as my ex-

planation why I chose particular ideas to form the basis for SPEEDOS. In this 

sense it serves as an important introduction to SPEEDOS. But second, it can 

provide additional material for a first computer science course in computer ar-

chitecture and operating system design. In fact it is to a considerable extent 

based on undergraduate courses which I have given in the past. 

                                           
2
  https://www.speedos-security.org/ 
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The tenor of the second volume is quite different. Relying on the infor-

mation in the first volume, it provides a technical introduction to the SPEEDOS 

kernel and an operating system built on the kernel, explaining in some detail 

how a real SPEEDOS system can be designed and built. The second volume is 

suitable for graduate courses in the same area, and will certainly give good stu-

dents ideas for writing their own PhD theses in this area. 

At the outset I would like to make clear that the emphasis in the book is 

largely on the design of computers and their basic software. There are some are-

as, in particular those concerned with computer graphics and with the function-

ality of the Internet, where my expertise is limited to that gained as a user of 

such systems. Although I have attempted to show the relationship between these 

fields and SPEEDOS in the second volume, the main emphasis in the book is 

concerned with the design of the computers themselves and on the basic struc-

ture of the operating systems which control them. I believe that this is the best 

basis on which to improve Internet security. 

Volume 1 can be read independently of volume 2, but the reverse is not the 

case, even for computer scientists and programmers. 

In order to simplify cross references between the volumes, the chapters for 

both volumes are numbered as a single sequence, but each volume uses separate 

page numbers. 

Readers who already have experience in operating systems and in computer 

architecture will probably be familiar with Parts 1 and 2 in volume 1. I suggest 

that such readers can skim through these two parts, but Parts 3 and beyond con-

tain much new material which is essential for an understanding of the SPEEDOS 

ideas. Among the highlights of these chapters I draw special attention to chapter 

13, which explains how the confinement problem can be solved. 

Finally, I should mention that this work would never have existed except 

for a piece of advice given to me by the late Professor Chris Wallace, former 

Head of the Department of Computer Science at Monash University. When I 

first arrived at Monash I mentioned to him that it would be nice for me to do 

some research in natural language systems. But he wisely said that it would be 

sad for me to throw away the experience I had gained at ICL. He was right! 

I hope that someday a SPEEDOS system will be built, and I would very 

much like to lead a project to do so, but that depend whether I will be successful 

in convincing computer manufacturers to modify the designs of their RISC sys-

tems. Meanwhile, I hope that you will enjoy reading both volumes. 

 Leslie Keedy 

 BREMEN 2023 
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Chapter 1 

Computer Security: 

an Ongoing Problem 

 

 

 

I first considered writing an introductory chapter called "Is there a Computer 

Security Problem?" but after a little consideration I decided that computer secu-

rity problems are so widespread and so well known that such a chapter would 

only bore readers. At the time of writing, so many computer security problems 

have been so widely reported that even most non-specialists are aware that there 

are serious problems. 

Significant examples of this include infamous viruses and worms such as 

Stuxnet, Duqu and Flame, hacker break-ins at Sony, Citigroup, Google, the In-

ternational Monetary Fund, an Iranian atomic energy plant, Paypal, Sega, Nin-

tendo, the US broadcaster PBS, the Australian National Broadband Network, the 

Hong Kong Stock Exchange and even the CIA, the Pentagon
3
, the US Senate 

and the NATO HQ, not to mention the so-called "Shady RAT" hackings discov-

ered by McAfee, involving break-ins over 5 years at 72 corporate companies, 

government computers, and private and public organisation in 14 countries, in-

cluding the International Olympic Committee. 

Such problems are not new. They have been happening over many years. 

Amongst the most spectacular and well known cases from the 1980s is that de-

scribed by Clifford Stoll [2]. Realising that a hacker was regularly breaking into 

his computer system at the Livermore Laboratories in the US and was using this 

as a base to break into other supposedly highly secure sites (including US De-

partment of Defense sites), Stoll spent many months patiently tracking the hack-

                                           
3
  It was reported on the Australian ABC News 24 channel that there are over 6 million 

attempts to break into Pentagon computers every day. 
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er down to Germany. A story well worth reading! 

The favourite target – and the favourite tool – of white collar criminals is 

the computer. Hackers use computers on a routine basis to break into other com-

puters. Computer crime might seem a bit remote from most of our lives. But it is 

important, because it can involve much higher spoils than say a normal bank 

robbery, and it is far more difficult to detect. 

In the modern world computers are ubiquitous. They are capable of per-

forming astounding feats of calculation. This alone brings us tremendous bene-

fits. For example without large fast supercomputers the improvements in weath-

er forecasting which we now enjoy compared to a few years ago would be quite 

impossible. The security problem does not exist primarily because computers 

can calculate. It stems much more from the fact that they also have prodigious 

memories, which are used to store enormous amounts of information about al-

most every aspect of our lives, our finances, our businesses, and so on. Our em-

ployers, our lawyers, our doctors, our dentists, our hospitals, our banks, our in-

surance companies, our clubs and our governments all store lots of information 

about us. Commercial firms have records of trillions of financial transactions in 

their computer databases. 

Unauthorised access to such information can lead to serious violations of 

data privacy. It is perhaps worth noting at this early point that data privacy and 

computer security are not synonymous terms. Privacy is not the same as securi-

ty. Privacy is a legal issue involving special laws to protect the citizen from 

misuse of his information stored in computer databases and other systems. 

This book is not directly about privacy. It is about security, which is an im-

portant precondition for achieving privacy. All the privacy laws in the world 

will not solve the privacy problem unless they can be backed up by secure com-

puters: computers which don't give up their secrets about us to unauthorised par-

ties. So if you are interested in data privacy then you should also be interested in 

computer security. 

Computers also contain lots of information which has nothing to do with 

personal privacy but which is nevertheless very sensitive. For example they 

store information which affects the values of stocks and shares on the financial 

markets, secret marketing or design information about new company products, 

and intelligence information gathered by security agencies. Such information 

can be very valuable to competitors, foreign governments and the like. 

So there are plenty of reasons why people might want to break into com-

puter systems to acquire information. What can sometimes be even worse: a 

huge amount of damage can be done by people changing or destroying infor-

mation and/or programs stored in computers. Thieves can steal from banks by 
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modifying banking records. The wrong operation could be carried out on a hos-

pital patient if his computerised records are changed. A possible consequence of 

a company's database being completely wiped out is that the company will go 

bankrupt. And terrorists could blow up nuclear power stations if they could tam-

per with the computer programs controlling them. 

This is not an alarmist book. I just want to make the point that computer se-

curity is important and is growing in significance as we store more and more 

information in computers. We already find ourselves in the information age, the 

age in which humanity's most valuable resources are information and know-

ledge. Industrial spies, terrorists, white collar criminals and many others have 

much to gain by breaking into the computer systems where this information is 

stored. And sovereign states must also prepare themselves for the fact that cyber 

warfare is already taking place, and is likely to be the most dominant form of 

warfare in the 21
st
 century.

4
 

In 1985 the U.S. Department of Defense (DoD) set a trend by publishing its 

now famous "Orange Book". The real title of this report is Trusted Computer 

System Evaluation Criteria, but it acquired its nickname from the colour of its 

cover. The security criteria defined in the Orange Book had three major aims, to 

guide manufacturers regarding the security measures to build into their future 

computer products, to provide users with a yardstick for assessing how much 

trust can be placed in a computer system, and to serve as a basis for security 

specifications in future DoD acquisition specifications. It was envisaged in the 

Orange Book that evaluations of actual systems can be performed, either in 

terms of specific application environments or in terms of general systems, and 

that security certification and accreditations can be approved where appropriate 

by Designated Approving Authorities. The mechanisms of such accreditations 

and approvals are of less interest to us than the recognition that breaches of se-

curity fall into three broad categories [3]. 

— Breaches of confidentiality result in a flow of information to unauthorised 

persons. 

— Breaches of integrity result in information being incorrectly recorded in the 

system. 

— Breaches of availability lead to loss of use of the system or some of its re-

sources. 

This book is about making computers secure, about making information safe so 

                                           
4
  see https://en.wikipedia.org/wiki/Cyberwarfare. For a recent discussion of cyber war-

fare, see "Ten cyber-warfare threats (and how to fight back)" https://bcshq.org/9u7-

6b3lw-6i93ke-3mbfu0-1/c.aspx, and Prof. Claudio Cilli "Cyber-warfare and the New 

Threats to Security" https://nlondon.bcs.org/pres/ccmay19.pdf 
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that it is inaccessible to those not authorised to read it, or change it, or destroy it. 

And it is about protecting programs, whether they are proprietary programs 

which need protection from piracy, or sensitive real-time programs controlling 

machines and systems such as airplanes, nuclear power stations or hospital 

equipment, which need protection from criminals and terrorists. 

The seriousness of the consequences of unauthorised access to computer 

systems is now recognised by legislators and in many countries there are severe 

penalties for breaking into computing systems
5
. But laws alone will not prevent 

such violations, just as laws alone do not prevent the thief from stealing your 

television set. Even the police are not all that successful at stopping burglaries. 

We all know that in practice the best strategy is prevention, so we put locks and 

bolts on our doors and we buy burglar alarms and install security cameras to 

warn us that a thief might be active. 

In fact one way to keep computers secure is to lock them away physically, 

behind bolted doors in impregnable vaults. While such measures may help a lit-

tle, they do not solve the fundamental problem for most users. Computers are 

most useful when they are networked with other computers, or when they are 

provided with new programs which are introduced to computer systems by 

downloading from the internet or by using CDs or the like. Herein lurk a myriad 

of dangers for computer security: the computer equivalents of Trojan horses, 

viruses, worms and bugs! Suffice to say at this stage, securing computers physi-

cally is not necessarily going to make your system immune to the world of elec-

tronic insects and other dangers. It is essential to provide internal mechanisms 

within the computer which prevent such dangers from being effective, and 

which safeguard the security of information and programs. 

This book is primarily about describing a set of computer mechanisms 

equivalent to locks and keys, bolts and burglar alarms. You might interject that 

modern computers are already fitted out with some such mechanisms, which on 

the whole are not very effective against the professional or determined hacker. 

And of course you would be right. But the mechanisms which I describe in later 

chapters are quite different in their nature from those with which you are famil-

iar or which are employed in conventional computer systems. They include a 

new way of designing computers and a radically different approach to designing 

operating system and application software. But before we look at the new mech-

anisms we must consider why the current mechanisms are so ineffective. 

There are in fact lots of reasons. One is that since the early 1980s very little 

fundamental research has been carried out into making computer protection 

                                           
5
  Ironically, most governments do not see a problem in allowing their own agencies to 

break into the computers of their own citizens! 
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mechanisms effective. Of course, many specialists have devoted many hours to 

producing more secure mechanisms, and I do not want to belittle their work in 

any way. But this is not what I mean by fundamental research. Basically their 

work consists of inventing (often very clever) techniques and programs which 

are best viewed in my opinion as techniques for patching up an inadequate core. 

Their work starts from the assumption that the basics around which computer 

systems are built (e.g. the design of computer processors and memories, the de-

sign of operating systems, database systems and programming languages) are 

fundamentally in order. The implicit view is that these aspects of computers 

perhaps leave some room for improvement but they cannot be fundamentally 

changed. This book will show that this view is far from correct. 

Another, not unrelated, reason for the ineffectiveness of current systems in 

the face of security attacks can be explained by the panda principle, first formu-

lated by the evolutionary biologist Stephen Jay Gould [4, 5]. This in effect says 

that once an inadequate mechanism or concept has firmly established itself suc-

cessfully, it is then extremely difficult to replace it with a newer and more effec-

tive principle. Gould illustrates this principle with the example of the panda's 

thumb (which is not really a thumb in the normal sense of the word), but also 

with the example of the QWERTY keyboard [6, pp. 322-324]. 

A few newer operating systems have appeared in recent years, but the prin-

ciples upon which they are based are not dramatically different from those with 

which they are competing. At the level of hardware design, the current princi-

ples upon which processors are built are concerned with improving processing 

speed, but very little fundamental research on how processor design can contrib-

ute to improvements in security has been carried out since the 1980s. Dislodging 

the firmly established but insecure operating systems which are widely used to-

day is an enormously difficult task, and it is even more difficult to dislodge the 

current direction of processor design. 

However, exactly that is what is needed if we really want secure computer 

systems. The current approach to achieving security is to wait until loopholes 

appear (and lots of them do), and then attempt to patch these loopholes up. 

But this re-active approach can never be fully successful, because the prin-

ciples on which current operating systems are based are themselves fundamen-

tally insecure, as we will attempt to show in later chapters. Instead we need to 

rethink the design of operating systems and computer processors in such a way 

that these inadequate basic principles are replaced by totally new, fundamentally 

more secure, principles. In other words, we need to replace the current re-active 

approach with a new pro-active approach. Explaining in broad outline how a 

new approach might look is the main purpose of this book. 
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Before we embark on this task it will help if we clarify a few basic issues. 

1 Complexity and Simplicity 

The security mechanisms which have been built into or added onto current com-

puter systems are many and various. Some of them are directly built into the 

computer hardware, designed for example to stop one program from writing into 

or reading from another program's memory space or to ensure that only the right 

programs are allowed to execute certain sensitive instructions. 

Some security mechanisms are typically built into the operating system. At 

this level of the system, for example, the passwords of users are usually 

checked, and the hardware protection mechanisms are applied to programs and 

data. A large part of most operating systems is the file system, which is respon-

sible for controlling access to the information (usually in the form of data files 

and program files) which users store on discs and similar storage devices. 

In many large computer systems the information in files is organised by a 

database management system, which usually adds its pepper to the protection 

frying pan in the form of some extra protection controls. 

To that we often find some more security mechanisms added by the soft-

ware responsible for networking computers together. 

Then on top of that it is possible to buy proprietary software packages 

which have been especially designed to improve the security of the system by 

patching up weaknesses in the other mechanisms. 

The end result is that we have lots and lots of security mechanisms but, if 

the news reports of computer crime are anything to judge by, very little security. 

A former colleague of mine once likened this situation to the Berlin Wall, which 

was also a security device – for keeping East German citizens in East Berlin. 

Although it prevented a lot of people from reaching West Berlin, the Wall was 

not a very successful security mechanism, because about 5000 people succeeded 

in escaping. Compare this, my colleague said, with the almost perfect record of 

the notorious Alcatraz prison in the United States. 

Why was Alcatraz much more successful than the Berlin Wall? 

In fact the Berlin Wall was not a continuous wall, but a whole variety of 

mechanisms, such as a stretch of river, walls of houses which had been evacuat-

ed, barbed wire sections with armed soldiers in watch towers, booby traps which 

exploded if you stood on them, and so on. The escapees could often exploit this 

very multiplicity of mechanisms, finding escape niches between the mecha-

nisms, because the way that security worked was not coordinated enough and 

simple enough to be effective. 

On the other hand, while there were of course some obstacles within Alca-
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traz to prevent escapes, there was one very simple to understand and very effec-

tive mechanism: the extremely cold waters and hazardous currents of San Fran-

cisco Bay! 

This comparison makes a very important point about security mechanisms. 

The more complicated and the more cumbersome you make the mechanisms, the 

more likely it is that people will find weak points, by playing the mechanisms 

off against each other, or by slipping between them undetected. 

This is exactly the situation we find today when we examine computer se-

curity. Every day hackers manage with ease to slip through the cumbersome 

technical mechanisms which we currently use in computer hardware, operating 

systems, file systems, database systems, networking systems, special software 

packages, etc. What is lacking is a simple but effective concept, comparable 

with the freezing waters around Alcatraz! 

The security mechanisms found in present day computer systems are cer-

tainly not simple and can hardly be considered effective. One of the main rea-

sons is that current processor hardware has not been designed with such a con-

cept in mind, and just as important, the software which controls the systems is 

incredibly complex. It has become a common cry of despair amongst computer 

programming experts that the software systems have become incredibly com-

plex, so much so that no single person is in a position fully to understand how a 

modern operating system works. It is hardly surprising in this situation that 

computer security mechanisms are not very effective. 

A quotation from John Dewey, the renowned U.S. philosopher, psycholo-

gist and educationalist, helps to explain how this situation has arisen: 

"But the easy and the simple are not identical. To discover what is really simple 

and to act upon the discovery is an exceedingly difficult task. After the artificial 

and the complex is once institutionally established and ingrained in custom and 

routine, it is easier to walk in the paths that have been beaten than it is, after tak-

ing a new point of view, to work out what is practically involved in the new point 

of view. The old Ptolemaic astronomical system was more complicated with its 

cycles and epicycles than the Copernican system. But until organisation of actual 

astronomical phenomena on the ground of the latter principle had been effected, 

the easiest course was to follow the line of least resistance provided by the old in-

tellectual habit." [7, p. 30] 

One of the themes throughout the later chapters of this book will be to ex-

pose the complexity of current systems and to suggest ways of replacing it with 

simpler, more efficient and more effective alternatives. 

It may come as a surprise to some to discover that there is almost no math-

ematics in this book. Many people, including many computer science academ-

ics, tend to believe that computer science is a branch of mathematics. Indeed 

there are many computer scientists who think that a book about computer sci-
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ence (and a computer science Ph.D. thesis) which is not liberally sprinkled with 

mathematics is worthless. I hope that this book will show the invalidity of such 

an extreme view. Mathematics can and should be used in computer science as a 

useful analytical tool, and it offers valuable theoretical insights into the nature 

and limits of computing, as well as providing effective encryption techniques. 

But mathematics has few insights to offer when it comes to the task of dis-

covering constructive simplicity in computer science. We cannot simply develop 

some equations which will find a simple, elegant and effective security mecha-

nism for us. But finding such security mechanisms is what this book is about. 

After we have discovered a good security mechanism we might apply mathe-

matical techniques to quantify how efficient it is and so on, but these techniques 

won't find the mechanism for us. 

In this respect computer science is much more like engineering than math-

ematics or natural science. Natural systems are already present, all around us. 

They do not have to be designed by humans. It is appropriate and very helpful to 

analyse them mathematically, and it is challenging to go deeper and deeper into 

the detail. When we are on the right track this reductionist approach can offer 

many benefits, as the chemical industry, for example, has more than proved. 

But mathematics can sometimes appear to be just as convincing when we 

are on the wrong track. The ever more intricate Ptolemaic cycles and epicycles 

provided 15
th
 and 16

th
 century mathematicians with a field day, until it was final-

ly realised that the Earth is not the centre of the Universe! 

Like most engineers, most practical computer scientists are primarily con-

structors and creators of useful artefacts. Our main job is not primarily to reduce 

things to their lowest levels and analyse them in ever greater detail, but to con-

struct new and effective systems. As we know from other engineering endeav-

ours, simplicity and elegance of design often go hand in hand to produce an ef-

fective system. If a system starts to get too complex, then this is a warning sign 

of a bad design. 

Engineers often have an important advantage over computer scientists, 

however. They mostly build physical objects, and these can often be judged not 

only by their theoretical qualities but also by their physical appearance. If an 

engineer were to build a really clumsy bridge, or airplane, or ship, you would 

often be able to see by looking at it that it is so clumsy that it will fall down, or 

won't fly, or will sink or whatever. Of course appearances alone are not im-

portant, but they help us to remove a whole area of design "space" which is ob-

viously inadequate. 

Computer scientists don't have this advantage. You cannot just look at a 

complex computer program and see at one glance whether it is likely to be safe 
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or correct or reliable. The result is that we in fact often build quite grotesque and 

incredibly complicated computer programs. Such constructions are inevitably 

riddled with errors, and this has provided those with mathematical tendencies 

with a new field day comparable with that of the pre-Copernican astronomers. 

They have invented a discipline called software engineering. This discipline 

quite rightly emphasises that good software products should be built on sound 

engineering and mathematical principles – a most laudable aim. But on the 

whole this approach has led to an emphasis on the mathematical and analytic 

aspects while ignoring the creative aspects of good engineering design. 

A good example of this in relation to our present theme is the tendency to 

confuse a secure computer system with a correct computer system, where cor-

rectness means viewing a program in the same way a mathematician views a 

theorem, and then proving that it is correct. 

I do not wish to belittle this approach – correct programs of course play a 

very important role in security. But in order to be able to prove a program cor-

rect, we must have a definition of what the program should do, a specification of 

the program against which we can measure its correctness. Such a specification 

must be a formal mathematically rigorous specification, if it is to be amenable to 

the mathematical approach. Unfortunately developing such specifications is a 

notoriously difficult problem. Generally speaking, it is almost impossible to 

specify anything but toy programs formally. If we do manage to specify a real 

one, the specification is usually almost impossible to understand, which amongst 

other things means that we cannot be sure that it is really specifying what we 

want the program to do! So we may prove a program "correct" only to find that 

it doesn't do what we really wanted in the first place. 

The reason that very little mathematics appears in this book is because we 

are concerned with finding simple, elegant and efficient security mechanisms. 

The emphasis is on getting the overall picture right in the first place. Let us first 

find the forest which suits our purposes before we start measuring the heights of 

the individual trees and counting the number of leaves which they have. 

2 The Role of Computer Architecture 

In the 1970s a particular approach to computer security created a lot of interest 

in the research community. The idea was to base the design of computer systems 

on a concept called capabilities, which can be thought of as a kind of equivalent 

within the computer to locks and keys in the physical world. While some of the 

research was based purely on a software implementation of capabilities, other 
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researchers integrated it into experimental computer architectures
6
. This was 

generally combined with ideas which eventually led to the idea of object-

oriented programming. Unfortunately the architectural aspects of this research 

direction were prematurely killed off, because capability based computers were 

associated with the kind of computer design which came to be known as CISC 

(complex instruction set computers). In the early 1980s an alternative approach 

to the design of computer processors emerged, known as RISC (reduced instruc-

tion set computers). The RISC idea led to fundamental improvements in the ef-

ficiency of computers, and is one of the main factors behind the fact that micro-

processor performance since the 1980s has been able to improve at an astonish-

ing rate. 

There can be no question of going back to the old-style of CISC architect-

ures, but this does not necessarily mean that we have to abandon security in 

computer systems at the architectural level. Security is a theme which is at least 

as important as performance. As the originators of the RISC movement them-

selves wrote in the 5
th
 edition of their standard textbook on computer architec-

ture: 

"Security and privacy are two of the most vexing challenges for information tech-

nology in 2011. Electronic burglaries, often involving lists of credit card numbers, 

are announced regularly, and it's widely believed that many more go unreported. 

Hence, both researchers and practitioners are looking for new ways to make com-

puting systems more secure. Although protecting information is not limited to 

hardware, in our view real security and privacy will likely involve innovation in 

computer architecture as well as in system software." [8, p. 105] 

I share this conviction that a simple well-chosen architectural extension to 

the RISC philosophy can harness the high performance with vastly improved 

security. In chapter 16 and in the Appendix we will in fact describe a very sim-

ple architectural extension to the RISC idea which is capable of fulfilling these 

expectations. 

This conviction is primarily responsible for the ideas presented in the rest 

of this book. For this reason readers should not expect to find a fully balanced 

treatment of all aspects of computer security. Instead they will hopefully find a 

reasoned argument for reconsidering the idea that computer architectures, along 

with appropriate operating system and programming language ideas, have a ma-

jor role to play in achieving secure systems in future. 

In the following chapters we introduce some fundamental protection and 

security concepts. Then in later chapters we discuss the basic concepts of com-

                                           
6
  "Computer architecture", often abbreviated in this book simply to "architecture", refers 

to the computer science discipline concerned with the relationship between computer 

hardware and the programs (software) which execute on it, e.g. the design of a comput-

er's instruction set, its basic memory protection mechanisms, etc. 
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puter architecture which are relevant to the issue of security. In these chapters 

we review a number of different memory management and addressing models, 

because the addressing of computer memory is a key factor in achieving security 

for information contained in the computer memory. We also describe a number 

of different models and techniques which are particularly relevant to the issue of 

security. Thereafter we describe the essential ingredients of the RISC philoso-

phy and show that they are not inconsistent with the aims of highly secure com-

puting environments. 

In later parts of the book we develop some operating system principles and 

show how the SPEEDOS system (a combination of hardware and software) 

could put them into practice. 



 

  

Chapter 2 

Basic Security Concepts 

 

This chapter describes a basic security model, which is concerned primarily 

with controlling the right to access information. This model leads us to a discus-

sion of some of fundamental security issues. 

1 Lampson's Matrix 

In 1971 Butler Lampson described a simple but important model for expressing 

access controls [9]. According to this model a computer system can be viewed 

as a collection of subjects, a collection of objects and the access rights which 

subjects possess for objects. The model is expressed as a matrix, with each col-

umn representing a subject and each row representing an object, as is shown in 

Figure 2.1. An entry in the matrix defines the access rights which the subject in 

the appropriate column can exercise over the object in the corresponding row. 

 

For example, let us suppose that the subjects are users called Jill, Jack, Joan 

and John, and the objects are files called My File, Your File, Her File and His 

File. The access rights determine whether the users can read from and/or write to 

the files. An actual access matrix might then look like that shown in Figure 2.2. 

Subjects 

Objects 

Subject 1 Subject 2 Subject 3 Subject 4 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

access 

rights 

Object 1 

Object 1 

Object 1 

Object 1 

Figure 2.1: Lampson's Access Matrix 
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This defines for example that Jill has read and write access rights for My 

File and for Her File, but she has no access rights for Your File or for His File. 

Joan on the other hand is permitted to read from My File, to read from and write 

to Your File, but she can only write to His File and she has no access to Her 

File. 

Now that the basic idea behind Lampson's matrix is clear, we can look 

closer at some of the concepts behind the model. 

1.1 Subjects and Objects 

Subjects are the active components of the system. They carry out the operations 

for which access rights (in this example read and write operations) are needed. 

Subjects can be – and often are – users of the system, for example people com-

municating with the system via a computer keyboard and monitor. But subjects 

needn't be human agents. The matrix model can be applied not only at the hu-

man level to subjects and objects, but to situations inside the computer itself. 

Thus it is possible to think of a program as a subject, if for example it accesses a 

file. In that case it appears in the matrix along with the other subjects. On the 

other hand we can also treat a program as an object in the matrix, since users can 

have access rights which allow them to execute programs. Figure 2.3 shows how 

an Editor program can be treated as an object which Jack and Joan (but not Jill) 

may execute. At the same time the matrix shows that the Editor may read and 

write Your File and may read (but not write) Her File. 

Just as a subject need not be a human user, an object need not be a file or a 

program. It can be anything in the computer system that can be operated on and 

over which the right of access has to be controlled. For example it might be a 

segment of the memory or input-output equipment such as a printer. 

Subjects 

Objects 

JILL JACK JOAN JOHN 

read, 

write 

read read — 

— read, 

write 

read, 

write 

— 

read, 

write 

— — — 

— read, 

write 

write read 

My File 

Your File 

Her File 

His File 

Figure 2.2: An Example of Lampson's Access Matrix 
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2 Unique Names 

You might think that it goes without saying that the names of subjects and of 

objects should be unambiguous. If they were ambiguous, we couldn't be sure 

what subjects and/or what objects were actually intended in the matrix. For ex-

ample if there were two users called Jack or two files called My File we would 

be in trouble, as it wouldn't be clear which subjects have the right to access 

which objects. We obviously have to take care to ensure that names can be 

uniquely associated with a single subject or a single object. 

But in practice ambiguous names can easily slip into a system if we don't 

take care. Suppose for example that two users of a system each decide to call 

one of their files "Temp" (a favourite name for a temporary file)! Clearly there 

must be a way of distinguishing between them. And it would clearly be unac-

ceptable to expect all the users in a system to check all the names of all the files 

they and others have created before naming a new file. 

The problem of ambiguous names is not just a problem in computer sys-

tems. In the real world public authorities and private companies have to over-

come the problem of non-unique names. They usually use one of two methods: 

hierarchical naming or timestamping. 

2.1 Hierarchical Names 

To understand hierarchical naming schemes you can think of what would hap-

pen if you tried to use just your local telephone number to ring your spouse from 

another city. You would probably end up being connected to a stranger. This is 

because the telephone authorities use the same set of local numbers inde-

pendently in different cities. But you can call up your spouse from another city 

by prefixing the local number with an extra dialling code for the city. Even this 

Subjects 

Objects 

JILL JACK JOAN Editor 

read, 

write 

read read — 

— read, 

write 

read, 

write 

read, 

write 

read, 

write 

— — read 

— execute execute — 

My File 

Your File 

Her File 

His File 

Figure 2.3: An Example of Lampson's Access Matrix 

with an Object which is also a Subject 
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is not enough if you are trying to ring from a different country, because the same 

city codes can be used in different countries. So then we prefix another extra 

code for the country. 

This process uses a hierarchical structure in order to produce unique tele-

phone numbers worldwide. It has two important advantages. First, the local 

numbers can be allocated in each city without having to check whether the same 

local number is being used in any other city. Similarly, each country can allocate 

city dialling codes without reference to those used in other countries. The sec-

ond advantage is that in a local context telephone numbers are short. 

A similar technique is often used to make names in computer systems 

unique while keeping them short in a local context. A good example of this is 

frequently found in file systems. A file system is that part of an operating system 

which manages files. Files are logically related collections of data (e.g. a payroll 

file, a bank accounts file, a letter) or programs which are stored over longer pe-

riods in the computer's secondary memory (e.g. its disks and tapes). 

Hierarchically structured file systems make it possible for different users to 

allocate names for their files without worrying about the names used by other 

users. If a user called Smith creates a file called Temp, then the system knows 

that this file is really called something like Smith/Temp, and is able to distin-

guish it from another file called Temp created by Jones, because to the system 

this is called Jones/Temp. Here the context plays an important role. 

In fact file systems usually allow users to introduce their own hierarchies of 

names, enabling each user to work in several contexts. This is done by introduc-

ing file directories (folders). A directory contains a list of files with differing 

local names, together with information describing each file (e.g. the file type) 

and how it can be located (e.g. a disc address), as is shown in Fig. 2.4. 

 

If a directory is itself regarded as a file, information about it can be held in 

Figure 2.4: A Simple File Directory 

The pointers represent file identifiers, which might e.g. be addresses on 

disc or pointers to further information enabling the file to be physically 

located (e.g. on a disc). 
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another directory, with the file information noting that it is a directory. This 

means that directories can point to other directories, which can point to further 

directories, and so on. The names of the directories can then be used in a hierar-

chical fashion, rather like a telephone number with dialling codes, to provide 

files with unique names. This is illustrated in Figure 2.5. 

 

In this way a user can create different contexts in which he can work. For 

example if Jones is a professor who has a lot of files on the computer, he might 

want to create different contexts called Admin, Teaching and Research. If he 

wants to he can then have a file called Temp in each context. The full names of 

these files would be Jones/Admin/Temp, Jones/Teaching/Temp and Jones/ Re-

search/Temp. As long as he is working in the context Teaching (and the system 

knows this) it suffices for him to call his file Temp; the system can add the con-

text. (This is like being able to call your own telephone number in your own 

city.) 

One point about the telephone numbering system needs to be mentioned: it 

is not time independent. Telephone authorities usually reallocate telephone 

numbers after people cancel their connections. This can then lead to the situation 

where you ring somebody you haven't contacted for a while and to your surprise 

a total stranger – who has been allocated the number which your friend previ-

ously had – answers your call. 

In order to have time-independent telephone numbers the telephone com-

pany would have to use much larger local numbers. Most people prefer shorter 

numbers and are prepared to accept the risk that they occasionally get a wrong 

number. 

Similarly in file systems users may want the freedom to reuse names in the 
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Figure 2.5: A Hierarchical Directory Structure 
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nation of file and directory entries. 
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same directory. This need not be forbidden, and in practice file systems do not 

prevent it. In fact it can be quite useful for example if a user gets an updated ver-

sion of a file or program which he wishes to use in place of the old version. If 

there is a new issue of a word-processing program from which certain errors 

have been removed, the normal user will probably want the system to delete the 

old version and replace it with the new version, using the same symbolic name 

in his directory. 

At this point it is useful to draw a distinction between external and internal 

names which are used in computer systems. It is a common practice in computer 

software design to use integers (whole numbers, such as the number 23) instead 

of symbolic names (consisting of alphabetic and other characters, such as My 

File) in the internal parts of the system. This is advantageous because numbers 

are usually shorter, they have a fixed length when stored in the computer's 

memory and they can often be used as indices into tables. 

Whereas it can be useful to allow symbolic names, such as Temp, to be re-

used in a local context, we run into greater difficulties if internal names are re-

used over time. To illustrate this we can consider the pointers in Figures 2.4 and 

2.5 as examples of internal names. A real problem arises if such a pointer is am-

biguous over time. Suppose for example that there are two directories (for two 

users) each with an entry for the same file (Figure 2.6). 

 

If one user deletes the file and the disk space gets used to create another 

file, the other user could end up accessing the wrong file. The fundamental prob-

lem is that a disk address is not a unique identifier for a file over time. At differ-

...  ... 

...  ... 
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Figure 2.6: Two Directory Structures containing Different Pointers 

for the Same File 
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ent times different files can be placed at the same address. (Similar considera-

tions apply to using main memory addresses as identifiers.) 

This is an example of how getting a "wrong number" may mean that a 

breach of security can occur. For security to work correctly there must be a level 

in the system, which cannot be by-passed, where subjects and objects are 

uniquely identified over time. Usually this will be at the level of internal names, 

because at the level of symbolic names it is useful for users to be able to rename 

objects and even have several names for the same object. 

2.2 Timestamps 

Names of people are not guaranteed to be unique – think of names like Peter 

Smith or John Jones. It is quite usual for authorities to make such names into 

unique identifiers by using the name and the place and date of birth together as a 

single identifier. This is analogous to a method frequently used in computing, 

called timestamping. When some subject or object (e.g. a file) is created, a time-

stamp, which is a record of the time the object was created, is associated with 

the name. Timestamps are typically represented in milliseconds (thousands of a 

second) or in microseconds (millionths of a second). 

Timestamping is especially useful with internal names, but it is not the sort 

of name which a user normally wants to associate with his file. We will see an 

example of timestamping in a later chapter. 

3 Access Rights 

Lampson's Matrix defines the access rights which a subject can exercise over an 

object. An access right gives a subject permission to carry out a particular op-

eration on a defined object. Similarly a set of access rights confers on a subject 

the right to carry out various operations on a defined object. 

3.1 Basic Access Rights 

In computer systems there are at least two levels at which the exercise of access 

rights is of interest from a security viewpoint. At the hardware level the comput-

er executes instructions which carry out the individual stages in a computation. 

In order to execute an instruction the instruction itself must be fetched from the 

main memory of the computer and in the course of its execution it may read val-

ues from and/or write values back to the main memory. Since these three actions 

on the main memory (the fetching of the instruction, the reading of information 

and the writing of information) are distinct actions at the hardware level, the 

hardware can detect what is happening and in most computer systems provides 

protection mechanisms which check whether read access, write access, and/or 

execute access is permitted, as it executes instructions. A read access right al-

lows items stored in the computer memory to be read. A write access right al-
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lows items stored in the memory to be changed. An execute access right allows 

locations of the memory to be fetched as instructions. We call these kinds of ac-

cess rights basic access rights. As we shall see in later chapters, different parts 

of the memory may be designated as readable, writable and/or executable. 

At the hardware level basic access rights can be very useful. For example, 

given that program instructions and data items are usually held in the same 

memory, it is of considerable help when debugging (finding errors in) new pro-

grams if the hardware detects that an attempt is being made to modify constants 

(data in memory which should not be modified), or to execute data items as 

code, or to treat code as data. When the hardware detects such an error it halts 

the execution of the program. Without such protection the computer might for 

example execute many supposed "instructions" which are in fact data items, 

leaving the contents of memory in such a confused state that it would be difficult 

to reconstruct the chain of events leading back to the original error. 

3.2 Semantic Access Rights 

At the file system level information stored in the computer's secondary (disc) 

memory can be viewed as a collection of files, which may contain data or pro-

grams. At this level file access rights determine what operations may take place 

on these files. Many file systems simply reflect the basic rights which appear at 

the hardware level. Users may have read access, write access and/or execute ac-

cess to a file. This access rights information is usually stored, along with other 

information, in the file directories. 

In the case of file systems a read access right confers the permission to read 

the information which is stored in the file concerned. A write access right gives 

permission to modify information in the file. (Sometimes write access rights also 

confer permission to append new information to the end of files and/or to delete 

the files; alternatively these can be treated as separate access rights.) An execute 

access right in a file system confers the permission to invoke the file as a pro-

gram containing executable instructions. 

At the level of accessing files, the basic access rights provide some con-

trols, but generally speaking they do not sufficiently distinguish between the dif-

ferent kinds of access controls which are needed in real world computer applica-

tions. For example the right to read a file does not sufficiently distinguish be-

tween the kinds of read operations which might be involved. It is one thing to 

allow a payroll clerk to access a company's personnel file to read information 

about an employee's salary, but it is quite another thing to allow a trade union 

official to read the file in order to obtain the names and addresses of employees. 

Payroll clerks have a right to read salary information, but trade union officials 

may not have this right. Yet in both cases the same file is being read. So simply 
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giving the trade union official read access could lead to him also reading the sal-

ary information, which would be a clear breach of confidentiality. Yet without 

it, he could not read the information which he is entitled to have. 

Similarly permission to write to a bank account file is insufficient to distin-

guish between allowing a bank teller to record withdrawals and deposits associ-

ated with a customer account and allowing the bank manager to raise the over-

draft limit for a customer. 

The point is that files contain logically related collections of data which 

consist of many individual items of information about objects, e.g. the names, 

addresses, account numbers, current balances, overdraft limits, interest payments 

associated with many bank accounts. Different people may have differing needs 

and differing entitlements to different parts of the information, which cannot be 

adequately expressed by a right to read from a file or to write to it. 

The simplest, but least flexible, way to solve this problem is to partition the 

data into separate files corresponding to what may be read or written by differ-

ent subjects. This is often inconvenient and does not correspond to the natural 

structure of data. It also creates difficulties when different users need partial ac-

cess to the same information. 

Another approach is to write separate programs which access the same file 

but only provide their users with that part of the information to which they are 

entailed to receive. Thus there might be separate programs for the payroll clerk 

and the trade unionist. In this case each user has the right to execute only some 

of the programs. 

A third solution is to build a complex software mechanism to serve as a 

watchman. For example a data dictionary, implemented as part of a database 

system, might contain information about the structure of the data stored in the 

database. It is possible to record access control information in such a dictionary. 

Another watchman solution which is sometimes used is to have a special soft-

ware package which works as an extension of the operating system. 

The fourth possibility is the most flexible and most interesting. It involves 

defining the access rights in terms of the operations on objects as they appear in 

object-oriented systems. We shall talk more about object-oriented systems in a 

later chapter, but here is a small foretaste. 

An object-oriented system is a software system designed around the idea of 

object classes. An object class defines the routines which, in a well-defined sys-

tem, correspond to the "natural" operations for objects of that class. As an ex-

ample a bank account can be defined as an object with an appropriate set of rou-

tines, as shown in Figure 2.7. 
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We can divide these routines into two groups: operations, which in some 

way manipulate and change the state of the bank account, and enquiries, which 

provide the subject with information about the account without changing its 

state. Examples of operations include the routines 'deposit', 'withdraw', 'transfer', 

'add interest' and 'authorize overdraft'. These can be viewed as differing kinds of 

write operations. The enquiries are distinguished in the diagram by a question 

mark. They include such routines as 'overdraft limit?' and 'current balance?'. The 

enquiries can be viewed as different kinds of read routines, which return specific 

information to the caller. 

Provided that the routines defined for a class of objects such as bank ac-

counts correspond to the natural operations which occur in the real world, they 

naturally become ideal candidates for defining access rights. We can express 

such a set of access rights as shown in Figure 2.8. 

Notice that this diagram is of a different kind from those which was used to 

illustrate Lampson's Access Matrix. An entire column in Figure 2.8 corresponds 

to a single access rights field of Lampson's Matrix. What this means is that Fig-

ure 2.8 refers to the access rights for a single object. In other words, it is not suf-

ficient simply to define which operations of an object class a particular subject 

may invoke. Such a list of permitted operations only makes sense in conjunction 

with a particular object or list of objects. For example, I may have the right to 

Figure 2.7: A Bank Account with Semantic Operations 

A Bank 

Account 

Deposit 

Withdraw 

Customer 

Number 

Overdraft 

Limit? 

Current 

Balance? 

Add 

Interest 
Authorise 

Overdraft 

Transfer 

Close 

Account 

Open 

Account 



Chapter 2 BASIC SECURITY CONCEPTS 23 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

withdraw money from my bank account, but that should not automatically give 

me the right to withdraw money from yours! 

 

We call the access rights corresponding to natural operations on objects 

semantic access rights.  In contrast with basic access rights, these allow us to 

distinguish for example between a bank teller's right to record withdrawals and 

deposits and the bank manager's right to raise the overdraft limit for a customer. 

3.3 Generic Access Rights 

It is often useful to augment semantic access rights by adding a small set of ge-

neric access rights. These are additional access rights based on operations which 

are common to all objects, for example the right to create an object, to delete an 

object, to copy an object, to change its ownership, etc. 

3.4 Metarights 

Finally access rights can themselves be subject to access control rules. For ex-

ample, there may be access rights which determine the right to pass on access 

rights to another user, to change (e.g. restrict) one's own access rights, to change 

the access rights of others, etc. We call these metarights. This brings us to our 

next question. Who has the right to control access rights? 

3.5 Mandatory Access Controls 

There are two kinds of views about how this question should be answered. The 

Figure 2.8: Access Rights expressed as Semantic Operations  
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first is the "authoritarian" or "organisational" view, which can be characterized 

as follows. 

"The information to which access is being controlled belongs to some or-

ganisation. Each organisation has a head, who in principle has sole control of the 

database. This database can be accessed by others only according to his wishes, 

which may include delegating some of his control to others." 

In other words, the organisational head (or his computer expert) controls 

the metarights in the system. Typically, large organisations seem to prefer a hi-

erarchical access control structure, reflecting their management structures. Vari-

ous security models are based on this way of thinking, such as the Bell-LaPadula 

model [10], which we discuss, along with some similar models, in a later chap-

ter. 

The authoritarian view of access control leads to systems which are charac-

terized by mandatory access controls. 

3.6 Discretionary Access Controls 

The alternative approach, found in "open" systems, involves discretionary ac-

cess controls. In a discretionary system each individual subject in the system is 

personally responsible for controlling access to the objects which he creates and 

owns. The discretionary approach is typical of time-sharing environments (such 

as Unix). Notice, however, that in such environments individual users are often 

not entirely free of external controls, since they usually have a "controlling" us-

er, e.g. the Unix "superuser" or "root". We discuss this issue in a later chapter. 

4 Implementing Lampson's Matrix 

So far we have discussed issues relating to the subjects, the objects and the ac-

cess rights which appear as the components in Lampson's Matrix. We now con-

sider the question of how the Matrix might be implemented. 

At first sight it might seem that the most obvious way to implement Lamp-

son's Matrix in an operating system would be as a two dimensional array. How-

ever, there are at least two reasons why this is not a realistic approach in prac-

tice. 

First, in a multi-user operating system an Access Matrix is usually very 

sparse. Most of the entries indicate that subjects have no access to most objects. 

Consequently a lot of memory would be consumed by repetitive information. 

Second, an Access Matrix is very dynamic. In other words it is frequently 

changing. It is not only the access rights which change but, more importantly, 

subjects and objects are added and removed frequently. This would involve a 

great deal of adjustment to the rows and columns of the data structure. 
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For these reasons two alternative implementation models can be used in 

practice. The first of these is based on Capability Lists (sometimes called C-

Lists), the second on Access Control Lists (usually known as ACLs). 

4.1 Capability Lists 

A Capability List is a list which exists separately for each subject. It lists objects 

to which the subject has access, along with the corresponding access rights for 

the objects. Thus a C-List corresponds to one column of Lampson's Access Ma-

trix, and there is a separate C-List for each column. Entries in the Access Matrix 

indicating that no access is permitted need not be included in the C-Lists. The C-

Lists corresponding to the Access Matrix in Figure 2.3 are shown in Figure 2.9. 

 

An entry in a C-List corresponds to the general concept of a capability. 

Generally speaking, a capability consists of an object identifier, which should 

uniquely identify the object, and a set of access rights for that object. The pos-

session of a capability implies the right to access the object in the ways defined 

by the access rights. Thus a capability can be thought of as being like a bunch of 

keys which will open some of the doors in a building. The building is the object, 

the doors which can be opened by the keys are defined by the access rights. 

Just as in a key system it is relatively easy to distribute keys to those who 

need them (for example to students who need to work in the university at week-

ends) but is often difficult to get them back later (when the students have com-

pleted their studies), so in a capability system it is usually straightforward to dis-

tribute capabilities to subjects, but it can be difficult to get them back when they 

are no longer valid. This gives rise to a well-known problem in capability sys-

tems, the capability revocation problem. It can be illustrated as follows. 

Figure 2.9: Capability Lists for the Access Matrix in Figure 2.3. 
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In a practical capability based system a subject's C-List can be organized as 

a set of directories. Each entry in a capability-based directory might consist of a 

symbolic name (which need only be unique within the directory), some infor-

mation about the object (e.g. its type), and a capability. The capability contains a 

unique object identifier, which serves as a pointer to the object (similar to the 

pointers in Figures 2.4 and 2.5), and the access rights for the object. Figure 2.10 

is a revised version of Figure 2.5, showing a small capability directory structure 

for our user Smith. 

Let us now suppose that the file we have called Smith/My Dir/His File ac-

tually belongs to Jones, and the capability with read access has been given to 

Smith by Jones. Jones will have his own capability for this file, with read and 

write access. He has possibly even given it a different symbolic name (Jones/My 

File), as is illustrated in Figure 2.11. This is an advantage of capability systems, 

and it works because the same object identifiers are used in the different capabil-

ities, uniquely identifying the same object. It is as if Jones labels a key on the 

bunch as for "My Office" and gives a key for it to Smith, which Smith labels 

"Jones's Office". 

But now we see the problem which Jones has, if he wants to revoke or 

modify the capability which he has given Smith to use. In order to take the ca-

pability back he needs to have access to Smith's directory called My Dir. Even if 

Smith had given him a capability for this directory, there is no guarantee that 

Smith has not moved the capability to another directory or made a copy of it. It 
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Figure 2.10: A Hierarchical Capability Directory Structure 
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is of course possible to devise extra rules about not moving and not copying ca-

pabilities, but these are often too restrictive to allow capability systems to func-

tion reasonably. In fact the problem is often worse than we have shown, because 

flexible capability systems do not even insist that capabilities are stored in direc-

tories. Smith might even have buried the capability in one of his programs. It is 

as if he has taken the key off his bunch and put it somewhere entirely different. 

So Jones has no idea where he should look to find it! 

 

There are in fact some solutions for the capability revocation problem, as 

we shall see in later chapters, but they depend on other aspects of how systems 

are implemented. There is no simple general solution which does not depend on 

the implementation nor restrict the freedom of users. There is even a view that 

the capability revocation problem should not be solved, because a capability 

should be seen as a guarantee of access [11, pp. 3-8].   

4.2 Access Control Lists 

An Access Control List (ACL) can be considered as the inverse of a C-List in 

that a list exists for each object, defining all the subjects who have access to the 

object, along with the corresponding access rights for these subjects. Thus an 

ACL corresponds to one row of Lampson's Access Matrix, and there is a sepa-

rate ACL for each row. Entries in the Access Matrix indicating no access need 

not be included in the ACLs. Figure 2.12 illustrates the ACLs corresponding to 

the Access Matrix in Figure 2.3. 
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Figure 2.11: Two Directory Structures containing Different Capabilities 
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4.3 Differences Between ACLs and C-Lists 

It would appear that ACLs and C-Lists can represent the same information, and 

it is therefore natural to assume that they are equivalent. In theory they are but, 

surprisingly, they are not equivalent in practice! In real systems they can have 

quite different effects.  

Whereas a capability can be thought of as a bunch of keys for a building, an 

ACL is more appropriately compared with a watchman who sits at the entrance 

to the building and accompanies visitors to different rooms, ensuring that they 

can only enter those rooms for which they have permission. 

Revoking or changing access rights is usually no problem in an ACL sys-

tem. The owner of the building just advises the watchman of changes, which the 

latter writes down on his list. Next time a visitor comes, he can only enter if he 

is on the changed list. So much simpler than the capability system, it would 

seem! We see in Figure 2.13 how this looks in the case of our previous example. 

Notice that entries in an ACL directory are not capabilities, which has the 

effect that there is only one directory entry per object. Smith now has no entry 

for the file we previously called Smith/My Dir/His File. Instead there is an ACL 

associated with the file itself which gives him permission to read it, but the file 

is now only called Jones/My File. Smith doesn't need a capability, he only needs 

to name the file, and the access list shows that he has permission to read it. (The 

subject name in the ACL should of course be a unique identifier, not just 

Smith!) 

Figure 2.12: Access Control Lists for the Access Matrix in Fig. 2.3 
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But now we have a problem. Smith has to be able to find the file in order 

that the ACL can be found and checked. How he does this depends on where the 

ACL is stored. In Figure 2.13 we have placed the ACL somewhere between 

Jones's directory and the file itself. In practice an ACL can be stored either with 

the object for which it defines access or with a directory entry describing the 

object. The latter is more usual. 

Most ACL-oriented file systems solve the problem by having a single glob-

al directory hierarchy for all users of the system. The first level may represent a 

super-user (or the system itself), the next levels represent users, and the lower 

levels the users' individual directories and their files. In effect there is a single 

global hierarchical directory structure representing the ownership of all files in 

the system, as shown in Figure 2.14. This is a simplified view of directory struc-

tures such as that found for example in the Unix system. 

With this kind of system users have no difficulty in finding the files to 

which they have access via an ACL, if, as is usual, they can browse through the 

global directory structure. But herein lies a big danger for security. If a single 

global directory structure exists, hackers can take advantage of this to discover 

what interesting files there are in a system, making it easy for them to locate po-

tentially useful information. (If I have called one of my files "Computer Archi-

tecture/Exam" I dare say it might be of interest to some student hackers!) And 

once a hacker is in a directory then with a little skill he can manage to include 

himself in the access control lists for the objects held there. 
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Figure 2.13: Two ACL Structures giving Access to the Same File 
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By contrast, in the case of a capability based directory system a global 

structure is unnecessary, and it is easy to ensure that hackers cannot browse 

through all the files in the system. The need to browse has been removed! 

The alternative strategy for storing an ACL, i.e. storing the access rights 

with the object itself rather than in a directory, would in conventional file sys-

tems have the effect that it would possibly be harder for hackers to find the ac-

cess rights, but it would be equally difficult for users to find the files of others to 

which they have legitimate access! This strategy is not normally adopted in cur-

rent systems, because it would complicate the file system too much.  

We shall return to the subject of C-Lists and ACLs at various points later in 

the book. We have by no means discussed all the important points which they 

raise. In particular we have mainly looked at them in relation to file systems. But 

issues of representing access rights arise at several levels in a system. In later 

chapters we shall be especially concerned with resolving such issues at lower 

levels of the system, for example in relation to the protection of pages and of 

segments in the virtual memory. Although the principles which we have dis-

cussed apply at that level also, quite different implementation decisions play an 

important role, as we shall see in due course. 

In the next chapter we examine some further security concepts. 

Figure 2.14: A Global Hierarchical Directory Structure 
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 Chapter 3 

More Security Concepts 

 

The previous chapter described the properties and possible implementations as-

sociated with Lampson's Access Matrix. In this chapter we review some security 

issues which cannot be resolved via that simple model. 

1 The Confinement Problem 

An example of a problem which cannot be described in terms of Lampson's Ac-

cess Matrix is known as the confinement problem. This is basically the problem 

of ensuring that subjects who/which themselves have a legitimate right to infor-

mation do not reveal it to unauthorised third parties. 

As a simple example, consider the process of printing a file. The actual low 

level commands which have to be issued to printer devices (e.g. ink jet printers, 

laser printers, etc.) are not only complicated, but they differ quite substantially 

from one printer type to another. It would be an unreasonable overhead to expect 

all programmers of application programs to produce their own code to drive 

printers, so what normally happens is that printer driver programs which offer a 

uniform and easy to use interface are provided by the operating system or the 

printer manufacturer. But can these driver programs be trusted not to reveal the 

information to which they need access in order to print user's files? 

Furthermore, it is in the interest of all users in a multiprogramming system 

that the printers have a high throughput and that individual users do not have to 

wait until a printer becomes free before they can run their application programs 

which produce printout. Both these objectives are usually achieved by using 

printer "spoolers". These are processes which print continuously as long as there 

is something to print. They take their input from files which have been created 

on disc by application programs. Thus the application programs never write their 

printout directly to the printers but instead they write what is to be printed into 

files on disc. (Discs have two advantages over printers: the rates of data transfer 

are much faster, and they are sharable devices which can be used "at the same 



Chapter 3 MORE SECURITY CONCEPTS 32 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

time" by many different programs.) 

What all this means is that when an application program wishes to have in-

formation printed out, it first writes this to a disc file, then it puts the name of (or 

places a capability for) the file onto a queue of work for the spooler process. 

The spooler is expected to read the file and output its contents to a printer. 

But by reading the file the spooler has (legitimate) access to potentially secret 

information. The confinement problem in this case is how to stop the spooler 

from secretly printing user files at another location or from copying them into 

different files with access rights that allow unauthorised parties to read them. 

A program which cheats in this kind of way is often known as a Trojan 

horse, i.e. a program which in addition to its "official" job carries out undesira-

ble secret actions. What is needed is the ability to "confine" the spooler in such a 

way that it cannot retain information which it receives from its caller and cannot 

copy it or output it other than as required by the application program using its 

services. 

The confinement problem cannot be formulated in terms of Lampson's Ac-

cess Matrix (and therefore also not in terms of C-Lists or ACLs), and it is also 

an extremely difficult problem to solve in practical systems. That is one of the 

reasons why we hear such much in news reports about insecure computer sys-

tems. 

To make matters worse a Trojan horse need not necessarily use an overt 

channel (such as a file or a printer) to pass information to unauthorised users. It 

may resort to covert channels. Suppose for example a spooler had access to a 

simple piece of information ("yes" or "no") which it wants to pass on illicitly to 

a third party, it might encode this information by printing two files in the order 

A then B, meaning "yes" or in the order B then A (meaning "no"), or it might 

cause a noticeable delay (e.g. 20 seconds for yes, 40 seconds for no), between 

printing two files, or send an unwarranted error message, etc. 

In a later chapter we shall show how the simple confinement problem can 

be solved, but we do not pretend to have a general answer to the problem of 

closing all covert channels! When we discuss the Bell-LaPadula model later in 

this chapter we shall see a different example of the confinement problem, but 

before doing this we first look at some further security issues which are not ad-

dressed by Lampson's Access Matrix. 

2 Rule-Based Access Rights 

The simplest way to express access rights is to say that a subject S may access 

an object O with a set of (basic or semantic) access rights R. This is basically 

what Lampson's Access Matrix achieves. However, this is often not fully ade-
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quate to meet particular situations. For example, it may be desirable to deter-

mine that a subject S (e.g. an employee) may have access rights R to an object O 

only during working hours. The latter is a simple example of rule-based access. 

Another example would be the rule that the owner of a bank account may make 

a withdrawal operation only if this does not result in an account balance less 

than the overdraft limit. We shall see a quite different example of access rules 

when we consider the Bell-LaPadula model. 

We shall refer to the simple Access Matrix form of access controls as un-

conditional access rights, in contrast to those with associated conditions, which 

we call rule-based access. 

In our discussion of the issue who controls access rights we distinguished 

between mandatory and discretionary access rights. It is important to note that 

the concepts of unconditional vs. rule-based access and of mandatory vs. discre-

tionary access are orthogonal, i.e. they are independent themes which can be 

combined in any way (giving four possible kinds of system). In other words both 

unconditional and rule-based access rights can be used independently of the de-

cision about whether a user himself or an organisation head determines the me-

tarights for the objects of a system. This point is often not clearly recognized, 

because most mandatory systems (cf. Bell-LaPadula) are also rule-based and 

most discretionary systems (cf. Unix) support only unconditional access rights. 

3 The Access Rule Model 

A few years ago a colleague and I proposed what is effectively a simple exten-

sion to Lampson's Access Matrix, which we called the Access Rule Model. This 

allows rules to be specified as part of the process of defining access rights [12, 

pp. 67-82]. As it is intended to be a model which allows security decisions to be 

formulated in a formal way, the rules look a little mathematical. But don't let 

this put you off. The idea is basically very simple. The description which is pre-

sented here differs a little in detail from the original description. 

An access rule specifies a condition which must be fulfilled in order that 

access may proceed. It takes the form 

condition: subject —> object.{access_rights} 

The rule 

C: S —> O.{AR} 

means that the subject S has the set of access rights AR for the object O, if and 

only if the condition C is fulfilled at the time the access is attempted. If the ac-

cess rights are listed separately, a comma is used to separate the individual ac-

cess rights in the set. 

The condition is a logical expression, which may use predicates about any 
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aspect of the system. 

Lampson's Access Matrix is a special case of the model, which can be ex-

pressed as follows: 

true: S —> O.{AR} 

What this means is that it is always true that the subject S has the access 

rights AR for the object O. Thus we can express the first column of the Access 

Matrix in Figure 2.3 using the following rules: 

true: JILL —> My File.{read, write} 

true: JILL —> Her File.{read, write} 

By using the quantifier "for all", which is abbreviated to the symbol  , in 

conjunction with subjects, access rights and/or objects, we can neatly express in 

a single access rule many fields of Lampson's Matrix. Thus 

 S: S —> spooler.{print} 

This means that all subjects, here referred to as S, have the right to print using 

the spooler. Similarly 

 O: Superuser —> O.{read} 

means that the Superuser can read all objects in the system, here referred to as 

O. The rule 

 AR: Smith —> My File.{AR} 

means that Smith has all access rights, here referred to as AR, for My File. 

By introducing sets, the rules can discriminate more finely. The symbol  

means "in the set". For example the rule 

 x  bank_tellers: x —> account.deposit 

means that all members, here referred to as x, of the set bank tellers (i.e. all bank 

tellers) can make deposits into the object account. 

More complex conditions can be expressed by using boolean operators in 

the conditions. For example the symbol  means "and" and ¬ means "not", so 

that the rule 

 x  bank_tellers  ¬ account.overdrawn: 

       x —> account.withdraw 

is interpreted as: all bank tellers have the right to withdraw from the account if it 

is not overdrawn. 

These examples illustrate that the access rule model fits well with both the 

object-oriented approach to software design (which we further discuss in a later 

chapter) and with the use of semantic access rights, which we discussed in the 

previous chapter. The expressions account.overdrawn and account.withdraw can 

be understood as operations on the object account. 

It is even possible to express confinement if we introduce the predicates 



Chapter 3 MORE SECURITY CONCEPTS 35 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

confined (x) (i.e. the operation x is confined) and confined_to (y, z) (i.e. the ob-

ject y is confined to invoking the object z), as follows: 
confined(print)  confined_to(spooler, printer): 

       S —> spooler.print 

What this means is that the subject S can invoke the print operation of the spool-

er if the operation print is confined and the spooler is confined to using only the 

printer. 

The use of such a general access rule model means that it should in future 

be possible to specify in a precise form what the security requirements for a sys-

tem are. This is an important step in achieving secure systems. 

However, specifying requirements and implementing them are two quite 

different things. For example, specifying a confinement condition does not mean 

that it is easy to implement it! 

4 The Bell-LaPadula Security Model 

This model [10]  is a rule-based mandatory model which aims to control the 

flow of information between subjects. Through its incorporation into the U.S. 

Orange Book
7
 and similar publications by other governments it has substantially 

influenced general thinking about security. 

Each subject and each object in the system is classified as belonging to a 

particular security class. A subject has a clearance level and an object (e.g. a 

document) has a classification. For example we could use the military classifica-

tions 

unclassified < confidential < secret < top secret 

where the symbol < means "is at a lower level than" (e.g. confidential is at a 

lower level than secret). 

The aim is to control information flow between different subjects. For ex-

ample subjects with a clearance level secret may read objects (which we shall 

call documents) with a lower classification confidential or unclassified, but they 

may only write to documents classified as top secret. Objects at the same classi-

fication may be both read and written. Thus a subject with the secret clearance 

level may both read and write secret documents. 

In addition there is a non-hierarchical grouping into areas of concern 

(which we shall call projects). These are disjunct, i.e. projects do not overlap 

with each other. Each subject and each object may be associated with a set of 

projects. A subject may only read a document if he is a member of all the pro-

                                           
7
  The U.S. Orange Book defines a set of criteria laid down by the U.S. Department of 

Defense (DoD) in 1985 for evaluating the trustworthiness of computer systems. It has 

now been withdrawn. 
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jects with which it is associated. He may only write to a document if the docu-

ment is associated with all the projects of which he is a member. 

The hierarchical classification rules and the non-hierarchical project rules 

are applied in combination. In other words both sets of rules must be fulfilled 

before an access may take place. 

The rules for reading and writing can be expressed mathematically as fol-

lows: 

Reading of Objects (simple security property): 

(clearance (subject) ≥ classification (object)) 

   (projects (subject)   projects (object)) 

 This rule ensures that a subject cannot receive information from higher 

classification levels or from projects of which he is not a member. 

Writing of Objects (*-property, pronounced 'star-property'): 

(clearance (subject) ≤ classification (object)) 

   (projects (subject)   projects (object)) 

This rule ensures that subjects cannot transmit information to lower classifica-

tion levels or from projects not associated with the document. 

In addition there is a rule regarding the introduction of new users into the 

system. This states that a subject S can only create a subject T if the projects for 

T are a subset of those for S and the clearance of T is not higher than that of S. 

Creation of subjects: 

Subjects creates Subject  

 (projects (Subject)   projects (Subjects) 

  (clearance (Subject) ≤ clearance (Subjects)) 

All these rules can be easily expressed using the Access Rule Model, as follows: 

 O   S  (clearance (S) ≥ classification (O) 

  (projects (S)   projects (O)): 

  S —> O.{read} 

 

 O   S  (clearance (S) ≤ classification (O)) 

  (projects (S)   projects (O)): 

  S —> O.{write} 

 

(projects (St) 
  projects (Ss) 

  (clearance (St) ≤ clearance (Ss)): 

  Ss —> user_manager.{new_user (St)} 

The aim of these rules is to permit information flow only to trustworthy ob-

jects, and thus to solve a special case of the confinement problem. 

However, it does not guarantee the integrity of objects, because it permits 

subjects with a lower clearance to write to objects with a higher classification. 

Some researchers (e.g. [13]) have therefore suggested that the writing rule 

should be modified to disallow the writing to or creation of objects at higher 
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classification levels. 

Other models for controlling the flow of information have been proposed 

(e.g. the Lattice Model [14]).  

5 The Biba Security Model 

Not all security models are concerned with controlling the flow of information. 

A model superficially similar to the Bell-LaPadula model, the Biba Model [15] 

is also a rule-based mandatory model, but – unlike Bell-LaPadula – it is con-

cerned with guaranteeing the integrity of information. For another example of a 

security model aimed at ensuring the integrity of objects (the Clark-Wilson 

Model) see  

As in the Bell-LaPadula model subjects and objects are classified into hier-

archically organized security classes. A subject has a clearance level and an ob-

ject (e.g. a document) has a classification. In addition there is a non-hierarchical 

grouping into areas of concern (e.g. projects). Such projects are disjunct. 

The Biba model has the following rules: 

Reading of Objects: 

(clearance (subject) ≤ classification (object)) 

  (project (subject)   project (object)) 

 This rule ensures that subjects cannot receive information from lower clas-

sification levels or from projects of which he is not a member.  

Writing of Objects: 

(clearance (subject) ≥ classification (object)) 

  (project (subject)   project (object)) 

This rule ensures that subjects cannot transmit information to higher classifica-

tion levels or from projects not associated with the document. 

Creation of subjects: 

Subjects creates Subject  

 (project (Subject)   project (Subjects) 

   (clearance (Subject) ≤ clearance (Subjects)) 

This rule states that a subject S can only create a subject T if the projects 

for T are a subset of those for S and the clearance of T is not higher than that of 

S. 

Whereas the subject creation rule and the project membership rules for 

reading and writing are the same as in Bell-LaPadula, the hierarchical reading 

and writing rules of the Biba model are the inverse of those in the Bell-LaPadula 

model. This ensures the integrity of objects but not the confidentiality of infor-

mation. It does not solve the confinement problem [16]. 

In bringing our descriptions of some standard security models to a close, 
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we would like to emphasize that from the viewpoint of this book the important 

issue is not which security model is best or even good. These models are im-

portant to us rather because they serve as examples of real security models 

which cannot easily be implemented on conventional computers using conven-

tional implementation techniques. Thus they provide a practical testbed for the 

usefulness of the security mechanisms which we shall propose in the later parts 

of this book. 

6 Protection Domains 

The mandatory security models which we have seen – and in fact most security 

models – make an implicit assumption that only one protection domain exists in 

a particular computing environment, and that the protection mechanisms of the 

system are directed towards implementing that particular security policy or 

model. And in practice current systems often support only a single protection 

domain. 

In later chapters we shall take up the challenge of showing that it is possi-

ble to provide mechanisms which are flexible enough and yet secure enough to 

implement different models side by side in a single system. In particular we 

shall attempt to demonstrate that it is possible to implement a combination of 

policies involving mandatory (authoritarian) and discretionary (open), as well as 

unconditional and rule-based models alongside each other. Such mixed systems 

are of practical relevance both for providers of computing and networking ser-

vices. 

The general conclusion which we might draw from this chapter is that there 

are some security problems which are not too difficult to explain or even specify 

formally. But they are by no means easy to implement in a general way. This 

provides us with one of the challenges to be overcome using the security mech-

anism which we propose in the remainder of the book. 



 

  

 Chapter 4 

External Security Threats 

 

So far we have considered security in a fairly abstract way. In this and the 

next chapter we turn to more practical issues, taking a look at some of the threats 

and weak mechanisms which in practice place computer systems at risk. We 

first review the threats which arise from unauthorised persons attempting to 

penetrate a system. Then in the next chapter we review the kinds of internal 

threats which can be created by persons who are either legitimate users of the 

system or by unauthorised users who have managed to penetrate the system, 

concluding with a discussion of some of the weak security mechanisms and pol-

icies which make it easy for them to breach security. 

1 Threats from Outside 

Most systems include a list of users, who – assuming that they can provide au-

thentication of their identities – are authorised to use the system. There are sev-

eral groups of persons who may not be authorised to use a system, who may 

nevertheless be interested in penetrating the system. Here are some examples. 

— Amateur hackers often penetrate systems simply to satisfy their curiosity or 

to prove that they can beat the challenge of breaking in. Although this may 

be relatively harmless it can involve breaches both of the privacy rights of 

individuals and of the confidentiality of corporate information. If curiosity 

is accompanied by mischievousness or malice then the result may also be 

threats to the integrity and/or to the availability of systems. 

— Criminals may wish to penetrate a system for their own benefit. The aim is 

often to commit a financial crime and may involve breaching either the 

confidentiality of the system (e.g. to obtain "insider" information) or the in-

tegrity of the system (e.g. by modifying information about financial trans-

actions or bank accounts, etc.). They are less likely to threaten the availabil-

ity of the system, especially if they wish to go undetected. 

 However, it has unfortunately become quite common for criminals to 

blackmail the owners of computer sites by encrypting them, with the result 
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that the computer system becomes useless (unavailable). Anonymous pay-

ments are now possible in the Darknet
8
 using cryptocurrencies

9
 such as 

Bitcoin
10

, which thus facilitate blackmail payments. 

— Commercial and industrial spies generally wish to obtain information by 

penetrating competitors' systems, and so they are primarily a threat to the 

confidentiality of the system. They may of course also modify information 

to disadvantage their competitors. Only in extreme cases is it likely that 

they will wish to disrupt the availability of the system, as they too will 

normally be more concerned to go undetected. 

— Social media and other companies avidly gather information about as many 

individuals and companies as possible with the primary aim of building 

profiles which can be used to place customised advertising especially in the 

Internet. While this is not always illegal it often represents a severe threat to 

privacy
11

, and in the longer term (because of the massive databases which 

are accruing and the ability to manipulate users' opinions) to democracy 

[17]. The most common technique which they use is to install trackers 

which follow and record their browser history, i.e. their accesses to internet 

sites, especially websites. The most common reason for this is to provide 

advertisers with information which will help them to sell their goods and/or 

services, but there are other uses (e.g. for law enforcement authorities fol-

low the activities of criminals and terrorists
12

. Trackers often use cookies 

on the computer of their targets to store their information. 

— Whilst it cannot be excluded that terrorists aim to obtain and modify infor-

mation, they are more likely to be concerned with disrupting or destroying a 

system, and so mainly represent a threat to the availability of systems. 

— Military and governmental spies and hackers are interested in gathering in-

formation about the activities of other countries (and sometimes about their 

own citizens) and therefore present a threat to the confidentiality of sys-

tems. Disinformation techniques may also lead to the modification of in-

formation and so provide a threat to integrity. And with the growing threats 

of cyber warfare a major aim has become to disrupt availability. 

                                           
8
  see https://en.wikipedia.org/wiki/Darknet 

9
  https://en.wikipedia.org/wiki/Cryptocurrency 

10
  https://en.wikipedia.org/wiki/Bitcoin 

11
  The European Union has introduced extensive privacy laws, which force websites to 

reveal information about the privacy relevant activities of their websites and allow the 

user to restrict some of these. However I doubt the efficacy of this, since it considerably 

slows down their work, and I suspect that most users simply take the line of least re-

sistance by allowing all activities.  I see this as a typical example of how officials often 

fail to realise their good (but bureaucratic) intentions! 
12

 see https://en.wikipedia.org/wiki/Web_tracking 
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— It appears that foreign governments are now infiltrating the social media 

networks in what might be successful attempts to pervert the outcomes of 

democratic elections. 

Although these are quite distinct categories of persons who may wish to pene-

trate systems, they have at least one thing in common. Before they can do their 

damage they must in some way gain access to the system or to the information 

they need. Here are some of the techniques which they can adopt. 

They can physically steal information, e.g. by breaking into an organisation 

and stealing magnetic media devices on which information is stored. There are 

at least three kinds of precautions which can be taken against this kind of threat: 

— physical security measures to prevent theft, 

— holding multiple copies of data to ensure that theft does not lead to 

unavailability, 

— making the data meaningless for the thief (e.g. using encryption tech-

niques). 

As a further possibility they can listen in to communications transmissions, 

e.g. by wiretapping, by observing internet traffic or by monitoring satellite mes-

sages. This technique may be used directly to obtain the information being 

sought. But it can also be used for example to discover the passwords of users 

coming on line. The most effective form of defence against this kind of threat is 

to encrypt the data, i.e. to encode it into a form which makes it appear meaning-

less. 

The third possibility is for an unauthorised person to present himself as an 

authorised user of the system, e.g. by stealing or guessing a user's password or 

by systematically testing passwords until successful. 

In this book we are concerned primarily with technical mechanisms for 

achieving secure systems, and so we ignore the issue of physically securing the 

data. Furthermore the focus of our interest is primarily on a secure computer ar-

chitecture and the basic aspects of operating systems, rather than on the Inter-

net
13

. 

From this review it is evident that at least two mechanisms are relevant for 

countering attempts to penetrate systems: encryption and authentication tech-

niques. We now consider these in turn. 

2 Avoiding Eavesdropping 

Avoiding eavesdropping on communications lines or open channels such as sat-

ellite links can best be achieved by the use of encryption techniques. Such tech-

                                           
13

  I do not claim to be an expert on the Internet. 
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niques are highly mathematical and it is not our intention here to discuss de-

tailed algorithms, but merely to sketch out some of the aspects which are of gen-

eral interest for preventing security breaches. 

The basic idea of encryption is that a text or bit string, the content of which 

is to be kept secret, is transformed by an algorithm into a different form, so that 

the meaning is no longer self-evident. 

 For example, suppose we start with the following text: 
this is a secret text 

We could use a simple algorithm to transform it into the following text 
uijt jt b tfdsfu ufyu 

and then send it over the internet in the hope that if an eavesdropper manages to 

access the message he will not understand it. In fact our hopes will almost cer-

tainly be dashed. You have probably already worked out the simple encryption 

algorithm which was used. All we did was change each letter in the text to the 

next letter in the alphabet. 

We could make the algorithm rather more flexible by introducing the idea 

of a key. For example we could apply a three letter key, which the algorithm us-

es to determine by how many letters in the alphabet the letters in the text are to 

be shifted. Thus we might use the key BIT to produce the following encoding of 

the text: 

vqcu rl c byeayv cyzc 

What we have done is to take the first, fourth, seventh … letters and have shifted 

them by 2 (because B is the second letter of the alphabet). Then we have taken 

the second, fifth, eighth … letters and shifted them by 9 (because I is the ninth 

letter of the alphabet) and finally we shifted the third, sixth, ninth … letters by 

20 (because T is the twentieth letter of the alphabet). To implement such an al-

gorithm we need a routine which is parameterised. 

The advantage of using a key is that different keys can be used, at the will 

of the encoder (not the programmer), to produce different encodings. Even if the 

eavesdropper knows the algorithm, he still has to find the key. 

During and since the Second World War a huge amount of effort and gov-

ernment money has been invested in encryption techniques and in ways to crack 

them. As a result relatively safe encryption algorithms have been devised. These 

are highly mathematical. We can usefully distinguish between two kinds of al-

gorithms. 

Symmetrical encryption algorithms (cf. DES [18]) and more recently 

AES14) use the same (secret) key to encrypt and to decrypt a text. The simple 

                                           
14

  see https://en.wikipedia.org/wiki/Advanced_Encryption_Standard 
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example which we have just given is symmetrical. If you know both the key that 

was used to encode the text and the algorithm, you can decode the text. 

Asymmetrical algorithms (known as "public key" encryption) use two keys, 

a public key and a private key [19]. The public key, which need not be kept se-

cret, is used to encode the message, but the private key, which has to be kept 

secret, is needed to decode it. 

Both methods have their advantages and disadvantages. From the organisa-

tional viewpoint an important advantage of symmetrical techniques can be that 

the encoded text can be the same length as the plain text, e.g. it takes up the 

same amount of disc space. Another advantage is that symmetrical techniques 

can use very much faster algorithms than the asymmetrical technique. But a dis-

advantage is that the recipient of a message which has been encoded must know 

the same key as the sender. This can mean that the key may also have to be 

transmitted and is therefore at risk of being discovered by eavesdroppers. 

In a public key system no keys have to be transmitted in this way. Each 

agent has his own private key and his public key. An agent who sends an encod-

ed message uses the public key of the receiver to encode it. The recipient uses 

his private key to decode it. He doesn't need to reveal the private key to any-

body. The recipient of a message can even publish his public key in a newspaper 

if he wants to. But this advantage does not come free. First, a public key algo-

rithm works very much more slowly than a symmetrical algorithm. The other 

problem is that the encoded text is normally longer than the plain text. 

To take advantage of the strengths of both methods, they can be used in 

combination. The text to be transmitted is encrypted using a symmetrical algo-

rithm. This has the advantages that the encoding is fast and that the encoded text 

is no longer than the original. The key which was used for the symmetrical en-

coding is then itself encoded with the public key of the receiver and transmitted 

to him. He decodes this with his private key and then decodes the text. 

A combined method along these lines can be used for example for commu-

nication between the different computers in a network, if each computer has its 

own public and private keys. Variants of this technique can also be used to ena-

ble a mutually suspicious sender and recipient of a message to authenticate the 

other's identity [20]. But this is by no means a simple issue and there is a large 

body of literature on this subject. 

However, we shall not consider the issue of using encryption in attempting 

to authenticate the identities of mutually suspicious agents, as this is not the sub-

ject of the book. Instead we shall concentrate on issues concerned with the struc-

turing of computer architectures and operating systems. We shall see that the 

SPEEDOS operating system can also make a contribution to the problem of 
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identifying senders and recipients of messages. 

3 Encryption of Information on Disc 

Information stored on removable discs (including external hard discs) and simi-

lar media is vulnerable to theft. Having stolen or copied a disc the thief can take 

it to his own computer system and read the information at his leisure. In this 

case too encryption can play a role in safeguarding the confidentiality of the in-

formation. (To ensure the availability of the information the user must have 

made a second copy before the theft.) In practice few systems encode infor-

mation on disc, so what we describe in this section are potential scenarios. 

In practice only the symmetrical method of encryption comes into question 

because of the faster speed of encoding and decoding and because the infor-

mation remains the same size. The latter is especially important for discs, since 

they work with fixed size data blocks which correspond to fixed size blocks in 

the main memory of the computer. 

In the simplest scenario the operating system can encode the plain data 

form of the information when it is written from the main memory to disc and 

decode this whenever it is read back into the main memory. 

There are several options for using keys. The simplest is for the operating 

system to use the same key for all discs which it uses, but this increases the ease 

with which a thief can crack several discs which are stolen. Thus a stronger op-

tion is to use a different key for each disc. It is even safer to use a different key 

for each file on each disc. 

Then there is the issue of choice of keys. This can be made by the operating 

system or by the owner of the disc or of the file in question. 

There is also the question of whether and how the keys are themselves re-

membered. The first alternative is for the keys not to be stored on disc at all, but 

then the onus lies with the owner of a disc or file to remember the key and to 

provide this to the operating system when he loads the disc or when he opens 

each file. This is both inconvenient for users and is open to the risk of forgotten 

keys. 

For these reasons it is probably more attractive to store the key(s) on the 

disc or with the file in question. This has the advantage that the user can then 

simply load his disc on a different system (assuming it provides the same en-

cryption facilities) and they can then be read without difficulty. 

But if the owner of the disc can read it, why not a thief? Here the public 

key approach can be a help. Just as the sender of information over a communi-

cations link can send his symmetrical key using the public (asymmetrical) key of 

the recipient, so a user planning to take his disc to another system could request 
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the operating system to encode his symmetrical key(s) on the disc, using the 

public key of the system on which the disc is to be read. This would make the 

key inaccessible to a thief trying to read the disc on his own system. 

4 Authentication of Users 

When a user logs into a system, his authentication usually takes place in two 

stages. First he is asked to identify himself. We shall refer to this stage as the 

identification stage. Then he is required to provide proof that he is the user he 

claims to be. This is the authentication stage. 

The identification stage normally involves the user in typing in the (unique) 

username with which he is registered in the system. The operating system needs 

this name in order to set up an appropriate context for the user to work in. Usu-

ally this involves creating a process and executing some commands in this pro-

cess to tailor it to the user's needs (as well as ensuring that this process has the 

correct security context). 

5 Password Systems 

The authentication stage can take several forms. In most systems the user is re-

quested to supply a password, which is a secret code known to him and to the 

system. The way this security mechanism is usually organised can lead to sever-

al serious security weaknesses. 

When users choose their own passwords, they naturally tend to choose 

names which are easy to remember. For example there is a tendency to use the 

name of one's spouse or parent or child. Even if the choice is not so obvious, 

many users are likely to choose a normal word which appears in a dictionary. 

In 1979 Morris and Thompson [21] demonstrated how easy it is to discover 

most passwords. Within a week they cracked 86 % of 3,289 passwords! Ten 

years later a similar study by Riddle, Miron and Semo [22] produced similar re-

sults. 

Another weakness of some password systems is that the passwords them-

selves are stored by the system in a password file. If a hacker succeeds in secret-

ly penetrating this file, he can impersonate any user and thus obtain easy access 

to all the files in the system. In older versions of the Unix operating system it 

was even possible for all users to read the password file. In this case the pass-

words themselves were stored in encrypted form, but this does not prevent users 

from seeing at a glance which other users do not have a password. Furthermore, 

the encryption algorithm is publicly known and can therefore be used to carry 

out comparisons with entries in the password file. 

There are several methods which can be employed to make systematic at-

tempts to discover passwords. For example a hacker can wiretap the connection 
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between a user and his system in order to discover his password. Or he can use 

"brute force" methods such as trying out all combinations of the alphabet of val-

id password characters or trying out all the words in a dictionary. 

One way of countering brute force methods is for the system to adopt a pol-

icy of allowing a user only a small number of login attempts. If he exceeds the 

limit then the system refuses any further login attempts for say 24 hours. But 

this only stops the most blatant and direct attempts at impersonation. If the 

hacker has succeeded in obtaining encrypted passwords, for example from a 

wiretap or from a password file, then he can combine the brute force methods 

with encryption algorithms to crack passwords at his leisure. And of course the 

computer is an ideal tool to help him in such an endeavour. 

A more sophisticated method of discovering the passwords of others is the 

use of so-called Trojan horses. We shall discuss this in the next chapter. 

6 Improving the Security of Passwords 

The literature is full of suggestions for improving the security of passwords. 

Here are some examples. 

6.1 Password Length 

The shorter a password is, the easier it is to crack by brute force, since the num-

ber of combinations of letters in the permitted alphabet rises sharply with the 

length of the password. For example if the alphabet consists of only the 26 small 

letters from a to z, and a password can be a single letter, then at most 26 at-

tempts suffice to crack the password. If it has two letters then at most 26
2
 = 676 

attempts are needed. With three letters the number increases to 263 = 17,576, 

with 7 to 267 = 8,031,810,176 and so on. With ten letters the number is more 

than 141 thousand billion (where 1 billion is a thousand million). To understand 

what this means, let us suppose that it takes one tenth of a second of computer 

time to make an attempt to crack a password (which is in practice far too long!). 

With three letter passwords the longest time needed is 1,757.6 seconds, just less 

than half an hour. But with 10 letter passwords it would take 14.1 thousand bil-

lion seconds to crack every password, which is nearly 450 thousand years! But 

as I indicated, one tenth of a second is unrealistically slow. 

6.2 Range of Characters 

A further improvement can be gained by increasing the range of characters 

which can be used in passwords. For example the use of both small and capital 

letters theoretically makes a big difference. For example with even three letter 

passwords this gives a range of 523 = 140,608 possibilities, compared with 

17,576 for just small (or just capital) letters. If the ten decimal digits are added 
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then this increases to 623 = 238,328, and if we add ten extra characters, such as 

full stop, comma, hyphen, question mark and so on, then with even three charac-

ters the number of possibilities is now 723 = 373,248. 

One problem with increasing the length of passwords and/or with widening 

the range of the alphabet used, is that users will tend not to make use of the extra 

length or the extra characters, because their passwords become more difficult to 

remember. To avoid this, some systems place restrictions on the passwords 

which their users are permitted to register. For example they might say that a 

password must contain at least one capital letter, one number, and a special 

character and be at least eight characters long. Other restrictions which might 

apply are that passwords which appear as words in dictionaries or passwords are 

not allowed. It might also be required that passwords are changed at regular in-

tervals, e.g. at least once a week or once a month. 

But generally speaking such systems are not popular with users, because 

they make it hard to remember passwords. Even less popular are systems which 

themselves determine which passwords are to be used. 

6.3 Complicated Password Requirements 

The effectiveness of making passwords more complicated is in fact somewhat 

questionable, since the more difficult a password is to remember, the more likely 

it is that the user will write it down on a piece of paper or store it in a computer 

file. If he does this the vulnerability of the system rests on this piece of paper 

being lost, stolen, or left at a computer terminal, etc., or on a hacker breaking 

into his system and finding the file. 

6.4 Dynamic Passwords 

A technique which can help to get around this difficulty is to use dynamic pass-

words, i.e. passwords which automatically change according to some rule. Usu-

ally this involves storing in the computer not a password but a function for each 

user. When used as an authentication technique the system challenges the user 

with an argument and he has to respond by typing in a reply. 

Here are some very trivial examples of functions: 
 f(x) = x +3 

Here the result is the value of the (numerical) argument, plus three. For example 

if the system challenges with the number 67 then the correct password is 70. 

Here is another example. 
 f(x) = d * h (d = day of month, h = actual hour) 

The function in this case ignores the argument entirely and instead calculates a 

result which consists of multiplying the day of the month by the hour of the day 

at the time the authentication challenge is made. Suppose for example the user 
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with this function logs in at 2 p.m. (= 14.00) on the 5th June and the system 

challenges him with the argument 67, then he responds with 70 (= 5 x 14). 

Notice that the same argument can produce the same response in both ex-

amples, so that even if a hacker is looking over the user's shoulder when he logs 

in, or manages to eavesdrop on the challenge and the response on a communica-

tions line, he cannot deduce what the right response will be to any future chal-

lenge which the system makes if he attempts to impersonate the user. 

The main limitation on dynamic passwords is that the function must be 

simple enough for the user to remember it and to calculate it. (In the case of a 

computer identifying itself to another, this need not be the case.) 

6.5 Cognitive Passwords 

Another approach is to use cognitive passwords. This is another form of chal-

lenge and response system, in which the challenges take the form of questions, 

to which the user has to supply the answers. For example the system might chal-

lenge with the question: 
"What is the name of your maternal grandfather's dog?" 

to which the user might respond with the answer: 
"Fido" 

The system can be supplied with a large selection of such questions and with the 

expected answers to them. Then each time the user attempts to log in, the system 

can choose one or more of the agreed questions at random. To make the problem 

more difficult for hackers the user might choose to supply the system with "in-

correct" answers. Thus instead of listing the name of grandfather's dog as 

"Fido", which might be known to a hacker who knows the user, the careful user 

might have determined that the required answer is: 
"Are you deaf?" 

or something equally irrelevant. But the problem then becomes remembering the 

answers expected by the system! 

6.6 Required Actions 

Yet another mechanism which can be employed to make it difficult for hackers 

to impersonate registered users of a system is to monitor the first few commands 

which a user invokes after he has (apparently) successfully passed the normal 

authentication test. The real user has agreed with the system which commands 

he will first type in. If the system detects a different sequence then it assumes 

that the active user is a hacker. 

This technique, which we shall call required actions, has one drawback. If 

the commands are actually carried out, this may lead to breaches of security, so 

that it is desirable that such commands are not actually really executed, but are 
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simulated in a form which the hacker cannot detect. 

7 Alternatives to Passwords 

Not all systems use passwords or similar challenge-response systems to authen-

ticate the identities of users. Other methods rely on various kinds of physical 

proofs. 

7.1 Plastic Cards or Other Similar Objects 

One common technique is to require the user to prove his identity by demon-

strating that he possesses some kind of object. We are all familiar with the use of 

plastic cards which banks issue for this purpose. These are not without their 

problems. In particular theft or accidental loss of these cards can lead to security 

breaches. (The 10,000 combinations of PIN numbers – four digit numerical 

passwords – which are typically used in conjunction with these cards offer little 

security against the professional thief.) 

7.2 Personal Characteristics 

It might seem that the methods which rely on personal characteristics of the user 

to prove his identity are more reliable. We include in this category techniques 

such as voice recognition, finger print examination, blood analysis and the like. 

However, the equipment needed to carry out such tests is generally expensive. 

And in reality even these techniques are not foolproof. Voices can be captured 

on discs, users can be physically forced to provide their fingerprints or blood 

samples, and so on. 

Furthermore, in my own experience with smartphones using  fingerpreint 

analysis is far from reliable! 

It seems that there is no absolutely foolproof method of authenticating the 

identities of users. 

8 A Fundamental Weakness 

What almost all systems have in common is that it is the operating system which 

carries out the authentication procedure. This may seem to be the obvious way 

to organise things, but in fact it is the root cause for a very fundamental security 

weakness in most systems. 

In the first place a standard authentication procedure gives the hacker the 

important advantage that he knows what he has to do when he sets about pene-

trating the system! For example, he has to input the right password. 

He also has a second advantage. A centralised system procedure for authen-

ticating users implies that there is a central repository of authentication infor-

mation, such as a password file. This provides the hacker with an ideal target. If 
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he can crack this file then he can easily gain unrestricted access to all infor-

mation in the system. 

In view of these disadvantages of centralised authentication procedures car-

ried out by the operating system, there is much to be said for the idea that each 

user should be able to carry out his own authentication in whatever way he sees 

fit. In other words individual users should have the freedom to check their own 

identities using their own authentication module. If such a module is a freely 

programmable user module, then each user can individually employ any of the 

methods which we have discussed in order to authenticate his own identity. If 

such a mechanism is in place hackers must not only discover the content of an 

authorisation procedure but also its form, and there is no central information to 

help him. He doesn't know whether he has to crack a simple password, a dynam-

ic password, a cognitive password and/or conform to some required actions. 

Of course not all users have the necessary skills to program an authentica-

tion module for themselves, but that should not distract us from the importance 

of this idea. Non-programmers could (in a world where this idea becomes nor-

mal) buy such modules from software houses and install them themselves. Such 

off-the shelf modules could be parameterised so that each user could tailor them 

for his or her own purposes. It would already be a help if operating systems pro-

vided a range of such parameterised modules. 

Such a radical approach to authentication has not yet been implemented on 

conventional computer systems. A possible way of organising this would be for 

the operating system, after the user has identified himself by providing his user 

name, to create a process in which the user's security module is first executed. 

This would then determine whether the authentication is successful and, if not, 

destroy the process. But such an implementation would still have one weakness: 

there would still need to be a central file maintained by the operating system, 

which instead of holding passwords, would hold pointers to the security modules 

of all users. This itself would still be a good target for hackers. 

As my colleagues and I have shown and demonstrated in practice in our 

experimental MONADS computer systems
15

, even this problem can be avoided 

with the use of an unconventional computer architecture [23, 24]. In chapter 22 

we shall see how it works in SPEEDOS. 
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  see the Monads website 

http://www.monads-security.org/persistent-protected-processes.html. 



 

  

 Chapter 5 

Internal Security Threats 

and Weak Mechanisms 

 

Once a user has gained entry to a computer system, having (rightly or wrongly) 

convinced the system that he is an authorised user, he typically works within a 

context in which he has privileges and access rights based on his identity. For 

example he may access his own files in a discretionary system or in a rule-based 

system he may access those which the rules allow him to. In other words he is 

subject to the access rights which are defined for him by the security policy in 

force at the computer installation where he is logged in. 

However, in most practical multi-user systems there is no absolute guaran-

tee that a user will actually be forced to remain in his intended access environ-

ment. There are several reasons for this. First, the security mechanisms of the 

system do not always function correctly. Second, they are often not powerful 

enough to implement the security model which is required. Third, the security 

model itself is often not adequate to meet the real security requirements of the 

users. Thus there is plenty of scope in most systems for expert authenticated us-

ers to break free from their individual security context and cause problems for 

other users. 

We now consider some well-known ways a user may breach security or 

cause damage once he is in the system as an accredited user. We then briefly 

review why the mechanisms of a system are often not powerful enough to im-

plement the security policy, and we consider why – in a discretionary system – 

the user may be dissatisfied with the system policy. 

1 Threats at the Program Level 

We first review some of the techniques which have provided practical threats to 

system security and have put systems at risk: bugs, viruses, worms and Trojan 

horses. These are relatively sophisticated forms of attack, since they rely on an 
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ability either to write (or otherwise obtain) programs which do the damage or to 

take advantage of knowledge about computer systems. 

1.1 Bugs 

Bugs are errors in programs, which may have been accidentally or deliberately 

introduced. They have been used for example to allow hackers to gain illegal 

access to systems. Well known examples are errors which existed in the "finger" 

and "mail" programs of Unix, allowing hackers to gain access to systems, their 

password files etc. [2]. These programs ran with "superuser" rights (discussed 

later in the chapter), thus giving hackers the possibility of exercising all 

superuser privileges. In practice this meant that a hacker could at will read, mod-

ify or delete any file in the system. 

1.2 Viruses 

Viruses are pieces of program which can reproduce themselves. The dangerous 

functions of a virus are copied into various program files. When these programs 

are unwittingly executed by authorised users, the virus is further reproduced in 

more program files. Viruses often modify data files. Sometimes they are pro-

grammed to produce a spectacular effect (e.g. the destruction of files) at a par-

ticular time (such as at the turn of the millennium). They can also be pro-

grammed to do their damage when a particular event occurs, in which case they 

are sometimes called logical bombs. 

1.3 Worms 

In contrast with viruses, worms are complete programs. Worms deliberately re-

produce themselves across networks, taking advantage of weaknesses in the se-

curity mechanisms of the computers in the network. They are generally a danger 

to the availability of a system, in that they are often designed to consume large 

amounts of system resources (e.g. processor time, main memory, disc space). 

The most famous worm was the "internet worm", which in a very short time led 

to the complete unavailability of 6000 computers in the USA.
16

 

1.4 Trojan Horses 

Trojan horses are programs which contain code designed to carry out hidden 

activities in addition to their intended tasks. A particularly dangerous example of 

a Trojan horse is a program which simulates the login procedure and thus can 

discover the passwords of unsuspecting users. Trojan horses are also often used 

to introduce viruses into systems. 
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  see https://en.wikipedia.org/wiki/Morris_worm 
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1.5 Direct Attacks 

In addition to all these relatively sophisticated security threats there are of 

course the direct security threats, for example when a user of the system directly 

attempts to breach the confidentiality, the integrity or the availability of infor-

mation belonging to other users, or to steal programs, in contravention of the 

security policy. 

Security attacks, at whatever level of sophistication, are generally possible 

because of inadequacies in security mechanisms or security policies. We now 

consider some examples of such inadequacies, looking at security first as a 

compiler issue, then as a computer architecture responsibility and finally as an 

operating system problem. 

2 Security as a Compiler Issue 

A compiler is a program which translates another program, written in a high lev-

el language, into a series of low level instructions which are capable of being 

directly executed by a central processing unit (CPU) in the computer system. 

The program to be translated is usually called the source program, the translated 

form is the object program. 

A compiler is specialised for compiling source programs written in a single 

high level language. Examples of well-known high level languages include 

Fortran, Cobol, Pascal, C, C++ and Java. There are however very many other 

programming languages which have been designed with a variety of aims and 

purposes. 

Some programming languages emphasise the concept of type. This means 

that they insist that the variables used in programs have a fixed type which can-

not be changed once the variable has come into existence. In this sense a type in 

a programming language defines a set of values which can be assigned to a vari-

able of the type, together with a specific set of operations which can be used to 

manipulate these values. 

For example most programming languages have a predefined type integer. 

Any variable of the type integer can only have a value which is a negative or 

positive whole number, or zero. (Thus integer variables cannot take on fractional 

or irrational values such as 1.32 or 3/4 or √2 or π. For this purpose the program-

mer must use another type, for example the type real.) In practice the range of 

integers is either limited by formal definition in the programming language or by 

the fact that a computer word will only hold a finite number of values. For ex-

ample many computers represent an integer value in a 32 bit word. With the 

most common way of representing negative integers this means that the largest 

integer is defined to be +231-1 and the largest negative integer -231. All integer 
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values are then the whole numbers in the range bounded by these two limits. 

The operations which are usually predefined on integers are + (addition), - 

(subtraction), x (multiplication), mod (modulo division) and div (division result-

ing in a whole number, ignoring the remainder). Notice that the normal division 

operation is not included, because it produces a result which may not be an inte-

ger! For example 21÷12 produces a result of 1.75, which is not an integer. In-

stead there are two division operations which always result in a whole number. 

The modulo division operation 21 mod 12 just gives the remainder part 9, while 

21 div 12 gives an answer 1 (without the remainder 9). Integer operations which 

result in a value outside the defined range for integers may cause the computer 

to interrupt the program execution to indicate that this has happened. 

In most high level programming languages the type integer is a predefined 

type, which means that it is built into the language and the compiler knows all 

about it. Other predefined types are often real (for fractional numbers), boolean 

(for the logical or truth values true and false), the type character (to express the 

letters of the alphabet, together with the decimal digits 0 to 9, punctuation marks 

and a few non-printable characters which need not concern us here), and possi-

bly the type string (which allows individual characters to be strung together to 

form a piece of text). 

Usually there are also some predefined types which allow other types to be 

combined together. (The array is an example of such a type, which defines a 

sequence of values of the same type. Another example is the record type, which 

allows several values of different types to be defined as a single entity.) 

In most programming languages it is possible to extend the set of opera-

tions on a type by writing algorithms as functions (e.g. square root) which return 

a value of the desired type to the caller. Some languages (for example object-

oriented programming languages) go a step further by allowing a programmer to 

define new types, building on the predefined types of the language and on other 

types which he has previously defined himself. 

By now you are probably wondering what the concept of types in pro-

gramming languages has to do with security. The answer is that it is sometimes 

claimed that the compiler for a strongly typed language can eradicate most secu-

rity problems. 

A strongly typed language is one which rigorously enforces type rules and 

does not allow the programmer to ignore them. Furthermore most of these rules 

can be checked by the compiler when it analyses a source program before pro-

ducing the object program. Sometimes type rules are difficult to check at com-

pile time, because the decision about whether a rule is being broken depends on 

the dynamic execution of the program. In such a case the compiler may insert 
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some run-time checks into the object program itself. 

To see how a language which is not strongly typed can easily lead to secu-

rity breaches, consider again the array idea. In programming languages an item 

in an array is typically selected by naming the array and following this by the 

index value for the desired item in square brackets. To select say the entry hold-

ing the value for March in an array with twelve integer values called Rain-

fall we could write the expression Rainfall[2]
17

. The actual address of 

the location in the computer's memory is calculated by adding the index value 

(here 2) to the address where the array begins. But suppose now that instead of 

writing Rainfall[2] we were to write something like Rainfall[29435] 

in our program, the result might be that the compiler creates instructions that add 

the integer value 29435 to the address which marks the beginning of the array, 

and that would produce an address which overshoots the end of the array by a 

long way. It may even be the case that the resulting address is outside the ad-

dress range of our program. The effect of this could be that the program accesses 

a memory location in another program. Voilà! In an insecure computing envi-

ronment we can read or modify information in another program. 

How can this be prevented? The compiler could prevent it in this simple 

example by checking at compile time whether the index value 29435 is valid 

for the Rainfall array. Obviously it is not; only the values in the range 0 to 

11 are valid, corresponding to the 12 months of the year. This is an example of a 

compile-time check. 

But suppose that the program is a bit more complicated. Instead of nomi-

nating each index value explicitly, it might use an integer variable (say called 

month) and select an item using the expression Rainfall[month]. This is a 

quite normal way of writing programs, and in some programming languages it is 

no longer obvious at compile time whether the index variable is in the valid 

range. The compiler can usually only check this by inserting a run-time check 

which tests that the value held in the integer variable month is in the valid range 

before allowing it to be used as an index. Even this is not so easy if the length of 

the array itself is not known at compile time. A run-time check is still possible, 

but is more complicated. One problem with run-time checks is that they add 

more instructions to a program and so increase the time it takes to execute the 

program. 

Another example of the same kind of danger occurs if a programming lan-

guage allows addresses (usually called pointers in programming languages) to 

be manipulated explicitly. For example in a language which is not strongly 

typed (e.g. the widely used language C) it may be permitted to use integer opera-
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  The first entry in an array is usually defined as entry 0, the second as 1, etc. 
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tions on pointers, so that arbitrary values can be assigned to or added to address-

es, again allowing addresses to be produced which refer to the memory locations 

of another program. 

In fact there are very many ways in which a program can be written which 

potentially attempts to access the memory locations of other programs. The im-

portant issue here is whether we should rely on compilers to ensure that this is 

not in practice possible. There are advocates of this view, who maintain that we 

should always use strongly typed languages, but the mainstream of computer 

science finds this approach unsatisfactory. Here are some of the reasons. 

First, it assumes that the compiler itself is correct. If the compiler contains 

a bug (or can be classified as a Trojan horse) then there can be no certainty that 

the programs which it compiles will be correct. 

Second, it assumes that only completely type secure languages can be used 

at a computer installation. This is a very risky proposition, because the proof 

that a reasonably complex programming language is completely type secure is 

very difficult. 

Third, it means that many widely used programming languages, such as 

Fortran, Cobol, Pascal, C and C++, cannot be used. 

Fourth, reliance on the correctness of a compiler creates enormous difficul-

ties – both practical and with respect to security – for persons wishing to devel-

op a new programming language or a new compiler for an existing programming 

language. 

Fifth, it assumes that programming languages have complete control over 

all data in a system, which is generally not true, for example with respect to in-

formation on disc. (Most programming languages which are otherwise strongly 

typed allow file accesses which simply use the operating system or database fa-

cilities.) 

For such reasons the view that security at the level of memory protection 

can be left to compilers is certainly inadequate for normal computer installations 

which use multiprogramming, allow any programming language to be used and 

allow users to develop compilers. 

Nevertheless this is not an argument against the use of strongly typed pro-

gramming languages. On the contrary these have many benefits, not least of 

which is the advantage that a compiler can find many errors in a source program 

before the object program is even produced. 

3 Security as an Architectural Issue 

Traditionally not the compiler but the computer architecture (the environment 

which the computer hardware provides for the execution of programs) takes re-
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sponsibility for ensuring that programs executing in the main (or virtual) 

memory cannot interfere with each other. Most computer architectures achieve 

this in a fairly satisfactory way, provided that one accepts the extremely simple 

protection paradigms that they enforce. In particular these paradigms tend to be 

good at enforcing strict protection in the sense of complete separation. 

However the other side of the coin of protection is sharing. It is not a par-

ticularly difficult challenge to isolate programs so completely that they cannot 

communicate with each other or easily share data and/or code. Basically this can 

be achieved by providing completely separate and non-overlapping contexts. 

(We shall see in later chapters how this is achieved in practice.) But when it 

comes to the challenge of allowing subjects to cooperate with each other in se-

cure ways, most computer architectures fail miserably. 

An analogous situation would be to imagine that we avoid burglaries by 

building houses which have no doors and no windows. This is all very well for 

keeping burglars out, but it isn't very good if you want a friend to visit you! In 

fact it has lots of other obvious disadvantages too! In the same way we shall see 

that conventional computer architectures have lots of disadvantages when it 

comes to sharing, and that this is one of the main reasons why the software sys-

tems which have to use these basic mechanisms (i.e. the operating system, the 

file system, the database system, etc.) are in practice excessively complex, for 

these have been given the job of making the sharing of data and programs possi-

ble. In doing so they have been forced to invent mechanisms which are quite 

unnatural and cumbersome. It is therefore not surprising that these software 

mechanisms are rather weak when it comes to guaranteeing security. 

4 Security as an Operating System Issue 

Operating systems usually have sole control of the hardware and of the archi-

tectural mechanisms of the computer. With the aid of these low level controls 

operating systems are traditionally responsible for providing the kinds of higher 

level mechanisms which are needed for implementing security policies. 

One such higher level mechanism normally provided by the operating sys-

tem is the authentication of users when they log into the system. We have al-

ready observed that this – ironically – can be regarded as a security weakness in 

that it implies the existence of a central authentication mechanism and of cen-

trally held authentication information, thus helping the hacker both to know 

what he has to do to penetrate a system and where there is useful information to 

help him achieve this. 

The operating system also carries out other important security activities, 

such as the allocation of space in the main and secondary memories and ensur-

ing (with the help of basic architectural mechanisms) that programs cannot vio-
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late others' space. This implies for example that it is also the operating system's 

responsibility to ensure that memory is not allocated to a program until the pre-

vious contents of all memory locations have been cleared. In fact operating sys-

tems rarely do this because of the overheads involved – but if it is to be done in 

a highly secure system, then the operating system is the obviously right place. 

Other security activities, such as deciding whether a user may start a job or 

claim particular resources, etc., are likewise policy decisions which are too 

complex for the hardware to carry out. They are the responsibility of the operat-

ing system. It is arguably the failure of operating systems to carry out such tasks 

effectively that allows worms to chew up system resources and thereby make 

these unavailable for legitimate uses. 

5 Privileged Mode 

It is clear that operating systems play an important role in maintaining computer 

security. Because the operating system is the traditional vehicle for implement-

ing security policies, many computers support a privileged mode – sometimes 

called kernel mode, supervisor mode, executive mode or similar – which gives it 

greater powers than the rest of the system. This means that when the operating 

system itself, rather than a user process, is actually executing instructions, cer-

tain hardware protection checks are relaxed. 

When the computer is executing in privileged mode, the main memory pro-

tection checks, which are otherwise carried out by the hardware to prevent pro-

grams from interfering with each other, are usually turned off. 

Privileged mode usually also brings with it the right to execute certain sen-

sitive instructions. These are typically instructions which are needed by the op-

erating system to maintain its control over user processes and to guarantee the 

security of the system. One such instruction which many computers allow only 

to be executed in privileged mode is the instruction which initiates input-output 

activity, such as the writing of data to or reading of data from discs. If any pro-

gram could use this instruction in an uncontrolled way, one effect would be that 

any user could access the files of others. 

While it is clear that there is a need for certain operating system activities 

to be privileged, this feature can also be a serious source of weakness for the 

security of the system. There are at least two reasons for this. 

First, many operating systems are very large and complex. Many of the ac-

tivities which they carry out do not need to be privileged, but in practice these 

activities are often also executed in privileged mode. This can be a source of 

misuse. Trojan horses in the operating system can easily take advantage of their 

privileged status to breach security. 
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Second, the implicit assumption that the operating system has a right to be 

privileged is itself a highly questionable proposition. Suppose for example that 

the secret service organisation of some small nation such as Australia, which 

does not manufacture computers itself, buys a computer and uses it to hold high-

ly sensitive information. Why should the operating system of some foreign 

computer manufacturer – which might contain a Trojan horse – have the right to 

access its memory space? Or, why should an operating system be able to read 

the information held in a banking system? How can the bank then guarantee the 

privacy of its customers' information? 

In the final analysis an operating system has to have certain privileges 

which allow it to protect users from each other and from unauthorised users. 

There must be a software module which can read from and write to all the 

blocks of a disc, in order to manage disc space in an orderly way. The spooler 

must be in a position to print user files, and so on. 

For such reasons it seems unlikely that we shall ever reach a situation in 

which the operating system has no special privileges. But that does not have to 

imply that all parts of the operating system have to have all the privileges, in-

cluding unlimited access to all the information belonging to users. 

6 Security Kernels 

In the 1970s the idea became popular that the security sensitive parts of an oper-

ating system should be gathered together into a so called security kernel. This 

should be open to public inspection and should be small enough and clear 

enough that its correctness is self-evident or formally provable (see for example 

[25, 26, 27, 28, 29, 30, 31]). 

The idea of security kernels has not been put into practice in widely used 

systems, because it is often difficult to isolate security functions from other op-

erating system functions; consequently security kernels tend not to be so small 

as one would hope. This in turn means that it is not a simple matter to prove a 

security kernel correct. Nevertheless the principal idea, that privilege should be 

restricted to a small part of the operating system which is provably correct and 

open to user inspection (to demonstrate that it does not contain Trojan horses) 

obviously provides an important concept, which could play a significant role in 

improving the security of operating systems. 

Finally it is worth remembering that a provably secure operating system is 

only in practice useful if this really is the operating system which is actually put 

to use! In other words, there is a security risk that the system which you think 

you are using has been penetrated after having been proved correct. This risk has 

therefore led to an issue known as secure booting of systems. What this means is 

that special measures are taken to guarantee that the operating system which you 
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think you are initialising on the computer is the one that you actually intend to 

initialise. We shall not consider this rather technical issue further. Interested 

readers can refer for example to a paper written by two colleagues and myself 

[32, pp. 106-119]. 

7 Inadequate Security Policies 

Weaknesses in computer security are not always the result of inadequate securi-

ty mechanisms. In many cases the security policies in force at computer installa-

tions are themselves totally inadequate. By way of example we now consider 

some typical weaknesses in security policies which often appear in the design of 

general purpose operating systems with discretionary access controls, especially 

at the file system level. 

7.1 The Superuser Role 

There is a general assumption, even in discretionary systems, that there should 

be at least one highly privileged user, e.g. the "superuser" in Unix. This role, 

which in some systems allows a user to take on the security privileges of any 

other user at will, appears to be justified in order that certain administrative tasks 

can be carried out. Examples of such apparently essential tasks include the in-

troduction of new users, the resetting of a password which a normal user has 

forgotten, etc. However the proposition that such activities require a superuser to 

be able to take on all the rights of other users is highly questionable. 

The superuser role can easily be abused. Such abuse may take a direct form 

if the person filling this role has less than altruistic intentions. Indeed, if an or-

ganisation or group wishes to acquire information over a long period about an-

other organisation, it is an obvious strategy to get one of its spies placed into the 

superuser role of the rival organisation! 

The superuser role can be dangerous in at least two further senses. First, 

this role is often so essential to the running of the system that several people are 

entrusted with the superuser password, for example to ensure normal service 

when the main superuser becomes ill. The more persons there are involved, the 

less secure the system! 

Second, if only the superuser can carry out certain functions or execute cer-

tain programs which other users need to use, or if it is much easier to carry out 

such functions in the role of the superuser, then there will be a tendency to give 

many users the superuser password. This happens every day in many computer 

installations around the world. 

The superuser role has in fact proved to be one of the greatest security risks 

in discretionary systems. 
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7.2 Simplistic Access Control Policies 

The basic file system, the largest component of most operating systems, organ-

ises user data and programs as files. It is responsible inter alia for checking the 

rights of subjects attempting to access these files. 

The inadequacy of the policies underlying the operation of file systems is 

itself a major weakness in most discretionary systems. The problem centres on a 

failure to provide a proper implementation of Lampson's Access Matrix for in-

dividual subjects and objects. For example in the VMS operating system for 

DEC's VAX computers access to a file was organised on the basis of four user 

categories: 
 [S:] System administrator (system) 

 [O:] Owner of the file (owner) 

 [G:] Group of the owner (group) 

 [W:] All other users (world) 

For these categories access rights for four operations could be specified: 
 [R:] Read 

 [W:] Write 

 [E:] Execute 

 [D:] Delete 

This means that for any file 4 x 4 possible combinations of access rights exist. 

These are represented by 16 bits in a matrix (where 0 = no right; 1 = right pre-

sent). 

In Unix the superuser has all rights, so that a category equivalent to the 

VMS system administrator category is not necessary. Furthermore, only the 

owner of a file has the (implicit) right to delete a file. Thus in Unix one column 

and one row of the access matrix used in VMS are redundant. (In fact the situa-

tion is a little more complicated than this, but it doesn't materially alter our 

point.) 

In the Siemens BS2000 operating system, to take a rather older example, 

there were only 2 x 2 possible combinations of rights. It is only possible to dis-

tinguish between access for world and access for the owner, and the actual ac-

cess rights distinguish only between read access and write access. (Further ac-

cess controls could however be achieved through the use of password facilities.) 

There are some superficial problems with such schemes (e.g. users may 

need to belong to more than one group). But the fundamental problem is the 

coarseness of granularity of the access rights. Suppose for example that a user 

wishes to give another user (not a member of his group) access to a file, then he 

has no alternative but to provide either all users with the same rights or to make 

the intended user a member of his group. 

In both cases unnecessary privileges have to be given. Even if these are 

granted only for a short time (giving the user time to make a copy of the file, for 
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example) the system is still more insecure than would be necessary if the policy 

allowed a full implementation of Lampson's Access Matrix.  

Thirty years after Lampson published the idea behind his Access Matrix 

paper [9], he published a paper which argues that 

"We don’t have “real” security that guarantees to stop bad things from happening, 

and the main reason is that people don’t buy it. They don’t buy it because the dan-

ger is small, and because security is a pain", 

and 

"when security flaws cause serious damage, buyers change their priorities and sys-

tems become more secure, but unless there’s a catastrophe, these changes are 

slow. Short of that, the best we can do is to drastically simplify the parts of sys-

tems that have to do with security: 

• Users need to have at most three categories for authorization: me, my group or 

company, and the world. 

• ..." [33]. 

In the second volume of this book, which describes the SPEEDOS operating 

system design in some detail, I describe how Lampson's matrix (and many more 

security features) can be put into practice in a relatively straightforward manner, 

which users will hopefully not see as a "pain". 

7.3 The Authenticity of Logged in Users 

A basic assumption of most systems is that a logged in user is really who he 

claims to be, since he has succeeded in passing through the operating system's 

initial authentication mechanism. However, there are many reasons why this 

may not be the case. For example, the user may in fact be a hacker who has suc-

cessfully deceived the initial authentication procedure. Or he may be somebody 

taking advantage of the real user's absence from the terminal (e.g. when he has 

left himself logged in while going for coffee), or he may even be a criminal who 

has overpowered the genuine user. 

For these reasons further checks to re-authenticate a user may be appropri-

ate in an environment which aims at high security. Such checks might be period-

ic and/or they might take the form of challenges when the user seeks access to a 

secure resource. The form of the challenge might, but of course need not, be that 

of the initial authentication procedure. However, with most conventional operat-

ing systems such re-authentication procedures are rarely possible in any form. 

8 Gathering the Evidence 

Given that security mechanisms are generally not strong enough to guarantee the 

perfect execution of security policies, it becomes important to monitor security 

sensitive events in order to help discover security breaches, to help track down 

users responsible for breaches, to help establish the extent of the damage and 
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determine what recovery procedures are appropriate. 

Again low priority – if any – is given to these monitoring activities in many 

security policies, especially those found in discretionary systems. If the system 

doesn't organise this, it is very difficult for users to learn about security breaches 

affecting their files. 

9 Too Many Cooks 

There is an old saying that too many cooks spoil the broth. This is certainly the 

case when considering security in computer systems. Typically some basic 

mechanisms are built into the computer architecture. Then the operating system 

adds its own additional mechanisms. The basic file system adds some more. The 

database system may add yet other security mechanisms. The network systems 

may also add more security mechanisms. Sometimes proprietary security soft-

ware packages are then added to this usually complicated hotch-potch of mech-

anisms. 

If these multiple sets of mechanisms are not well designed to interact with 

each other correctly, security gaps are often created which the clever hacker can 

use by playing them off one against the other. This is one of the major forms of 

weakness in a security system. 

It is our contention that what is required is not an ever increasing number of 

mechanisms to patch up the gaps left by others, but instead a small number of 

very simple basic mechanisms which have universal application in all levels of 

the system. These should preferably be publicly known and well understood by 

all. In the last analysis a security mechanism which relies on secrecy offers no 

security, because human nature finds it too hard to keep secrets for ever! 

In the remainder of this volume we examine the weaknesses of existing 

system security mechanisms at the hardware, architectural and operating system 

levels, particularly emphasising how they can harmonise with each other, and 

we suggest new mechanisms which are intended to be simple, easy to under-

stand and universally applicable through all levels of a system. In defining these 

it has been our intention that they should be flexible enough to allow the imple-

mentation of all the different kinds of security policies which we have so far dis-

cussed, and indeed it is our aim that this should be possible in a single system. In 

other words we aim to produce a relatively small set of mechanisms which will 

not only allow the implementation of many different policies and styles of secu-

rity systems, but to show that these can be implemented alongside each other in 

a single computer system. 
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 Chapter 6 

A Brief Introduction to 

Computer Architecture 

 

This chapter briefly introduces some basic features of computer architecture 

with the aim of providing non-specialist readers with enough background infor-

mation to understand the remaining chapters of the book. 

1 The Structure of a Modern Computer 

Modern computers, structured according to the principles laid down by John von 

Neumann [34]
18

, consist of the following main components: at least one central 

processing unit (CPU), a main memory (often called RAM) and some input-

output (I/O) devices (see Figure 6.1). The CPU carries out the actual calcula-

tions specified in a program by executing its instructions. The main memory 

stores the program and its data during the computation. The I/O devices are used 

for long-term storage of information (hard discs, flash memory sticks, CDs, 

DVDs, etc.) and to provide a means of communication between the computer 

and the outside world (monitors, keyboards, printers, etc.). 

In a very loose way we can think of the CPU as the "brain" of the comput-

er, the main memory as its memory and the I/O devices as its sense organs for 

communicating with the outside world. The different parts of the computer in a 

classical von Neumann architecture communicate with each other via a bus, 

which is a set of lines (wires) along which information flows, as is shown in 

Figure 6.1. This can be thought of as the nerve system of the computer. 

The main memory consists primarily of a sequence bits (binary digits), 

each of which can hold the value 0 or 1. The CPU reads and writes bits in 

groups of 32 or 64 bits, called words. It can interpret these as various kinds of 

numbers (based on binary arithmetic) or as groups of bytes (each consisting of 8 
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  See https://en.wikipedia.org/wiki/Von_Neumann_architecture 
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bits) which can be interpreted as alphabetic or numeric characters, punctuation 

marks and other symbols. 

 
Each word in the memory has a unique numeric address (corresponding to 

its position in the memory, starting at the address 0). This is used by the CPU to 

identify the intended word when reading from or writing to the main memory. 

The use of the bus is normally controlled by the CPU. Typically it has three 

kinds of lines: address lines, data lines and control lines. The address lines are 

used to pass memory addresses from the CPU to the main memory, indicating 

which memory location is involved in a read or write operation. The data lines 

are used for the actual transfer of data. The control lines indicate what kind of 

operation is required (e.g. a write operation). 

Accessing I/O devices can be, and often is, treated in a similar way to 

memory accesses, with the address lines indicating not a main memory address 

but a device buffer address. Not all computers treat I/O devices in quite this 

way, but the differences are not important in this context. 

2 Main Memory 

A typical main memory has a number of important properties, some advanta-

geous and some not so advantageous. 

• Main memory access times (i.e. the time to read or write a word of main 

memory) are very fast. This enables the CPU to work at high speed. 

• Information in the main memory can be accessed randomly, which means 

that you don't have to work through the memory item by item until you can 

 

Central Processing Unit 

(CPU) 

 

Main Memory 
Input/Output 

(I/O) 

Figure 6.1: A "von Neumann" Computer 

Bus 
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access the item you are seeking
19

. This random access characteristic of 

main memory is extremely important, because the instructions and data 

items needed for a computation are not stored in a single sequence. 

• Main memory is a very expensive form of memory, much more expensive 

per word of memory than a hard disc or a tape or a CD or DVD, etc. 

• A further not so happy characteristic of main memory is that it is normally 

not persistent. This means that, like most other electronic memory devices, 

the information held in the memory is lost if the power is turned off. This 

also contrasts with hard discs and other magnetic media. 

It is necessary to keep track of where in the main memory particular pro-

grams and data items are stored. This means that the main memory itself not on-

ly holds program instructions, numerical values and characters and other data 

items, but also memory addresses. Thus a particular word in the main memory 

might contain the address of another word. For the present we shall assume that 

such an address is simply a main memory address; however, we shall later en-

counter other possibilities. Addresses are normally stored in separate 32 or 64 

bit words. 

Since the main memory holds the currently active data and program in-

structions in use by the central processing unit it is important from a security 

viewpoint and is therefore supplied with basic protection mechanisms which 

will be discussed in more detail in later chapters. 

3 The Central Processing Unit 

The CPU is the unit which actually carries out instructions, and it therefore 

needs access to the information held in the main memory. When a word is read 

from the main memory into the CPU, there must be a small memory in the CPU 

to receive it. Similarly before a write operation the word to be written back into 

the main memory must be held in a small memory in the CPU. Usually the same 

32 or 64 bit memory in the CPU, known as a memory buffer register (MBR for 

short), is used for both purposes and is connected to the data lines of the bus. 

Similarly the main memory address to be used for the read or write operation is 

held in a memory address register (MAR), which is connected to the address 

lines of the bus. 

Somewhat simplified, the CPU of a modern computer typically consists of 

two main parts, an arithmetic-logic unit (ALU) and a control unit (Figure 6.2). 
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  A device which cannot be directly accessed at any point with the same ease and speed, 

but is only really fast when items are accessed in sequence, such as a magnetic tape, is 

called a sequential access device. You can understand this difference by comparing the 

time difference between searching for a song in the middle of a music cassette tape or in 

the middle of a music CD. 
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3.1 The Arithmetic-Logic Unit 

The ALU contains the logic circuits for performing such operations as additions, 

multiplications, comparisons, logical operations, etc. There is also a set of "reg-

isters" associated with the ALU. An ALU register is a memory location which is 

actually held with the ALU rather than as part of the main memory of the com-

puter. Most ALU registers contain one word of information, i.e. their size corre-

sponds to the size of a word in the main memory. We have already seen two 

special examples, the MAR and the MBR. 

 
An important reason for having ALU registers is that they can be built from 

components which have much faster access times than equivalent chips used for 

implementing main memory. But like main memory chips they are not persistent 

(i.e. they too lose their values when the power is off). ALU registers are consid-

erably more expensive than main memory chips. 

The main reason for having ALU registers is that they can store a small 

amount of information which is needed for immediate use in executing in-

structions in the CPU, and their access times are fast enough to allow the CPU to 

execute at full speed. But by using the slower chips for the main memory it is 

possible to build large main memories at an affordable price. 

3.2 ALU Instructions 

The ALU registers are used mainly to hold operands for instructions. These are 

the values on which the instructions directly operate. An instruction usually has 

an operation field and several operand fields, as is illustrated in Figure 6.3, 

which shows typical instruction formats for a RISC (reduced instruction set 

Figure 6.2: The Central Processing Unit of a Computer 
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computer). The operation type tells the CPU what kind of operation should be 

executed (e.g. ADD). The remaining fields specify the numbers of the ALU reg-

isters which hold the operands for the instruction (or hold an immediate value). 

For example if the encoding for an ADD instruction is 37, then an instruction in 

the form <<37, 3, 8, 5>> (using the first structure in the diagram) tells the CPU 

to add the content of register 8 to the content of register 5 and to store the result 

in register 3. 

 

3.3 Load and Store Instructions 

The ALU registers which serve as data operands must from time to time be 

loaded with values from locations in the main memory. Similarly the results of 

instructions held in registers must sometimes be stored back into locations of the 

main memory. The usual way to achieve this on RISC computers is to have sep-

arate load and store instructions. These instructions themselves require operands 

indicating which register is to be loaded (or stored) and which main memory 

address is involved. Typical RISC load and store instruction formats are illus-

trated in Figure 6.4. 

 

The first format specifies base and index registers, e.g. for working through 

a list in the main memory. The base register holds a main memory address 

which typically refers to the start of a structure such as an array, and the index 

register holds a variable offset from that point, indicating how far into the array 

the relevant item is. Using the second format, a literal value (a fixed value which 

appears in the instruction itself) is added to a base register. 

3.4 The Control Unit 

As well as having instructions which directly perform arithmetic and logical op-
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Figure 6.3: Typical RISC ALU Instruction Formats 
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erations on values in registers, and having instructions for loading and storing 

registers using main memory accesses, a computer needs a third kind of instruc-

tion in order to execute algorithms. To understand this we must now take a look 

at the Control Unit component of the CPU. 

From Figure 6.2 we see that the Control Unit also has at least two registers: 

the instruction register (IR) and the program counter (PC). These two registers 

are used to control the order in which the instructions in a program are executed. 

The IR holds a copy of the content of the instruction which is currently be-

ing executed in the ALU. When an instruction is loaded into the IR the control 

unit can decode and analyse it, sending appropriate control signals to the ALU to 

tell it for example which kind of operation is to be carried out and which regis-

ters are to be used. 

3.5 The Fetch-Execute Cycle 

Before an instruction can be decoded it must be fetched from the main memory 

into IR (via the memory buffer register MBR). Thus there are two basic phases 

to the execution of an instruction: fetch the instruction, then execute it. This is 

known as the fetch-execute cycle. In order to fetch the instruction the control 

unit must know where it is located in the main memory. This is where the pro-

gram counter register PC comes into the picture: it contains the address of the 

next instruction to be executed. While a program is being executed it is the job 

of the control unit to keep updating this register. 

3.6 Program Execution 

In the normal case a program's instructions are executed sequentially, i.e. one 

after the other in the sequence in which they appear in the main memory. Thus 

as arithmetic and logical instructions or load and store instructions are being ex-

ecuted, the next instruction is found simply by adding a small number, corre-

sponding to the length of the current instruction, to the address currently held in 

the PC register. 

But of course programs do not simply execute in a straight line from start to 

finish. They contain decisions and they contain repeated sections, both of which 

require the control unit to have the ability to jump to an instruction which is not 

the one physically following that just executed. For this purpose computers usu-

ally have two kinds of instructions, known as unconditional jumps and condi-

tional jumps. An unconditional jump instruction contains the address of the next 

instruction as an operand, which is then loaded into the PC register. A condi-

tional jump also contains a condition to be tested (e.g. by comparing the values 

in two registers); the result of the test then determines whether the next instruc-

tion is executed or whether the destination address provided in the instruction is 
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loaded into the PC register. 

3.7 Routine Calls 

It is frequently useful in a computer program to include routines (sometimes 

called procedures, functions, subroutines or methods) which carry out a useful 

subtask or calculation that may be needed several times in the program. The 

same routine can be invoked from different points in a program; when the in-

structions in the routine have been executed it must return to the instruction fol-

lowing the instruction from which it was called. Most computers provide some 

form of call instruction to assist this task. As a minimum the call instruction 

jumps (as with an unconditional jump instruction) to the first instruction in the 

subroutine, and at the same time it stores for later use the address of the instruc-

tion following the call instruction, called the return address. 

As was already indicated, the instructions themselves are fetched from the 

main memory. Recalling the interface which we described between the CPU and 

the main memory, we can now see how this happens. 

To fetch an instruction the control unit copies the value of PC (the program 

counter) into MAR (the memory address register) and sends a read signal to 

memory. When the read is complete, the next instruction has appeared in MBR 

(the memory buffer register). This is then copied by the control unit into IR, 

leaving MAR and MBR free to be used for some other purpose (e.g. for a load 

or store operation). 

4 Cache Memories 

Before examining the third main component of von Neumann computers (the 

input-output subsystem), it is appropriate to consider a technique used on mod-

ern computers for optimizing accesses to memory. It provides an effective solu-

tion for the problem which we mentioned earlier, namely that a CPU can exe-

cute instructions considerably faster than the instructions and their operands can 

be fetched from the main memory. Without cache memories the CPU would on-

ly be able to execute at the rate at which instructions and data could be fetched 

from main memory. 

The idea, which its inventor, Maurice Wilkes, originally called a "slave 

memory" when he proposed it in 1965 [35], is now generally known as a cache 

memory. The word "cache" comes from the French word cacher, which means 

"to hide". This name emphasizes that a cache memory, unlike the main memory 

or the CPU-registers, is hidden from the assembler programmer's view. It is (al-

most) purely a hardware optimization. 

The idea is that a memory unit considerably faster and smaller than the 

main memory is placed close to the CPU (e.g. between the CPU and the bus). A 
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cache memory holds instructions and data which have recently been used (and 

may be needed again). Once an item has been fetched from the main memory a 

copy of it is stored into the cache. Thereafter it can be fetched from the cache 

and access to the main memory becomes necessary in fewer cases. 

Because the cache is significantly smaller than the main memory it obvi-

ously cannot hold a copy of all items in the main memory, so when it becomes 

full a decision has to be made which item should be replaced to make space for 

the new item. The strategy usually used is called "least recently used" (LRU). 

The item selected for replacement is the item which has not been used for the 

longest time. The success of this idea depends on the fact that items from the 

main memory are frequently used several times over a short period of time and 

also that neighbouring items in the main memory are often used together. It is 

remarkable how successful this strategy is in practice. Modern computers often 

achieve a "hit rate" of over 95 %, i.e. more than 95 % of all memory accesses 

can be satisfied by the cache, so that actual references to main memory are rela-

tively infrequent. The result is that computations can proceed at very much fast-

er rates than in an equivalent system without a cache. 

We need not concern ourselves here with the technical aspects of cache 

memory implementation, but in the next chapter we shall introduce the idea of 

virtual memory and virtual addresses. At that point it will be necessary to return 

to the question of caches to discuss some issues which then arise. 

5 The Input/Output Subsystem 

The third main part of a modern computer is the input-output (I/O) subsystem. 

This serves as the interface between the computer and the outside world. In 

modern computers information is typically input into the computer via key-

boards (e.g. attached to terminals, or built into laptops, etc.) and more recently 

via touch screens. Information is provided from the computer as printer output 

or via monitor displays. There are other kinds of I/O devices which can be at-

tached to computers, such as scanners, graph plotters, fax devices, analogue-to-

digital and digital-to-analogue converters, and special equipment and instru-

ments for real-time systems. And of course there is usually an interface to con-

nect to a local area network (LAN) and/or the Internet. 

The magnetic media memory devices, such as hard discs, CDs, DVDs, 

magnetic tapes and on earlier computers magnetic drums, are also usually con-

sidered as I/O devices; the way they are controlled and accessed from the com-

puter is in fact very similar to the way other I/O devices are handled. But logi-

cally they have a role more analogous to the main memory, in that they are 

memory storage devices which, in contrast say to printers, keyboards and 

screens, cannot directly be read or written from the outside world. In this sense 
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the analogy with the human memory is much more appropriate. At this stage we 

shall include the magnetic memory devices in our discussion of the I/O subsys-

tem, but later we shall draw a clear distinction between their physical affinity to 

external I/O devices and their logical affinity to the main memory. 

The I/O subsystem plays a major role in so-called "mainframe" systems, 

the large computers which are used mostly by companies and by government 

departments, mainly because such organisations handle large amounts of data. 

Consequently in mainframe systems the I/O subsystem can be rather compli-

cated and is usually an expensive part of the computer. In contrast the laptops, 

personal computers, workstations and hand-held devices such as smartphones, 

which many people now own, have a very much simplified I/O subsystem. 

This difference is not important for our purposes. We do not need to dis-

cuss I/O devices and their controllers in great detail, because the important thing 

from a security viewpoint is not really how these function individually, but how 

their use is controlled from within the computer. Here the most important point 

is that it is usual for the operating system to have complete control over the 

transmission of data between the computer and the I/O devices. Let us now take 

a look at how this works. 

6 Overlapping I/O and CPU Operations 

When talking about the I/O devices it is important to realize that there is an 

enormous speed difference between the CPU and main memory on the one hand 

and I/O devices on the other. Even with the fastest I/O devices, magnetic discs 

and even solid state drives (SSDs), we are talking about a significant speed dif-

ference in the time it takes to access information. An implication of this speed 

difference is that if the CPU were to stop processing and wait for each I/O oper-

ation to complete, then it would spend almost all its time waiting. For this reason 

I/O operations are carried out in parallel with CPU operations. What normally 

happens is that the operating system, after starting an I/O operation for a pro-

cess, puts the process which initiated it into a waiting state until the operation is 

completed and then makes a process switch to a different process, which can 

carry on using the CPU while the I/O operation for the other process is taking 

place. 

When the I/O operation comes to completion the I/O device (or its control-

ler) informs the CPU, so that the program which requested the I/O operation 

may resume its work. In nearly all systems this is achieved by the I/O device or 

controller causing an interrupt. After the CPU has been interrupted by an I/O 

device completion signal, the process scheduler (that part of the operating sys-

tem which decides when which processes can use the CPU) can allow the pro-

cess which instigated the I/O operation to continue executing. 
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6.1 Kernel Calls and Interrupts 

All of this is controlled by the operating system and remains invisible to the ap-

plication program, which treats an instruction for carrying out an I/O operation 

just like a normal CPU instruction. 

But in reality the I/O instruction which appears in the application program 

is not a normal instruction at all. It is a special instruction for invoking the ser-

vices of a device driver in the operating system. Whenever an application pro-

gram wishes to invoke any operating system service (not just carry out an I/O 

operation) it executes an instruction which we shall call a "kernel call" (It is 

sometimes called a system call, supervisor call, or executive call). Such instruc-

tions have a special operation type which causes the CPU to activate a designat-

ed operating system routine, usually by making use of the interrupt mechanism. 

6.2 Why Application Programs Do Not Have Direct Access to I/O Devices 

There are several reasons why normal application programs do not contain in-

structions that directly activate I/O devices. One of these is that the actual con-

trol of I/O devices at the hardware level is usually fairly complex. For this rea-

son the operating system (or the device manufacturer) provides device drivers, 

which are software modules capable of coping with this complexity but at the 

same time providing a much simpler interface to application programs. Another 

reason is that direct access by application processes to I/O devices could lead to 

security breaches. This is obviously the case for shared devices such as hard 

discs containing information belonging to different users. If any user could 

simply access any part of any disc at will, then confidentiality, integrity and 

availability of information belonging to others would all be at risk. 

But also in the case of normally unshared devices, such as a printer, the op-

erating system has to maintain control. Without it, users could write to the print-

er at any time, interfering with each other's output. Furthermore if the use of de-

vices such as printers were not controlled, then solving the confinement prob-

lem, a security problem mentioned in Chapter 3, would become more difficult. 

Consequently when an application program wishes to have an I/O operation 

carried out it always does this by invoking the operating system, using a kernel 

call. The appropriate operating system service routine carries out checks which 

determine whether the application process (or the user on whose behalf it is exe-

cuting) is permitted to perform the required operation (e.g. use the printer) and if 

so whether it is appropriate at this time (e.g. whether it is currently allocated for 

use by another application process). 

Having performed all the necessary checks and adjustments necessary, the 

device driver eventually activates the appropriate I/O device. The form of an 

actual I/O instruction to achieve this at the hardware level varies considerably 
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between different computers. One difference is apparent in the way the actual 

device required is addressed by the CPU. In some cases devices use pseudo-

"main memory" addresses on the address bus to address the different devices. 

This method, known as memory-mapped I/O, makes sense in that infor-

mation is transferred to devices via hardware registers or buffers, which can be 

viewed as memory that can be read and written. Other systems use a separate set 

of numbers, transmitted across the control lines of the bus, to signify which de-

vice is intended and which operation is required. 

These different approaches are often reflected in the form of the hardware 

instruction used to activate I/O devices at the hardware level. In one case I/O 

instructions appear as normal read and write operations on defined (device buff-

er) addresses. In the other case there is a special "start I/O" instruction. There is 

a corresponding difference in the way control is exercised over the use of such 

instructions. If the I/O instruction reflects memory mapped I/O by using special 

addresses, then the address checking hardware must recognize that an applica-

tion process is attempting to use an address which it is not allowed to use. On 

the other hand if there is a special "start I/O" instruction then this has to be clas-

sified as a privileged instruction. In either case an illegitimate attempt to directly 

use an I/O device will result in an interrupt, and the operating system interrupt 

routine can then take appropriate action (e.g. by forcibly ending the application 

process). 

7 Magnetic Media Devices 

The earliest computers were built primarily to carry out calculations. There was 

little or no data stored permanently in the computers, there was no Internet and 

nobody was producing proprietary software which needed to be protected. Con-

sequently there was no serious security problem. The primary aim of computer 

designers was to build computers capable of carrying out ever faster scientific 

and mathematical computations. 

However, it was not long before computers began to be equipped with de-

vices which were capable of storing information and programs on a long term 

basis. Magnetic drum stores and then magnetic tape devices were developed. 

The drums had only a small data storage capacity and the tapes were very slow 

if they were not used sequentially. 

With the invention of magnetic discs it became possible not only to store 

large amounts of data internally in the computer, but also to access such infor-

mation rapidly without a sequential search. 

There are many differences between magnetic discs and main memory. 

First, access to main memory is many orders of magnitude faster than access to 
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even the fastest discs, so that disc memory cannot be regarded as an alternative 

to main memory. (This point is not affected by the use of cache memory.) Sec-

ond, disc memory is much cheaper per word than main memory, so to store bulk 

information on disc is much cheaper. Third, unlike conventional main memory, 

disc memory is persistent (i.e. the information is not lost when the power is 

turned off). 

These differences, together with the fact that magnetic media memories 

have mechanical components and are physically much more like I/O devices 

than they are like main memory, led to what initially appeared to be a natural 

division of information in the computer. 

Since the late 1950s it seemed natural to use magnetic media as long term 

storage devices and main memories as the vehicle for holding programs and 

their data temporarily, while computations are being carried out. This in turn led 

to what appeared to be an equally natural division in operating systems. One part 

of the operating system is responsible for the execution of programs, and this 

has control of the main memory, while another quite different (and usually ra-

ther larger) part, known as the file system, manages the long term storage of bulk 

information and has control of the magnetic media. 

However, this clear and simple division did not survive for very long. Be-

cause of the high costs of main memory in the 1960s, the idea of virtual memory 

was introduced. This is a technique for allowing more and/or larger programs to 

execute at the same time than would be possible in the main memory alone. 

However, the division between computational (now virtual) memory and file 

memory did. In the next chapter we shall take up this story, as it is very im-

portant for the implementation of security measures in computers. 



 

  

Chapter 7 

Virtual Memory 

 

The two primary kinds of memory unit relevant to a discussion of virtual 

are the main memory (also known as RAM) and magnetic memory devices (e.g. 

internal and external hard discs). These have a number of different properties. 

• Modern main memory is built from logic circuits which have very fast ac-

cess times, because they do not involve moving parts. Hard discs, by con-

trast, are very much slower because the information is usually stored on ro-

tating surfaces and usually also involves reading and writing heads which 

have to be physically positioned to the right place.
20

 

• Main memory is very much more expensive per byte of storage capacity 

than magnetic devices. 

• Magnetic storage devices are persistent, which means that the information 

stored on them does not disappear when the power is turned off. On the 

other hand main memory is usually not persistent. 

These differences have strongly affected the way they are used in computer sys-

tems. 

1 Memory in Early Computer Systems 

In early systems of the late 1950s and 1960s vintage the main memory was used 

as a computational memory, i.e. the memory in which data and programs for ac-

tive processes
21

 were temporarily stored during actual program execution. On 

the other hand the magnetic media devices were used as a file memory, i.e. a 

memory in which information and programs could be stored on a long term ba-

sis. This difference is illustrated schematically (but not to scale) in Figure 7.1. 

                                           
20

  Although modern SSD devices are electronic and do not rotate, they fall into the "disc" 

category because they are slower than RAM and are organised to be used like discs. 
21

  At this stage a process should simply be considered as an entity which defines a particu-

lar execution of a program. In the next chapter we discuss the concept of processes in 

greater detail. 
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This use of the memory devices took advantage of their different proper-

ties. The high speed of the main memory (assisted by cache memory) was im-

portant for keeping the CPU supplied with the program instructions and data 

which it needed while executing processes. But the lower cost and persistence 

properties of disc devices allowed much more storage to be attached to the sys-

tem at a reasonable cost, and it also catered for the long term survival of data 

and program files even when the power was switched off. 

Of course when data and programs became active, these had to be copied 

into the main memory. The data was brought into main memory by file system 

mechanisms; usually only the active parts of a file were transferred into main 

memory "buffers". Programs were typically copied in full into the main memory 

by a program loader when the user activated a process. 

2 The Transition to Virtual Memory 

In the 1960s, when the commercial exploitation of computer had become a seri-

ous business proposition, it did not take long for user demands to stretch the lim-

its of the early model of memory use. This meant that as the possibilities for ex-

ecuting multiple processes in parallel on a single computer were improved, users 

wanted ever more processes to be concurrently active. This led in principle to 

the need for more main memory. To keep prices affordable, operating system 

designers experimented with the idea of allowing users to partition their pro-

grams in such a way that individual partitions (known for example as "over-

lays") could be separately loaded into the memory as they were needed. Howev-

er, this was by no means an ideal solution, because it put a substantial burden on 

user programmers to organise their programs carefully, and with the simple 

memory protection mechanisms then available it could easily lead to errors. It 

also considerably increased the complexity of operating systems. 

By the mid to late 1960s it was evident that a radical change was needed, 

and one after another manufacturers began to adopt an idea which had already 

Main Memory Disc Subsystem 
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Figure 7.1: Computational and File Memory in Early Systems 
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been around since the very beginning of the 1960s, virtual memory. In 1962 

Kilburn and his colleagues at Manchester University in the U.K. had published a 

description of the first paged virtual memory system, which they had imple-

mented in the Atlas computer [36]. At about the same time the Burroughs B5000 

computer [37] was introduced in the U.S. with a rudimentary form of segmented 

virtual memory. We shall discuss the differences between virtual memories 

based on segments and on pages as the unit of organisation later in this chapter, 

but before we do so it will help to get a more general feeling for the basic idea 

underlying virtual memory. 

3 Program Locality 

The overlaying technique (which was replaced by virtual memory) was based on 

the idea that a program could be decomposed into sections which need not all be 

loaded into the main memory at the same time. The problem lay not in the basic 

idea, but in its implementation. 

It is not at all a serious problem that only parts of a program are available in 

the main memory. This is because executing processes typically display an im-

portant property called locality [38, 39]. When a process is executing it general-

ly works through its algorithm in phases. During any particular phase it tends to 

make memory references which are clustered together both in time and in 

memory. 

For example when a loop in the program code is being executed, the same 

sequence of instructions is repeatedly used. If a loop of 500 instructions is exe-

cuted say 100,000 times then for a substantial time span (in terms of CPU and 

main memory speeds) instructions need only be available in the main memory 

from that section of program (which might be only a fraction of the size of the 

entire program). There is no efficiency loss if the rest of the program code is on-

ly held on disc during this phase of the process execution. 

A similar consideration applies to data. As an extreme example, consider a 

loop counter (the variable which is used to count how many times a loop is exe-

cuted). This is accessed each time round the loop. There will of course be other 

data references, which are also often repeatedly used over time. 

Similarly data elements which are accessed, even if they are not individual-

ly used more than once, tend to be clustered in the same area of a program. Con-

sider for example a loop which accesses successive elements of an array or list 

in each iteration. During the execution of the loop all the accesses to memory 

will be concentrated around the code segment containing the loop, the data seg-

ment containing the array and a few other auxiliary variables such as a loop 

counter. Provided that these are in the main memory during the phase corre-
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sponding to the execution of the loop, it doesn't really matter that the rest of the 

program is not in the main memory, provided that when this phase comes to an 

end and another begins, the relevant segments for the new phase can be loaded 

into the main memory. 

In this sense the idea of overlaying was on the right track. It set aside an ar-

ea of main memory into which parts of a program could be loaded in succession. 

Those parts of the program which were not needed remained on disc, whence 

they could be loaded into the main memory when needed. 

But there were some serious problems with overlaying. For example the 

fixed length of an overlay area might not be the appropriate length for accom-

modating the various program segments at different phases of the program exe-

cution. An even more important problem was the addressing difficulties which it 

created. Application programmer, compiler, linker and operating system all had 

to be careful to get the addresses right and to ensure that nothing went wrong 

when switching between overlays, because the same memory addresses were 

used to address different overlays. Another problem was that addresses must not 

be used as cross references between different overlays which might not concur-

rently be loaded into the main memory. 

What was needed, and what virtual memory systems generally achieve, is 

on the one hand a capability of allowing programs to be partly in the main 

memory and partly on disc, but on the other hand to provide a technique which 

solves the addressing problems of overlaying. We look at these issues in turn. 

4 The Basic Idea behind Virtual Memory 

The most fundamental difference between conventional virtual memory and the 

earlier non-virtual memory systems is that the computational memory, i.e. the 

memory in which computations take place, is no longer viewed as being identi-

cal with the main memory. The computational memory is extended by "stealing" 

some of the disc space from the file system, as is shown in Figure 7.2 (not to 

scale). This is normally used to hold a version of executing programs copied 

from the file store by a loader. The operating system's virtual memory manager 

transfers parts of these programs into the main memory as they are needed. 

When a section is no longer needed in main memory it is copied back into the 

extended computational area. Hence the extended computational area holds a 

(partially) up-to-date copy of each process's program image as it is being exe-

cuted. 

In modern computer systems this extended computational area is usually 

held as part of a disc which is permanently on-line (i.e. an internal hard disc). 

The rest of this disc and other discs associated with the system hold the file sys-
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tem space. 

 

In most systems a clear logical distinction is drawn between the file system 

memory and the extended computational memory, i.e. information on disc is 

viewed as being in the file memory or in the virtual memory but not both at the 

same time. But there are systems which allow program code to be viewed as be-

ing both in the virtual memory and in the file system memory at the same time, 

in that a file is mapped into the virtual memory. 

5 Virtual Memory Management 

The idea of virtual memory changes nothing in terms of the CPU's need to have 

rapid access to the main memory. The enormous difference in speed between 

accesses to main memory and accesses to disc still means that it is quite infeasi-

ble for the CPU to fetch instructions and/or data directly from disc. But the least 

it must achieve is to recognise when an instruction or data word which it is try-

ing to access is not currently available in the main memory and to organise that 

it be brought into the main memory. 

To achieve this almost all computers use a technique called virtual address-

ing
22

. Instead of using main memory addresses as cross references within pro-

grams, virtual addresses are used. These support a larger range of addresses than 

can be accommodated by the main memory. They are used to address both in-

structions and data in programs, but the hardware provides an address transla-

tion unit (ATU) which rapidly converts these into main memory addresses. 

When the ATU detects an attempt to access a virtual address which is not 

currently in the main memory, it raises an interrupt, i.e. a signal from the CPU to 

                                           
22

  Exceptionally, the Burroughs B5000 system and its successors (which first invented 

segmented virtual memory), used a quite different technique, which was not very suc-

cessful and is of no further interest for our theme. 
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the operating system which causes the currently executing process to be tempo-

rarily halted; this is called a virtual memory fault interrupt. It provides the oper-

ating system's interrupt routine with details of the problem, in particular with the 

address which caused the fault. The interrupt routine then analyses this fault and 

arranges that the missing code or data be brought from virtual memory on disc 

into the main memory. It then restarts the process at the point where the fault 

occurred. 

In reality the handling of virtual memory fault interrupts is rather more 

complicated. The operating system's virtual memory manager must find space in 

the main memory for the missing program unit, if necessary discarding some 

other program unit (possibly from another process) by writing this back to the 

extended computational memory. It then reads the missing unit from the extend-

ed computational memory into the free main memory space. After that the pro-

cess can continue execution. 

It is crucial that the algorithm which selects a program unit for discarding 

makes a good choice. The best choice would be the program unit which is not 

going to be needed for the longest period into the future, but as this would in-

volve crystal ball gazing, most systems settle for a good approximation, namely 

the program unit which has not been used for the longest period in the past. An 

efficient implementation of this algorithm, called the least recently used (LRU) 

algorithm, requires some hardware assistance, usually provided in the form of a 

used bit which we shall encounter later. 

If a poor algorithm is used to select a victim program unit for discarding, a 

condition known as thrashing can occur. This happens when units which will 

soon be needed again are chosen for discarding. Then the computer begins to 

chase its tail, managing to achieve nothing except handle virtual memory faults. 

As disc I/O operations are "expensive" in terms of CPU speeds, a further 

optimisation is often made. Since the extended computational memory contains 

an image of the entire program, it already has an image of a victim program unit. 

Consequently victim program units need only be copied back to the extended 

computational memory if they have been modified since they were last loaded 

into the main memory. In order that the virtual memory manager can check 

whether this is the case there is often hardware assistance, this time in the form 

of a changed bit (sometimes called a dirty bit). We shall also encounter this lat-

er. 

6 What form of Virtual address? 

In conventional computer systems three different forms of virtual addresses have 

been used. 
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– Paged virtual addresses simply decompose a program into units of fixed 

length, called pages. These are typically all the same length (but with sizes 

varying between about 256 bytes and 16 KB in different computer sys-

tems). 

– Segmented virtual addresses decompose a program into segments, which 

are logical units corresponding to items in the program. 

– Segmented and paged virtual addresses decompose a program into logical 

units, which are then further decomposed into pages. 

In the following sections we discuss each of these in turn, discussing their ad-

vantages and disadvantages, and then present an alternative, orthogonal segmen-

tation and paging, which eliminates all the disadvantages and introduces new 

advantages. 

7 Paged Virtual Memory 

In a paged virtual memory, programs are decomposed into units of the same 

fixed length, called pages, which are loaded into the main memory on demand. 

The main memory is similarly divided up into page frames which have the same 

length as pages. Thus when a virtual memory fault (which we can in this context 

call a page fault) interrupt occurs, the virtual memory manager finds an empty 

page frame (or makes one free by discarding a page already in the main 

memory) and writes a copy of the requested page image from the extended 

computational memory into the free page frame. This is a relatively straightfor-

ward procedure. Because all pages have the same size, any victim page (i.e. 

page removed from the memory to make space for another) will do just as well 

from the viewpoint of space availability, so the discard algorithm can concen-

trate entirely on other criteria, such as the length of time since pages were last 

used and/or whether a victim page needs to be written back to disc or not. 

In a paging system the programmer does not need to think about how his 

program has to be composed into overlays and the compiler also just compiles 

the program as for a non-virtual memory system, starting with an address of 0 

for the first word of the program and continuing to allocate addresses in a single 

linear sequence. In fact the compiler does not even have to be concerned wheth-

er the program is longer than the main memory. 

A paged virtual address in a program looks just like a main memory ad-

dress in a non-virtual memory system, except that the virtual address may be 

larger than a main memory address. 

Let us now look at a virtual address in more detail. Suppose it is 32 bits 

long and the page size of the system is 4 KB (= 212 bytes), then it is possible to 

regard the 12 least significant bits of the address as an offset within page, and 
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the most significant 20 bits as a page number (see Figure 7.3). 

 

Such addresses are translated into main memory addresses by an address 

translation unit (ATU). This is situated close to the CPU and is used by the CPU 

to translate every virtual address which it uses. 

 

The ATU for a paged virtual memory system in fact needs to translate only 

the virtual page number part of a virtual address into a main memory page frame 

number, since the offset in page remains the same. Figure 7.4 shows as a black 

box what the ATU does. Notice that the ATU cannot always produce a valid 

translation, because the virtual page number is larger than the main memory 

page frame number. When an address cannot be translated the ATU causes a 

page fault interrupt. Then the operating system takes over in order to bring the 

required page into a page frame of the main memory, as was already described. 

7.1 Inverted Page Tables 

There is more than one way to implement the black box. The Atlas system [36] 

used an inverted page table. This can be thought of as a table with one entry for 

each page frame of the main memory. Hence the length of an inverted page table 

is proportional to the length of the main memory. Each entry contains the virtual 
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page number of the page currently resident in the page frame corresponding to 

the entry (see Figure 7.5). Since there is not always a valid page in each page 

frame, a valid bit is included with each entry. 

 

The use bit is set by the hardware whenever a byte or word of the corres-

ponding page is accessed (read, write or execute access). The change bit is set 

by the hardware when a process writes into the page. 

A page need not always reside in the same main memory page frame. If it 

is selected as a victim to be discarded, but is later required again, the virtual 

memory manager can place it in any suitable page frame without consideration 

for its previous location. Thus pages are completely relocatable in the main 

memory. 

An important point about inverted page tables in a multiprogramming sys-

tem is that they may contain entries for more than one process. If a virtual ad-

dress is an effective program address starting at 0 for each process, as is usual in 

modern systems, then virtual page numbers are not unique! This means either 

that addresses must in some way be made unique or that the valid bit must be 

changed for many entries on a process switch, which adds an overhead to the 

process switch operation. In a later research system developed at the University 

of Manchester, the MU6-G, for example, the addresses in the inverted page table 

were made unique by the addition of a process number [40]. 

Inverted page tables are the wrong way round to be indexed, yet it would 

be far too slow to carry out a sequential search of each entry. In the Atlas system 

an associative memory was used. This is a memory in which all entries are 

searched by the hardware in parallel. This is a very expensive technique in terms 

of hardware, since hardware for the comparisons must be duplicated for each 

entry. Hence as memory prices reduced and main memories became larger, the 

number of entries in such a table increased proportionally. This made the use of 

associative memories far too expensive and so an alternative implementation of 
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Figure 7.5: An Inverted Page Table 
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the ATU became widely used. 

7.2 Conventional Page Tables 

A conventional page table, hereafter simply called a page table, can be directly 

indexed, using a virtual page number as its index. Hence the length of a page 

table is in principle proportional to the size of the virtual memory. In practice 

however, there is usually a separate page table for each process; consequently 

the size of an individual page table is proportional to the length of the program. 

An entry in a typical page table is illustrated in Figure 7.6. 

 

With this model the ATU forms a main memory address from a virtual ad-

dress by using the virtual page number part of the address as an index to select 

an entry in the page table. If the page is present in the main memory, this holds a 

page frame number. The offset in page is concatenated with this page frame 

number to produce a main memory address. This is illustrated in Figure 7.7. 

An entry in a page table always has a present bit to indicate whether the 

page described by the entry (i.e. the page which has a virtual page number in-

dexing the entry) is actually in the main memory or not. If it is not present in the 

main memory, a page fault interrupt is caused. As with inverted page tables 

there is usually also a use bit and a change bit. 
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7.3 Making Memory Accesses Efficient 

With conventional paging systems the page tables cannot be efficiently imple-

mented in hardware, because they are too large, so they are usually placed in 

main memory. In principle this means that for every useful main memory access 

a further memory access is necessary in order to translate the address needed to 

make the useful access. (This assumes that the page tables themselves can be 

directly addressed using absolute main memory addresses. If the page tables get 

too large to be permanently held in main memory, as happened in some systems, 

they too had to be addressed using virtual addresses, i.e. further main memory 

accesses may be necessary to address the page tables!) 

 

To have two or more main memory accesses for each useful main memory 

access would slow the computer down by a very serious amount, so that some 

additional technique had to be used. The problem is solved in a manner analo-

gous to the way normal accesses to data and instruction accesses can be speeded 

up, by the use of a cache memory. Since this is needed at a different point in the 

execution of instructions and serves a different purpose to normal caches, a spe-

cial address translation cache, usually known as a Translation Lookaside Buffer 

Virtual Page Number Offset in page Virtual Address 

 

Figure 7.8: The ATU with a TLB using Conventional Page Tables 

Page Frame Number Offset in page 

Page Fault 

or 

Main Memory Address 

Translation Lookaside Buffer (TLB) 

TLB 

miss 

Access Page Table 

 

Page Present 

in Main Memory? 

Load Page Table 

Entry into TLB 

TLB 

hit 

Address 

Translation 

Unit 



Chapter 7 VIRTUAL MEMORY 88 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

(or TLB for short), is placed in the CPU's Address Translation Unit. The tech-

niques used for implementing the data cache can also be used to implement a 

TLB. An overview of the TLB's role in the ATU is shown in Figure 7.8. 

The TLB caches entries from page tables, i.e. it provides a rapid mapping 

from virtual page numbers to page table entries. The present bit need not be 

cached, since the only entries in the TLB are for pages actually in the main 

memory. But a valid bit is needed to indicate whether the entry in the TLB is 

currently in use. Thus a TLB is remarkably similar to an inverted page table! 

The main difference is that it is incomplete. In other words there is not an 

entry in a TLB for every page frame. For this reason the functionality is less. If 

an address cannot be translated by an inverted page table, the corresponding 

page is not in the main memory. But if the TLB cannot translate an address, this 

does not necessarily imply a page fault. It often simply means that the required 

address mapping has to be placed into the TLB, even though the corresponding 

page might already be in the main memory. But it might also imply a page fault. 

In earlier computer designs the hardware or microcode was usually respon-

sible for managing the TLB. In some later systems (including RISC systems) 

this responsibility has been moved into the software. 

Finally, because each active process typically has its own page table, virtu-

al addresses (and therefore virtual page numbers) are not unique in conventional 

paging systems. Hence entries in the TLB are ambiguous and can therefore only 

be used in the context of the right process. This means that on each process 

switch all the entries in the TLB (except for those of the selected process) must 

be invalidated by the operating system. 

7.4 Protecting Processes from Errors 

Most paging schemes provide a process with some internal protection from er-

rors which might exist in the program code. The aim is to detect errors as soon 

as possible to prevent unnecessary damage being done internally and to help the 

programmer to debug (find and correct errors in) his program. 

Internal protection against program errors involves the use of three addi-

tional bits in each page table entry: a read permission bit, a write permission bit 

and an execution permission bit (see Figure 7.9). With each memory access the 

kind of access requested is compared with the appropriate permission bit, and 

the access is only permitted to proceed if it is of the appropriate kind. If an error 

is detected, a memory protection interrupt is raised, causing the executing pro-

cess immediately to be halted. 

With this approach it is possible to organize the object code of a program 

into three groups: program code segments which need an execute permission bit 
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(and possibly a read only bit), normal data segments which need both the read 

and write permission bits, and constant (non-changeable) data segments protect-

ed by a read only bit. 

 

8 Segmented Virtual Memory 

The first computer system to support the idea of a segmented virtual memory 

was the Burroughs B5000 system [37], designed in 1961, and its better known 

successor, the B6700 [41]. Although the Burroughs systems included many in-

novative ideas, they had little direct impact on later computer systems. One rea-

son was undoubtedly that the underlying memory management model, based on 

a segmented virtual memory without virtual addresses, led to complications 

which could easily have been avoided by the use of virtual addresses. Further-

more it was not a very secure system, because its security depended on the cor-

rectness of approved compilers, and the decision to approve compilers rested in 

the hands of the computer operators. We therefore describe a simpler model for 

a segmented virtual memory which uses virtual addresses. 

8.1 A Segmented Virtual Memory Model 

In this simple model a program is decomposed into segments which correspond 

to logical elements in a program's structure (e.g. individual code routines and 

data structures). Using the analogy of paging (see Figure 7.3), 32 bit virtual ad-

dresses consist of the pair «segment number, offset in segment», cf. Figure 7.10. 

 

Segmentation has a marginal advantage over paging for compilers, because 

they do not have to linearize programs into a single sequence of virtual address-

es. As they encounter a logical structure in the program being compiled they can 

allocate a segment number for it and produce offsets from that segment number 

to allow individual parts of the segment to be addressed. 

Because the number of bits used to implement a segment offset in a seg-

mented virtual address determines the maximum length of a segment, this field 
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must be longer than the page offset field for a paged virtual address, since seg-

ments can be longer than typical page sizes. Some segmented systems decom-

posed 32 bit virtual addresses into a 14 bit segment number and an 18 bit seg-

ment offset. This allows a program to have a maximum of 214 = 16,384 seg-

ments, each of which can have a maximum length of 218 = 262,144 bytes or 

words. Such a division results in a rather unhappy compromise. On the one hand 

it leads to a quite restricted length for an individual segment. On the other hand 

the number of segments is also quite restricted. The problem is that some pro-

grams are likely to have lots of small segments while others may have a few 

large segments
23

. 

In the segmented model each variable length segment can in principle be 

loaded to start at any address in the main memory. This may at first sight appear 

to be a very flexible approach, but in practice it creates a difficult problem for 

managing the use of the main memory. As a result of segments having different 

lengths, the memory becomes fragmented and difficult to manage. The gaps be-

tween segments in the main memory tend to become ever smaller (and therefore 

less usable). 

8.2 Segment Tables 

The mapping of virtual addresses onto main memory addresses can be imple-

mented in a similar way to conventional page tables. Figure 7.11 shows how en-

tries in a segment table might look. These entries are considerably wider than 

page table entries (cf. Figure 7.6) because of the need to store a length field in 

addition to the full main memory address at which the segment starts (rather 

than just the page frame number part of the address). 

 

Figure 7.12 shows how a segmented virtual address is translated into a 

main memory address (cf. Figure 7.7 for the equivalent paging diagram). As in 

paging schemes the overhead of having to make a main memory access to trans-

late each virtual address can be avoided by means of a translation lookaside 

buffer containing copies of the most recently used segment table entries. The 

entries in the TLB, as in the segment table, are wider than those needed in the 

                                           
23

  I am not aware that since the development of 64 bit computers any purely segmented 

system has been suggested, which is scarcely surprising since pure segmentation is not 

regarded as a good model for virtual memory in view of the memory management prob-

lem which it creates (see below). 
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paging model, making the TLB more expensive to implement. 

 

In contrast with a pure paging system, the protection bits in a segment table 

entry (read, write and execute bits) map directly onto the properties of the logi-

cal segments which the entry describes, so that the compiler does not have to be 

concerned about clustering segments with related properties together for protec-

tion reasons, as may happen in a pure paging scheme. 

The appearance of a length field in segment table entries allows the hard-

ware to check that an effective program address (which includes an offset from 

the start of a segment, Figure 7.10) is within the bounds of the segment. This is 

essential to guarantee protection between different concurrently active process-

es, because the main memory word following the end of a segment may contain 

another segment, possibly from some other program. This bounds check has the 

further practical advantage that it helps to discover internal program errors 

which involve attempts to address outside the range of individual segments. This 

is an error which cannot be detected by hardware in pure paging systems. 

9 Comparing Segmentation and Paging 

There is widespread agreement that the biggest disadvantage of segmentation 

lies in the difficulty of managing the underlying segmented main memory. This 

is a much more difficult task for the operating system than it is in a scheme 

which supports paging. For example, in choosing a victim segment to be dis-

carded when space has to be found for a new segment, it is not enough to con-

sider which segments have not been used for the longest time or which have not 
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been changed. It is equally important to consider which potential victim segment 

will leave enough space for the new segment, and what effects choosing a victim 

have on the main memory fragmentation problem. Consequently no modern 

computers use a purely segmented virtual memory scheme. 

A further disadvantage of segmentation in earlier systems was that a seg-

ment cannot be longer than the main memory, and in fact it may not be longer 

than that part of the main memory available to user programs. (In a paging sys-

tem longer segments, which are invisible at the hardware level, are automatical-

ly decomposed into pages, so the problem does not arise there.) Even today, 

with main memory as plentiful as it is, it would be a disadvantage to have to 

place very large segments in the main memory without decomposing them into 

pages, because the likelihood is that accesses concentrate around a particular 

part of the segment, making it unnecessary for the rest of the segment to use up 

main memory. 

On the other hand segmentation was the preference of compiler writers in 

earlier systems, because it nicely reflects the logical structure of programs and it 

provides a better hardware framework for detecting program errors at an early 

stage. (This is the reason why the B6700 designers implemented a segmented 

virtual memory.) A further advantage of segmentation is that it is easier to delete 

individual segments and create new ones. 

It is therefore not surprising that researchers began to look for a scheme 

which could effectively combine the advantages of both while avoiding their 

disadvantages. 

10 Combining Segmentation and Paging 

There have been several attempts to combine segmentation with paging. How 

researchers have approached this issue has usually been strongly influenced by 

their understanding of what a segment should be. So far we have followed the 

Burroughs philosophy (but not their implementation) in assuming that a segment 

corresponds to a logical element in a program, such as an array or a procedure. 

This approach leads to the view that segments will usually be very small, typi-

cally smaller than a sensible page size. 

An alternative view was developed by the Multics designers [42], who re-

garded segments as an architectural vehicle for implementing files in the context 

of their aim of achieving direct addressability (a theme to which we will return 

in the Chapter 12). Their idea was that files in the file system should be mapped 

into the main/virtual memory as segments. In this case many segments can be 

expected to be considerably larger than a page. As they demonstrated, it is rela-

tively easy to treat a segment as an entity which can be composed into multiple 
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pages. This has become a common approach and the next section describes it as 

a model which extends the paging and the segmentation models presented so far. 

10.1 Paged Segments 

The starting point for understanding the conventional way of combining seg-

mentation and paging is the virtual address structure which it typically uses (see 

Figure 7.13). The basic new idea compared with the models which we have pre-

viously described is that a segment can be decomposed into pages. So we have a 

segment number, as in the segmented model, a page number within the segment, 

and an offset within the page. The page number and offset parts are in fact 

viewed by the compiler simply as an offset within the segment, since paging is 

invisible to it. Thus the compiler in principle has all the advantages of seg-

mentation, except that if he uses this scheme to implement individual small pro-

gram units in separate segments then much memory space will be lost to internal 

fragmentation! 

 

All three parts of the virtual address are visible to the operating system and 

to the address translation unit. This is because the virtual memory translation 

tables are organized in two parts. For each program there is a segment table, 

which is indexed by the segment number part of the virtual address. In contrast 

with the pure segmentation model this segment table does not contain the ad-

dress of the segment in main memory; this now becomes the address of the start 

of the page table for that segment. The page table is then indexed by the page-in-

segment part of the virtual address. As in the conventional paging model this 

page table holds the page frame number in the main memory holding the page. 

The address translation procedure is illustrated in Figure 7.14. 

One advantage of this structure is that the logical properties of segments 

can be held in segment table entries (where they logically belong) while the 

memory management properties can be held in the page table entries (where 

they logically belong). Figure 7.15 illustrates what these entries might look like 

in terms of our previous models. 
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Each kind of table entry can have its own present bit. In the case of the 

page table entry this indicates whether the page in question is in the main 

memory or not. But there are two possible interpretations for a present bit in the 

segment table entry. The most obvious one is that it indicates whether the page 

table for the segment is present in the main memory. This would allow page ta-

bles themselves to be discarded from the main memory. 

But the present bit in the segment table can also be used for a different pur-

pose, more in the sense of a valid bit, indicating whether the entry in the seg-

ment table is actually in use. This interpretation allows segments to be bound 

dynamically into a process's address space. 

The segment length field in the segment table entry can also be used in two 

ways. The most obvious use is to hold the actual full segment length in words or 

bytes. In that case it serves exactly the same purpose as the length field in a 
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purely segmented system. But it can be kept shorter if it is regarded as a count of 

the number of pages in the segment. This second possibility ensures that a pro-

cess cannot access beyond the last page of the segment, which is important to 

guarantee protection between processes. But it does not ensure that an effective 

address remains within the logical bounds of a segment, since the latter may not 

occupy the entire last page, and so it loses one of the advantages of pure seg-

mentation. 

10.2 Making Memory Accesses Efficient 

Logically the translation of a virtual address into a main memory address re-

quires that the address translation unit make two additional main memory ac-

cesses, one to the segment table entry and one to the page table entry. (If, as is 

found in some systems of this kind, the virtual memory tables are themselves 

addressed by virtual addresses, even more main memory accesses may be re-

quired to carry out an address translation.) This might appear to be a disad-

vantage compared with both of the simpler models, but in reality it is not very 

significant, because most address translation operations are fully handled by the 

TLB. Furthermore support for combined segmentation and paging does not sub-

stantially complicate the TLB, because the latter does not need to have a three 

part view of virtual addresses. Its task is simply to determine whether a page is 

in the main memory. From its viewpoint the pair «segment number, page in 

segment» can be viewed as a single virtual page number, just as in a paging sys-

tem, provided that it maintains the logical protection bits and the memory man-

agement bits with each entry. Thus the TLB for a combined segmentation and 

paging scheme turns out to be exactly like that for a simple paging scheme. If 

this has a high hit rate (in modern systems the hit rate reaches about 98 %), the 

occasional extra reference to the main memory is not very significant. 

10.3 Evaluation of Paged Segments 

It seems at first sight that this model effectively combines the advantages of 

both the paging and the simple segmentation models while avoiding their disad-

vantages. Memory management is based on paging, which is much more effec-

tive than segmentation. Thus the main memory can be divided into fixed length 

page frames and these can be matched easily to fixed length sectors of disc in 

the extended computational memory. Similarly it is possible to take advantage 

of the logical properties of segments, so that internal protection works well in 

terms both of the use of bounds checks on segment lengths and the checking of 

basic access modes, without explicitly having to cluster similar segments to-

gether, as was necessary with the simple paging scheme. 

The combined scheme even introduces a new advantage. In a purely seg-
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mented memory it is not easy dynamically to extend the length of a segment, 

because of the problems this causes in the main memory, but in a system in 

which segments are paged, there is no problem in adding new pages at the end, 

because these are separately paged in, exactly like any other page. 

However, our discussion has so far made an important assumption, viz. that 

segments are typically large entities, following the Multics idea that they can be 

used to map files from the file system directly into the virtual memory. Hence-

forth we refer to such segments as architectural segments. But studies of pro-

grams segmented for the Burroughs B5500 have shown that typical segments, in 

the sense of logical program units, are in fact very small on average. In one 

study, Batson, Ju and Wood [43] measured segment sizes in a collection of sam-

ple programs and found that 60 % of all segments use less than 40 words, and 

that the largest average segment size for the various classes of segment which 

they considered was only 181 words. A similar study a few years later by Batson 

and Brundage [44] on a different program sample confirmed that segment sizes 

on the B5500 are very small. 

If we apply such figures to the combined segmentation and paging scheme 

just described, then we find that the result is disastrous in terms of internal 

fragmentation. To put this into perspective let us first consider the loss to inter-

nal fragmentation in the conventional paging model. This is on average a half 

page per program (since the final page of the program is usefully used up to an 

arbitrary point). Even if the compiler clusters segments with similar properties 

together to take advantage of protection bits, the loss through internal fragmen-

tation is only half a page per property group (altogether one and a half pages if 

executable code, constants and writeable data appear in a single object pro-

gram). But in the combined scheme just described it is at the very best an aver-

age of a half page per segment (which assumes that segments are much larger 

than page size), and if segments are on average less than half a page long, as the 

Burroughs studies suggest, then internal fragmentation can lead to programs 

which are more than double their natural length! What is equally unfortunate in 

this case is that the page tables are almost entirely wasted, since almost all of 

them contain only a single entry! For this reason researchers continued to seek 

for alternative ways of combining the advantages of segmentation and paging in 

ways which eliminate this problem. 

11 Conclusion 

In this chapter we have introduced the most commonly used techniques for 

managing virtual memory. As described, the situation is not particularly satisfac-

tory from the viewpoint of security. There are at least two reasons for this. 

First, the conventional virtual memory approach, whereby a part of the disc 
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memory is "stolen" by the virtual memory management system to serve as an 

extension of the main memory, results in considerable duplication of mecha-

nisms. Disc space is handled in two quite separate ways. One the one hand part 

of the disc space serves as a basis for a file system which takes substantial re-

sponsibility for security issues at the "higher" level of a system. On the other 

hand part of the disc space is managed in a quite different way by lower level 

software, which is equally responsible for security, but at the level of executing 

programs. This duplication is part of the reason why systems are extremely inse-

cure, because, like the Berlin Wall, it offers hackers with opportunities to play 

off one part of the security mechanism against another, and it is an understate-

ment to assert that the end result is complicated. In fact it is very complicated. 

This leads to even further duplications. For example, programming lan-

guages are forced to handle access to data which "belongs" to a program in one 

way, while resorting to quite different mechanisms to handle data which is 

stored in file systems. We will take up such issues in a later chapter, where we 

will also show that a much simpler, more efficient and, most important, a more 

secure way of organising virtual memory is possible. 

The second major problem with conventional virtual memory is that it is 

not capable of effectively handling small segments. At first sight this might not 

seem to be important, but as will become clear in a later chapter, this deficiency 

eliminates the possibility of efficiently implementing an important class of sys-

tems which are capable of enormously enhancing the security of operating sys-

tems. This is also an important theme which is taken up in a later chapter. 



 

  

Chapter 8 

Processes 

 

Support for parallel activities within a computer system is one of the key func-

tions of any operating system, because 

– computer installations are often required to support more than one user in 

parallel, 

– even in single user systems the user expects to carry out activities in paral-

lel, 

– the hardware of the computer can carry out activities in parallel. 

This means that the operating system must not only be able to manage and con-

trol parallel activities, but it must also be able to react to parallel events (e.g. 

hardware interrupts indicating that an input-output operation has completed). 

The hardware of a computer system consists of various components which 

can operate in parallel with each other (e.g. CPU, disc and printer activities can 

overlap in time) and these operate at quite different speeds. The speed differ-

ences can be very significant, e.g. a modern CPU can carry out billions of in-

structions in a single second, a modern disc (HDD) cannot carry out a read or 

write operation in less than about 3 to 10 milliseconds (i.e. at most ca. 330 to 

100 operations per second)
24

, while a printer may take several seconds to print a 

page. Consequently if a CPU were to execute one program at a time, waiting for 

its I/O operations to complete, most of its available processing time would be 

lost in the idle state. Hence multiprogramming, i.e. allowing many programs to 

be executed quasi in parallel on a single processor, is absolutely essential. To 

achieve this, a central component of the operating system, called a process 

scheduler or thread scheduler), maintains a pool of processes, from which it se-

lects individual processes to be executed. Ideally this pool contains a mixture of 

                                           
24

  SSD devices can operate about 100 times as fast as traditional discs, but this is still very 

slow in relation to processor speed. For a comparison between HDD and SSD devices 

see https://www.storagereview.com/ssd_vs_hdd 
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I/O intensive processes (which require a substantial amount of I/O activity) and 

CPU intensive processes (which spend most of their time performing CPU cal-

culations).  Given such a mix the process scheduler will normally give priority 

to the I/O intensive processes, which will only need a small amount of CPU time 

between activating and waiting for I/O devices, allowing the CPU intensive pro-

cesses to execute while the I/O intensive processes are waiting for their input-

output operations to terminate. 

1 Scheduling Algorithms 

To determine which process can actively use the CPU the process scheduler uses 

a process scheduling algorithm. Here we describe by way of example some as-

pects of a scheduling algorithm on a general purpose system where a wide varie-

ty of user applications might co-exist. The likelihood that all the applications 

described would coexist in practice in a single node is not particularly high, but 

is not impossible. We use this application mix to illustrate that even extreme ex-

amples can be combined into a single scheduling algorithm. 

1.1 High priority real time processes 

It is essential that some applications processes have absolute priority over other 

activities at a node. Suppose for example that a process is responsible for check-

ing and controlling the temperature of the key units in an atomic power station. 

It is self-evident that this process should be able to gain control of a CPU in or-

der to carry out its checks at regular short intervals, probably measured at the 

millisecond level
25

. The only thing that such a process needs to do in the normal 

case is to scan the readings of all its measuring devices and then go to sleep for a 

short interval. Of course it is a different matter if the readings are not within the 

expected range, and the process will then need to activate alarms, etc. 

In other words there are some processes which mostly need only a little 

CPU time but which should be immediately scheduled at regular (short) inter-

vals and should be permitted to keep control of the CPU as long as they need it. 

When they complete a regular short activity they will normally wish to go 

dormant for a short time and then be re-awakened when their next activity 

should be started. 

From this it is obvious that a process should be able to deactivate itself (we 

refer to this as short-suspend) and in this example specify a time interval be-

fore it is re-activated. 

                                           
25

  I am not an expert in nuclear power station control. This example is simply used to il-

lustrate that it is really important for some applications to be favoured by a process 

scheduling algorithm over all others. 
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1.2 Medium priority I/O intensive processes 

Some processes carry out many input-output (I/O) operations and need to be ac-

tivated when each such I/O operation completes, in order to initiate the next I/O 

operation. A common example is a spooler process, which has the task of max-

imising the use of a printer device. Many applications must print from time to 

time, and the relationship between their processing time (to produce a printable 

result) and the frequency of printing can vary enormously, depending on their 

purpose. For example a weather forecasting application must carry out an enor-

mous amount of processing before it produces printable results, but a request for 

a data base application to print information from the database needs very little 

processing time before it can print the next line. 

The idea behind spooling is that the use of a printer can be optimised by 

preventing applications from directly printing to a printer device (which in the 

case of weather forecasting might result in a printer sitting idle for minutes or 

even hours at a time) and instead for them to "print" their results to a file. Put 

simply, instead of writing its results to a printer, an application stores them in a 

file and when the file is complete it sends a request to a spooler module to print 

them. This queues such requests and prints them when a printer is available. 

Hence when an application's results file reaches the top of the spooler's 

queue, these are read from the module in which they are stored and are written at 

full speed to the printer. In this way the printer is used optimally. 

Of course the spooler can organise its printing queue according to priori-

ties, taking into account users who need rapid results, but such details need not 

concern us here. The important point is that from the viewpoint of process 

scheduling a spooler uses a minimal amount of CPU time (e.g. to read infor-

mation from a print file and pass this to the printer); it must then wait until the 

information has been printed before it can print more. 

Thus spooler processes (usually one per printer) and other processes which 

have similar CPU and I/O characteristics need a relatively high priority (to keep 

the printer or other I/O device working at full speed), but of course they should 

have a lesser priority than high priority real time processes. Because the CPU 

time needed by them is very short, giving them a quite high priority scarcely af-

fects processes which have a lower priority. 

1.3 Interactive Processes 

In real-time transaction processing systems such as airline reservation systems, 

where for example travel agents sit at terminals attached via a network to a cen-

tral computer in order to make bookings for their clients, this style of interaction 

usually requires a small amount of CPU time to handle a transaction and then, 
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from the viewpoint of CPU time, a huge waiting period until the next transaction 

is entered from the same user. The transaction itself typically requires a very 

small amount of CPU time and a few database accesses. From the user's view-

point the important issue is that he is not kept waiting for more than a second or 

two between inputting a request and receiving his answer. 

1.4 CPU-intensive processes 

Some computations (e.g. many scientific applications, including for example 

weather forecasting) need enormous amounts of CPU time and only occasional-

ly (in terms of CPU time) need to output a result before continuing their calcula-

tion, and as indicated above, their output operations are converted into virtual 

memory accesses. 

1.5 Combining the above Requirements into a Single Process-Scheduling 

Algorithm 

While the likelihood that all the above requirements would occur in a single 

computer system is relatively small, to design a CPU scheduling algorithm 

which caters for them all is not particularly difficult. 

The first step is to organise the processes into different priority levels. Here 

we envisage four such priority levels, numbered say from 0 to 3. Priority 0 (the 

highest priority) is used for high priority real time processes, priority 1 for me-

dium priority I/O intensive processes, priority 2 for interactive processes, and 

priority 3 (the lowest priority) for CPU-intensive processes. 

We then apply the rule that at all times the CPU is allocated to the process 

of the highest priority which is in the ready state (i.e. is able to execute, see next 

section).  

It is obvious why high priority real time processes should have the highest 

priority, but why for example should spooling processes have the next highest 

priority? The first part of the answer is that it is important for such processes 

(e.g. spoolers) to keep their I/O devices (e.g. printers) running at full speed. But 

it is also important that they usually require only a trivial amount of CPU time, 

so that they scarcely affect the CPU usage of lower priority processes, while at 

the same time can keep their I/O devices active. 

The interactive processes are placed below the medium priority I/O inten-

sive processes because they sometimes require more than just momentary use of 

the CPU (normally in contrast with the first two categories), and so can make 

good use of the CPU for somewhat longer time intervals. However the issue of 

fairness is especially evident here. If one transaction monopolises the use of the 

CPU for too long then this will cause other transactions (and therefore users at 

other terminals) to wait for a possibly intolerably long period without receiving 
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a response. To avoid this, the priority 2 queue can be organised on the basis of 

time slicing, i.e. a CPU time slice of a few milliseconds is determined as the 

maximum time limit for a process to hold the CPU. If this time slice expires the 

CPU is forcibly taken from the process and the next process at this level is al-

lowed to run. If there is no priority 2 (or higher) process in the ready state, the 

first ready process in the priority 3 queue, i.e. a CPU-intensive process, is se-

lected. 

The above process scheduling algorithm is just an example of a scheduling 

algorithm. Computers used for different purposes may need more specialised 

algorithms, so it would be a mistake to think that the same algorithm will suit all 

computer systems. 

2 Process Scheduling States 

From the viewpoint of process scheduling, a process can be classified as being 

in one of four states: inactive (when the process is doing nothing, which in con-

ventional systems usually means that the process does not exist), ready (when it 

can execute but has not yet been assigned to a CPU by the scheduler), running 

(when it is currently active on a CPU) and blocked (when it is waiting for some 

condition to be fulfilled, e.g. completion of an I/O operation). Figure 8.1 illus-

trates these states and possible the transitions between them. 

 

The ready state indicates that the process can be executed (i.e. be placed in-

to the running state) when the scheduling algorithm selects it. In this case the 

scheduler allocates a CPU to it. 

A process in the running state can forcibly lose the CPU as a result of an 

interrupt (e.g. because its time slice has expired). In this case it is returned to the 

ready state. Alternatively it can voluntarily relinquish control of the CPU (e.g. in 

order to wait for the completion of an I/O operation which it has initiated), in 

which case it enters the blocked state. It is released from the blocked state, re-

deallocate 

 

Figure 8.1: Process/Thread States and Transitions between States 

inactive ready running 

logout 

login allocate 

blocked 
block unblock 
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turning to the ready state, when an interrupt indicates that the reason for it being 

blocked has been lifted. 

The important purpose of the process scheduler is to carry out reschedule 

operations, i.e. to select a process from the ready state and put it into the running 

state. This can occur as a result of a process being added to the ready queue or as 

a result of a process being unblocked following an interrupt. 

3 Process State
26

 

A process should not be confused with a program. It is not a program as such, 

but is the execution of a program on a CPU. A program is merely an algorithm, 

i.e. a recipe for carrying out a computation. When a program is executed, it has a 

process state, which from the viewpoint of the process scheduler defines those 

aspects of the process's activity which must be preserved when the process is not 

actually executing on the CPU. The most important part of a process's state, 

from the process scheduling viewpoint, is the values in its CPU registers. 

When the process scheduler makes a process switch, it must store the cur-

rent register values in a data structure associated with the process which has 

previously been running and then reload the registers with the values associated 

with the process now selected to run on the CPU. 

Thus the process scheduler must maintain a list of processes, containing the 

saved register values for each process along with other relevant items of infor-

mation (e.g. the time consumed so far by each process as it runs, its priority, 

etc.). 

4 Program Structure 

In preparation for the following discussion about processes we must now make a 

short digression to describe an important aspect of program structures. 

Normally a program, unless it is very simple, is decomposed into smaller 

units which we call routines. A routine, variously called a procedure, function, 

subroutine or, in object oriented programming, a method, contains instructions 

for carrying out a part of the program's task. This not only helps the programmer 

to break down his program into smaller, easily intelligible parts, but it can define 

a subtask which may have to be performed several times during the execution of 

the program. We then speak of a program calling or invoking a routine. Such a 

routine might be defined along the following lines (using a pseudo programming 

language which is much simpler than real programming languages). 

                                           
26

 The term process state as used in this section should not be confused with a process's 

scheduling state, described in the previous section. 
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routine identifier (parameters) 

begin 

 programming statements 

end 

The identifier is the name of the routine. The parameters allow different values 

to be passed each time the routine is called (invoked), thus allowing the routine 

to perform different variants on the same task. Statements are the instructions 

which define how the routine's task is to be carried out. These may, but need 

not, contain a return statement. The routine returns to the caller either when it 

has executed all the statements to the end, or when it encounters a return state-

ment. 

A routine can be called several times in a program, and each invocation 

causes the same code to be executed. When it has completed it returns to the 

calling code at the point following the call. 

Suppose a graphics program contains a routine called draw_circle which 

has three parameters. The first two define the position of the centre of the circle 

as integer coordinates, and the third defines the radius, this could be invoked by 

the following statement: 
draw_circle (13, 17, 5) 

which would draw a circle at the coordinates 13, 17 with a radius of 5 (using 

whatever unit size is assumed, e.g. centimetres). 

Here is an example of how a program using this routine might look. 
program my_drawing_program 

begin 

 initial statements 

 draw_circle (13, 17, 5) 

 more statements 

 draw_circle (24, 37, 10) 

 final statements 

end 

 

Figure 8.2 shows how this would execute in a running process. The blue arrows 

represent the progress of execution in the main program. The green and red lines 

represent the invocation and execution of the routine for the first and second 

program my_drawing_program 

begin 

 initial statements 

 draw_circle (13, 17, 5) 

 more statements 

 draw_circle (24, 37, 10) 

 final statements 

end 

routine draw_circle (int, int, int) 

begin 

 draw_circle statements 

end 

Figure 8.2: A Program Invoking the Same Routine Twice 
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times respectively. 

Each time the routine returns, it must jump back to the instruction follow-

ing the invocation, which is different for each invocation of the program. Hence 

at the time of each invocation the return address must be stored in such a way 

that it can be recovered when the routine is ready to return. 

5 Process (or Thread) Stacks 

Compilers are programs which translate a computer program defined in a high 

level language (e.g. C++ or Java) into the low level instructions which the CPU 

can understand and execute. Most compilers organise the calling of routines by 

means of a data structure called a process stack. A stack, in general terms, is a 

data structure which can grow and shrink at one end (the top), just as a stack of 

trays in a self service restaurant grows and shrinks only at the top. In computing 

circles we talk about pushing items onto a stack and popping them off. In the 

case of a process stack each time a routine is called a stack frame is pushed onto 

the stack and each time a routine returns, its stack frame is popped. Process 

stacks can support a number of useful facilities, as we now describe. 

5.1 Routine Linkage 

As is evident from Figure 8.1, each time a routine returns back to the calling 

program, it returns to a different place, namely to the instruction after the call 

instruction. Consequently the compiler must add code to the compiled program 

(known as run-time code) which, each time the routine is called, records the ad-

dress to which it must return. It records this information at the base of the new 

stack frame which it creates for the routine call. Hence when the routine returns, 

the address in the program at which the calling program must be re-activated is 

available on the stack. 

The routine linkage segment on the stack must also hold information about 

where the previous stack frame begins. Usually this is addressed via a register, 

so that the address in this register (which we will call F for frame
27

) is also 

stored in the linkage segment. Other information may also be stored in the link-

age segment to help with the return operation. 

5.2 Parameters and Local Variables 

Since the parameters passed to the called routine can change with each call, they 

must be recorded at a point on the stack where the called routine can locate 

them. Similarly the called routine will need its own set of working values (called 

local variables) which can change with each call. 

                                           
27

  In some computers this register is a special register, but it can also be one of the general 

purpose registers. 
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The compiler therefore provides run-time code which places a parameter 

segment above the linkage segment on the stack. Before the call this area can be 

addressed by the calling routine to set up the parameter values, and when the 

call has taken place the called routine can address the same segment to access its 

parameters. Then immediately above the parameters the run-time code also pro-

vides space for the routine's own local variables. 

5.3 Expression Evaluation 

Sometimes a calculation, as expressed in a high level language, requires some 

intermediate results which the programmer has not explicitly named and which 

therefore no local variable has been declared which would provide space to store 

the value until it is needed. For example if the programmer writes: 
a = (b + c) * (d - e) 

the run time code will provide space for the local variables a, b, c, d and e in the 

stack frame, but when the calculation is carried out there is no space for the re-

sult of evaluating (b + c) or (d - e). 

This problem is also solved by using a process stack, such that these re-

sults, as they are calculated, can be pushed onto the top of the current stack 

frame and once they are used they can be popped from the stack. 

 

This implies that the top of the stack is not always at the same point in a 

stack frame, which means that in order to keep track of this another register is 

needed, which we call TOS (top of stack)
28

. Like F, TOS must also be stored in 

the linkage segment. 

We now see that a stack frame can basically be viewed as consisting of four 

                                           
28

  Like F, TOS might be implemented as a special register or it might just be a general 

purpose register maintained by run-time code. 
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Figure 8.3: A Stack Frame 
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parts: a linkage segment, a segment for parameters, a segment for local variables 

and an expression evaluation area (see Figure 8.3). 

5.4 The Stack Structure 

So far the impression may have been given that the stack has only two levels: a 

main program and a routine called from the main program. However, that is not 

the case. Routines can be called not only from a main program but also from 

within other active routines. Thus a process stack can have many levels of stack 

frames. Each stack frame, together with its linkage segment, provides enough 

information for the corresponding routine to carry out its own task, possibly call 

other routines and when it has completed its task, to return to its caller (see Fig-

ure 8.4). 

 

This structure also supports recursive routines, i.e. routines which call 

themselves in the middle of their computation. Programmers must take care, 

when defining recursive routines, that the recursion has a termination condition, 

otherwise the stack would grow "endlessly". 

The same structure also supports re-entrant code, i.e. code which can be 

executed simultaneously by multiple processes, provided that each process has a 

separate process stack, and that the program code is not modified. 

6 Global Variables and Parameters 

So far the impression may have been given that a routine uses only its own local 

variables and the parameters directly passed to it. In practice this is often not the 

case. Many high level programming languages are defined in such a way that a 

routine can address both its own locally declared variables and a set of variables 

which have been globally declared at the start of the program. This means that it 

TOS 

 
 

 
 

Figure 8.4: A Process Stack 
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has to be possible to use addresses which are not relative to the current stack 

frame register F. A simple way to achieve this is to have a similar register, 

which we shall call G, for addressing the global variables of a program. G ad-

dresses the variables in the first stack frame of a dynamically executing pro-

gram. At any given point the currently executing routine can then use addresses 

relative to F or to G. The linkage at the bottom of the stack indicates that the end 

of the program execution has been reached. 

 

7 Calling the Operating System 

Most conventional systems have a special mechanism which allows a process to 

call the operating system. However, another interesting idea which was used in 

some systems (e.g. Burroughs B6700 [41], Multics [42], ICL2900 [45, 46]
29

) 

was to implement calls from application programs to the routines of the operat-

ing system more or less in the same way as routine calls within the user's own 

program. In other words the invocation of an operating system service routine 

takes place on the process stack of the application process. 

Although this is in principle very similar to the stack technique which we 

have already seen, there is one major difference. The operating system is com-

piled separately from its application programs and therefore should not need to 

address the global variables of an application program. Instead it possibly has its 

own global variables, which must become addressable when one of its routines 

is invoked. 

When the operating system comes into the picture we realize that there are 

actually two different kinds of global variables which may need to be addressed. 

                                           
29

  The second reference for the ICL2900 is a reprint of the first. 
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The operating system has some data structures which must be persistent and 

which need to be addressable from all processes as long as the system is run-

ning. (As an example of such a data structure, consider the queues of files which 

a printer spooler has to manage.) Such data structures must survive at least as 

long as the system is running, and they cannot be put onto the stack of an appli-

cation process. For this reason it is useful to have a further addressing base reg-

ister. Let us call this the P register, where P is short for "persistent". This will 

point to data items which are not on an application's process stack. 

An operating system routine can receive its parameters from the application 

program using the same parameter passing mechanism as is used for passing 

parameters between local routines of an application process. However, the call 

to an operating system service routine and the linkage at that point on the stack 

have to be rather special, because the P register has to be set up and because the 

return mechanism must – for protection reasons – invalidate this. 

8 Handling Interrupts 

Not all the routines of an operating system are invoked directly by application 

processes. In particular, interrupt routines are activated directly by the hardware 

at arbitrary points in the execution of other processes when an interrupt pending 

signal is detected (e.g. to indicate that an I/O operation has completed). Yet 

symmetry (for example in order to keep the compiler of the operating system 

routines simple) suggests that these should also be handled using stack frames. 

The B6700 designers were consistent in this respect and used a slight variation 

of the same routine calling mechanism to implement interrupt routines. 

What they did was logically very simple. They treated an interrupt as if it 

were a forced routine call. The currently executing process (whatever process 

that might be) was stopped, its program counter value and other contextual in-

formation were stored (as normal linkage) on its stack at the location above the 

address in the TOS register, so it appeared that the application process had 

called the interrupt routine. The interrupt routine then used a new stack frame on 

the application process stack. When the interrupt routine completed and exited, 

this then appeared like a normal routine return, so the interrupted application 

process could continue as if it had never been interrupted. 

But there is a catch in treating interrupts as forced routine calls. What hap-

pens if the interrupt has been caused because there is no more space on the 

stack? In the B6700 there was in fact another ALU register, called SL (stack 

limit), which in principle defined the last memory address for the current stack. 

Each push operation on a process stack was checked to see if the resulting TOS 

value would go beyond SL. If it did, a stack overflow interrupt was signalled. 

This is where the danger lay, because the stack has no more space on which to 



Chapter 8 PROCESSES 110 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

execute this interrupt. 

Not to be deterred by this problem the B6700 designers worked out the 

maximum number of words needed by this interrupt routine, and actually set the 

SL value to where it should have been minus this amount. In the later B7700 

system this was one of the few things changed in the architectural design. In that 

system a separate stack was activated whenever an interrupt occurred. (This had 

the advantage that higher priority interrupts can interrupt lower priority ones and 

still have stack space, providing this is kept to a reasonable level.) 

9 Processes and the Operating System 

There are some interesting implications of handling operating system routines 

on application process stacks. The first of these is that at least in theory no oper-

ating system processes are needed. However, in most practical systems, even in 

those which support the execution of operating system routines on an applica-

tion process stack, there are usually some additional operating system processes 

for carrying out activities which perform tasks that are independent of a particu-

lar application process. 

 

There are in fact two models for decomposing an operating system into 

processes. The simplest involves having a separate process for carrying out each 

operating system activity; this is a standard technique used in very many operat-

ing system designs. We refer to this kind of design as out-of-process, because 

operating system services are provided for an application out of the application's 

process, in a separate process. The technique is sometimes called message-

oriented, because the application process must pass its parameters as a message 
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from one process to another. This is illustrated in Figure 8.6. 

The alternative is the technique implemented in the B6700, where operat-

ing system services are provided in the process belonging to the application. We 

refer to this kind of design as in-process; it is sometimes also called procedure-

oriented, because the operating system routine is implemented as a routine (see 

Figure 8.7). 

 

In an interesting paper by Lauer and Needham [47] these two techniques 

were compared. The authors reached the conclusion that they were duals of each 

other. However, they overlooked two significant points, which are discussed in 

detail in my former student Kotigiri Ramamohanrao's PhD thesis [48]. First, as 

we shall see later, there are some fundamental differences when it comes to the 

issues of protection and security. Second, the two models are not equivalent in 

terms of their dynamic properties, e.g. with respect to the level of parallelism 

attainable in each. 

Since a process is the unit of execution on a computer it is easy to fall into 

the trap of thinking that the fewer the number of operating system processes, the 

less concurrent or parallel activity can be achieved in carrying our operating sys-

tem tasks. In fact this is quite the opposite of the truth. In a system in which 

there is a process statically assigned to provide a particular service (i.e. the out-

of-process model), this service must be used serially by different applications. 

This is because the server process examines its input message queue, selects a 

request, and then services it. When it has finished it selects another request, etc. 

Meanwhile all the application processes which have requested this service are 
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usually blocked waiting for the service
30

. 

In contrast, in the in-process model no application processes are automati-

cally blocked (also less work for the process scheduler!) since they can all con-

currently call the same routine of the operating system and execute in parallel 

with each other, using their own process stacks. So there are fewer processes but 

at the same time there is more potential for parallelism. 

This does not imply that it is always possible to achieve full parallelism in 

an in-process system. The difficulty comes when these processes have to access 

the same data structure. This would happen for example when two operating 

system routines address shared operating system data using the P register which 

we introduced. If they are both only reading the data there is no problem, but if 

they need to modify it, then the data structure can become inconsistent, leading 

to wrong results. We discuss this and other synchronisation problems at the end 

of the chapter. 

The important point here is that operating system processes executing in 

the same module in an in-process system do not always have to take turns to use 

the same module. First, not all data structures accessed by these processes are 

shared. Even if they are executing in the same routine, they may only need to 

access data via the F and G registers, which is not shared and therefore causes 

no problems. But even if they are accessing shared data (in our model via the P 

register) they may not be modifying it but only reading it. So in practice more 

parallelism can be achieved in an in-process design. 

A final point is that when processes cooperate with each other, such as 

when operating system routines are active on different stacks, they may want to 

communicate not only implicitly via shared variables but also explicitly by send-

ing signals to each other. Most operating systems have an interface which allows 

signals to be sent between processes to allow them to cooperate. This is an area 

which can easily lead to security breaches if it is not handled properly. The 

problem is that cooperating processes have to trust each other and rely on each 

other sending the right signals at the right time. If the system does not have a 

mechanism for ensuring that only the right processes are allowed to communi-

cate with each other, then for example a process receiving a signal on trust, but 

sent by a malicious process, might take some actions which it would not other-

wise have taken. 

10 Multiple Processes 

The discussion has so far assumed that within a single program the only parallel-

                                           
30

  It is possible to associate more than one process with each operating system module, but 

that creates new problems which are not important for the present discussion. 
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ism which can occur is when users activate different processes. However, there 

are some programming activities where it makes sense for a single activation of 

a process to split into multiple tasks (hereafter called threads), which can be car-

ried out in parallel. This means that an application program can be written as a 

parallel program (using a parallel algorithm), which can be decomposed dy-

namically into several threads that can be multiprogrammed with each other. 

The form which this sometimes takes is that a routine declared in a program can 

be invoked either by using a normal routine call (as we have been discussing in 

the last few pages) or as an activation of a separate thread. 

Different programming languages often define different semantics for par-

allel programming. For example some programming languages (e.g. Burroughs 

Extended Algol) allow an initial thread to create child threads which share the 

data of their parent thread. Each new thread has a separate stack which is created 

when the thread is activated. The first stack frame of this "child" stack contains 

the parameters and local data of the routine which has just been invoked as a 

thread. Its linkage points back to the creating ("parent") stack. As a routine can 

access not only its own variables (for which space is created on the new stack in 

the usual way) but also more global variables, it must be possible for the child 

thread also to address variables on the parent stack. In other words, the F register 

of the child thread points to locations on the new stack while its G register 

points to locations on the parent stack. Both threads can proceed to execute as 

normal. Both can call new routines, they can call the operating system, and they 

can even create further new threads. 

The threads can communicate with each other either explicitly (by sending 

signals using an operating system interface) or implicitly (by changing values in 

the globally shared data on the parent stack). If shared data structures are used, 

access to these must be synchronised in a manner similar to the way just de-

scribed for the case where threads synchronise access to data accessed via the P 

register.  

A problem arises if the parent thread terminates before the child thread 

completes its task, because this results in the destruction of the stack frame con-

taining the global data which should still be accessible to the child thread. In the 

B6700 this problem is solved by destroying the child thread. This is not as bad 

as it sounds, because the threads can cooperate with each other via signals 

and/or shared data, and so they can arrange to terminate in the right order. If 

necessary the creating thread can ask the thread scheduler to block it until all the 

threads which it has created have terminated. 

11 Synchronisation: Mutual Exclusion 

The above discussion of the merits of in-process vs. out-of-process systems 
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raised the issue of process synchronisation. This is an important issue, because a 

failure to understand synchronisation issues can often lead to errors in the design 

of operating systems and that in turn can create security loopholes. 

11.1 The Basic Problem 

At the hardware level the modification of variables (e.g. additions and subtrac-

tions) normally take place in the ALU registers. Values are brought from 

memory into registers (as operands) and the results of operations are written 

back to registers. The results are later written back to the main memory. 

Suppose that two processes (or threads) each wish to execute the same 

piece of code to increment a counter by one. At the assembler/machine level this 

might be achieved using three instructions: 

LOAD  R1, COUNTER {load the value of the memory variable 

     called counter into register 1} 

ADD  R1, 1  {add 1 to the value in register 1}  

STORE  R1, COUNTER {store the value of register 1 back into counter} 

where R1 is an ALU register which is available to programs and counter is a 

shared operating system variable addressable via P. This may at first sight seem 

quite harmless, but consider what happens when two processes execute it in par-

allel. Each has its own register set, so each process's R1 is a different version of 

R1. Suppose the counter starts off with the value 3, and the actual timing of the 

sequence of code for the two processes turns out as follows: 
Process 1 Process 2 

LOAD   R1, COUNTER  {R1 for process 1 now contains 3} 

  LOAD R1, COUNTER {R1 for process 2 now contains 3} 

  ADD R1, 1  {R1 for process 2 now contains 4} 

  STORE R1, COUNTER {COUNTER now contains 4) 

ADD  R1, 1    {R1 for process 1 now contains 4) 

STORE  R1, COUNTER  {COUNTER now contains 4} 

The surprising result is that each of two processes intended to add one to a coun-

ter which had an initial value of 3, and the result turns out to be 4, not 5! This is 

a simple form of synchronisation problem which can arise when several pro-

cesses attempt to modify the same shared variable. Such a situation can arise in 

practice in a single processor system, if the first process is interrupted after exe-

cuting the LOAD instruction and the process scheduler then selects process 2 to 

run before process 1. In a multiprocessor system it can happen anyway, if two 

processors execute different processes using the same shared data. 

There is of course a solution. Such a section of code is called a critical sec-

tion. Critical sections where processes write to the same variables (whether us-

ing the same or different code sections) can only sensibly be executed in se-

quence; the first must finish before the second starts. 
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11.2 Mutual Exclusion 

The synchronisation problem just described requires mutually exclusive access 

to the variables in question (here COUNTER), i.e. when one process is access-

ing the critical section, all other processes must be excluded from that section.  

To achieve this, a process, when it attempts to enter a critical section, must 

execute an entry protocol indicating that it wishes to enter the section. If the in-

structions executed in the entry protocol allow this, then the process enters the 

section, changes the variable(s) and then uses an exit protocol to say that it is no 

longer in the critical section, thus allowing some other process to enter the sec-

tion, i.e. it executes the following sequence: 

entry protocol 

critical section 

exit protocol 

In order to implement the entry/exit protocols some hardware support must be 

provided. 

11.3 Dekker's Algorithm 

The absolute minimal hardware support necessary is that when a word of 

memory is modified by a CPU instruction this must be achieved indivisibly, i.e. 

nothing must be allowed to interrupt the hardware writing process. The Dutch 

mathematician Th. J. Dekker is accredited (by Edsgar W. Dijkstra [49]) with the 

first correct solution for this problem, using only the indivisibility of write oper-

ations to a single word. However, his solution is only of academic interest, be-

cause 

– it only works for two processes, 

– the entry and exit protocols are different for the two processes, and 

– it involves busy waiting. 

Busy waiting describes an entry protocol where a process must continuously 

loop, consuming CPU time and making continuous memory accesses, until the 

other process exits from the critical section. It is also not a fair scheduling tech-

nique, since an unlucky process may be starved of useful use of the CPU over a 

long period. Furthermore a risk of deadlock
31

 arises when a priority scheduling 

algorithm is used, if a low priority process successfully enters a critical section, 

but loses the CPU to a process of higher priority which is executing a busy wait 

loop. Hence more support is needed from the hardware in real systems. 

                                           
31

  A deadlock arises when two or more processes are waiting for each other to release 

some resource, with the result that they will wait forever. 
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11.4 Turning Off Interrupts 

In the past some systems solved the problem by turning off interrupts. This 

means that in a single CPU system a process can proceed without interruption to 

its completion on the CPU. Other processes cannot be scheduled on the CPU 

because the scheduler cannot be activated. But this simple technique has several 

problems, e.g. 

– Turning off interrupts affects a particular active CPU, but does not have a 

global effect on other CPUs. Thus in a genuine multiprocessing (i.e. multi-

CPU) system this solution is ineffective. 

– If interrupts are turned off for too long, information can be lost (for exam-

ple – but not only – in real time systems). 

– In almost all systems the "turn off/on interrupts" instruction is a privileged 

instruction (because it can lead to loss of data, etc.). Consequently this 

method is not available for use by non-privileged processes, i.e. user level 

cooperating processes. 

11.5 Busy Wait Instructions 

Some CPUs provide a test-and-set instruction, which is easier to understand and 

use than Dekker's algorithm, but this also results in processes having to busy 

wait until the critical section is free. In more modern systems this instruction has 

generally been replaced (e.g. in IBM mainframe systems) with a compare-and-

swap instruction
32

, which also relies on busy waiting. 

11.6 Semaphores 

In 1965 Dijkstra developed a new idea for solving synchronisation problems, 

called a semaphore. It is based on the idea that counting variables should be im-

plemented indivisibly. 

A semaphore sem is a structured abstract variable on which two special op-

erations can be indivisibly carried out. It consists of an integer (sem.counter) and 

an associated queue of waiting processes (sem.queue). 

The first operation is a P operation (the entry protocol). (P is the initial let-

ter of the Dutch word "passerem" (to pass); the P operation determines whether 

a process may pass a point in the code or should wait.) The second is a V opera-

tion, the exit protocol. (V is the initial letter of the Dutch word "vrygeven" (to 

release); the V operation releases the critical section when completed.) 

For practical purposes the operations (on a semaphore sem) are defined as 

follows: 

                                           
32

  see for example http://en.wikipedia.org/wiki/Compare-and-swap 
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P (sem) => 

 [[sem.counter = sem.counter – 1; 

 if sem.counter < 0 then suspend (sem.queue)]] 

V (sem) => 

 [[sem.counter = sem.counter + 1; 

 if sem.counter ≤ 0 then activate (sem.queue)]] 

The bracket pair [[...]] is used to indicate that the bracketed instructions are car-

ried out indivisibly 

Put simply, the P operation decrements the counter and if the result is nega-

tive the process is placed into the related queue of waiting processes. The V op-

eration increments the counter and if the result is not positive a waiting process 

is activated (made ready). 

Using these operations the solution to the mutual exclusion problem is triv-

ial: 

Semaphore sem = 1 {a semaphore variable sem initialised to the value 1} 

P(sem) 

critical section 

V(sem) 

This solution avoids the problems of the other attempts to solve the mutual ex-

clusion problem: there is (apparently) no busy waiting, it can be used for any 

number of processes, and the solution is the same for all processes. 

11.7 Implementing Semaphores 

An important issue is how semaphores can be implemented indivisibly. We con-

sider two possibilities. 

a) The Process Scheduler implements semaphores using techniques described 

earlier, or 

b) Special instructions are provided to implement semaphores. 

Process Scheduler Implementation of Semaphores. In this case application 

and/or operating system processes invoke operations of the process scheduler to 

carry out P and V operations. The process scheduler uses one of the techniques 

described above (e.g. compare-and-swap operations or turning off interrupts) to 

ensure that indivisibility is guaranteed. This represents an improvement because 

– the time required in the mutual exclusion state (e.g. busy waiting, interrupts 

off) is only for the duration of the P and V operations, not for the entire pe-

riod of the application's critical section,  and 

– the process scheduler retains control over the turning on and off of inter-

rupts (if that is how the process scheduler achieves mutual exclusion). 

But the disadvantage is that each time a process enters and exits a critical section 

the process scheduler must be called. This is quite costly, since on many occa-

sions there may be no clash between processes wishing to use the same critical 

section (i.e. no queuing operation may be necessary). 
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Semaphore Instructions. It is not normally feasible to implement the entire code 

of a semaphore operation (especially the queuing part) as an ALU instruction, 

but it is feasible to implement the counter manipulation part. In the ICL2900 

Series [46], for example, two indivisible ALU instructions were provided, along 

the following lines
33

. 

a) Decrement & Test (counter, local) is equivalent to the first part of the P op-

eration, and is defined as follows: 

DECT (counter, local) => 

 [[ counter := counter - 1; local := counter ]] 

This instruction indivisibly decrements a shared counter variable and copies the 

result to a process-local variable. 

b) Test & Increment (counter, local) is equivalent to the first part of the V op-

eration, and is defined as follows: 

TINC (counter, local) => 

 [[ local := counter; counter := counter + 1 ]] 

This instruction indivisibly copies the value of counter to local then increments 

the shared counter variable. 

The user code can then combine these machine instructions with normal 

process scheduler operations (here suspend and activate) as follows to imple-

ment P and V operations: 

P (sem) => 

 DECT (sem.counter, local); 

 if local < 0 then suspend (sem.queue); 

 

V (sem) => 

 TINC (sem.counter, local); 

 if local < 0 then activate (sem.queue); 

Suspend and activate must be indivisible operations (as is usual in the process 

scheduler). 

Although both the instructions and the scheduling operations are indivisi-

ble, an interrupt can occur between these two parts of a P or V operation. This is 

not a problem provided that the process scheduler's suspend and activate opera-

tions are commutative, i.e. the order in which suspend and activate operations 

occurs has no effect on the final result, e.g. if the following scheduler calls are 

made in sequence and the process involved is already active 
activate – process continues 

activate – process continues 

suspend – process continues 

suspend – process continues 

                                           
33

  The actual ICL2900 implementation reverses the counter values, i.e. a mutual exclusion 

semaphore is initialised to -1 and is incremented by the equivalent of the P operation, 

while the V equivalent operation decrements the counter. This is logically equivalent to 

Dijkstra's approach, but we follow Dijkstra's suspend and activate instructions conven-

tion to avoid confusion. For a more general description see [131]. 
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suspend – process is suspended 

The advantages of this implementation are as follows: 

– DECT and TINC are not privileged instructions. They can be used in user 

programs. 

– If the appropriate condition is satisfied, then there is no call to the operation 

system (suspend/activate); this is very efficient. 

– The process scheduler routines are short and simple: no extensions are 

needed for the basic process scheduler model discussed earlier. 

Nevertheless the fact remains that the actual scheduler operations must be syn-

chronised using one of the more primitive methods discussed earlier, i.e. turning 

off interrupts or busy waiting, assuming that the hardware does not have a spe-

cial instruction for this (which may be necessary in a multi-CPU system). 

12 Further Synchronisation Problems 

One aspect of semaphores was not considered in the last section, where it was 

assumed that the semaphore's value is initialised to 1. Such a semaphore is 

called a binary semaphore. But it is possible, and often sensible, to initialise 

semaphores to other values. In general the current value of a semaphore can be 

understood as follows: 
> 0: the number of resources currently free 

= 0: no resources free and no waiting processes 

< 0: the number of processes waiting for a resource. 

The mutual exclusion problem is a particular example, where the semaphore is 

set to 1 because processes are competing for a single resource, the critical sec-

tion. We now consider briefly some important problems which can be solved by 

semaphores. 

12.1 Bounded Buffers 

When parallel processes cooperate with each other they must communicate ei-

ther by sharing variables in memory (e.g. in an in-process system), or by sending 

messages to each other (e.g. in an out-of-process system). 

If the operating system provides processes with a message passing facility 

(such as that illustrated in Figure 8.6) this must be implemented using shared 

memory. We now consider how such a message passing facility can be imple-

mented (from the viewpoint of synchronisation). 

The problem to be solved is in fact a more general problem, which can ap-

pear in many aspects of operating systems, database systems, etc. It is caller the 

producer/consumer problem and the shared memory is called a bounded buffer. 

We begin with the simple case of one producer process (which adds new entries 

to the buffer) and one consumer process (which removes entries from the buff-
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er). Since the buffer cannot be infinitely long, it is called a bounded buffer. Sup-

pose such a buffer has space for eight entries (see Figure 8.8). The first is entry 

0, the second entry 1, etc. 

 

The producer process can fill all these entries in turn, starting at entry 0, but 

when he attempts to add an entry after entry 7, he must wait until the consumer 

has removed entry 0, freeing it up to be used as entry 8, etc. The two processes 

work at their own speeds and so it is possible that a producer attempts to add a 

new entry to a full buffer, or a consumer attempts to remove an entry from an 

empty buffer. The synchronisation problem is to ensure that the producer must 

wait to add an entry to a full buffer and that a consumer process must wait if it 

attempts to remove an entry from an empty buffer. 

The solution is quite straightforward if general semaphores, i.e. sema-

phores which can be initialised to any value, are used. It requires two sema-

phores. We call the first empty, and the second full. Assuming that the buffer is 

empty when the processes start, the semaphore empty is initialised to 8 (despite 

the numbering of the buffers!), because there are 8 empty buffer slots (i.e. 8 

empty resources); the second semaphore (full) is initialised to 0, because there 

are no full slots at the start. 

Apart from the buffer itself and the two semaphores, 2 further shared varia-

bles are needed. We call the first of these integers nextfree, because it holds the 

index value (i.e. the entry number as it appears in Figure 8.8) of the next free 

buffer (so that the producer knows which entry to use). The second is called 

nextfull, as this tells the consumer where to find the next full slot. 

The solution of the problem for a bounded buffer with eight entries is as 

follows. Initially both nextfree and nextfull are set to 0. 

The producer code, which is designed as a loop to be executed as many 

times as there is something to produce, is as follows: 

Figure 8.8: A Bounded Buffer with Eight Entries 
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Producer algorithm: 
produce an entry 

use the semaphore operation P(empty) to claim an empty slot 

insert the new entry into the slot indicated by nextfree 

add one to nextfree modulo 8, i.e. if the result of adding 1 causes 

 nextfree to exceed the value 7, divide the result by 8 and 

 store the remainder in nextfree 

use the semaphore operation V(full) to release a full slot 

Repeat these steps as often as necessary, each time filling a slot. 

Consumer algorithm: 
use the semaphore operation P(full) to claim a full slot 

remove the entry from the slot indicated by nextfull 

add one to nextfull modulo 8, storing the remainder in nextfull 

use the semaphore operation V(empty) to release an empty slot 

consume the entry 

Repeat these steps as often as necessary, each time emptying a slot. 

Notice that whenever the buffer is full (i.e. the semaphore empty reaches 

the value 0) the producer process will wait. It will be activated as a result of the 

consumer executing the V(empty) instruction, i.e. releasing a full slot. 

 

Similarly whenever the buffer is empty (i.e. the semaphore full reaches the 

value 0) the consumer process will wait. It will be activated as a result of the 

producer executing the V(empty) instruction, i.e. releasing an empty slot. 

While the buffer is neither full nor empty both process can work in parallel 

on different slots, without having to wait. Figure 8.9 shows the state of the buff-

er after 3 entries have been produced and one of these has been consumed. 

The reason why this solution is only guaranteed to work with a single pro-

ducer and a single consumer is that if for example there are two or more produc-

ers they must share the use of the variable nextfree. To guarantee that they do 

not try to fill the same slot (which is determined by the value of nextfree) they 

must have mutually exclusive access to this variable. To achieve this, a binary 

semaphore (initial value 1) can be shared by the producers. We call this pmutex 

Entry 0 

Entry 1 

Entry 2 

Entry 3 

Entry 4 

Entry 5 

Entry 6 

Entry 7 

nextfree = 3 

nextfull = 1 

 

semaphore empty = 6 

semaphore full = 2 

Figure 8.9: A Bounded Buffer with Two Full Entries 
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(indicating producer mutual exclusion). In this case a P(pmutex) instruction 

must be inserted between steps b) and c) of the producer algorithm and a 

V(pmutex) after step d), thus causing the steps c) and d), which use the nextfree 

variable, to be treated as a critical section for the producer processes. (Notice 

that step b) must be outside the critical section, otherwise a deadlock situation 

could arise, in which the producers wait for each other forever. In contrast the 

order of the V operations is not so important, because a V operation does not 

cause processes to wait.) 

A similar situation arises for multiple consumers, this time with the varia-

ble nextfull, This can be solved in the same way, this time by introducing a sem-

aphore cmutex (for consumer mutual exclusion), with a P(cmutex) instruction 

after step a) and a V(cmutex) after step c). A similar deadlock situation would be 

possible if the P(cmutex) instruction is placed before step a). 

Notice that pmutex is not required if there is a single producer and multiple 

consumers, nor is cmutex required if there is a single consumer but multiple pro-

ducers. 

Finally it is worth pointing out that the bounded buffer problem arises in 

many situations in the design of operating systems where processes cooperate 

with each other by passing messages. 

12.2 Readers and Writers 

A common problem occurs when some processes wish to read from a database 

(i.e. group of variables) while others wish to modify it. Processes in the first 

group are called "readers" and in the second group "writers". 

If only readers are present there is no consistency problem (and therefore 

no exclusion problem). Readers can share access to the database without creat-

ing problems. However, writers must exclude not only other writers, but also 

readers. 

The first and simplest solution to this problem was published by Courtois et 

al. [50]; it gives readers priority over writers, i.e. readers must only wait when a 

writer is writing, but writers must wait until no reader is reading. The solution 

requires a variable shared by readers, readcount. This holds a count of the num-

ber of readers which are reading in parallel, and is initialised to 0. Two binary 

semaphores are also required. The first, wmutex (writer mutual exclusion), pre-

vents readers and other writers from accessing the database while a writer is ac-

tive. The second, rmutex (reader mutual exclusion) is claimed by the first reader 

and released by the last reader and allows shared reading to be coordinated. 

Writer algorithm: 
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use the semaphore operation P(wmutex) to claim access to the database 

use the database in writer mode 

use the semaphore operation V(wmutex) to release the database 

This is of course the simple mutual exclusion algorithm. 

Reader algorithm: 
use the semaphore operation P(rmutex) to gain exclusive access 

 to the variable readcount. 

add 1 to readcount. 

if the current value of readcount = 1 (i.e. if this process 

        is the first reader) 

then use the semaphore operation P(wmutex) to see if a writer is active. 

 (If so the reader waits, otherwise it continues.) 

Each further reader also adds 1 to readcount and then continues 

 without the P(wmutex) operation. 

use the semaphore operation V(rmutex) to release access to readcount. 

use the database in reader mode. 

use the semaphore operation P(rmutex) to regain exclusive access 

 to the variable readcount. 

reduce the count of readers by 1. 

if the result is 0 (i.e. this process was the last reader) 

 use the semaphore operation V(wmutex) to release the database 

 for readers or a writer 

use the semaphore operation V(rmutex) to release access to readcount. 

If the aim of this algorithm is always to guarantee that readers are given 

priority over writers and if (as is normally the case) no priority mechanism is 

built into the semaphore queues, then a small modification of the algorithm is 

necessary (as my former students and I have noted [51]). 

The problem arises because when a writer issues a V(wmutex) operation, 

the queue of processes which are waiting to access the database can contain both 

a reader and multiple writers. Since there is no guarantee that a reader process 

will be selected, reader priority is not guaranteed. 

To avoid this problem we proposed that an extra binary semaphore should 

be introduced (which we call extra). This is used only by writers and nests the 

writer algorithm described above within a P(extra)-V(extra) pair, i.e. the P oper-

ation precedes the first step and the V operation follows the last step. This en-

sures that when a writer is writing, other writers are queued not on wmutex but 

on extra. Hence the next writer can only be scheduled after the writer has not 

only released wmutex but also extra. 

This illustrates how difficult it can be to use semaphores to solve apparent-

ly simple problems. Curtois et al. also presented a writer priority solution in the 

same paper. This is somewhat more complex and need not be presented here. 

12.3 Private Semaphores 

A semaphore has a related queue. For many problems it is not important in what 

sequence the waiting processes are reactivated. Mostly a FIFO (first-in first-out) 

queue is used in practice. But Dijkstra's definition of semaphores does not define 

a specific ordering, so that an arbitrary order of waiting processes must be as-
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sumed. 

However, in some cases the order in which processes are reactivated is im-

portant, as we already saw for the reader-writer problem. This problem can be 

solved in a general way using Dijkstra's semaphores. 

To achieve this each process has a private semaphore. A private semaphore 

is a normal semaphore, which is typically initialised to 0. Thus if a process is-

sues a P operation on its own private semaphore, this gets the value -1 and the 

process waits. The process is activated when another process issues a V opera-

tion on its private semaphore. 

Suppose for example that a computer program, written as a parallel pro-

gram, is designed to simulate a simple board game such as ludo, a game with its 

own board and special rules (which need not concern us here – the result of a 

dice throw distinguishes the individual turns). The important point is that each 

of four players (or two players each playing two opposite colours, which we ig-

nore for the sake of simplicity), has four coloured tokens of the same colour 

(blue, red, green or yellow), and each plays in turn. 

In the program there would be a representation of the board, with the cur-

rent positions of the four tokens of each player on the board, together with the 

following semaphores: 

– a mutual exclusion semaphore, which we call mutex, initialised to 1 

– an array of four private semaphores, each initialised to 0 

After the initialisation each player would have a separate process which contin-

uously executes the following instructions (until the game is won): 

throw dice 

select and move counter on board according to rules 

change board display accordingly 

if game won, finish; 

 otherwise issue V operation on next player's semaphore 

issue P operation on own private semaphore 

This is just one of many examples of the use of private semaphores. 

Finally, semaphores and their implementation are further discussed in chap-

ter 21, where further research results are described in the context of the 

SPEEDOS system. 

13 Scheduling Resources 

Finally, we consider how the scheduling of resources (e.g. determining which 

process can next use a printer) can be organised, since many readers who are 

only familiar with out-of-process systems may at first find this puzzling. For 

such readers it seems natural to have a separate process which decides when an-

other process is given the go-ahead to use the resource. 
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The solution is actually straightforward and is based on the use of private 

semaphores. Each process that wishes to claim the resource in question invokes 

a scheduling module (in his own process) which has the task of determining the 

order in which each process can use the resource. If the resource is free, then a 

requesting process can proceed immediately. Otherwise the process must wait 

(on its own private semaphore) in a pool of waiting processes until the schedul-

ing module determines that it can use the resource. When the process using the 

resource returns to the scheduling module (in its own process) this indicates that 

it has finished using the resource. The scheduling module (still executing in the 

process of the resource which has just freed the resource) then determines ac-

cording to its algorithm
34

 which process waiting in the pool can proceed next. It 

then releases the private semaphore of the chosen process, removes its entry 

from the pool of waiting processes and exits from the scheduling module. The 

chosen process, now activated, can now use the resource. When it has finished 

using the resource it returns to the scheduler module and releases the resource as 

described above.
35

 

14 Conclusion 

This chapter has not directly discussed security issues, but it has laid down an 

important foundation for understanding SPEEDOS and for solving some very 

significant security issues which will be discussed in later chapters. 

 

                                           
34

  In the case of a printer scheduler, for example, the algorithm might adopt a policy of 

giving priority to short print jobs, or it might select print jobs based on the seniority of 

the requester or simply on a first in first out basis, etc. 
35

  For an example from SPEEDOS see chapter 33. 



 

  

Chapter 9 

Protection and Sharing 

in Conventional Systems 

 

Having considered how virtual memory can be organised and also how ex-

ecuting processes can be implemented, we are now in a position to discuss the 

important issues of protection and sharing. In this chapter we review attempts to 

achieve these aims in the context of the various memory management models 

previously presented. 

1 Protecting Processes from Each Other 

In a multiprogramming system which uses conventional page tables or segment 

tables each process has its own range of virtual addresses, always beginning at 

0. Thus virtual addresses in such systems are not unique. However, each process 

has its own page or segment table. Since different page tables are held in differ-

ent parts of the main (or virtual) memory a mechanism is needed which enables 

the appropriate table for the currently active process to be located. This is usual-

ly held in a CPU register, which, in the case of paging, we call the Page Table 

Base Register (PTBR) or in the case of segment tables the Segment Table Base 

Register (STBR). 

The PTBR/STBR contains not only the address of the beginning of the ta-

ble for the currently active process, but also its length. When translating a virtual 

page/segment number the ATU uses this length field to check that the selected 

unit is within the bounds of the table. If not, this means that the process is trying 

to address a (non-existent) memory unit (page or segment) which is beyond the 

program's last real page or segment. Such an error results in a memory violation 

interrupt. 

Like other CPU registers, the PTBR/STBR is part of the state of a process, 

but this is nevertheless a system register which cannot be accessed by the appli-

cation program. Whenever a process switch is made by the process scheduler, 
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the corresponding values for the old process are saved and the register is loaded 

with the appropriate values for the new process. This is illustrated in Figure 9.1 

for page tables, on the assumption that Program B is currently active. A corre-

sponding illustration for segment tables would show that the table entries would 

point to variable length units in the main memory, and in the case of paged seg-

ments the segment tables point to page tables which in turn point to different 

pages in the main memory. 

 

An advantage of this scheme is that the pages of different processes are au-

tomatically protected from each other without needing a further protection 

mechanism, such as existed for example in the IBM S/360 storage key/

protection key scheme [52, 53]
36

. This is because any virtual address which a 

process tries to access is interpreted as being one of its own addresses (using its 

own table). It cannot address beyond its own range of addresses, because of the 

length field in the PTBR/STBR. So there is no way it can formulate addresses 

associated with other processes. 

2 Protecting the Operating System 

If the operating system were to have its own page or segment table then it too 

would be protected from user processes. Unfortunately this simple solution has 

some practical disadvantages. The most important of these is that operating sys-

                                           
36

  The second citation is a reprint of the first. 
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tem designers like to be able to address not only their own pages, but also those 

of user processes – at the same time as they can also address their own pages! 

This is necessary for example when the operating system wishes to access the 

parameters supplied by an application process in a request for an operating sys-

tem service, since the application can store these only in its own memory space. 

Consequently another scheme was sometimes adopted for protecting the operat-

ing system. 

First we have to look at how the addressing works. Since the aim is to al-

low the operating system to address information stored in a user process, it is 

clear that the applications process's page or segment table must be active. To 

address the operating system means that a page table for this must also exist and 

be addressable at the same time. The first step towards achieving this is to have 

two PTBRs or STBRs, one each for the operating system and the application. 

There now remains only one problem: how do we choose between them? A so-

lution which is sometimes adopted is to "steal" the most significant bit of all vir-

tual addresses for the purpose. If the top bit of the virtual address is set to 0 then 

it is a virtual address of the application process, so the application's register is 

used to translate such an address. But if it is set to 1, then the address is regarded 

as an operating system address and the operating system's PTBR/STBR is used 

to find the page table. This effectively means that the maximum size of pro-

grams has been halved. Figures 9.2 and 9.3 illustrate how this works for a paged 

system. For segmentation and paged segmentation the same principle applies. 

 

However, an application should not be permitted arbitrarily to address op-

erating system pages or segments. This can be prevented, for example, if ad-

dresses beginning with a 1-bit can only be used only in privileged mode. Anoth-

er possibility is to invalidate the system's PTBR/STBR when an application pro-

cess is active. However, a different kind of solution is sometimes used in prac-

tice, involving a hierarchical protection scheme. 

3 Protection Rings 

This idea was first implemented in the Multics system, and has since been im-

plemented in other systems (e.g. the ICL2900 Series). Basic protection between 

separate processes is achieved, as in the conventional paging model and in the 

simpler segmentation model, by each process having a separate address space 

Figure 9.2: A Paged Virtual Address with Operating System Addressing 
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which is controlled by the operating system switching the value in a segment 

table base register whenever a process switch occurs. Also as in the simpler 

models the operating system shares the address space of each process by using 

addresses with the top bit set. 

 

What makes protection interesting in systems which have been influenced 

by Multics is the way the operating system is protected. It is based on the idea of 

hierarchical privilege, which can be seen as a reflection of a software system 

design philosophy that came into fashion in the late 1960s as a result of a paper 

by E. W. Dijkstra [54], sometimes known as layered design. 

The ring protection mechanism assumes that an operating system is struc-

tured as a series of layers, and that a lower numbered layer is more privileged 

than a higher numbered layer. If we consider the hardware as layer 0 (which will 

shortly turn out to be advantageous in practice) the first software layer, often 

called the kernel, is layer 1. The number of layers varies in different systems. In 

the ICL2900 Series, for example, four bits are set aside for this purpose, so there 

may be up to 15 software layers (plus the hardware). The higher numbered lay-

ers (from 8 to 15) are not needed for the operating system and can be used to 

structure an application program into several layers. 

The basic hierarchical protection rule is that a process executing software at 

layer n may access segments defined to belong to layer n and to all outer layers 

(i.e. those with higher numbers), but not those belonging to layer n-1 or less. 

This means that the operating system need no longer be privileged as a mono-

lithic entity. The inner level modules (i.e. those with the lower numbers) are the 

most crucial modules, controlling the hardware resources and managing the vir-
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tual memory tables. These are protected from accesses by the outer layers of the 

software. However, the outer layers are not similarly protected from the inner 

layers. The rationale for this lies with the rule for invoking software at different 

layers. 

In keeping with the idea of layers as abstract machines, an outer layer may 

invoke the interface of inner layers, i.e. a layer may make routine calls to soft-

ware at layers with lower numbers. These are sometimes called "inward calls". 

They must be accompanied by a change of privilege to reflect that a lower layer 

has been entered. The later return from the procedure back to its caller in a high-

er layer (an "outward return") must restore the old situation, i.e. reduce privileg-

es. 

The implementation of this ring protection scheme in the ICL2900 Series 

involves having a field called the access control register (ACR) in a protected 

system register. This indicates the layer at which the current process is currently 

executing, and information in each segment table entry shows the layer to which 

the segment belongs. 

Entries in the segment tables in fact contain two such fields (see Figure 

9.4), which replace the read permission and write permission bits found in the 

simpler models. The read access key (RAK) holds the layer number valid for 

read accesses to the segment. When a read operation on a word in this segment 

occurs, the hardware compares RAK with ACR. If RAK is greater than or equal 

to ACR the read access is permitted, otherwise a protection violation interrupt is 

caused. Similarly there is a write access key (WAK) which determines by a 

similar test whether a write access is permitted. Usually RAK and WAK have 

the same value for data segments which are writable, or RAK contains a layer 

number and WAK is set to zero (remember that the first software layer is 1), if 

the segment contains constants. However, other values are possible. 

 

There is also an execute permission bit in a segment table entry which indi-

cates, as in simpler models, whether a segment may be executed as code. The 

value in ACR, which determines the current level of a process, is set by the op-

erating system by reference to its internal tables when a system call is made. 

The main software advantage of hierarchical ring protection is that it allows 

the operating system (and application programs) to be structured using the layer-

Figure 9.4: A Segment Table Entry with Ring Protection 
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ing technique. However, this design methodology, like many other software de-

signs which are based on a hierarchical concept, has some problems (see e.g. 

[55]) and is largely being replaced by object-oriented design techniques, which 

we shall discuss later. These do not map onto ring protection particularly well. 

The main hardware advantage is that it allows a measure of protection for 

the operating system against itself, in that less privileged parts of the operating 

system cannot accidentally or deliberately corrupt data belonging to more privi-

leged parts, and the application process cannot corrupt operating system seg-

ments at all. Similarly the application program can be decomposed into parts 

which are hierarchically protected. 

But why should protection be hierarchically organised? In principle it 

would appear at least as sensible to organise protection so that each layer is pro-

tected fully from each other layer. One answer can be found once again in the 

issue of how parameters can be passed. The inward system calls, from the appli-

cation to operating system routines (or from outer layers of the operating system 

to inner layers), are only useful if parameters can be passed, often by reference, 

i.e. by passing addresses of information to be accessed by the inner layer. This 

would not work if the layers were regarded as absolutely self-contained. In other 

words an operating system service routine executing with an ACR value of say 3 

has to be able to access parameters in segments at levels 4 and above. We see 

once again that parameter passing strongly influences the protection mechanism. 

You will recall that this was exactly the same reason why the operating system 

shares the same virtual address space as user processes (using the top bit of the 

address to distinguish its segment table). The effect of this is that in fact an inner 

layer has access not only to its parameters, but to all the information held in 

segments of outer layers! 

Apart from this logical weakness in the mechanism there are further practi-

cal problems
37

 which we do not discuss in detail here. 

4 Sharing 

So far we have looked at memory management models which by and large as-

sume that information in the computational memory is not shared between pro-

cesses, except at the operating system level. The advantage of this is that protec-

tion between concurrently active processes in the virtual memory can in practice 

be achieved by placing firewalls between the processes which are extremely dif-

ficult to cross. The usual way of implementing such firewalls, as we have seen, 

                                           
37

  For example, to which layer does a stack frame belong? The mechanism also opens up 

some problems which hackers can exploit. And it is difficult to assign an ACL level to 

library routines needed at several levels. 
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is to use context dependent virtual addresses, which are meaningful only while 

the corresponding process is active. With this kind of scheme it is impossible to 

address the virtual memory of some other process. 

However, in reality such firewalls are far too restrictive, because in practice 

sharing in the computational memory is necessary. Consequently practical 

schemes usually include some tricks to allow a limited form of sharing. The 

most obvious example, as we have seen above, is the need for the operating sys-

tem to be able to address parameters passed to it by application processes. The 

trick which we saw used in this case is to have two page or segment table base 

registers, one for the application process and one for the operating system, and 

using a bit in the virtual address to determine which is used. The practical effect 

is that the operating system and the application share the same virtual address 

space, thus allowing parameters to be passed without difficulty. 

This trick works for the purpose intended, but it brings with it two new 

problems: 

 — How can the application process be prevented from addressing and chang-

ing operating system segments, since these are now within its range of 

manufacturable virtual addresses? The usual solution is the hierarchical ring 

protection model. 

 — How can the operating system be prevented from accessing sensitive in-

formation of the application process? This problem is left unsolved by the 

ring mechanism. 

But the approach has a further disadvantage. It is a trick used only to solve a 

special problem. It does not solve the general problem – how software entities 

can be shared in a general way in the computational memory. 

We now establish a need for a general model which allows software entities 

to cooperate by sharing segments, and we shall then see to what extent this need 

has been met in both conventional systems and in systems designed especially to 

allow controlled sharing of information. 

5 Shareable Segments 

The appropriate units for sharing memory are segments. If we reject the special 

solution which places the operating system in the virtual address space of each 

process, then the problem which it was designed to solve still remains. Segments 

containing parameters to be passed from an application process to the operating 

system must in the general case be possible. These are segments which are typi-

cally created by the application but must be addressable from within the operat-

ing system. Such segments, or at least references to them, should be on the ap-

plication's thread stack if the in-process model is used. 
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A different form of shared data which we encountered in connection with 

thread stacks is that declared by a program in more global stack frames, which – 

depending on programming language scope rules – is often accessible to a pro-

cedure executing with a higher stack frame. In the more general model we sup-

ported this by means of a register which we called the G register. 

On the other hand, not all information on a thread stack should be address-

able to the currently active routine. For example, if an operating system's com-

mand language interpreter (CLI), or a graphical equivalent to this, invokes an 

application program on the same thread stack on which its own stack frames are 

held, these are exposed to danger in systems which give the currently active rou-

tine free access to stack frames lower down the stack. 

These three issues (passing parameters to the operating system, access to 

more global stack frames of the current program and protection of stack frames 

such as those of the CLI), taken together, suggest that the decision to regard a 

process stack as a single segment – a decision which is found in several in-

process systems – is unsatisfactory. This suggests rather that a stack should be 

viewed as a physical entity which contains a number of logical segments that 

need separate protection (the CLI problem) but which also possibly have to be 

shared in special ways (the parameter problem and the global frame problem). 

The process stack is not the only example of a need for sharing segments in 

the computational memory. We have already seen that the code segments mak-

ing up a program or algorithm, provided they have been compiled as re-entrant 

code, can be used concurrently – and therefore need to be shared concurrently – 

by different threads in different processes. In this case the issue even involves 

threads which are not explicitly cooperating or need even be aware of each oth-

er's existence! 

We have also encountered a further need for sharing access to segments. 

The operating system, executing concurrently on different stacks, needs access 

to its own persistent data structures (e.g. process tables and queues, directories 

of files). To handle this in our general model we introduced the P register. This 

is another example of segments which should be shared concurrently by differ-

ent processes. 

It appears then that there is a general need for sharing segments (a) on the 

stack, (b) as off-stack code segments and (c) as off-stack data segments. The aim 

of this chapter is to look for a general model which flexibly allows segments to 

be shared where this is appropriate but which at the same time provides ade-

quate protection where sharing is not necessary. As a starting point for this it is 

instructive to consider the consequences of trying to use the conventional seg-

mentation models in a more general way to achieve sharing. We begin with the 



Chapter 9 PROTECTION AND SHARING IN CONVENTIONAL SYSTEMS 134 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

simple segmentation model. 

6 Addressing Shared Segments 

Figure 9.5 illustrates a possibility for sharing segments in the simple segmented 

virtual memory model. With this approach the operating system organizes the 

segment tables in such a way that segment table entries for different processes 

can refer to the same real segment in the main memory. 

 

This approach works in simple cases, and it has one advantage. It allows 

different processes to have different views of a segment, for example in the form 

of different access rights for the shared segment. But its severe organisational 

disadvantages more than outweigh this advantage. 

The first problem is that details of the current memory management status 

of a shared segment (its present bit, its address in main memory, its length) are 

held at the same time in several segment table entries. These must be kept con-

sistent with each other when changes are made, which brings an undesirable or-

ganisational and run-time overhead. One possibility for reducing the consistency 

problem is to introduce an indirection, so that instead of the process segment 

table entries for shared segments containing pointers to the segment in main 

memory they point to a master segment table entry, perhaps held in a special 

shared segment table (see Figure 9.6). However this obviously creates other or-

ganisational problems, for example by making it necessary to manage the shared 
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Figure 9.5: Sharing in a Segmented Virtual Memory 
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segment table, including allocating entries. Furthermore it involves an additional 

main memory access to bring an entry into the TLB. 

 

But there is a more serious problem than these. The difficulty arises when a 

shared segment itself contains a reference to another shared segment, e.g. in the 

implementation of a linked list. An address in one logical segment which refers 

to another logical segment has the usual form of a virtual address, i.e. a segment 

number and offset (with the offset possibly zero). What segment number do we 

use in such a case? Remember that each virtual address is translated in the con-

text of the segment table of the currently active process. The problem is that the 

entry for a shared segment can appear at a different position in each segment 

table. For examples of this kind of problem, see Fabry's discussion of capability 

based addressing [56]. 

It is tempting to suggest that the problem can be avoided by organizing the 

segment tables for those processes which are sharing segments in such a way 

that they always use the same segment numbers. This would be a difficult under-

taking if several independent processes are involved, but it is especially difficult 

if logical segments can be created and deleted dynamically by different process-

es. This means that they would not only have to synchronize with each other but 

that they also have to arrange to use the same segment table entries dynamically 
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in each process. What happens if a segment table entry is already in use? 

And there is another problem, this time involving the copying of segments, 

even in a single process. Suppose that an application wishes to make a copy of a 

complex data structure, say a linked list (consisting of two or more logical seg-

ments that are linked to each other) with the intention of producing a similar list. 

The linking addresses will consist of virtual addresses of the form «segment 

number, offset in segment». Although all the segments in the list may be copied, 

they must be allocated new segment numbers. But a general copy operation can-

not know which parts of the segments contain references to other segments, so 

the result is that the old linking addresses get copied. Now the first copied seg-

ment is linked to the second old segment, and so on! 

We have seen enough of this approach to the issue of sharing in segmenta-

tion schemes to recognise that it is neither efficient nor organisationally easy. 

This is probably one of the reasons why conventional computer architectures no 

longer attempt to support (and therefore protect) small segments. In the hope of 

finding a better general solution, we now consider how things look in systems 

which combine segmentation and paging in the conventional way. 

7 Sharing Paged Segments 

Intuitively one might think that it makes no difference to the issue of shared 

segments if the conventional segmentation and paging model is used rather than 

just the simple segmentation model. But surprisingly there is a difference. 

Sharing of small logical segments is not realistic in systems such as Multics 

and the ICL2900 Series, because a container holding a segment at the architec-

tural level is physically one or more pages long. Consequently a segment which 

is much smaller than a page (as in Burroughs systems) leaves most of the page 

unused. Hence architectural segments are used as a kind of container for holding 

collections of logical segments, with the consequence that the individual small 

segments are not protected from each other. Nevertheless this approach opens up 

the possibility of solving the last two problems which we have just been consid-

ering. 

One of two situations can arise when a logical segment contains a reference 

to another logical segment. The linked logical segments may either be located in 

the same architectural segment, or they may appear in different architectural 

segments. In the former case, which is probably the normal case, the address 

linking the two logical segments need not be a full virtual address at all. It is suf-

ficient to store the offset part of the address, with an implicit agreement between 

those sharing the segment that all such short addresses are interpreted as offsets 

within the current segment, whatever its segment number might be for the cur-
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rent thread. 

This scheme has several advantages. First, it allows logical segments being 

shared to contain references to other logical segments, provided that these are 

held in the same architectural segment. This is because the different threads use 

their own current segment number and an internal offset to follow the pointers. 

Second, it allows an architectural segment to be copied (as an entire unit), leav-

ing it still usable, without the addresses linking its internal logical segments hav-

ing to be located and modified, provided of course that these linking addresses 

are only offsets within the architectural segment. Third, it makes such addresses 

shorter. (This final point is perhaps not very important in the present context, but 

we shall later see that it turns out to be an important advantage later.) 

These advantages arise only if offsets are used as inter-segment addresses 

for linking logical segments which appear in the same architectural segment, and 

only if entire architectural segments are copied. How likely is this? 

First, let us consider code segments. The compiler typically produces a file 

containing compiled object code. This is normally held in the file memory. It is 

then loaded from there into the virtual memory when it is needed. This requires 

an address space in the virtual memory into which the code segments can be 

loaded, and which can be shared by all the processes wanting to execute the 

same program. Usually the code of an entire program is shared, so there is no 

disadvantage in the individual code segments being located together in a single 

architectural segment, corresponding to the code file. With regard to copying, 

this usually takes place at the file system level, e.g. for archival purposes or to 

transfer the code to another computer. So the use of within-segment offsets is 

also appropriate. 

Although in a segmented and paging scheme it is normal to regard a pro-

cess (or thread) stack as a single segment, it contains many different logical 

units (e.g. stack frames) which can be regarded as logical segments. These are of 

course to a large extent interrelated. 

Similarly a heap, which is an area set aside by the compiler to allocate 

segments dynamically, consists of related collections of logical segments which 

can take advantage of short pointers. Stacks and heaps, if they are copied at all, 

will usually also be copied as an entirety, typically for check-pointing purposes. 

(Check-pointing is a mechanism which involves making a copy of a process at 

predetermined points, known as checkpoints, so that after an error has occurred 

the computation can be resumed at a checkpoint rather than having to be repeat-

ed from the beginning.) 

We shall return to these issues later. But meanwhile it is clear that it is quite 

realistic to find systems placing collections of related logical segments into ar-
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chitectural segments, linked by short pointers. However, this does not mean that 

there are no sharing problems with the conventional segmentation and paging 

model. 

There remains a mapping problem at a higher level with respect to inter-

segment links, this time at the level of architectural segments. Suppose for ex-

ample that a program has been compiled and placed into an architectural seg-

ment of a process. While the process is executing this code, it decides to call a 

separately compiled subroutine library which is sitting in a different architectur-

al segment of the same process. Ideally it should be possible to embed a static 

reference in the program to the subroutine library, but this would require that the 

subroutine library is loaded at the same architectural segment number in each 

process. This can be very difficult to arrange in a system which, for example, 

allows users to change their environment interactively. Instead a more costly 

dynamic linking mechanism has to be provided by the operating system. (This 

would be a much greater problem with respect to operating system segments if 

the operating system were not shared in each application process's virtual ad-

dress space, using the addressing trick which we have seen.) 

Another sharing issue with the conventional segmentation and paging 

scheme is the management of the page tables for shared segments. Clearly there 

should only be one page table for a shared segment, to avoid consistency prob-

lems. But this raises the issue how the shared page table is addressed. Should the 

segment table entries of the separate processes sharing an architectural segment 

each hold a pointer to this page table, or to a shared segment table which further 

points to the page table? If each process segment table entry refers directly to the 

page table, each has its own length field, which becomes a problem when one of 

the processes wishes to change the length of the segment. On the other hand if 

there is a shared segment table this itself becomes a management problem (e.g. 

with respect to the allocation of entries) and a run-time overhead (complicating 

the address translation logic needed for resolving TLB misses). 

Furthermore all the problems discussed earlier with regard to the conven-

tional segmentation and paging scheme, for example adequate protection for 

logical segments and the addressing of the operating system, still remain. In ad-

dition the one advantage has been lost which the pure segmentation model offers 

with respect to sharing: the support for different views of a logical segment via 

the different segment table entries for a shared segment. 

Thus we see that neither of the conventional segmentation models (with or 

without paging) provide a satisfactory solution to the sharing problems, although 

we have clearly seen that in this respect the embedding of logical segments into 

architectural segments has some clear advantages over pure segmentation. 
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8 Conclusion 

The conventional memory management models are very effective at protecting 

running processes from each other. By providing processes with separate pag-

ing/segmentation tables which are used to interpret virtual addresses they can 

very effectively ensure that an executing process cannot access the pag-

es/segments of other executing processes. In fact this technique is so effective 

that it is difficult to allow processes to share information. This is like building a 

house without doors or windows to ensure that thieves cannot break in. But the 

problem then is that it is also difficult to allow friends into the house, or leaving 

the house oneself. 

This chapter has reviewed some of the main attempts to solve this problem. 

We have seen how computer architects have resorted to tricks to allow sharing 

where it is absolutely necessary (e.g. to allow the operating system to access pa-

rameters from application processes), but it is quite evident that these tricks do 

not achieve the aim of providing sharing in a general way. For example the solu-

tions which allow the operating system to access parameters from an application 

process in fact provide total access to the application's memory space, making it 

easy for an operating system to spy on the business secrets of its customers. 

In the next chapter we continue the search for providing a model which al-

lows both protection and sharing to be organised in a more satisfactory manner.



 

  

 Chapter 10 

Protection and Sharing 

in Capability Systems 

 

The concept of a capability was first suggested by Dennis and van Horn  in 

1966 [57]. In Chapter 2 a capability was described as a unique identifier for an 

object together with an associated set of access rights for that object. An im-

portant feature of the concept is that it is the possession of a capability which 

implies the right to access the object in the ways defined by the access rights. 

This makes a capability rather like a bunch of keys which will open some of the 

doors in a building. The building is the object; the doors which can be opened by 

the keys are defined by the access rights. 

Chapter 2 described the capability idea primarily in terms of file system 

concepts, but it is in fact a more general idea which can also be applied to ad-

dressing at the level of computer architectures, cf. especially [56, 58]. It was one 

of the leading ideas in the development of several operating systems in the 

1970s, the most well-known of which were Hydra [59, 60] and CAL [61]. The 

first hardware supported capability based system was the Plessey System 250 

[62], which was developed as a special purpose computer for supporting tele-

phone networks. A further important hardware development was the CAP sys-

tem, developed at Cambridge University [63, 64]. 

The announcement at the beginning of the 1980s of the Intel iAPX432 pro-

cessor [65, 66] was greeted as the high point of hardware-based capability sys-

tem development. This system was inspired both by the software implementa-

tion of capabilities in the Hydra kernel and by the aim of supporting the ADA 

programming language, which at that time was being very strongly pushed by 

the U.S. Department of Defense [67]. 

This combination of operating system and programming language concepts 

was typical of the background of capability research. For at least a decade there 

had been a strong association between the capability idea and high level lan-
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guage concepts for supporting modularity and an emerging form of what has 

since become known as object-oriented languages. One of the reasons for this 

connection was the idea that the access rights in a capability could be nicely 

formulated in terms of the operations on an object, as was already illustrated in 

Chapter 2 (see especially Figures 2.7 and 2.8). However, the emphasis on 

providing direct support for programming languages in the hardware resulted in 

poor performance and led to the virtual abandonment of the capability idea in 

the late 1980s. 

Its demise was largely due to two related factors, the rise of the RISC (Re-

duced Instruction Set Computer) design philosophy [68, 69] and the break-

through with very large scale integration of computer circuitry. IBM had been 

working since the mid-1970s under the leadership of John Cocke on the design 

of a prototype RISC computer, the IBM 801 [70], which was built using older 

technology. But it was the prospect of building a complete commercially viable 

CPU on a single chip that provided the real fuel which led to the subsequent 

dominance of the RISC movement in computer hardware design. 

From the 1960s up to the 1980s the design of computer instruction sets had 

become increasingly complex. This in turn had led to unnecessary complexity in 

the design of the CPUs which implemented these instruction sets. There were a 

few exceptions, such as the CDC 6600 and its successors [71, 72], which served 

as a source of inspiration for the RISC movement. 

The complex computer designs were in retrospect dubbed CISC (Complex 

Instruction Set Computers). These included most general purpose computer ar-

chitectures, such as the IBM S/360 and its successors and the DEC VAX 11 se-

ries, but also computers which were specifically designed to support high level 

languages, such as the B6700 and Symbol [73, 74]. In fact high level computer 

architectures became a special target of criticism from RISC advocates [75]. In 

this climate the idea of capability based computers, with their links to program-

ming language concepts and their poor performance achievements – as was am-

ply confirmed by Intel's iAPX 432 – had no chance of surviving. In the 1980s 

the validity of the claims of the RISC proponents, that higher performance could 

be achieved by using simple and orthogonal instruction sets, were demonstrated 

beyond all question. A new generation of computers appeared, bringing hitherto 

unthinkable performance improvements. In doing so they all but destroyed the 

capability idea. And computer architects all but forgot protection as a research 

theme, which is scarcely mentioned in publications of the RISC advocates. 

Nevertheless the ideas behind capability based computer systems are not 

unimportant for us, as these are the systems which have taken the problems of 

protection and controlled sharing in computers more seriously than most other 
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systems. In the following sections we shall therefore review their most important 

ideas but at the same time it will be necessary to establish the reasons for their 

poor performance. We begin by considering how capability systems solved the 

sharing issue. 

1 Capabilities and Sharing 

In its most general form a capability consists of a unique object identifier and a 

set of access rights (Figure 10.1). 

 

The object identifier must contain sufficient information to locate the ob-

ject, and the access rights determine which operations the possessor of the capa-

bility may carry out on the object. In later sections we shall look into such issues 

as protecting capabilities, locating objects and making object identifiers unique. 

At this point the crucial issue for us is that the object identifier is unique. Here 

"unique" means that it is non-ambiguous and context independent. This is what 

most distinguishes them from the other schemes which we have so far consid-

ered. The access rights determine the operations that the possessor of the capa-

bility may carry out on the object. 

 

Figure 10:1 A Capability 
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An object reference in a capability based addressing system sometimes 

consists in principle of a pair «capability selector, offset». A capability selector 

is normally an index into a capability list (C-List), as is shown in Figure 10.2. In 

its most flexible form the C-List is held not in a system table but in the applica-

tion's addressing space. How such a C-List can be protected will be considered 

later. 

The object identifier which appears in the C-List entry (i.e. in the capabil-

ity) uniquely identifies the object. In fact there are capability systems which al-

low capabilities to be stored as single entities rather than in C-Lists, in which 

case the capability selection takes place in some other way, i.e. using a different 

kind of addressing mode. These are more flexible, since capabilities can then be 

used as freely as simple pointers. Hence the use of a capability selector as an 

index into a C-List is not the important thing. What is important is the capability 

itself, because the object identifier which it contains is unique. 

The standard way of converting an object identifier into a main memory 

address is to have an indirection through a central object table, which is shared 

by all processes in the system. This translation process is illustrated in Figure 

10.3. (As unique identifiers are usually very large the central object table is usu-

ally implemented as a hash table.) As we shall see shortly, not all objects are 

simply logical segments, but those relevant to machine level addressing are, and 

the object table entries for them are analogous to segment table entries. 

 

In this sense the unique object identifier in a capability for a segment is 

equivalent to a conventional segment number, in that it is used to select a seg-

Figure 10.3: Locating an Object via a Central Object Table 
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ment table entry – but remember that this object number is a context independ-

ent segment number. This means that it is interpreted independently of a particu-

lar process context and that it has the same meaning in every process. The con-

sequence of this is that – unlike the conventional virtual memory models which 

we have considered – protection between processes/threads is not achieved by 

giving different meanings to the same addresses when they are used in different 

process contexts. Instead inter-process protection is achieved by allowing ad-

dresses to be formed only from those capabilities which the application can ac-

cess. In other words, if a process or one of its threads can select a capability it 

can access the segment which the capability describes 

 This means that the context of a process/thread is defined by the capabili-

ties which it possesses, not by its virtual memory translation table, i.e. not by the 

global central object table. An important advantage of this is that the sharing of 

segments can be naturally achieved, simply by providing each process sharing 

the segment with a capability for it (see Figure 10.4). 
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Figure 10.4: Protecting Processes in Capability Systems 
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pabilities containing unique object identifiers. Hence the problem described in 

Chapter 9 (where a reference from one segment to another means different 

things in different processes) no longer exists in a capability based system. As 

was mentioned earlier, that problem is in fact just the tip of an iceberg of such 

problems, as Fabry has well illustrated in a paper which advocates the use of 

capability based addressing to solve them [56]. 

However this is not the whole story. There is a downside which is often not 

mentioned. If inter-segment addresses are always unique, which is otherwise the 

main strength of capability systems, then the copying problem described in 

Chapter 9 section 6 appears again! 

2 Protecting Capabilities 

One key issue in any capability based system is how the capabilities, or the C-

Lists in which they are usually held, are protected. The system must in some 

way guarantee both that existing capabilities cannot be modified in arbitrary 

ways and that new capabilities cannot be arbitrarily manufactured or forged. 

This implies that the system must provide special operations for creating 

new capabilities and for modifying existing capabilities in controlled ways, and 

it must oversee the right to execute such operations. But at a more basic level the 

system must also provide a mechanism which ensures that the normal read and 

write operations used for manipulating other data structures cannot be used to 

modify or forge capabilities. How it protects the special operations depends to a 

large extent on how it ensures that normal instructions cannot be used on capa-

bilities. Various capability protection techniques have been employed in differ-

ent capability based systems. We now consider the main options. 

2.1 Protection in the Operating System Space 

Perhaps the simplest solution is to protect capabilities in the same way as seg-

ment and page table entries are protected in conventional systems, by storing 

them in C-Lists in the operating system's private data space. In this case the cre-

ation and modification of capabilities can only be carried out by the operating 

system, at the request of users making system calls which can be checked for 

validity. An application indicates which capabilities it wishes to use by means of 

parameters in the system calls. In effect these are capability selectors indexing 

into the C-Lists. 

The main disadvantages of this solution are a performance overhead when 

the user accesses his capabilities and a lack of flexibility in the way he can or-

ganize them into lists. It is rather like having a bunch of keys which is compul-

sorily held by a porter who will open and close your room for you whenever you 

ask him, but you always have to go to him to get things done. 
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2.2 Password Protection 

A technique known as password capabilities, implemented in the Monash Ca-

pability System
38

, allows capabilities to be stored in the user's address space 

while using conventional computer hardware [76]. Rather than holding a set of 

access rights the capability in this case contains a password, which is a large in-

teger value (see Figure 10.5). 

 

This password, which in the Monash Capability System was 64 bits long, is 

a system generated random number. The idea is that the number must be large 

enough that it cannot easily be guessed or systematically generated. The capabil-

ity is stored in user space and is not protected from being modified using normal 

instructions. (That is why it works using conventional hardware.) However, it 

can only be used as a capability in calls to the operating system, and at that point 

its validity is checked. 

The operating system has an internal table in which the object name, the 

password and the permitted access rights are stored. When it receives a request 

to carry out an operation the operating system checks the object name and pass-

word fields against entries in its table. If it finds a match, the capability is valid 

for the access rights stored in the table. If the requested operation conforms to 

these access rights the operation may proceed (see Figure 10.6). Different sets of 

access rights have different passwords. 

 

This solution has the advantage that capabilities may be stored flexibly in 

user address space. But it implies that each use of a capability must be made via 

an operating system call – which makes it unsuitable as an addressing mecha-

                                           
38

  Not to be confused with the Monads System, which is the forerunner of Speedos. 
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nism – and that there are additional tables in the operating system. (This makes 

it difficult for example to store capabilities on an external disc and use them lat-

er on a different computer.) It is like having a piece of paper with a password on 

it, which the porter checks before taking his key to open a door for you. 

2.3 Protection by Tags 

Another approach, which allows capabilities to be stored freely in the applica-

tion address space and which avoids the problems associated with password pro-

tection, is to use tag bits to identify capabilities. This was the solution adopted in 

the IBM S/38 computer system [77, 78], which was a latecomer into the capabil-

ity scene, as we shall see later. The tagging solution involves having an addi-

tional bit or bits associated with each word in the main memory. If these hidden 

tag bits are set to 0 the remainder of the word is a normal data or instruction 

word, but if it is set to 1 the rest of the word is part of a capability. Because a 

capability might take up several words of memory, the address at which it actu-

ally begins can be recognized by its byte position, i.e. capabilities must start at 

fixed byte positions. The tag bits can only be set and unset when the system is in 

privileged mode. 

With this solution the CPU can check, when it is executing instructions, 

whether these are being applied to capabilities or to normal data and instruction 

words. To create a new capability the normal user must call the operating system 

because he cannot set the tag bits. Similarly attempts to modify a capability us-

ing normal instructions will be detected by the hardware. 

More recent attempts to build secure systems have also used variants of this 

approach, e.g. CHERI [79], Mondrian memory protection [80, 81], Hardbound 

[82], Intel's iMPX Memory Protection Extension
39

 and the M-Machine [83]. 

Tagged capability protection is more flexible and far more efficient than 

the earlier solutions, since there are no tables in the operating system, but it is 

achieved at the cost of extra bits of memory for each word. What is particularly 

unfortunate is that these extra bits have to be copied to disc whenever a program 

segment is discarded from the main memory to make room for another. Disc 

blocks are usually organized into sizes which are powers of 2, which creates dif-

ficulties when words in memory have extra tag bits. This is rather like having to 

use keys which are too big to fit into your pocket. 

                                           
39

  According to the Wikipedia article https://en.wikipedia.org/wiki/Intel_MPX "Intel MPX 

claimed to enhance security to software by checking pointer references whose normal 

compile-time intentions are maliciously exploited at runtime due to buffer overflows. In 

practice, there have been too many flaws discovered in the design for it to be useful, and 

support has been deprecated or removed from most compilers and operating systems. 

Intel has listed MPX as removed in 2019..." 
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2.4 Protection by Partitioning Segments 

A fourth solution is the use of partitioned segments [84]. Here the idea is to al-

low normal data and capabilities to coexist in a single segment, but to segregate 

them into two parts of the segment. Normal data words are addressed by positive 

offsets from a base register, while capabilities exist at negative addresses, below 

the address at which the base register is pointing. The instruction set of the com-

puter is so organized that negative addresses either cause an exception into the 

operating system, which can then validate the action required in relation to the 

capability, or that special capability instructions which use only negative offsets 

can be supported at the architectural level (see Figure 10.7). 

 

The use of partitioned segments makes it easy to organize linked data struc-

tures in the application address space using capabilities as the links, and it has 

none of the disadvantages of the other solutions. There are no operating system 

tables or hardware tags. In this case the keys fit conveniently into your pocket 

and you can put them away as a bunch in a convenient filing cabinet or pocket, 

wherever is convenient. 

2.5 Protecting Capabilities via Capabilities 

Finally, there is another solution for protecting capabilities: use capabilities to 

protect other capabilities. This relies on the fact that another solution already 

exists, so it may seem to contain a circular argument. But if, as we shall later 

argue, there should be more than one kind of capability, then this solution also 

makes sense. This is like being able to lock a box containing your keys for safe 

keeping. 

3 Unique Object Identifiers 

In order to make the capability technique work, it is essential that object identi-

fiers can be made unique. It might at first appear that there is a simple way to 

make them unique, by prefixing them with a process/thread number. But then 
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there is a problem with sharing objects between processes: which process prefix 

does a shared object have? As it is an important aim of capability systems to al-

low sharing between processes, this solution is clearly unsatisfactory. 

What earlier capability systems therefore did was to allocate object identi-

fiers independently of process numbers. A simple way of doing this is to have a 

counter which is incremented by one each time a new object is created. The 

counter must be large enough count up to the maximum number of objects. 

In order to determine how large such a counter must be, we must first have 

a clear notion what an object is. So far we have more or less assumed that it is a 

segment. But this was not the answer in the classical capability systems, at least 

not the whole answer. An object in these systems is anything which might be 

potentially shared between processes. If we were to take this to its absolute ex-

treme, we would have to say that any variable (e.g. an integer or boolean varia-

ble) can be shared between processes. This would mean that every small varia-

ble in the system would need a unique identifier. Advocates of capability sys-

tems did not go quite this far. But at the next level up – the logical segment – 

there is a stronger case. A segment might for example contain a routine, which is 

a good candidate for being shared by many processes/threads. Or it might con-

tain a data record, which can also be usefully shared between processes/threads. 

In fact sharing segments also allows for the possibility of sharing smaller 

entities if necessary, since a segment might simply contain one word of memory. 

There is at least one kind of very small object which only makes sense when it is 

shared, viz. a synchronisation variable, which explicitly exists to allow con-

trolled sharing. 

On the other hand not all shareable objects are simple segments. A sharea-

ble object might also be a composite object (e.g. a program, which consists of 

many procedures and constant segments, or an abstract data structure which 

consists of a data segment and the code segments which access it). Since such 

larger objects can be shared in their entirety they too each need an object identi-

fier in a classical capability system. 

If objects as small as logical segments can be shared it is clear that capabil-

ity systems must be prepared to handle a large number of small objects which 

need unique identifiers, so the counter which is used to allocate object numbers 

must be large. It also has to be large for another reason. The problem of unique-

ness is not just a question of how many objects exist at a particular time, but 

how many might exist over the lifetime of the system. So we have to reckon 

with very large object identifiers, for example implemented using 64 bit num-

bers. (A 64 bit object space allows for up to 2
64

 objects, which is rather more 

than 16 x 10
30

 or 16,000,000,000,000,000,000,000,000,000,000 objects.) 
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If in terms of addressing segments we have addresses which consist of a 

pair «unique object identifier, offset in object» (by analogy with «segment num-

ber, offset in segment»), these enormous addresses somehow have to be trans-

lated into main memory addresses. As mentioned above, the classical capability 

systems used a central object table for this purpose. But unlike conventional 

paging and segment tables this cannot be a table indexed by unique object num-

ber, because if would be far too large to fit into any memory (whether main or 

virtual), since an indexed table needs an entry for each of the 2
64

 possible index 

values. Fortunately such a long table is not needed in practice, because most of 

its entries would not contain useful information for the address translation pro-

cess, as most of the possible segment numbers would not map to existing seg-

ments. So another technique had to be used. 

The usual technique in capability systems, as in most situations where an 

entry has to be found quickly in a large sparse name space, is hashing. Some of 

the bits of the object number are used as an index into a much smaller table, and 

the remaining bits are treated as a tag (not in te sense discussed in the previous 

section) which is placed in the entry indexed via the index part. If the tag match-

es then the required entry has been found. Otherwise an overflow technique 

must be used to find the real entry somewhere else in the table. 

But then another problem was encountered in realistic capability systems. 

The number of entries in the object table at any time (i.e. for existing objects) 

was usually too large to allow the complete table (even implemented as a hash 

table with overflow) to be permanently held in the main memory. Consequently 

some kind of special mechanism was needed to allow parts of the object table to 

be held on disc. Furthermore, the management of the table was made more diffi-

cult by the fact that so many entries had to be dynamically created and deleted at 

very frequent intervals. 

A further source of inefficiency arose from the fact that entries for both 

segments and for composite objects were held in the same table, with the result 

that these could hold quite different items of information. For example an entry 

for a segment would need to look like a segment table entry in a conventional 

system (with present bit, start address, etc.), while an entry for a composite ob-

ject would need to hold quite different information about its structure and its 

component parts. 

None of these design problems harmonises well with fast and efficient ad-

dress translation and main memory accesses. But on top of this there is the gen-

eral point that the use of very wide virtual addresses considerably increases the 

cost and affects the efficiency of a Translation Lookaside Buffer, if the system 

has one at all. (The data and instruction cache(s) need not be affected, if the sys-
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tem caches these on the basis of main memory addresses.) 

Then there is a reliability question. The object table is a system-wide table, 

the correctness of which is essential to the reliability (and protection) of the en-

tire system. In contrast conventional virtual memory schemes have separate ta-

bles for each process, so that a corruption in one table does not adversely affect 

the reliability or security of other processes (unless the operating system's page 

table goes wrong). It is not even easy to take a checkpoint of a single process, 

because the table contains entries for all processes. 

Some of these implementation problems have been discussed in more detail 

elsewhere [85]. Apart from the memory management problems, which were 

similar to those in more conventional systems aimed at supporting the sharing of 

individual logical segments, the main additional problems in capability systems 

were (a) the use of a single central table, (b) the decision to manage different 

kinds of objects which have quite different properties as though they are all 

comparable objects organized in a single table, and (c) allowing the addressing 

of items in the main memory to be affected by this table. Together these prob-

lems accounted for many of the performance problems in capability based sys-

tems. 

There is one final problem with the uniqueness of names. In the 1970s most 

computer systems were independent of each other, but in today's world comput-

ers are, or can be, linked together via local area networks and over the world-

wide Internet. For this reason the related themes of security, protection and shar-

ing have become ever more important. But if the vehicle to be used to imple-

ment these is uniqueness of object identifiers, then even 64 bit numbers are not 

large enough! Try to imagine not only how many logical segments exist at any 

one time on all computers linked into the Internet, but how many might exist 

into the distant future! Then there is the question, even if we use numbers which 

are large enough, how the idea of a central object table could be implemented 

worldwide, or how the unique identifiers can be allocated. For the present we 

leave such difficult questions aside, and return to our main theme. 

4 Conclusion 

This chapter has reviewed the key features of capability systems. These provide 

a quite different approach and insight into the issues of protection and sharing. 

But, like the more conventional approaches discussed in chapter 9, capability 

based systems have a number of drawbacks. However, these are mainly issues 

which are associated with efficiency, rather than with basic principles. 
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The question of how to combine segments with paging was not adequately 

solved by the conventional paged segment model described in Chapter 7. Alt-

hough variants of it have influenced the thinking of computer manufacturers 

even until the present time, there has remained a feeling of dissatisfaction be-

cause it implies either that logical segments (i.e. segments as seen by compilers, 

which are typically considerably smaller than a page) have to be abandoned or 

that they must incur a high penalty in internal fragmentation. For SPEEDOS, as 

will become evident in later chapters, a solution which allows individually pro-

tected segments, regardless whether small or large, to be efficiently paged, is 

very important. Consequently the issue is pursued further in this chapter, begin-

ning with attempts by others to solve the problem. 

1 Combining Segmentation and Paging Efficiently 

This section discusses the most significant attempts to solve the problem.  

1.1 Multiple Page Sizes 

Perhaps the simplest idea is to support more than one page size. This idea was 

already implemented in the General Electric 645 architecture, which was used as 

the basis for Multics. In its hardware design two page sizes were available, a 

larger page size of 1024 words and a smaller size of 64 words. In such a system 

it is possible to use the small page size for small segments while the larger page 

size is used to decompose a large segment, with the last part possibly being 

placed in a small page or pages. 

But this kind of scheme has two problems. First it complicates memory 

management and virtual memory tables compared with the simplicity of a single 

page size. Second, it is difficult to know how small a small page should be. Pro-

fessor Brian Randell of the University of Newcastle-upon-Tyne took this idea a 
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stage further by proposing a scheme which flexibly allowed multiple page sizes 

[86]. But the more page sizes there are the more complex the memory manage-

ment becomes. 

1.2 Segmented Pages 

A different possibility is to switch around the relationship between segments and 

pages, by having a virtual address consisting of the triple «page number, seg-

ment number, offset in segment», such that instead of a segment being decom-

posed into pages, a page is decomposed into segments. But this is not really sat-

isfactory, since it only copes with small segments, and it can still lead to sub-

stantial fragmentation if segment sizes happen not to be convenient. Further-

more it adds to the work of the compiler, since the latter has to be concerned 

with how to fit segments into pages. 

For a long time it seemed to be impossible to fully reconcile all the re-

quirements of compiler writers, of programmers and of the operating system. 

Let us now look at the main requirements again, from these different viewpoints. 

2 A Review of the Requirements 

Compiler writers work with logical segments. Ideally they would like to have 

addressing modes which express addresses in terms of logical segments and off-

sets. This means that they do not have to have a phase at the end of the compila-

tion in which memory management considerations (such as linearizing the ad-

dresses in the program or placing segments with similar properties together). In 

addition they would like hardware bounds checking on the offsets for these logi-

cal segments, in order to save the generation of code for achieving this, especial-

ly in cases where the lengths of logical segments cannot be determined at com-

pile-time. 

Depending on the language being compiled, compiler writers sometimes 

have another requirement, which we have not yet discussed. That is to have dif-

ferent views of a logical segment. To illustrate this, consider the kind of routine 

in Timor [87] called an enquiry, which is a method that returns information 

about an object while guaranteeing that the state of the object (represented in 

logical data segments) is not modified. This may seem to be a trivial thing which 

can be checked at compile time, but unfortunately that is not always possible. 

What it implies is that a data segment be viewed by some processes as a writable 

segment but by others as a segment of constants. Even the segmentation 

schemes which put protection bits in the segment tables cannot handle this re-

quirement in a reasonable way. 

What requirements does the programmer have? An important consideration 

is that his errors are detected as soon as possible, which means that he would 
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like to have protection at the logical segment level in terms of basic access rights 

and in terms of bounds checking. In so far as this involves runtime checks, he 

would prefer these to be carried out by hardware rather than by instructions in-

serted into his program by the compiler, as that results in his program executing 

more quickly (and the compiler can also compile his program more quickly). 

The operating system designer has quite different requirements. He wants 

to be able to view a program as a set of pages, without the logical structure inter-

fering with memory management. He wants this to be as simple as possible, for 

example using only a single page size. He would also like the use and change 

bits to help with his memory management problem. And he would like to have a 

simple and consistent protection scheme which is uniform and easily organized. 

And from the protection viewpoint he wants flexible support for segments with 

differing contents. 

Finally, by far the most flexible implementation technique for capability-

based systems is the use of partitioned segments, which allow a (typically small) 

segment to be partitioned such that the application process can have direct ac-

cess to the data partition, while the pointer partition remains protected. 

It may seem a tall order to achieve all of these requirements in a single 

memory management model, but it is not impossible. In 1980 the author pub-

lished a paper outlining a memory management model which met all of these 

requirements [88]. The essentials of this model are now presented. 

3 Orthogonal Segments and Pages 

When problems become complicated the reason is often that things which are 

not really related to each other are being mixed up together. This is what has 

happened with the ideas described earlier for combining segmentation and pag-

ing. In particular it has been assumed that the virtual address must in some way 

be reducible into a part which describes segments and another part which de-

scribes pages. This approach inevitably implies that segments are decomposed 

into pages (an assumption which does not work out well for small segments) or 

that pages must be decomposed into segments (which is just as bad for large 

segments). In practice there are certainly more small segments in most programs 

than there are large segments, but large segments cannot be ignored. What hap-

pens if we try to keep the two ideas as separate as possible? 

We start with the idea that the address which a compiler wants to produce 

is a two part address, which we shall initially think of as the pair «segment num-

ber, offset». This is an effective program address, which says nothing about 
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page boundaries and nothing about how the offset is derived
40

. 

 

This kind of address can be translated by reference to a segment table (Fig-

ure 11.1). Thus far we appear to be following the pure segmentation model dis-

cussed at the beginning of the chapter. But here is the twist. Instead of regarding 

the entry in a segment table as containing either a main memory address or the 

address of a page table, we simply assume that it contains a virtual address. This 

means that we are now drawing a distinction between effective program ad-

dresses and virtual addresses (see Figure 11.1). (Note: In the earlier (conven-

tional) models, the virtual address was at the same time an effective program 

address.) 

From the segment table we acquire a virtual address defining where a seg-

ment begins. To this is added the offset from the beginning of the segment, tak-

en from the effective program address. This gives us another address – this time 

the effective virtual address of the word we wish to address. It is this address 

                                           
40

  The latter is a question for the instruction set's addressing modes (e.g. by using index 

registers and/or literal offsets). 
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which has to be translated into a main memory address. As we want a paged vir-

tual memory, this translation can be achieved in one of the usual ways, by using 

either a conventional page table or an inverted page table. This is illustrated in 

Figure 11.1. 

Notice that the segment table can contain information about the logical 

properties of the segment (i.e. its length and its access rights), while the ATU 

can hold information useful for paging, such as a use bit and a change bit. 

Let us now consider what this means for the layout of a program. First we 

consider a simple program which contains all three kinds of segments. Figure 

11.2 shows how the segment table and the program both appear. We see from 

this that there is no difficulty in placing segments of different types adjacent to 

each other. We also see that a segment can span multiple pages but also that 

multiple segments can be placed in a single page, in any arbitrary combination. 
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Furthermore, the problem of internal fragmentation has been restricted to 

the final page. Recall that this is a serious disadvantage of the conventional 

segmentation and paging model, assuming that small segments are considered 

relevant. Like the conventional paging model, the orthogonal model achieves the 

minimum possible fragmentation of a half page per program on average. 

If a conventional page table is used, only one such table per program is re-

quired (rather than one per segment). But as the diagram in Figure 11.1 (cf. Fig-

ure 7.4) makes clear, conventional page tables need not be used at all. It is 

equally possible to use inverted page tables with this model. 

The key feature of the orthogonal model is that it makes paging and seg-

mentation independent of each other. It allows a number of logical segments to 

be placed contiguously in the same page. Whereas the conventional segmenta-

tion and paging model treats all logical segments in an architectural segment as 

sharing the same access rights and does not provide information about the length 

of logical segments, the orthogonal model allows each logical segment to have 

its own access rights and length information, although it does not define how 

this information is stored. 

At this point it is useful to introduce a new term to define the entity which 

in the orthogonal model is paged and which holds a group of related segments; 

we call this a container
41

. It can be considered comparable to an architectural 

segment in the conventional model except that this does not have – and does not 

need – associated protection information used directly by the hardware. 

4 Implementing the "Segment Table" 

A significant feature of the orthogonal model, which will play an important role 

in our emerging protection model, is the assumption that protection information 

is provided to the hardware only when an instruction is being executed. As de-

scribed in Figure 11.1 this information is derived from a segment table, the en-

tries of which each contain a segment start address, a segment length and access 

rights for the segment. 

However, a number of advantages are gained if we now redefine the seg-

ment table simply as a bank of segment registers
42

 in the ALU, which can only 

be loaded by kernel instructions. 

The first advantage is that this provides the software with considerable 

freedom by leaving open how the structures from which information is loaded 

                                           
41

  In the MONADS literature, which successfully implemented the orthogonal model, this 

was called an address space. 
42

  In the MONADS literature these were called capability registers. Another suitable name 

would be address registers or addressing registers. 
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into the segment registers can be defined. One possibility is of course a segment 

table along the lines of that in the simple segmentation model, but another is that 

the special instructions use information based on the partitioned segment idea 

which we described in connection with the implementation of capabilities in 

Chapter 10. In fact at the virtual memory level there is no need to restrict the 

implementation to any particular technique, provided that at the kernel level of 

the system the mechanisms used are secure. 

The second advantage is that ALU registers can be accessed far more 

quickly than information in the main or virtual memory (e.g. segment tables). 

The third advantage is that this technique fairly closely corresponds to the 

fact that addressing in conventional computers is often defined as offsets from 

general purpose ALU registers, though the latter have the comparative disad-

vantage that they do not contain length or access rights information. 

Each segment register has the format shown in Figure 11.3. A valid bit in-

dicates whether the register's contents are currently valid. The segment registers 

are implemented as dedicated registers. These are registers which, in contrast 

with general purpose registers, can be used only for the purpose of addressing 

and can only be used as operands in certain instructions. This is important be-

cause the integrity and security of the system depend on the correct information 

being loaded into segment registers and on the hardware only using them for the 

purpose to which they are dedicated, i.e. protected addressing. 

 

Finally, it is worth mentioning that using dedicated registers for addressing 

is not a new idea, and need not compromise the efficiency of a system. For 

many years the world's fastest computers were designed by Seymour Cray, ini-

tially at Control Data Corporation (e.g. the CDC6600 supercomputer [71]) and 

later by his own company (e.g. the CRAY-1 [89, 90]
43

.). These computers were 

designed with registers which were dedicated to holding addresses. For example 

the first of these (the CDC6600 [72]) had 8 address registers. However, they did 

not include the security features which we now envisage, namely length infor-

mation and access rights. 

In the MONADS Project [91, 92, 93, 94]
44

, a major project which the au-

thor established at Monash University in Australia in 1976, the technique de-

                                           
43

  The second reference for the CRAY-1 is a reprint of the first. 
44

  see http://www.monads-security.org, where more publications are listed. 
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scribed here (including the protection aspects) was successfully used, especially 

in the MONADS II and in the MONADS-PC systems; these systems successful-

ly tested the ideas in a non-RISC environment. 

5 Segment Registers and RISC Systems 

Chapter 10 described how the RISC movement, which became a serious force in 

the field of computer architecture in the early 1980s, virtually killed experimen-

tation in the area of capability-based computer architectures, largely because of 

their association with CISC architectures which were sometimes designed to 

support high level languages. In doing so the RISC movement in effect killed 

experimentation in architecturally based security, although this was almost cer-

tainly not intended by the RISC proponents. 

It is therefore especially interesting to note that in their discussion of pro-

tection in the 5
th
 edition of their standard textbook on computer architecture two 

leading advocates of RISC, John Hennessy and David Patterson, wrote: 

"Security and privacy are two of the most vexing challenges for information tech-

nology in 2011. Electronic burglaries, often involving lists of credit card numbers, 

are announced regularly, and it's widely believed that many more go unreported. 

Hence, both researchers and practitioners are looking for new ways to make com-

puting systems more secure. Although protecting information is not limited to 

hardware, in our view real security and privacy will likely involve innovation in 

computer architecture as well as in system software." [8, p. 105] 

I believe that this sought after innovation in computer architecture can be pro-

vided by the orthogonal paging and segmentation model using the segment reg-

ister implementation described above. This combination, referred to as S-RISC 

(as an abbreviation for "secure RISC"), is now presented in the context of RISC 

architectures. 

5.1 Paging 

RISC systems are based on paging. This fits well with the orthogonal model, 

which also uses paging as its basic virtual memory management technique. 

5.2 Segmentation 

RISC systems provide no architectural support for segmentation. This is where 

the innovation occurs. However, it is important to introduce segmentation in a 

form which corresponds to the RISC philosophy. 

5.3 RISC Philosophy 

RISC systems achieve their very high performance primarily as a consequence 

of implementing very simple instruction sets. Instructions in RISC systems nor-

mally have a single fixed length and the formats of instructions are simple and 

consistent. Instructions which process data do so in general purpose registers, 
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although there is usually also a separate set of floating point registers. A large 

number of general purpose registers (usually 32) is available. A typical ALU 

(computational) instruction uses three registers: a result register and either two 

source registers or a source register and an immediate value (see Figure 11.4). 

 

Information is never processed in conjunction with main memory accesses 

(in contrast with many CISC systems). Instead there are special load and store 

instructions for copying information between registers and memory. The ad-

dressing modes used in these instructions are simple. The address held in a base 

register is added to an offset held in an immediate field or in an index register to 

produce an effective address, which is then used as the load or store address 

(Figure 11.5). 

 

5.4 The Proposed Innovation 

The proposed innovation simply replaces the base register on Figure 11.5 (which 

in normal RISC systems is a general purpose register) with a segment register 

(Figure 11.3). The execution of a load or store instruction involves not only cal-

culating an effective address (using the start address as a base address) but also 

checking that this is in the range of permitted addresses (i.e. within the seg-

ment). The segment length field is compared with the offset field or index regis-

ter value in Figure 11.5. This comparison can be carried out in parallel with the 

generation of an effective address. Similarly the access rights field can be 

checked in parallel with the calculation of the effective address. Hence the speed 

of execution need not exceed that of a normal load or store instruction, given 

appropriate hardware. Hence the security advantages which we will illustrate in 

later chapters can be obtained with RISC efficiency. 
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Similar considerations apply to the addressing of code. In this case a single 

register, which we call the Code Segment Register, is needed. This defines the 

bounds of the current code segment and has an access rights field which will 

typically be set to allow code execution and the reading of (constant) data. This 

is complemented by a Program Counter (PC) register, which plays a role equiva-

lent to index registers for the data segment registers. 

6 Implementing Address Translation 

An inverted page table was successfully implemented fully in hardware in the 

MONADS systems [95, 91, 96], using a hashing technique with overflow. This 

allowed us to take advantage of the fact that the structure of the underlying page 

tables could be kept flexible. However the technique used cannot reasonably be 

scaled up to support large modern main memories. Nevertheless, a similar effect 

can be achieved in modern computers by using the ATU technique implemented 

in the DEC Alpha computers [97] and in other RISC computers, where the entire 

ATU consists simply of a translation lookaside buffer (TLB). Figure 7.8 (repeat-

ed here as Figure 11.6) helps to explain how this works. This shows how in ear-

lier systems a TLB was first accessed. If the required information was not found 

in the TLB the hardware then searched the appropriate page table and then load-

ed the required information into the TLB. 

With the S-RISC scheme now being described, the ATU is reduced simply 

to the TLB, which can be loaded by kernel software. Consequently the algorithm 

in the white box in Figure 11.6 is relegated to the kernel software, as is illustrat-

ed in Figure 11.7, where the blue box represents kernel software. 

With this implementation, which fits well with the RISC philosophy, we re-

tain the main advantage of the MONADS systems' solution, i.e. that the struc-

ture of page tables is of no concern to the hardware, but can be flexibly handled 

in (kernel) software. 

7 Conclusion 

In this chapter an alternative model for combining paging and segmentation has 

been presented, which allows small and large segments to coexist in the same 

container with full protection both in terms of access rights and bounds check-

ing. This model fulfils all the requirements set out earlier in the chapter. But at 

least as significant, it can be integrated into the RISC concept and hence does 

not fall into the category of "inefficient" security. On the contrary, it demon-

strates that security and efficiency are not inimical concepts. Henceforth it is 

assumed that the design ideas presented in following chapters are implemented 

on an S-RISC system. 
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That such systems will in future become available is a realistic possibility, 

because the S-RISC architecture is not only capable of supporting SPEEDOS 

(and other capability based systems), but can do so in such a way that the many 

applications which currently exist on current RISC systems could be supported 

without change, except for a re-compilation with modified compilers. Hence 

manufacturers of current RISC systems can in future build S-RISC systems 

without fearing the loss of their current customers, but at the same time offer 

them more security, as I have shown in a recent paper entitled "S-RISC – Add-

ing Security To RISC Systems", which can be obtained from the SPEEDOS 

website
45

.
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  https://www.speedos-security.org/ 
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In the previous chapter an alternative way of organising paging and seg-

mentation was presented and we showed how this approach, known as the or-

thogonal model for paging and segmentation, can be implemented as a relatively 

small extension to RISC systems. The resulting S-RISC systems provide a very 

flexible way of supporting segmentation and paging, leaving the kernel of such a 

system with complete freedom to organise both page tables (mappings from vir-

tual page numbers to disc addresses) and segment tables in any manner which 

the kernel designer chooses. 

This gives us the freedom to begin a more constructive phase in which we 

consider how a secure software architecture might be designed. This involves 

taking a fundamentally different view of virtual memory, as persistent virtual 

memory. First the idea of direct addressability is introduced. This idea was first 

implemented in the Multics system and can be considered as a forerunner of 

persistent virtual memory. 

1 Direct Addressability 

In the mid-1960s, when mainframe computer systems carried out their work in a 

batch processing mode and personal computers had not yet been invented, com-

puter architecture researchers at MIT in Cambridge, Massachusetts, developed a 

significant research system called Multics [98, 42]. Its aim was to demonstrate 

ideas relevant for time-sharing, i.e. for computer systems where individual users 

sit at terminals and interact directly with the (shared) computer. 

Among the many revolutionary design ideas which appeared in Multics 

was one which will play a central role in the rest of this book. This was referred 

to as "direct addressability" by Multics designers. What they aimed to achieve 

with this idea was to allow all the information in a system to be directly address-
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able in the virtual memory, including information held in the file system. The 

fundamental advantage which they saw was that it avoids much copying of in-

formation between the file system and the computational (virtual) memory. The 

lack of success of this idea – in my view the most significant of all the Multics 

ideas – in the last six decades is due not to a fault in the basic idea, but in the 

way it had to be implemented on the hardware available at that time. 

2 Advantages of Direct Addressability 

Before looking at various attempts to implement a suitable environment for sup-

porting the Multics idea of direct addressability, let us pause to consider what 

potential advantages it has and how it might ideally look. 

When virtual memory was first conceived, little thought was given to the 

duplications that the conventional models caused – and still cause in current sys-

tems. This solution for the application programmer's overlay problem was only 

achieved at the price of severely increased complexity in the operating system. 

For a start, the way disc space is organised in the extended computational 

memory is generally quite different from the way it was organised in the file 

system, so that different parts of the operating system (the virtual memory man-

ager and the file system's disc manager) end up both managing disc space (in 

quite different ways). 

Furthermore an enormous amount of copying of information takes place 

between the file memory and the computational memory, which in fact often 

simply leads to the unnecessary movement of data from one location on disc to 

another. This is the point which the designers of the Multics system most em-

phasised, describing the avoidance of copying as the fundamental advantage of 

direct addressability of information [99]. 

They pointed out for example that with direct addressability the program 

code files located in the file system could be directly used for executing pro-

grams, without first having to load them into the computational virtual memory. 

This idea had also appeared in the design of the Burroughs computer systems. 

Being able to access program files directly in the file system is important 

not only as a general way of improving system throughput; it can also affect us-

ers directly interacting with a computer system, whether they are sitting at ter-

minals connected to a central computer or are using personal computers or 

workstations. If you have ever become impatient about the time it takes your PC 

to start executing your program, the main reason is usually that the latter is be-

ing copied from the file memory into the computational virtual memory. In most 

systems the entire program is copied from disc into the main memory and from 

there it is discarded to the disc space of the extended computational memory. 
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Put simply, the program is first copied from disc to main memory and then again 

from main memory to disc! This is illustrated in Figure 12.1. 

 

Almost all this copying can be avoided if the individual program units 

(segments or pages) can be directly addressed in the file memory, using virtual 

addresses rather than file system mechanisms. With this arrangement, starting a 

process means that the first statement in the program can be directly executed in 

the virtual memory. This causes a virtual memory fault requiring only the unit 

containing this statement to be read into the main memory (assuming it is not 

already in main memory, for example because another user has run the program 

recently or is concurrently using it). Thereafter only the units which are actually 

required need be brought on demand into the main memory. This in turn means 

that the process can start executing immediately instead of the user having to 

wait a couple of minutes while all the unnecessary copying takes place. 

The conventional virtual memory technique of loading an entire program 

from the file memory into the computational memory is an overkill solution for 

another reason. A well-designed robust program contains a very substantial 

amount of code which is designed to cope with and recover from errors that in 

practice only rarely occur. On most of the occasions the program runs, these er-

ror-handling procedures are (hopefully) never used. So copying these pages at 

the beginning can be an absolute waste of effort. Similarly programs such as text 

editors, spread sheets and the like contain a bewildering variety of optional fea-

tures which many users often never use. It is also a waste of time to copy the 

code for all these features into the virtual memory. 

There is thus little room to doubt that the direct addressability of program 

object code is both more efficient and at the same time more convenient for us-
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ers. And there is a final advantage: by eliminating the load operation from file 

memory into the virtual memory the need for the loader software itself disap-

pears, thus making the operating system simpler. 

Similar considerations apply also to the use of files containing data rather 

than programs. In most computer systems access to data in files is a rather tortu-

ous activity. Data in the file system cannot normally be directly addressed. In-

stead the application process calls routines of the file system to request that data 

be read from a file. Such data transfers usually take place via an intermediate 

buffer area (a group of memory locations set aside for this purpose) in the com-

putational memory. If information is modified by the application it must then be 

passed back to the file system in a similar way, first being copied into an inter-

mediate buffer and then written back to disc. 

In a modern database system the management of the intermediate buffers 

can itself be a complex problem. Such complexity becomes particularly appar-

ent, for example, if many different transactions have on-line access to a shared 

database. A former Ph.D. student and I have discussed in detail some of the 

problems associated with this, as well as some of the corresponding advantages 

of being able to address information in files directly in database systems [100]. 

A technique which is sometimes used in an attempt to improve efficiency 

in accessing files is to implement memory-mapped files. This basically involves 

copying an entire file into the main or virtual memory, so that subsequent ac-

cesses are direct and the file system interface is avoided. But the initial act of 

copying the file into the computational memory and the subsequent recopying of 

it back to the file memory after the application has finished using it result in 

very similar copying overheads to those we have already described for program 

code. 

A further advantage of direct addressability which was mentioned by the 

Multics designers was the promise of a very attractive reduction in program 

complexity for the programmer. This results from the elimination of the quite 

separate and distinct techniques used in conventional programming languages 

and software systems for managing information in the computational memory 

and for managing information in the file memory. This is an issue which has 

been tackled by the persistent programming community. 

3 Persistent Programming 

Conventional programming languages usually provide features for manipulating 

temporary data structures which are generally straightforward and convenient 

for programmers to use. These include structures such as arrays, records and 

linked lists. However, these convenient programming constructs cannot be di-
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rectly used for accessing persistent information held in the file system. (This 

reflects the fact that information in the file system cannot be directly addressed 

by user programs.) Instead the programmer accesses the latter via a special file 

interface provided by the programming language, which is then transformed into 

the operating system's interface routines. There are several disadvantages in hav-

ing one style of interface for file data and another for temporary data. 

First, the temporary data structures in a program are not stored in compati-

ble formats with the persistent data structures. Second, storing temporary data 

structures into files is often not a straightforward task, not only because of the 

different formats, but also because pointers consisting of addresses in the virtual 

memory cannot simply be copied into the file system and later reused, because 

the underlying main memory or virtual memory addresses may be different at a 

later time. This problem is further complicated by the fact that files are com-

monly used concurrently by several application processes. 

 This theme was taken up in the early 1980s by M.P. Atkinson and his col-

leagues at the University of Glasgow together with R. Morrison and his group at 

the University of St. Andrews. In order to avoid having two different approaches 

for programming temporary and persistent data, they developed a programming 

technique known as persistent programming, based on the use of orthogonal 

persistence [101]. They argued inter alia that the same data structuring mecha-

nisms should be used to program temporary data structures in the computational 

memory and to program persistent data structures. To demonstrate this idea they 

developed the programming language PS-Algol [102]
46

 and later a new persis-

tent programming language called Napier [103]. 

The persistent programming groups set about demonstrating the feasibility 

of persistent programming by implementing "persistent object stores" for PS-

Algol and Napier above conventional hardware, using the basic facilities of con-

ventional file systems. Such a software-oriented approach, which inevitable has 

a high performance overhead because it had to be implemented in a convention-

al virtual memory environment, was forced upon them by a lack of appropriate 

hardware. 

4 More Advantages of Direct Addressing 

The management of large bulk data files has become a specialized activity, 

known as database management, and this has resulted in the development of 

special database languages which have tended to use quite different data models 

from those underlying the design of programming languages. Hence these too 

have quite different interfaces from the programming language data structures. 

                                           
46

  see also https://en.wikipedia.org/wiki/PS-algol. 



Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 170 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

While such database systems tend to provide much more powerful facilities than 

basic file systems they add yet another layer of complex software which adds to 

the inefficiency of data accesses. Thus although in the final analysis the applica-

tion manipulates its persistent data – like its temporary data structures – in the 

virtual memory, it may have to do this indirectly via database routines which 

themselves may call file system routines. 

The sharp division in most systems between a computational virtual 

memory and a file and/or database system gives rise to at least two further areas 

of duplication and unnecessary complication: synchronisation and protection. 

With regard to synchronisation, the CPU normally provides simple and efficient 

mechanisms, but above this the file system provides further synchronisation 

mechanisms, and then on top of that there are often additional database mecha-

nisms to achieve synchronisation. This is necessary because the CPU instruc-

tions cannot act directly on synchronisation variables in the file or database sys-

tem, since the latter cannot be directly addressed in the virtual memory. 

And perhaps most significantly from our current perspective, the conven-

tional virtual memory organisation leads to a multiplicity of protection mecha-

nisms. This is inevitable if data in the file and database systems cannot be direct-

ly addressed. This additional complexity is more likely to assist security breach-

es than to hinder them. 

What all of these points clearly indicate is that enormous benefits could be 

gained if it were possible to address both non-persistent (computational) and 

persistent (file and database system) data structures in the virtual memory in a 

uniform manner. How then can such a directly addressable file system be im-

plemented? 

In the following sections we shall first present an ideal model for imple-

menting direct addressability. Then we shall consider various hardware attempts 

which have been made to support it, beginning with Multics. With a knowledge 

of the pitfalls and strong points we can then look again at whether and how di-

rect addressability can be effectively implemented. 

5 An Ideal Persistent Virtual Memory 

The fundamental feature of direct addressability is exactly what its name im-

plies: the ability directly to address not only computational data but all persistent 

information (conventionally held in file systems). With hindsight it is very easy 

to see where the conventional model for virtual memory went wrong: it left in-

tact the distinction, which had been traditionally present in pre-virtual memory 

systems, between a computational memory and a file system. 

This distinction originally arose because of the different characteristics of 
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main memory and discs. Main memory is fast, expensive and usually non-

persistent. Disc memory (along with similar magnetic media) is much slower, 

much cheaper per byte or word stored, and is persistent. Furthermore, discs are 

attached to computers in a similar manner to I/O devices. All of these things 

made it natural in the early systems to keep the two kinds of memory distinct. 

The problems really began with the half-hearted virtual memory solution, 

which simply "stole" some (but not all) of the disc space. All the problems dis-

cussed in the previous section point to the need for a much more radical solu-

tion: the entire memory should be viewed as a single uniform persistent virtual 

memory, which has a single virtual addressing mechanism. We call this a persis-

tent virtual memory because, unlike conventional virtual memory, it holds the 

persistent data and programs (i.e. the files) of the system as well as the computa-

tional objects. Put simply, the persistent virtual memory includes the entire disc 

space and thereby effectively renders the file system (in its conventional form) 

unnecessary. The idea behind persistent virtual memory is illustrated in Figure 

12.2, which should be compared with the equivalent diagrams for conventional 

memory (Figures 7.1 and 7.2). 

 

We have seen in the last few pages some of the benefits which can be de-

rived from this memory model. It promises a vastly reduced amount of copying 

of information and a much more attractive persistent programming environment. 

As our story unfolds further we shall encounter several other benefits. These in-

clude much simplified software, and some surprising new benefits, including 

security benefits, which arise from the fact that the computational memory has 

become persistent and there is no separate file system. 

We shall also have to consider some new problems which the model raises. 

For example, how can a non-persistent main memory (which in this model in 

effect functions as a cache for the information on disc) become a component of a 

Figure 12.2: Persistent Virtual Memory 
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persistent virtual memory? But for the present we leave all these interesting is-

sues aside, until we have a solution for a more fundamental question. How can a 

persistent virtual memory be addressed? 

6 Direct Addressing in Multics 

As its hardware base Multics used the General Electric 645, which had a virtual 

memory system based on paged segments. The fundamental difference between 

Multics and other systems of the 1960s was the decision to make files from the 

file system directly addressable as segments in the virtual memory. However, to 

achieve that with the GE 645 architecture was by no means a straightforward 

matter. The fundamental problem was the insufficiency of the available virtual 

addressing range. 

The strategy was to map files from the file system into paged segments of 

virtual memory. The segment size limited the maximum size of an individual 

directly addressed file to about 1 MB. This is far too small to implement the 

business files of a modern database system, although it was probably not a se-

vere problem in the Multics environment, where timesharing users typically 

have relatively small files (e.g. source programs, object programs, text docu-

ments and similar). 

A more difficult problem arises with the number of files which may need to 

be directly addressed as segments. In a timesharing system such as Multics there 

may be many users, each with say 1,000 files. With 1,000 users one would have 

to think in terms of at least 1,000,000 files concurrently existing in the file sys-

tem. But using the virtual address in the obvious way would have led to a limit 

of 16,384 files. So there was a problem with addressing all the files uniquely. It 

was this problem which caused many, in fact most, of the complications we are 

about to encounter. 

What Multics actually did was to take advantage of the fact that no process 

ever wants to access all the files in the system at the same time. In fact no nor-

mal process ever wants to access even 16,384 files at the same time. Conse-

quently it was possible to link files to processes dynamically, allocating and de-

allocating segment numbers for them as needed. On the surface this seems a rea-

sonable solution but in fact it is fraught with problems, because it relies on the 

use of potentially ambiguous identifiers (the same segment numbers used by dif-

ferent processes). 

The first problem, which the Multics designers recognized from the begin-

ning, was that if the same file is used by several processes concurrently then it is 

to be anticipated that they will use different segment numbers to address it. In 

other words while Process A is accessing File F using segment number 3187, 



Chapter 12 DIRECT ADDRESSABILITY AND PERSISTENT VIRTUAL MEMORY 173 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

Process B might be accessing the same file using segment number 5940. 

In fact the problem is worse than this. How can a code segment know at all 

which segment numbers to use to address its files? Clearly addresses containing 

segment numbers cannot be embedded in program code segments. 

The Multics designers also foresaw another problem. Code segments are 

often recompiled (for example to correct errors). This can lead to the individual 

code segments beginning at different offsets in an architectural segment in dif-

ferent versions of the same program code. This means that not only do the archi-

tectural segments have different numbers, but the offsets needed for inter-

segment references (i.e. references to the logical segments within the architec-

tural segments) may also change. 

In order to overcome these problems Multics used some extremely complex 

linking mechanisms, which we have chosen not to describe here. But although 

the solutions were quite ingenious they were also quite cumbersome. It is pre-

sumably because of this complexity that most designers of later operating sys-

tems did not follow the Multics philosophy of making files directly addressable 

in programs. This is unfortunate because the basic idea of direct addressability 

has many advantages, both in terms of execution efficiency and programmer 

convenience. In the present author's view the basic concept was the best idea 

which came from the Multics designers, but as a result of the implementation 

difficulties it is the one which later received the least attention. However, some 

years later another attempt was made to harness these advantages, and it came 

from a rather surprising quarter. 

7 Direct Addressing in the AS/400 Family 

In reflections on their earlier design of the DEC PDP-11 systems, Bell and 

Strecker commented: 

"There is only one mistake that can be made in a computer design that is difficult 

to recover from – not providing enough address bits." [104] 

This was a mistake which the designers of the IBM System/38 and its successors 

in the AS/400 family wanted to avoid. When IBM announced the System/38 to 

the world on 24th October 1978 there was considerable surprise that it contained 

64 bit "pointers" and 48 bit virtual addresses. What is perhaps even more sur-

prising is that one of the major technical aims of this system was to provide di-

rect addressability to files. The way IBM intended to solve the addressing prob-

lems created by direct addressability was to make virtual addresses large enough 

to be usable as unique names. 

The System/38 was not a very successful system commercially. In the early 

days it had severe performance problems, and it was too expensive for IBM's 
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System/3 series customer base. However, in 1988 IBM announced an apparently 

new system, the AS/400, but under the covers the design was actually based on 

the System/38. 

In 1991 IBM reached an agreement with Apple Computer and Motorola to 

develop the PowerPC as a common architecture for computer processors with a 

wide range of aims and performance capabilities. The PowerPC was planned as 

a RISC processor architecture and the initial IBM input to the project was based 

on their previous mainstream RISC development, the RS/6000, which itself 

came out of an IBM RISC tradition going back to the PC RT and ultimately the 

IBM 801. 

The AS/400, which by this time had become a successful product line, had 

a quite different background and tradition within IBM, as a commercial database 

computer, where high processor performance was not as important as good da-

tabase performance. Not surprisingly the AS/400 team was reluctant to join the 

PowerPC alliance at first. But under pressure from IBM top management they 

got involved at a fairly late stage, and managed to influence the design in some 

important ways. This has resulted in the use of PowerPC processors in later 

AS/400 systems. This story is entertainingly told by Frank Soltis, chief architect 

of the System/38 and AS/400 in his fascinating book [105]. 

The original System/38 actually had a virtual address size of 48 bits. Al-

though its software designers had intended to have a 64 bit virtual address, with 

the intention of never running out of addresses, engineering decisions forced 

them to accept a 48 bit address. They therefore used some tricks to make this 

appear as a 64 bit address when used in a "pointer". 

The way the hardware organised the use of virtual addresses gave the sys-

tem just over 4 billion
47

 segments, each segment having a maximum size of 64 

KB. The software designers were not happy about either of these limitations. 

They therefore chose to define the pointer part of system pointers, as a 64 bit 

virtual address. They used two tricks to achieve this. The first theoretically in-

creased the apparent number of segments in the system to 248, which is a little 

more than 256 thousand billion segments. The second trick theoretically in-

creased the effective segment length from just over 64 KB to more than 16 MB. 

The designers originally calculated that the system could run without prob-

lems for about 180 years, basing this on the expectation that there would be one 

restart of the system per day for 365 days per year. Since nobody expected the 

System/38 to be around as long as that, there seemed to be no problem. 

                                           
47

  There is considerable confusion about the meaning of the word billion, see https://

en.wikipedia.org/wiki/Billion. In this book I use the short scale billion, i.e. one thousand 

million. 
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But the way that the software designers actually implemented the system 

led to much severer restrictions. One of the tricks involved dividing segments 

into different types. Consequently only a little over 4 million jobs could be start-

ed and only 4 million temporary files could be used over the life of the system. 

To make matters worse some installations often left the system running over 

night, with the consequence that much more than a day might elapse between 

system restarts. According to Soltis larger customers actually began to run out of 

temporary segments. Their only recourse was to close the system down and rei-

nitialize it. The software was changed in later releases, but in the end the prob-

lem was only completely solved by the appearance of the PowerPC with a genu-

ine 64 bit address space. When used in an AS/400 system the PowerPC virtual 

address is split into a 40 bit segment number and a 24 bit offset, which is what 

the System/38 software designers wanted from the beginning. 

The System/38 designers faced similar problems with the allocation of 

segment numbers for persistent files. At the hardware address level only one 

quarter of the possible segment numbers could be allocated to permanent files, 

and the use of segment groups (the second trick) had the effect of reducing this 

even further. Thus a maximum of about 4 million segment numbers were avail-

able for persistent files. This is not a very large number of files over the lifetime 

of a system. 

A new trick was used to allow up to about 4 million new persistent objects 

to be created in each run of the system (i.e. between initializing and closing 

down the system). But there was a catch. No two persistent objects could exist at 

the same time if they had the same 48 bit address, because at the hardware level 

only 48 bit addresses were used. The solution for this problem entailed never 

completely deleting a persistent segment, even if the owning user had actually 

"deleted" it. Instead – in the System/38 and earlier AS/400 systems – the some 

management information was stored in the segment header of a segment con-

taining a persistent object, and this segment header was not destroyed. 

The end effect of this was that up to a total of 238 (about 256 billion) persis-

tent segments could be created over the life of a system provided that no more 

than 222 (about 4 million) existed at the same time. Soltis mentions on p.201 of 

his book how IBM (artificially) limited the amount of disc space that could be 

attached to a system to ensure that they would not run out of segment identifiers 

for persistent files. 

The above description in fact oversimplifies the problems, but if you want 

to know more you can read the full details in Soltis's book. 
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8 Persistent Virtual Memory 

Despite the apparent implementation problems the idea of direct addressability, 

when taken to its logical conclusion, simplifies so many problems that it should 

clearly be strived for. At this point we have not yet described sufficient of the 

SPEEDOS software architecture to explain how the problems discussed above 

can be solved, but with the confidence that none of these problems is insur-

mountable, we now present the basic model of direct addressability which will 

form the basis for the rest of the book. 

The proposed solution is quite radical in that in contrast with the systems 

discussed earlier in this chapter it totally eliminates the existence of a separate 

file system. The basic idea is that instead of "stealing" a part of the file system's 

disc space (and otherwise leaving the file system intact), we redefine the entire 

disc space as a persistent virtual memory which encompasses the entire magnet-

ic media in a system, including devices such as external discs, as was already 

illustrated in Figure 12.2. 

In fact we take a further bold step by defining this virtual memory as not 

being confined to a single computer but as encompassing the entire magnetic 

media (and other storage devices such as flash memory) in all systems which 

participate in the SPEEDOS architecture. 

The conventional view of networked systems is illustrated in Figure 12.3. 

 

In a SPEEDOS environment each node in the network, instead of being 

viewed as a separate computer, with its own virtual memory, is seen by other 

computers which participate in the same concept as a set of remote discs which 

can be accessed by a SPEEDOS process, see Figure 12.4. 

This view of virtual memory eliminates a myriad of duplications and com-

plications which are found in conventional systems, by supporting all those 

points mentioned above as advantages of direct addressability, but also by great-

ly simplifying the problems associated with networking and limiting protection 

issues to the virtual memory. 

Figure 12.3: Conventional Networks 
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Of course we will have to provide evidence in future chapters that such a 

scheme can be implemented, but at this stage we must ask readers to have faith 

that these proofs will be provided. It can already be said, however, that a limited 

early version of the idea was successfully tested in the MONADS Project, the 

major project which the author established at Monash University in Australia in 

1976. This included both the general idea of a persistent virtual memory and a 

limited form of networking in a local area network of four computers. 

The main relevant features of the MONADS-PC system were as follows. 

i) Virtual addresses were 60 bits wide. 

ii) The top two bits indicated which of four networked MONADS-PC 

systems was being addressed. 

iii) The addresses were unique across the four computers. 

iv) The memory consisted of three basic kinds of address spaces 

(equivalent to containers in SPEEDOS): file address spaces (holding persistent 

file data), code address spaces (holding the code of compiled programs) and 

stack address spaces (for holding process stacks). 

Although this system successfully tested the basic concept of a uniform 

persistent distributed virtual memory, some of the techniques which were used 

are not scalable to modern day needs, mainly as a result of the need for unique 

addressing and distribution throughout the Internet. However, solutions have 

been found and will be explained in volume 2, with some hints being provided 

in this volume in chapter 16. 

9 Conclusion 

This chapter has described an important basis for implementing secure computer 

systems. Computer memory is where hackers find the information which they 

wish to steal, modify or even destroy. We have taken a schematic look at con-

ventional memory, i.e. how current computer systems organise their memory, 

and have found that its interactions with conventional file systems create many 

Figure 12.4: The SPEEDOS View of Networks 
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duplications and problems. This recalls the situation described in Chapter 1 with 

the Berlin Wall. The approach to be pursued in the rest of the book can be con-

sidered, from the viewpoint of its conceptual simplicity, as more comparable 

with the Alcatraz approach to prison security. 

However, it still remains for us to demonstrate that a simple implementa-

tion of the persistent virtual memory concept is possible. Before we can do this, 

it is first necessary for us to describe some further unusual and unconventional 

concepts. To this end the next chapter describes how the persistent distributed 

virtual memory can be populated with software without resorting to a conven-

tional file system. 
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Recent chapters have concentrated primarily on the hardware features 

which might serve as a base on which to build secure computer systems. How-

ever, although an appropriate hardware design plays a significant role in the de-

velopment of secure systems, this alone is not enough. The security of a system 

depends equally on the strategies adopted in the design of the software system 

(and of course on the correct implementation of these strategies). In this chapter 

we examine some ideas for structuring software. In the next chapter we shall 

then develop a general software model which can serve as a flexible and modu-

lar base on which a variety of different security models can be implemented. 

An important prerequisite for designing secure and reliable software sys-

tems is the existence of a simple and efficient structural framework for the soft-

ware itself. Such a framework must above all take into account the fact that 

large and complex software systems cannot be produced by a single person. A 

complex software system, such as an operating system or an airline reservation 

system or a banking system, contains millions of lines of program code. The de-

velopment of such a system involves hundreds or even thousands of program-

mers working together over several years to produce a single software product. 

For this reason any large system must be decomposed into separate units which 

can be programmed by different programmers and programming teams. 

In the 1950s and the 1960s, when the first large software systems were de-

veloped, software designers had little knowledge or experience of how to go 

about the task of breaking large systems into smaller units. The pattern which 

they followed was based largely on their experience with designing individual 

application programs. The results of this approach are still very much with us 

today. Large application systems are typically decomposed primarily into two 

kinds of software units: programs and files. The programs contain the code to be 

executed, the files contain the data on which the programs operate. This may 

seem to be a very reasonable way to decompose systems, but in fact it leads to 
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lots of problems, as we shall now see. 

1 The Software Crisis 

In the early days of computing, during the 1940s and early 1950s, software de-

velopment was regarded as a relatively simple and straightforward task. In that 

period the real focus of interest was centred on the computing machinery itself. 

The programs which were developed to execute on early computers were by 

modern standards relatively straightforward and unambitious. Programming 

mistakes were made, of course, but there was a general feeling that this was due 

simply to lack of practice. In retrospect we realize that such an attitude was un-

duly optimistic, if not naive.  

During the 1950s and 1960s the potential uses of the computer were in-

creasingly recognized and ambitious projects were undertaken to realize this 

enormous potential. Some of these were application projects, concerned with 

producing useful end products, such as the development of banking systems and 

systems to control the reservation and booking of airline seats. Others were sys-

tem software projects, concerned with improving the use of the computer itself. 

These included the construction of compilers for high level languages, and of 

operating systems for improving the throughput of the computer by the use of 

multiprogramming techniques. As the ambitions of users and programmers 

grew, so did the complexity of the systems which attempted to realize these am-

bitions. And as the complexity of the systems increased, their poor quality be-

came increasingly evident. 

By the mid-1960s the software industry was in a chaotic state. Systems 

were delivered late, often several years late. They were unreliable – the MTBF 

(mean time between failure) for many systems actually delivered to customers 

could often be measured in minutes! Attempts to rectify errors frequently suc-

ceeded often only in creating new errors. Attempts to extend the use of a system 

or adapt it to solve a different but related problem were often doomed to failure. 

The idea of trying to transport a large program, such as a compiler or an operat-

ing system, for use on a different type of computer was completely out of the 

question. As a result of all these problems the costs of software systems soared 

well above the cost of the hardware on which they were executed.  

By the late 1960s the software crisis had grown to such proportions that the 

N.A.T.O. Science Committee organized two international conferences. The first, 

held in Garmisch, West Germany in 1968, was a working conference on "Soft-

ware Engineering", the title being provocatively chosen to focus attention on the 

need for software development based both on theoretical foundations and on 

practical disciplines, as in the established branches of engineering. Practitioners 

with first-hand practical experience of the problems were prepared to air these 
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problems in public, and the conference focused largely on the nature of the prob-

lems, rather than on possible solutions. This was followed by a second confer-

ence in Rome, Italy in 1969, at which the focus of attention was to be on the 

technical problems of large software projects. However, according to the Con-

ference Report editors, the most important outcome was the recognition of the 

significance and extent of the communication gap between the academics and 

the "real-world" practitioners [106, p. 145]. It is interesting to consider the rea-

sons for this communication gap, because they explain to some extent (although 

not entirely) subsequent developments in software technology. 

On the one hand, academics tend to concentrate on solutions to small, rela-

tively manageable, problems which can be tackled in a university environment. 

As a result the 1970s and 1980s witnessed a good deal of progress in the area of 

program development. Techniques such as structured programming [107], step-

wise refinement [108], abstract data types [109], object oriented programming 

[110], together with improved programming language designs (e.g. Simula 67 

[111], Pascal [112], Smalltalk-80 [113] and Modula-2 [114]) and improved veri-

fication techniques, have all played a significant role in raising the quality of 

modern software. 

But despite these very important developments many of the problems expe-

rienced in the 1960s are still with us today, during the third decade of the twen-

ty-first century. The main reason for this is that most of the problems stem not 

from the individual programs which constitute a software system, but from the 

structure of the system itself. 

This explains why academics and practitioners often found that they were 

talking at cross-purposes. Academics tend to emphasize the program level, be-

cause this is the level with which they can come to grips, given the very limited 

resources available in universities. But practitioners are more concerned with the 

problems of system design for systems which might involve thousands of man 

years of development effort [115] or occupy many megabytes of memory. Aca-

demics sometimes express the opinion that the problems are really the same, but 

the fact is that many of the programming techniques cannot simply be scaled up 

to solve system problems on a large scale. A bigger structured program, or more 

verification effort, or a better programming language, is simply not the solution 

to the most pressing system design problems. These techniques can contribute 

significantly to the quality of the individual programs which form the building 

blocks for larger systems. But improving the quality of bricks, or even doors and 

windows, does not solve the architect's problem of how to design a well-

structured house! 

The analogy is of course exaggerated. Programs may have a more signifi-
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cant role in software system structures than bricks in house design, and on the 

other hand there is no doubt that some software architects are trying to build 

cumbersome and bizarre systems. But the facts remain that software systems are 

not simply scaled-up programs and that large systems do have an important role 

to play in modern society. 

2 Software Systems 

A conventional software system is not merely a scaled up computer program. It 

is a complex entity consisting of many programs which interact with each other, 

primarily using data structures (usually in the form of files) as their common 

interfaces. The programs in a software system are not all executed together. 

Some programs are run frequently, others are run say once a week or once a 

month, while yet others are executed perhaps only once a year. 

For example in a typical banking system those programs which carry out 

the normal everyday banking transactions (such as recording deposits and with-

drawals) are usually executed each night in a batch processing system or they 

may run throughout the day in an on-line banking system. But there are other 

programs which are run at less frequent intervals. For example some programs 

run once a month (e.g. to calculate interest payments or charges, or to provide 

management reports), while others may be executed quarterly (e.g. to calculate 

account fees and provide yet more reports), and yet others are needed only once 

a year (e.g. in connection with taxation requirements and end of year account-

ing). It is important to realize that all these programs, independently of the ques-

tion how often or when they run, largely make use of the same set of files. 

This situation is not something special about banking systems. It is typical 

of commercial data processing systems (e.g. airline reservation systems, insur-

ance systems, building society systems) and of computer systems used by gov-

ernment departments, etc. In fact this pattern of usage applies to virtually all 

computer systems where security is a major issue. 

The suite of programs making up such a computer system is not designed 

and programmed once and for all and then never changed after it has been deliv-

ered to its users. A computer system exists to serve an organization, and its pro-

grams must be frequently modified to reflect the changing needs and circum-

stances of that organization. For example if a bank introduces a new kind of 

bank account, its daily programs must either be changed or new programs added 

(or both). Similarly a change in the tax law might require the banks to change 

their annual programs. Or management might decide that it needs a different 

kind of report, this time affecting one of the quarterly programs. 

What often starts out initially as a relatively small and simple application 
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suite is gradually transformed into a monster software system, existing in several 

versions, in a state of constant change, lacking a master plan, and costing more 

annually in "maintenance" programming than was originally envisaged as the 

total system cost. This is a story which almost every experienced software de-

velopment manager will tell you. Getting the initial software developed is only 

the tip of the iceberg. The majority of the cost of computer systems goes into 

software maintenance. 

3 Software Maintenance 

Maintenance is the name loosely used throughout the software industry to de-

scribe the activity of making changes of any kind to programming systems after 

the initial development is complete. It includes making changes which are need-

ed to correct errors found in the original programs, making improvements and 

extensions to reflect the changing needs of an organization, carrying out modifi-

cations which become necessary because the programs have to run on a new 

hardware system, and so on. 

Software maintenance costs make up a very significant proportion of data 

processing department budgets. But that is not all. They often account for a sig-

nificant slice of the entire budgets of companies and even of the national budg-

ets of the advanced and developing nations. This makes software maintenance a 

significant problem, not only for the software industry, but also for company 

managers and politicians alike. Since the 1990s this problem was increasingly 

recognized and research funding was earmarked for this neglected area of soft-

ware technology, for example as part of the European Esprit research program. 

Software maintenance has been a cinderella for many years both in the 

software industry, where the mistake is often made of leaving the relatively un-

interesting work of software maintenance to trainee programmers, and in aca-

demia, where it has long been seen as a relatively unfruitful area for research. So 

perhaps we should welcome the idea of research funding being earmarked for 

bringing improvements in an area such as software maintenance, an area which 

has proved to be such a drain on national economies. However, such funding 

schemes can only be given a qualified welcome. The reason is that the funda-

mental problems which arise in software maintenance have been created in the 

software design process
48

, not the maintenance process! In this respect it is 

worth bearing in mind that maintaining software is not an activity comparable 

with maintaining physical objects. Software does not need to be oiled regularly, 

or reconditioned, or cleaned, etc. 

                                           
48

 A problem which we do not consider further here is that there are very many systems 

still in use which have been built over the last six decades or so. An improved design 

method does not solve the maintenance problem for these systems. 
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Instead software maintenance really boils down to two activities. First there 

is the problem of removing errors which were introduced in the design and im-

plementation process. In this case we are not really talking about problems with 

a maintenance activity as such, but about problems with an inadequate design 

and implementation process. If the design and implementation had been done 

better in the first place, software would not need this kind of maintenance. In 

fact this is even truer than is the case in conventional engineering projects in-

volving the manufacture of physical objects, where errors and faults can also 

creep in during the manufacturing process, because there is no equivalent manu-

facturing process in software. Once the software has been designed and imple-

mented it is simply copied from one disc to another, using a process which is so 

reliable that the introduction of copying errors is negligible. 

The second software maintenance activity involves extending and modify-

ing existing systems to suit new requirements. This also is basically a design 

issue. The really important point in this situation is that the original system 

should have been designed in an extensible and modular fashion. Although the 

word modularity is one of the catch cries of the software industry, genuinely 

modular design is an art which is scarcely practiced in any significant sense. 

In other industries modularity usually implies inter alia that a system can 

be constructed from components which have been separately designed and im-

plemented according to standard specifications. In most cases such components 

are general purpose, designed to be incorporated into many different products. 

For example, in the automobile manufacturing industry the designer of a 

new car model does not normally produce his own new designs for the tyres, or 

for the electric light bulbs to be used in the headlights, or for the spark plugs, 

etc.  He can take advantage of the fact that such components already exist and 

that they are manufactured by secondary industry to a specification which al-

lows them to be used in many models of car and sometimes in other products. 

In contrast the software system designer and his implementation team usu-

ally create an entire software system from scratch. It is hardly surprising that 

such a method produces many errors. If components are designed and imple-

mented anew with each system, usually ignoring the work done on other soft-

ware systems, then there is much more scope for error than if the same well tried 

and tested components are reused in many systems. 

Similarly if a design is based on the use of modular components it is usual-

ly much easier to extend or adapt this to new circumstances. The automobile 

industry does not produce new models out of thin air; it takes an existing basic 

design, then adapts and improves it as required. 

Modularity is one of the key features contributing to the success of other 
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engineering systems. We now consider what this should and could mean for the 

software industry. 

4 Software Modularity 

Although system designers and programmers talk readily of decomposing their 

software systems into modules and even regard modularity as an essential or a 

highly desirable aim, in practice there is no widespread agreement about what 

constitutes a module or what criteria should be used in the design of modules. 

As this is not a book about software engineering, we shall not embark on a long 

discussion about different views of software modularity. Instead we shall use a 

simple working definition which will help to develop our theme.  

Most software designers and programmers will probably at least agree that 

modules are the building blocks out of which software systems should be con-

structed. Most will probably also be prepared to regard a module as an in-

dependent component which marks the transition between the work of the sys-

tem designer and that of the programmer. In other words a module can be re-

garded as an object which is specified in a system design stage, and which is 

then handed over to a programmer or programming team whose responsibility is 

to implement it. 

But that is probably about all that will be widely agreed upon about the 

meaning of software modularity. For example, there is sometimes discussion 

about how "big" a module should be. Some will say that it should be a program 

small enough to fit onto one side of a sheet of A4 paper (thus giving the pro-

grammer an overview of the design of the entire algorithm). Others have argued 

that a module is the same thing as a procedure. Yet others would view a collec-

tion of procedures (e.g. a subroutine library) as a module. 

But such discussions are quite futile. Why should there be a single "size" 

for a module? In other engineering systems larger components are constructed 

from smaller components, which may in turn be constructed from yet smaller 

components, and so on. Similarly there seems to be no reason to exclude the 

possibility that software modules can be constructed from other software mod-

ules of smaller granularity, and so on. 

It is more important to consider the implications of having modules with 

different granularities than to argue about what the "right" granularity should be. 

In particular, it is relevant for our discussion to consider where the knowledge of 

modules of different granularities resides in a computer system. 

As we have already seen, there are small software components in a system, 

such as procedures, records and arrays. These can map onto logical segments at 

the architectural level of a computer system, assuming that the architecture sup-
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ports logical segments. If it does not then these are managed entirely within the 

compiler. 

The more interesting issue is, what software structures correspond to larger 

components? Traditionally operating systems have supported a variety of larger 

software structures. The most obvious of these are programs and files. But there 

are several other larger structures that are often explicitly supported in various 

ways by operating systems. For example most systems distinguish between pro-

grams and subroutine libraries. Programs traditionally have a single entry point 

(where the program execution begins), whereas a subroutine library is a collec-

tion of related subroutines which usually provide similar or related functions 

(e.g. statistical, trigonometric or financial subroutine libraries). In contrast with 

programs, a subroutine library usually has a separate entry point for each func-

tion. In older systems overlays, which we briefly encountered in Chapter 7, were 

regarded as modules. Another kind of module is an operating system module, 

which is usually managed and organized separately from application modules. 

Whatever the definition of a module, the emphasis has in one way or an-

other been on units which primarily contain code. This was undoubtedly influ-

enced by the fact that programmers think of themselves mainly as designers of 

algorithms. Producing programs is their job, and the dynamic flow of control of 

the code is generally uppermost in their minds when they think about computing 

issues. Data on the other hand is what an application program or an operating 

system program produces. This can simply be stored in files or in operating sys-

tem tables, etc. 

This separation of software structures into programs and other code mod-

ules on the one hand and into files and other data structures on the other hand 

has determined the entire structure of software systems. As we have seen, the 

operating system itself is usually regarded as consisting of two main parts: the 

part which manages the computational memory and the part which handles files 

(i.e. the file system). Similarly database systems traditionally consist of a code 

part which implements the data base and a part holding the data of the data base. 

Application systems likewise consist on the one hand of programs and code 

modules and on the other hand of the files which they manipulate. Let us now 

look at some of the problems which arise when this approach is adopted. 

5 Flow of Control Modules 

Module decomposition influenced exclusively by algorithm design and other 

dynamic flow of control considerations inevitably leads to the design of systems 

which allow several modules to access the same data structure. As an example 

of this we consider an operating system design approach which was common in 

the 1960s for mainframe computers. A typical operating system from that period 
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includes various data structures representing the state of particular aspects of the 

system. 

 

A common example is a table defining the properties of the system's input-

output devices. This data structure must be accessed by several modules. As 

Figure 13.1 illustrates, these might for example include: 

 (a) device drivers which perform the actual input-output operations; 

(b) file system modules which need to know the properties of the disc drives 

and the identities of mounted discs; 

(c) virtual memory modules concerned with the discs holding the extended 

computational memory; 

(d) modules which allocate input-output devices to user programs; 

(e) spooling modules which read and write data for slow devices; 

(f) archiving modules which transfer files between magnetic tape and disc.  

A number of serious problems arise in such a situation: 

(i) The specification of the system design is difficult. Each major data structure 

in the system must be specified down to the last byte and bit at a very early 

stage. This in turn means that the system designers must anticipate many 

details of the design of the algorithms which access such structures. Conse-

quently there is a strong risk that changes will have to be made to the speci-

fications when the algorithms are eventually developed. 

(ii) Communication between the implementers of separate modules is high. It is 

impossible with present specification methods to achieve an absolutely un-

ambiguous specification for a raw data structure, particularly in terms of the 
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Figure 13.1: Flow of Control Modules in an Operating System 
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interpretation of the values which it contains. Consequently the implement-

ers of the modules which access it often need to spend an excessive amount 

of time discussing the details (without any certainty that they finally reach a 

common understanding). Misunderstandings of this kind inevitably result in 

programming inconsistencies. 

(iii) Inconsistent modules create difficult debugging problems. Because each 

module accessing a shared data structure relies on the correctness of other 

modules, an error in one module often manifests itself as strange behaviour 

by another module (which may itself be correct). Detecting the source of 

such an error can be a very difficult task, because it may involve a careful 

examination of all the modules which access the structure. 

(iv) Verification is difficult. Verification of the correctness of the system, either 

by formal proof or by testing, is extremely difficult if several modules ac-

cess a common data structure, because the validity of assumptions which a 

module makes about the data structure depends on the actions of other 

modules. 

(v) Synchronisation problems easily arise. If the separate modules can execute 

concurrently, access to the data structure must be properly synchronised to 

ensure that its contents remain consistent. This means that each accessing 

module must contain the correct synchronisation protocols. If one of the 

programmers forgets this, or gets it wrong, then the system will once again 

be in error. 

(vi) Maintenance of the system is difficult. Apart from the debugging problem 

mentioned above, maintenance becomes a difficult problem, especially if it 

is not carried out by the original system programmers, because the mainte-

nance programmer is faced with the formidable task of understanding many 

complex indirect interactions between the various modules. 

(vii) Extension/adaptation of the system is difficult. Changes to the system de-

sign are extremely difficult to make without errors both because of the 

complexity of the interactions and because a change to a shared data struc-

ture incurs the risk of requiring changes to all the modules which access it. 

(viii) Optimisation of the system is difficult. Optimisation, e.g. to improve sys-

tem performance, often involves changes to the underlying data structures. 

In this case the problems which arise in system extension or adaptation 

arise here also.  

These are among the more serious of the problems which gave rise to the soft-

ware crisis that has been with us since the 1960s and which the N.A.T.O Con-

ferences [106] did not succeed in solving. Among the systems most affected at 

that time were those major operating systems which were designed according to 

the above technique, relying on a system decomposition based on flow of con-

trol considerations and the extensive use of shared tables as major interfaces be-
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tween modules.  

It is not difficult to see where the basic weakness of such a design method 

lies. The fundamental problem is that there are many complex interactions 

which take place indirectly (via the shared data structures) between apparently 

independent modules. 

Since the 1960s some progress has been made in modular design tech-

niques. This is particularly true of the object oriented design approach, which 

has been applied with some success to the design of a few newer operating sys-

tems (but not those widely in use). Unfortunately it has not been widely recog-

nized that the same problems occur in other systems, particularly in commercial 

data processing systems, which are similarly decomposed primarily into pro-

grams and code modules. Interactions between the programs take place indirect-

ly, as in the operating system example just discussed, via independent accesses 

to major data structures – in this case in the form of files. This approach to sys-

tem design continues to result in expensive, poor quality software which is er-

ror-prone and difficult to maintain, to extend and to adapt to other environments. 

Even the appearance of object oriented databases has not provided the necessary 

breakthrough, because the objects in that approach correspond by and large not 

to the larger granularity units under consideration here, but to the smaller objects 

such as the database records. 

In the rest of this chapter we shall consider the main ideas behind object 

oriented programming, since this offers the most promising basis for finding a 

solution to software system design problems. But in the course of this review the 

reader should bear in mind that in general the object oriented programming ap-

proach has in the past been used mainly as a technique for structuring individual 

programs, not entire systems. In other words, the "objects" in object oriented 

programs are modules of small or medium granularity that are contained within 

programs, not the programs and files themselves. 

6 The Information Hiding Principle 

Before exploring the idea of object oriented design in more detail, it is worth 

considering an important forerunner of this approach, the information hiding 

principle, to see how the problems associated with flow of control modularis-

ations can be solved. The information hiding principle was proposed as a soft-

ware decomposition technique by D.L. Parnas in the early 1970s [116]. 

Observing the excessive amount of communication which had to take place 

among implementers of separate modules [117], the tendency of programmers to 

take advantage of detailed implementation information about other modules, and 

the problems of specifying module interfaces [118], Parnas proposed that all de-
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tailed items of information in a system or program should be hidden within a 

module, and that this module should present a relatively simple interface to oth-

er modules. He went on to illustrate how this can be achieved by placing togeth-

er into a single module both a major data structure and the routines which access 

it. Other modules which need access to the information in the data structure ob-

tain this indirectly by calling the interface routines of the module. 

If the information hiding rule about data structures is strictly enforced 

throughout a system the consequence is that all inter-module interfaces can be 

expressed in terms of routine calls. For example, suppose that some program 

(e.g. a compiler) needs to store items (say integers) in a queue, then the queue 

(called a First In First Out – or for short FIFO – Queue) can be built as a sepa-

rate information-hiding module, with the following interface routines: 

(a) an operation "enqueue", which puts an element at the end of the queue, 

(b) an operation "dequeue", which removes the element at the beginning of the 

queue, 

(c) an enquiry "first", which returns the value of the first element without 

changing the state of the queue, and 

(d) an enquiry "length", which returns the number of elements in the queue 

without changing its state. 

This is illustrated in Figure 13.2. Hereafter, diagrams of this kind are used to 

represent information hiding modules. 

 

A crucial advantage of this technique is that all the major implementation 

decisions remain hidden from users of the module. There is no indication what-

soever in the interface definition of the queue module (which consists of a list of 

routines with their parameters) how the data structure is implemented. It could 

be an array, but it could equally be a linked list. And if a linked list, it might be 

maintained by single links, by double links, or in a circular structure, etc. 

The great benefit of this approach is that if the implementation details are 

hidden from client modules, the programmers of these client modules cannot 
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Figure 13.2: A Simple Information Hiding Module – A FIFO Queue 
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take advantage of them. For example the user of such a module cannot directly 

read the value of a variable defining the current length of the queue. Such a vari-

able might possibly exist in the implementation of the queue, but it is equally 

possible for example that in an array implementation the "length" enquiry calcu-

lates this value by subtracting a base of queue pointer from a top of queue point-

er
49

. Thus the information hiding principle gives the implementer of such a 

module considerable freedom both to choose a suitable implementation and to 

change that implementation later – without affecting the client programs or 

modules using the queue module via its interface routines. 

Although this technique is remarkably simple to state and is usually easy to 

use, it was ignored for many years by most system designers, who in general 

preferred the flow of control decomposition technique. Most importantly, it goes 

a long way towards eliminating the many problems associated with the flow of 

control technique discussed in the previous section. 

A simple-minded application of the information hiding principle to the in-

put-output device table problem discussed in the previous section would result 

in the introduction of a new module with interface routines which include en-

quiries for providing the remaining modules with indirect access to the infor-

mation they require and with operations which on request modify the infor-

mation. In reality there would be much to criticize in such a simple-minded de-

sign, as will become evident later, but these criticisms are unrelated to the in-

formation hiding principle. 

Despite its shortcomings a decomposition of the system which simply hides 

the details of the input-output device tables would already solve most of the 

problems which arise in its flow of control counterpart, as we shall now show, 

using the same enumeration as was used to describe the problems. 

(i) The first problem which we encountered was that the specification of the 

system design decomposed according to the flow of control principle is dif-

ficult, because every detail of the very complex table would need to be 

specified. While we have not discussed specification techniques in any de-

tail, readers will realize that a specification which is expressed in terms of 

routine calls is much simpler to achieve than one which involves the exten-

sive use of shared tables. For example it is much easier to convey the mean-

ing of two routines for allocating and deallocating devices expressed along 

the lines: 

 routine allocate_device (device#:int) 

 routine deallocate_device (device#: int) 

                                           
49

 In fact the calculation is a little more complicated than this if the queue is allowed to 

wrap around in the array, but that does not affect our point. 
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 than it is to convey the significance of the setting and unsetting of bits (or 

the noting of job numbers to which devices are allocated, etc.) in tables. 

Nevertheless, the information hiding technique does not fully solve the 

specification problem, which is a difficult issue that we shall shortly discuss 

in more detail. 

(ii) In the flow of control approach the level of communication between the 

implementers of separate modules is likely to be high, because of the need 

to clarify ambiguities in the meaning of values in the shared data structure. 

But with the information hiding principle the input-output device table is no 

longer visible to the designers of other modules, and the routine interface is 

likely to be much easier to understand. Consequently it is to be expected 

that the need for communication between implementers of separate mod-

ules will be greatly reduced. Long discussions about the precise signifi-

cance of particular values of words and bits in tables are avoided. 

(iii) The difficult debugging problems which arise when an error in a data struc-

ture caused by one module manifests itself as an apparent error in another 

module sharing the same data structure do not occur in an information hid-

ing system, because there is only one module which accesses each major 

data structure and which can therefore be responsible for errors in the data 

structure. Consequently the search for the error is confined to a single mod-

ule and to one programmer who understands the module. (Here we are as-

suming here that the computer's basic protection mechanisms ensure that no 

other module can directly access the internal data structures of another 

module. It will be shown in a later chapter how this is achieved.) 

(iv) In an information hiding environment, the verification of module correct-

ness is much easier than in systems which use the flow of control tech-

nique. On the one hand testing environments can be constructed which are 

based simply around a generalised routine call mechanism rather than 

around specific data structures. On the other hand formal program proofs 

become easier (though not easy) because all the relevant information is col-

lected together in a single module, and the program prover need not be con-

cerned with side-effects from other modules. 

(v) Synchronisation problems, which can become very complex when several 

distinct modules attempt to access a shared data structure, are likewise easi-

er to handle. Because all access to the data is confined within a single mod-

ule, a single programmer has an overview of all the interactions which need 

to be synchronized. This is the basis on which synchronisation techniques 

such as "monitors" [119] and "path expressions" [120] are based. 

(vi) The difficult task of the maintenance programmer becomes easier when the 

information hiding technique is used, because related definitions (of both 

data and code) are contained in a single module, which can therefore be un-

derstood without reference to the texts of a large number of other modules. 
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(vii) Adapting and extending systems designed according to the information hid-

ing principle promise to be easier, because both modules and the interac-

tions between them are easier to understand, and because in many cases a 

change to a data structure will have only local effects on the information 

hiding module and on a new client module which needs the additional in-

formation. It also becomes straightforward to add additional routines to a 

module interface without affecting existing software. 

(viii) Finally, in contrast with systems designed around the flow of control 

technique, optimisation of a data structure and its related access routines 

can be undertaken with the confidence that only a single module need be 

changed. Provided that the new version faithfully implements the same in-

terface as the former version, other modules remain unaffected. 

Compared with the flow of control technique for module decomposition, the in-

formation hiding technique offers many benefits, at least for systems which ma-

nipulate substantial data structures. The reason for this is clear. The information 

hiding technique is an expression of the central idea in general systems design 

that the complexity of interactions in a system is kept within manageable bounds 

by clustering together into a single subsystem the components which have the 

greatest need to interact with each other. 

In this case the components which clearly have the most intensive inter-

actions with each other are the major data structures and their access routines. 

The main mistake in the flow of control decomposition method is to separate 

these strongly interacting components into different modules. 

7 Abstract Data Types 

The key concepts of the information hiding principle reappear in an idea known 

as abstract data types. This takes the further step of allowing a module that has 

been defined according to the information hiding principle to be treated as a type 

definition. 

Just as in normal conversation the word "type" is used to indicate the com-

mon features of similar objects, so in programming language jargon a type defi-

nition defines the features of variables with similar characteristics. Given a type 

definition, a programmer can declare individual instances of that type and thus 

determine their behaviour. 

"Typed" programming languages are languages which support such a con-

cept. However, not all typed languages support abstract data types. Most of the 

conventional programming languages, for example Pascal, C, Fortran and 

Cobol, support only certain standard in-built types. These are types the behav-

iour of which is fixed by the definition of the programming language, such as 

booleans, integers, reals, and characters (which usually map directly onto the 
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types supported at the hardware level). 

A type definition principally determines the range of values which an ob-

ject or variable can validly have and the operations which may be validly carried 

out on them. For example variables of the type integer have a fixed range of val-

id values (usually determined in practice by the size of a computer word) and 

there is a fixed set of valid operations defined for integers, such as addition, sub-

traction, multiplication, and so on. The compiler for a typed language can usual-

ly determine at compile time whether the operations on variables which appear 

in the program that it is compiling are valid. For example the statement 

a = b + c 

is valid if a, b and c are integers. This statement means that the integer values 

stored in b and c should be added together and the result stored in an integer var-

iable called a. It is valid because there is an addition operation defined for the 

type integer. (In fact the compiler can determine at compile time that the opera-

tion is a valid operation but it is only possible at run time – when the addition is 

carried out – to determine if the result of the addition is within the range of val-

ues determined by the type integer.) 

On the other hand the compiler can at compile time recognize that the 

statement 

a = b ÷ c 

is invalid if a, b and c are integers, because the normal division operation taught 

in schools is not guaranteed to return a valid integer value. This is because the 

result of dividing one integer into another integer can result in a fraction. For 

example 2 ÷ 3 gives a result which is a fraction, not an integer (recall that an in-

teger is a whole number). Thus the "normal" division operation is usually not 

defined as a valid operation for the type integer (but it is for the type real) and 

the compiler can recognise mistakes of this kind at compile time. 

Languages which are defined in such a way that type rules are always rig-

orously enforced by the compiler are called strongly typed languages. There are 

weakly typed languages (such as C) which are not quite so rigorous, and there 

are some completely typeless languages, where anything goes, such as Small-

talk. 

A language supporting abstract data types allows the programmer to go a 

step further by introducing new types to supplement the in-built types. For ex-

ample if the definition for a queue module which we used in Figure 13.2 is re-

garded as an abstract data type, this can then be used to define not only a single 

queue, but a type of object called a queue type. Then the programmer can de-

clare many queues in his program (just as he can declare many integers), all of 
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which can be operated on only by calling its routines, i.e. the operations 

enqueue, dequeue, length and first. 

To illustrate this idea further let us now define a bank account type as an 

abstract data type. We base this on the example which was already used when 

we were discussing protection models, and which was illustrated diagrammat-

ically in Figure 2.7. A simplified version of this is now shown in Figure 13.3. 

 

There are several important advantages to be gained by the use of abstract 

data types in programs. These include the following. 

Routines and their associated data structures are defined together as a 

recognisable structural element of the program. This is important for those – 

such as maintenance programmers – who need to understand a program. It is 

usually not possible in programming languages which do not support abstract 

data types, such as Pascal or C. 

Data structures are hidden from other parts of a program, being accessible 

only indirectly via the interface routines of the type. This is the information hid-

ing principle showing through, and brings the benefits which we have already 

described. 

The same definition can be used for the declaration of many variables. For 

example, many bank accounts can be created and accessed using the definition 

in Figure 13.3. 

The definition can be framed in terms of "semantic" operations. The opera-

tions defined for the type bank account, for example, correspond to the "real 

life" operations on bank accounts. (At least they are intended to. If they don't it 

is only because I am not an expert in banking systems!) This again makes it eas-

ier to understand programs. 

Inappropriate operations are excluded. The compiler can check that only 

the operations defined as interface features of the abstract data type can be in-

voked in programs. 
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Figure 13.3: A Bank Account as an Abstract Data Type 
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8 Specifications and Implementations 

There is one further advantage which I would like to have been able to add to 

the list of benefits of abstract data types. That is, that abstract data types offer an 

attractive way of defining components which can be widely re-used in many 

programs. This would be comparable for example with the way an electrical en-

gineer uses electronics components. If he needs an AND gate or a multiplexer or 

a ROM or a seven segment number display, he looks in the appropriate data 

books for a suitable component, finds what he wants and then incorporates it 

into his system. 

In the same way, we could imagine that programmers who need a queue 

module or a bank account module or a calendar module, etc. could look up defi-

nitions for appropriate abstract data types in software data books, order the code 

and use it in their programs. But this unfortunately does not happen in practice. 

There are many reasons for this, most of which need not be discussed here. But 

one of them is important: most languages which support abstract data types (and 

most object oriented languages, which we shall discuss shortly) do not provide a 

clear separation between the specification of a type and the code implementation 

of it. This is unfortunate, for at least four reasons. 

First, without a separate interface specification it is difficult to produce use-

ful software data books. To include the entire implementation code is undesir-

able, because it does not provide a clear overview of the module. Furthermore, it 

would then be possible for potential customers simply to copy the code, so no-

one would actually have to buy it, which is unlikely to encourage the develop-

ment of a software components industry! 

Second, the absence of a separate specification is not conducive to the idea 

of using different implementations of a module in different situations (e.g. one 

version optimized for speed and another for memory usage, or one version suit-

able for a module containing only a few elements and another capable of hand-

ling large numbers of elements). In order to make such different imple-

mentations interchangeable they must have a common specification. 

Third, without a clear specification technique it is difficult for a system de-

signer to define the types which he needs and then hand over a specification for 

them to the programmers whose job it is to provide an implementation. 

Fourth, without an interface specification the programmer of a client mod-

ule must examine the code of the modules he uses in order to know how to use 

the interface. 

One of the reasons why most languages do not clearly distinguish between 

specifications and implementations is, as we mentioned earlier, that complete 

formal specifications are feasible only for relatively small and simple modules. 
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However, there is an alternative – to use those parts of a type definition which 

define how to use the interface (e.g. the routine headings) as a partial spec-

ification, and to supplement this with further useful information that can be pro-

vided formally and/or informally. Supplementary formal information can for 

example be provided to define pre- and post-conditions for routines (i.e. condi-

tions that must hold before and after their execution) and also as invariant condi-

tions for the entire type (which must always be true). Supplementary informal 

information can be supplied in the form of comments, describing in natural lan-

guage aspects of the specification which cannot be expressed formally. 

9 Object Oriented Programming 

Abstract data types have also been incorporated into object oriented (OO) pro-

gramming languages such as C++ and Java. The terminology changes a little but 

most of the ideas of abstract data types are carried over. Instead of talking about 

types it is usual to refer to classes. Similarly the instances of a class are called 

objects rather than variables. This emphasises the idea that the instances of an 

abstract data type can represent real world objects. The routines associated with 

a class are called its methods. 

Unlike abstract data types, classes in most OO languages have unfortunate-

ly dropped the strict information hiding requirement of permitting only routines 

in the interface definitions, by allowing data types to be declared alongside 

methods. This saves programmers a little work in some cases, but it has the un-

fortunate effect that a class, unlike an abstract data type, cannot have different 

implementations. (This is also excluded by the fact that a class serves both as a 

type and an implementation.) 

The most interesting new step which was introduced through OO program-

ming is "inheritance". The basic idea of inheritance is that the objects of a class 

can "inherit" features from another object class. (We shall call the class from 

which features are inherited the parent class, and the class which inherits them a 

child class.) The relationship between these parent and child classes is often de-

scribed as an "is-a" relationship. For example we might say that a student (child 

class) is a person (parent class) or that a savings account (child class) is a bank 

account (parent class). Typically OO (object oriented) languages allow parent 

classes to be extended and hence specialised in child classes. (A student is a spe-

cialised kind of person, a savings account is a specialised kind of bank account.) 

In this way a class person, for example, can be specialised in many different 

ways, e.g. as a student, a teacher, an administrator, etc. This allows the parent 

class defining person be re-used in all the various child definitions. And child 

classes can be treated in programs as if they were the parent class. Thus for ex-

ample if a university wishes to send a letter to all persons connected with the 
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university, it could obtain their addresses (which would be part of the parent 

class person) using the same code, regardless whether they are in fact students, 

academics or administrative staff. This is an example of the more general idea 

called polymorphism. 

10 Qualifying Types 

Qualifying types, an extension of object oriented programming, is the name of a 

software structure which is currently not widely known, but which will play a 

significant role in our later discussions of security and protection. An initial ver-

sion of the idea was published in 1997 [121] under the name attribute types. The 

idea has since been extended considerably and incorporated into the Timor pro-

gramming language, a new OO language developed to provide SPEEDOS with 

programming language support for the novel features which cannot be pro-

grammed in normal programming languages. An overview of Timor appears in 

[87]. In accordance with the above discussion (and in contrast with OO lan-

guages such as Java and C++) it strictly enforces the information-hiding princi-

ple. 

Timor differs from other programming languages in that it supports not on-

ly the normal OO concepts but also qualifying types [122, 123] (and many other 

protection-related features needed for SPEEDOS [124, 125, 126]). 

A qualifier is an instance of a qualifying type which has all the normal fea-

tures of objects, including its own data and methods. But it also has some special 

methods, known as bracket methods, which are designed to bracket the code of 

other objects. There are two kinds of bracket methods, call-in and call-out 

brackets, which are activated differently from normal methods. 

10.1 Call-In Bracket Methods 

When one object calls a method of another, this can be represented as shown in 

Figure 13.4: 

 

A qualifier can be associated with a target object such that its call-in brack-

et methods can "catch" a normal method invocation before it reaches the target 

object (i.e. its qualified object), i.e. instead of the code of the method of the tar-

get being invoked, the code of the appropriate call-in bracket method is invoked 
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[122] (see Figure 13.5). 

 

Depending on how it has been defined, the bracket method may have ac-

cess to the parameters which the client object intended to pass to the qualified 

object. But it has no access to the data of either the client object or of the quali-

fied object. 

10.2 The Body Statement 

A call-in bracket method contains normal code, but it has one extra feature, 

called a body statement. The effect of this is to call the method of the qualified 

object which the client originally intended to call. This organisation of bracket 

methods gives its programmer a number of interesting options. 

10.3 Augmenting Bracket Methods 

Additional code can be added before calling the qualified object (in the part of 

the bracket method called a prelude). This code might for example access syn-

chronising variables in the data of the qualifier, thus causing an unsynchronised 

qualified object to be synchronised [127]. Or from the security viewpoint it 

might for example maintain a log of calls to the qualified object which can later 

be printed out or analysed by another computer program to detect attempts to 

hack the qualified object. 

 

When the method of the qualified object has completed its task, it returns to 

the postlude section of the call-in method (i.e. the statements following the body 

call). In the postlude section it can, for example, reset the synchronisation varia-
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bles. This option, which augments the qualified object, is shown in Figure 13.6. 

10.4 Testing Bracket Methods 

Code in the prelude can check some condition (e.g. a security condition) and 

depending on the result might decide not to invoke the interface method of the 

qualified object. The result might be that the target object is not called at all. 

This is illustrated in Figure 13.7. 

 

10.5 Replacing Bracket Methods 

Finally, the bracket method need not contain a body call at all (not even in a 

conditional statement). In this case the target object is in effect replaced by the 

qualifying object. One possible use of this is to set up a qualifier as a decoy 

which can be used as a disinformation technique. Figure 13.8 illustrates this pos-

sibility. 

 

10.6 Multiple Qualifiers 

More than one qualifier can be associated with a qualified object. In this case 

there is a defined order such that the first is invoked as a result of a routine call 

from a client object, the next is then invoked if this makes a body call, etc.; a 

body call from the final qualifying object (if it ever happens) results in the target 

object being called. The postludes are executed in reverse order. 
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10.7 Call-Out Bracket Methods 

The principle of call-out bracket methods [123] is similar to that of call-in meth-

ods, except that 

a) they are triggered by a call from a qualified object to some other object (the 

call-out object); 

b) a call statement (cf. the body statement for call-in methods) is used if the 

call-out bracket decides to pass the call on to the call-out object. 

The basic concept is illustrated in Figure 13.9, where a qualifying object has 

both call-in and call-out bracket methods. However, a qualifier can be pro-

grammed to have only call-in or only call-out routines if that is appropriate. 

 

Call-out brackets can be freely programmed to include or omit a call state-

ment, and can optionally place it in a conditional statement. 

 

At first sight it might be thought that call-out routines are superfluous, with 

the argument that they could be implemented as call-in brackets of the call-out 

Figure 13.9: A Qualifier with Call-In and Call-Out Bracket Methods 
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object. However, this is not the case, because a call-in bracket is activated 

whenever the qualified object is called, while a call-out bracket is activated each 

time the qualified object makes a call to another object, not each time the called 

object is invoked. However both a client object and its qualified object can be 

qualified (usually, but not necessarily, by different qualifier objects), as is shown 

in Figure 13.10. 

11 Conclusion 

In this chapter we have discussed the software crisis which became apparent in 

the 1960s and is still largely with us today, despite many advances in software 

technology. A major reason for limited success of current software technology is 

that researchers have focused almost entirely on achieving improvements at the 

level of individual programs, whereas a major cause of the problems lies in the 

conventional methods used to structure software at the system level. 

We have spent a good deal of space in describing both currently used ob-

ject oriented programming techniques and an extension to the OO technique, 

called qualifiers, a feature of the Timor programming language which is not 

found in conventional OO programming languages. Although object oriented 

techniques, like most other software techniques which have been developed 

since the N.A.T.O. Conferences in the late 1960s, have been produced primarily 

to solve problems involving small and medium level software components, we 

shall see in the next chapter that these, unlike many other techniques, can be 

scaled up to provide solutions for the larger problems of software structuring at 

the level of operating system design.
50

 What is even more important is that they 

also turn out to provide a framework which makes it relatively easy to improve 

vastly the security of future software systems, as we shall also see in the next 

chapter. 

                                           
50

  If an application program is programmed in Timor it is possible to use qualifiers both 

within the individual program (implemented by the Timor compiler) and at the inter-

module call level. 



 

  

Chapter 14 

Modules and Protection 

 

This chapter builds on the ideas of information hiding, abstract data types 

and object orientation, discussed in the previous chapter, to develop a frame-

work which will allow entire systems – not merely the content of individual 

programs – to be flexibly decomposed into modules with properties which not 

only eradicate the fundamental structuring problems in current systems but 

which can make a significant contribution to improving the security of software 

systems. 

But before embarking on this task we observe that there are two quite sepa-

rate and orthogonal aspects to software structuring which are often confused in 

practice. First there is the static structure of a software system, which is con-

cerned with its decomposition into modules. These static modules can be viewed 

in isolation from each other as components which are separately programmable. 

In principle, and often in practice, it should be possible to re-use the same mod-

ules as components of different systems and to replace these modules with new-

er versions, for example to improve the efficiency of the system. 

These modules can be compared with the physical components of other 

systems, such as the motor or the electrical system of a car. And like such major 

components of a car, major software modules are themselves decomposable into 

modules of smaller granularity. The use of object orientation as a method for 

decomposing large granularity modules into smaller granularity objects was dis-

cussed in the previous chapter. In this chapter we tackle the issue how complex 

software systems themselves can be decomposed statically into major units. 

Independently of their static structure, software systems also have a dynam-

ic structure, which is visible during the execution of code in a system. This is 

concerned not with modules but with processes. This dynamic aspect of systems 

is not discussed in the present chapter, but will be the subject of the following 

chapter. 
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1 Programs and Files 

The ideas of information hiding, data abstraction and object orientation repre-

sent interesting and fruitful developments in the quest for better software struc-

tures. But they have been developed and used primarily as techniques concerned 

with the internal structuring of individual programs. In other words they have 

been used to shape the components into which traditional programs are decom-

posed, but they have scarcely influenced the structural design of large software 

systems. The conventional decomposition of software systems (as programs and 

data files) is still that in common use, and is the only approach supported by 

conventional programming languages, operating systems and computer architec-

ture. 

However, the decomposition of application systems into programs and data 

files as separate units is particularly harmful, because it creates separate major 

system components which have to interact with each other in an extraordinarily 

detailed manner. With programs serving as the major modules at the system lev-

el, interactions in the system take the form of file reads and writes. Consequent-

ly interfaces have to be precisely defined in terms of detailed file data structures 

which are used by programs that may otherwise execute independently of each 

other. The result is that instead of complex interactions being hidden within a 

module, they are visible on the interfaces between different modules. 

This raises some interesting questions. Can the information hiding, data ab-

straction and object orientation techniques which are effective at the program 

component level scale up for use in substantial software systems? Can they 

serve as criteria for determining the major units when decomposing entire sys-

tems? 

As we consider these questions it should be kept in mind that we are 

searching for software structuring techniques which will function well in a very 

large persistent virtual memory (see Chapter 12). It will therefore be helpful to 

free our thinking from the traditional dichotomy created by conventional com-

puter architectures and by conventional operating systems, which divides the 

memory of computer systems into a computational virtual memory and a file 

system. A uniform persistent virtual memory gives us much more freedom to 

think about supporting unconventional software structures. 

What happens if we use these software structuring techniques at this higher 

level of system decomposition? The most obvious change is that conventional 

data files can be replaced by information hiding, object oriented abstract data 

types. This is an idea which I first published with a research student as long ago 

as 1982 [128]. One of its major advantages is that it creates the possibility of 

basing file protection and security on the semantic operations associated with 
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the file. This results in a much more powerful form of protection than conven-

tional file system protection based on the right to read and/or to write files. That 

is a theme which will be developed in later sections. First we first mention some 

of the advantages which it brings in terms both of software engineering and of 

simplifications to the structure of operating systems. 

2 Object Oriented Files 

An object oriented file is in principle very similar to the small grained object 

oriented program components which we already considered earlier, except that 

the files which are most vulnerable to security problems often consists of a col-

lection of smaller items, which we here call records. Thus instead of having a 

type definition which describes a single object, e.g. a single bank account (cf. 

Figure 13.3), a type definition for a file may (but need not) describe an object 

which consists of a whole collection of smaller objects, e.g. a file of bank ac-

counts (cf. Figure 14.1). Several of the routines on the file interface are similar 

to those for an individual bank account, except that an additional parameter is 

needed to identify the account on which a particular operation is to be carried 

out. A further routine (coloured grey) has been added which operates on the file 

as a collection of accounts. 

 

No attempt at completeness has been made in this illustration. The im-

portant point is to see that it is possible, and relatively straightforward, to define 

a typical data processing file as an information hiding object with semantically 

appropriate interfaces. 

With this approach the operating system no longer views files as raw data 

structures. Instead they appear as modules consisting of several code routines, 

which have separately defined entry points, together with an internal data struc-

ture that is not directly accessible to other modules. Furthermore, the code rou-

tines represent an implementation of an abstract type which can be used to de-

fine and implement many different file instances. 

Figure 14.1: A File of Bank Accounts 
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What effects does this approach imply for the design of conventional pro-

grams? First, they become smaller. Much of the code which is held as internal 

routines of conventional programs (see Figure 14.2) is transferred into file mod-

ules (see Figure 14.3). 

 

 

But that is not the end of the story. In conventional systems the semantic 

routines appear as internal subroutines; hence they need never appear in a speci-

fication. This explains to some extent the mismatch which is commonly found 

between the application user's expectations of a system and the actual imple-

mentation. If the most important operations do not appear in software specifi-
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cations, how can they be expected to be correctly implemented? What is worse, 

the same operation often appears (probably with different implementations) in 

several programs, as Figure 14.2 shows. The reason is that in conventional sys-

tems the semantic operations associated with a particular human activity or work 

role are collected together into a single program, because only entire programs – 

not semantic operations – can be protected in a conventional system. Since the 

same operations are often needed by several types of user with different protec-

tion requirements (in our example bank tellers, branch managers and head office 

accountants) they must appear in each of these programs. On the other hand the 

semantic operations on files appear only once in the scheme proposed above, i.e. 

within the file itself, as Figure 14.3 shows. 

One effect of this structure is that programs can become much simpler, 

consisting largely of control routines which invoke the semantic operations of 

files. It is the absence of such a division of labour between programs and files 

which makes the maintenance of software systems far more difficult than it need 

be. This can be illustrated by considering the changes which banking systems, 

for example, have undergone over the last few decades as a result of a series of 

technological changes. 

Early banking systems, like other early commercial data processing sys-

tems, were batch processing systems. In such a system information about bank 

accounts was typically held on a magnetic tape, called the "master" file, in a 

fixed sequence (ordered for example by increasing bank account number). The 

day's banking transactions were collected together each evening, they were en-

coded onto punched cards and then were read into the system. There the transac-

tions were checked for consistency, reasonableness and so, and after that they 

were copied onto a second magnetic tape and sorted into the same order as the 

master file. In the next step the master file update program would read the trans-

action file and the main file together, and created from them a new master file 

on a different magnetic tape. This program included the code for processing the 

individual transactions and modifying the banking data, recording deposits, 

withdrawals and transfers, authorizing overdrafts, etc. In the final stage relevant 

information was printed about the day's transactions. On the next evening the 

transactions for that day were vetted, sorted and read against the master file, and 

yet another new master file was created. 

The control code in the master file update program basically consisted of a 

large loop in which the next transaction was read and the appropriate routine for 

the deposit, the withdrawal, etc. was invoked. It was in this program that the se-

mantic routines were buried. Since they did not appear on the interfaces of the 

programs they did not need to be specified in the design documentation. 
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The whizzing tapes seen in computer rooms in science fiction films are re-

minders of that era. These were eventually replaced by files on disc, but alt-

hough disc accesses need not be sequential they were often used as if they were 

sequential tapes to minimize the changes to the system. 

The next stage in the development of banking systems was the introduction 

of on-line terminals for the bank staff. For those banks adventurous enough to 

introduce on-line updating of the master files on disc, a transaction processing 

monitor program was needed, which would read transactions from terminals, 

process them and update the master file – by this time a disc file with the rele-

vant accounts being accessed directly. Different control routines were needed in 

the transaction processing monitor, but although the basic semantic file opera-

tions (deposit, withdraw, etc.) had not changed, new routines to implement them 

were needed in the transaction processing monitor. 

The next development was the introduction of ATMs (automatic teller ma-

chines), from which customers can directly initiate transactions. New programs 

were needed with new control routines to read in the customers' plastic cards, to 

check PIN numbers etc. And again the basic banking operations, although these 

had not changed, had to be incorporated into new programs, which typically 

meant that they also had to be rewritten. 

Then on-line customer banking from home computers was introduced, once 

again requiring new programs to access the banking files. This time other pro-

tection requirements had to be built in, but although the basic banking opera-

tions did not change, these once again had to be incorporated into the new pro-

grams. 

In the final banking development (at the time of writing) customers were 

given the opportunity to access their accounts from their smartphones. This im-

plied yet another set of software developments in which banking routines had to 

be incorporated into new programs. 

We see from this example how the separation of software into monolithic 

programs and data files is not adequate as a structuring tool. The alternative 

which we are proposing, i.e. associating files with their semantic operations and 

having separate programs which primarily consist of control code, is a natural 

consequence of rigorously following the information hiding principle. The re-

sulting clear separation between semantic operations and control code makes it 

straightforward to modify the file modules when banking operations change or 

the control modules when for example the technology changes. Such a separa-

tion of concerns would go a long way to reducing the maintenance costs of 

SPEEDOS systems. 



Chapter 14 MODULES AND PROTECTION 210 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

3 Protection Advantages 

The substantial advantages of using semantic routines as a basis for defining 

semantic access rights was already pointed out in chapter 2 section 3.2. Later in 

this chapter we will see how SPEEDOS uses semantic access rights as one of the 

foundations of its protection mechanisms (see also [23]). 

4 A Uniform Module Structure 

In the previous sections we developed the view of a persistent file as an infor-

mation hiding object which is characterised, from the viewpoint of the operating 

system, as a module with multiple code entry points and a hidden persistent data 

structure. As we shall now see, such a framework can be used not only to im-

plement file objects, but can provide a general software structuring framework 

to implement any kind of major software resource which might be needed. 

4.1 Programs 

A program fits very nicely into this framework. Although conventional pro-

grams do not always need a persistent data structure, their structure can be re-

garded as a rudimentary form of the module structure under discussion. In fact 

most programs need some sort of a heap for storing data structures. Furthermore 

there are often special files associated with programs, such as a "preferences" or 

an "options" file, defining what options a particular user prefers when he is edit-

ing (e.g. default font, character size, style settings) or drawing diagrams (e.g. 

centimetres or inches, page size, guidelines and rulers) etc. Such information can 

be accommodated in the proposed module structure as a persistent data structure 

of a "program". In this case the program effectively plays the role of type man-

ager for the preferences information. (Of course if such a data structure is non-

trivial it should itself be implemented as a separate information-hiding file.) 

The design of conventional programming languages and operating systems 

usually restricts programs to having a single entry point. However, the module 

structure under discussion can easily support multiple entry points. Assuming 

that an operating system design allows programs to have many entry points, 

which can for example be invoked by a command language interpreter (or an 

equivalent graphical interface), this will turn out to be very useful in practice. 

For example instead of having two nearly identical programs for calculating sal-

aries, one for those employees who are paid weekly and another for those paid 

monthly, it becomes possible to have a single program with two (or more) entry 

points. Similarly a provider of software games need not produce separate pro-

grams for chess, draughts, fox and hounds, etc. He can instead sell a single pro-

gram with different entry points for these games. When he develops this multi-

ple entry point program it needs only one common graphics routine for drawing 
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the chess board, for example. The interface for a games compendium is illustrat-

ed in Figure 14.4. Allowing a program to have multiple entry points can only 

make it more flexible! 

 

Another point should be considered if programs are to be integrated into the 

same module structure as files. The single program entry point supported by 

conventional languages and operating systems is restricted by programming lan-

guages and operating systems to be either completely parameterless or to have a 

very special "parameter" mechanism, which for example only allows an input 

and an output "file" to be nominated. In practice it would be far more useful to 

allow a wider range of parameters, specified in the same way as parameters for 

other routines. Then it would become feasible for example to develop a "pocket 

calculator" program with multiple entry points, such that each entry point corre-

sponds to one of the calculator operations with its input and its result being pro-

vided as normal parameters. 

4.2 Subroutine Libraries 

We now begin to see that the distinction between a program and a subroutine 

library, supported as a separate mechanism by most operating systems, is rather 

artificial. After all, a pocket calculator is just a simple subroutine library. The 

principle characteristic of many subroutine libraries is that they provide a related 

collection of routines which have entry points that can be independently in-

voked, and which simply carry out calculations. For such subroutine libraries the 

proposed module structure can be used without adding or changing anything. 

We refer to these as external subroutine libraries. 

However there are subroutine libraries which have a somewhat different 

character, although they can still be adequately defined as information hiding 

modules. These are libraries which manipulate or help to organise the – often 

persistent – data of a client module (e.g. a character string library, a collection 

library). These need the ability to access and modify the data of some other 

module, and efficiency dictates that this access should be direct. The best way to 
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view such libraries is not as independent libraries but as useful extensions to the 

code module of the file module for which they provide a useful service. In the 

sequel these are called internal subroutine libraries. 

4.3 Operating System Modules 

In conventional systems, operating system modules are usually handled by spe-

cial mechanisms. With the proposed module structure, this becomes unneces-

sary. Let us consider a few examples, starting with a process scheduler module. 

Figure 14.5 gives an impression of how this can be implemented using a uni-

form module structure. 

 

Another kind of operating system module, a file directory (sometimes 

called a folder, but which we now call a module directory), is rather like a file. It 

also fits nicely into this structure, as Figure 14.6 illustrates. 

 

Yet a third kind of operating system module, a command language inter-

preter (CLI) is structurally more like a program in older systems
51

. This too can 

be easily implemented within the uniform module framework under discussion. 
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  In modern systems the graphical interface also needs a mechanism to invoke programs. 
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In fact the functionality of a CLI can very usefully be extended slightly in a sys-

tem of the kind now under discussion. In particular much can be gained if the 

CLI is capable of invoking a selected entry point not just of a program, but of 

any module, and of passing to it the appropriate parameters. In this way any en-

try point of any module can be regarded as a potential command which can be 

directly invoked by the user. 

To achieve this technically is not particularly difficult. The details need not 

concern us here. A similar uniform module structure was realised in the MON-

ADS systems. The resulting environment is one in which programs are not spe-

cial entities. Any entry point of any module in the system can be invoked as a 

command, provided that certain template information has been supplied to allow 

the command name and the parameters to be converted into an appropriate in-

ternal format [129]. 

This kind of CLI has the advantage not only that any entry point of any 

module can be viewed as a command, but also that the CLI becomes a general 

module testing tool, because it is able to invoke any of the interface routines of 

any module under test. Even those entry points of modules which are never 

normally invoked as commands can be called in a straightforward manner and 

passed parameters to test their correct functioning. In contrast the testing of any 

kind of module except a program in a conventional system usually requires the 

tester to do considerable work to construct a suitable test environment. 

4.4 Device Drivers 

Hardware devices, such as printers, keyboards and monitor screens, are usually 

interfaced to the rest of an operating system and/or to application programs by 

software modules called device drivers. Such drivers are specialised software 

modules usually provided by the manufacturers of the hardware or by the oper-

ating system supplier. The interface between the device driver and the device 

itself can be quite complicated, but there is no reason why the driver itself can-

not be designed as an information hiding module. 

5 The Proposed Module Structure 

The uniform module structure described above requires that all modules, how-

ever simple or complex, in principle require only two containers
52

, viz. 

– a data container, which may hold persistent data, but also temporary data 

created during the course of a computation carried out within the module, 

and 
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  Containers were introduced at the end of chapter 11 as a paged unit of virtual memory 

into which segments can be placed. 
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– a code container, which holds the code segments of a module, but which in 

practice can include a mechanism for switching control to certain subrou-

tine libraries that provide assistance in manipulating and organising infor-

mation in the data container. 

How such containers are organised will be discussed in later chapters. 

6 Simpler Operating Systems 

Through adapting the ideas of information hiding, data abstraction and object 

orientation we have arrived at a module structure capable of implementing any 

kind of software resource needed as a major component of a software system. 

This framework has the remarkable property that it can equally well be used to 

implement files, programs, subroutine libraries and even operating system mod-

ules. 

In conventional systems these different kinds of modules are usually im-

plemented using quite different operating system mechanisms and thus make 

operating systems far more complicated than is really necessary. Part of this un-

necessary complexity arises not only from implementing different module struc-

tures as such, but also from the fact that further mechanisms have to exist in or-

der to allow these different kinds of modules to interact with each other. For 

each pair of module types which can be linked, at least one linking mechanism 

is necessary. These linking mechanisms are often all different. To link a pro-

gram to a subroutine library is usually quite different from linking it to an oper-

ating system module and this is different again from linking it to a file, etc. In 

conventional operating systems the number of potential linking mechanisms 

grows as the square of the number of kinds of modules. 

Not all potential linking mechanisms are implemented in practice in con-

ventional operating systems. For example a subroutine library may normally not 

invoke a program and an operating system module may not invoke a subroutine 

library routine. So in practice the operating system is complicated not only by 

the fact that it implements modules in different ways but also that it has to pro-

vide a variety of different linking mechanisms. And even then it does not allow 

all linking possibilities! 

By contrast the uniform module structure proposed in this chapter requires 

only one kind of mechanism to implement the module and only one mechanism 

to link any module to any other module, namely a mechanism which allows the 

code of a module to invoke an entry point of another module. Strange as it may 

sound, a "file module" can now call the operating system, or a subroutine library 

can invoke a program, etc. without any special mechanisms (but subject to the 

usual protection rules). 
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7 Protecting Modules 

But what has all this to do with security and protection? The answer is that this 

single linking mechanism can be extended to create a powerful basis for check-

ing access rights, and so provide a single very straightforward protection mech-

anism when any kind of software unit is called. A hint of this possibility was 

already given in Chapter 2 in the initial discussion of semantic access rights. 

Semantic access rights determine which semantic routines may be invoked, 

i.e. which semantic routines of major modules of a system as discussed in earlier 

sections of this chapter. A uniform protection mechanism based on semantic ac-

cess rights can be embodied in the module invocation mechanism. That is, when 

a process executing in the code of a major module invokes a semantic operation 

of another module its right to make the call can be checked by the kernel. The 

implementation of such checks can in principle be based either on capabilities or 

on access control lists. 

8 Capabilities or Access Control Lists? 

As was described in Chapter 2, capabilities are stored with subjects and they 

name the objects to be protected, while ACLs reside with the objects and contain 

lists of subjects. Maintaining lists of subjects is potentially a rather complex 

matter. Subjects, as we saw in Chapter 2 and will see in more detail in the sec-

ond volume, are not necessarily simply users. When a module is invoked, the 

right to invoke it may be vested in the user process, in the file module making 

the call or even in the code module implementing its semantic routines. 

For example in a banking system security might be enhanced by ensuring 

that the right to call some semantic interfaces of a bank accounts file does not 

(only) depend on the identity of the calling user, but also (or only) on the identi-

fier of the code module accessing the interfaces, thus ensuring that these are not 

being called from a hacker's program. 

From the viewpoint of the kernel's design, carrying out such extensive 

checks based on access control lists would lead to an extremely complicated 

kernel.  This complexity can be avoided if the checking of access rights is based 

on capabilities rather than ACLs (provided capabilities can easily be associated 

with different kinds of subjects, which we shall demonstrate later). 

For this reason the protection of modules in SPEEDOS is based on the pos-

session and presentation of capabilities for modules, not on ACLs. We now con-

sider some of the implementation issues involved in this decision. 

9 Module Capabilities and Inter-Module Calls 

A module capability (see Figure 14.7) consists of a unique module identifier, an 
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associated set of permissions and some status bits. The list of permissions can be 

divided into three basic groups. The first group contains the list of permissions 

to call the entry points of the semantic routines associated with the module
53

, the 

second contains generic access rights associated with the module and the third 

contains the metarights associated with the capability itself (see Chapter 2). In 

Chapter 16 these fields are discussed in more detail. 

 

In earlier capability systems the capabilities were normally stored in capa-

bility lists (C-Lists). However, they can be more flexibly used if they can be 

stored like other data in user modules. This is possible using the idea of parti-

tioned segments (discussed in Chapter 10 section 2.4), which allow not only 

simple pointers (as discussed there) but also capabilities to be stored in any 

segment of any container. They are protected from arbitrary changes by the fact 

that they can only be created and managed by the SPEEDOS kernel, which only 

makes the data sections of partitioned segments directly accessible for normal 

user access. 

In order to make an inter-module call (i.e. to invoke a semantic routine of 

some other module) the calling process/module must provide the SPEEDOS 

kernel with a capability which (a) uniquely identifies the module to be called 

(i.e. the unique module identifier in Figure 14.7) and (b) contains a list of the 

entry points which it may legally access (i.e. the semantic access rights in Figure 

14.7). Thus the module capability is used as an operand for the inter-module call 

instruction. As a second operand the caller nominates the particular semantic 

operation to be invoked. It then becomes a function of the kernel to implement 

the inter-module call instruction in such a way that the call may proceed only if 

a permission for the requested semantic operation is contained in the list of se-

mantic access rights. 

A simple implementation of this might involve numbering the entry points 

of each major module with integers starting at zero. Taking the bank account file 

module in Figure 14.1 as an example the operation "open account" might be 
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  This implies that, in accordance with data abstraction and information hiding principles, 

the interface of a major module is always framed in terms of semantic routines. Direct 

access by one module to the internal data of another module is not permitted (in contrast 

with the laxer conventions used for small grain objects in most OO programming lan-
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numbered 0, "close account" 1, "deposit" 2, "withdraw" 3, and so on. Then the 

semantic access rights in the module capability are implemented as a "bit list" in 

which each bit represents an entry point. Bit 0 in the list indicates whether the 

operation "open account" can be called, the next bit whether "close account" 

may be called, and so on. If the appropriate bit is set to one the presenter of the 

capability has permission to invoke the corresponding entry point of the module, 

but if it is set to zero the entry point may not called. This is illustrated in Figure 

14.8. The unique identifier in the capability indicates the container for the file 

data of the module. (From this the code container can then be located.) 

 

10 Protecting File Modules 

One of the basic ideas behind the object oriented philosophy is that a system 

may contain many objects which are instances of the same type. This principle 

applies not only to the small and medium granularity objects found in conven-

tional object oriented programs, but also when object oriented techniques are 

used as a tool for decomposing systems into major objects. For example, there 

may be many bank account files in a system (e.g. files for each branch of a 

bank). Thus the protection of semantic operations must be organized on the ba-

sis of individual files rather than on the basis of the code module implementing 

the operations. 

This implies that the module number in a file capability (i.e. a module ca-

pability for a module with persistent data) refers to the unique identifier of the 
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container holding the persistent data structure part of the module, i.e. a persistent 

heap container number. From this the inter-module call mechanism must then be 

able to locate the container of the associated code module (i.e. a code execution 

module produced by a compiler) in order to activate the required entry point 

(subject to the access rights held in the capability) but of course only in associa-

tion with the appropriate file. This is illustrated in Figure 14.9. 

 

Notice that with this organisation the right to access a file module implies 

the right to use the associated code module. This is essential to guarantee pro-

tection based on the information hiding principle. If the caller of a file module 

were permitted to nominate an arbitrary code module for use with a file then the 

entire basis of semantic protection would be undermined. The kernel design 

must guarantee that this requirement conforms with the protection of proprietary 

software at the time a link is set up between a file module and its code module, 

which implies that the pointer to the code module should be a code capability. 

When a semantic routine is activated, the calling process is given access to 

the persistent data in the file container. The run-time code created by the com-

piler can also set up an internal process stack, etc. in the file container. Infor-

mation about the code organisation (e.g. entry points for the semantic routines) 

is held in the code container and the kernel activates the appropriate semantic 

routine. 

11 Protecting Code Modules 

The simplest kinds of modules in a system of the kind envisaged in this chapter 

are code modules, i.e. those code modules which do not encapsulate a persistent 

data structure (other than constant segments). If used directly (rather than via a 

file capability) these correspond to both programs and subroutine libraries in 

Figure 14.9: Calling a File Module 

Unique Module Identifier Semantic Rights 

A Module Capability for a File 

Container 

Holding 

File Data 

Container 

Holding 

Code 

Code Capability 



Chapter 14 MODULES AND PROTECTION 219 

 SPEEDOS – MAKING COMPUTERS SECURE  © 2012, 2021 J. L. Keedy  

conventional systems, since they may have more than one protected entry point. 

For them the protection mechanism is very straightforward. Assuming that all 

code is re-entrant, there is no need to create a separate "instance" of the module 

before invoking one of its entry points. However each such code module does 

have a single "temporary" data file permanently associated with it, in which the 

temporary information generated by processes (e.g. internal process stack) is 

stored as the code is executed. In this case the unique module identifier supplied 

as an operand to the inter-module call mechanism identifies the temporary con-

tainer.  

This mechanism can be used to validate the right to use proprietary soft-

ware. In order to invoke a code module the caller (e.g. a CLI on behalf of a user) 

must present a module capability containing the correct access rights to make 

the requested call. Thus only a user who actually has permission to invoke the 

appropriate entry point into a program can do so. If he has no right to access 

proprietary software (or if the access rights limit him to a subset of the routines) 

then the inter-module call mechanism prevents the misuse of the software by 

refusing to carry out an invalid call. 

12 Protecting Internal Objects 

With the decision to provide a basic protection mechanism which works at the 

file level, it might appear that we have created a different problem. It could be 

argued that the objects which require protection are not the file objects in a sys-

tem but the smaller granularity objects within the files. For example, it may 

seem that what needs to be protected in a banking system are not bank account 

files but the individual accounts in the files. While this view has some merit, we 

must keep firmly in mind that the discussion in this chapter is concerned solely 

with the basic protection mechanism which is centrally implemented to control 

interactions between the major modules of a system. A central protection mech-

anism in a kernel must provide certain basic guarantees about the security of a 

system, but it cannot be treated as a substitute for application implemented secu-

rity measures. What is important is that the central mechanism does not interfere 

with or restrict such additional measures. 

13 Conclusion 

We have now established an alternative framework for statically decomposing 

software in a secure system. It involves defining all modules as information hid-

ing object oriented modules in the persistent virtual memory. In this way higher 

level protection can be based on the right to invoke the semantic operations of 

modules (with the memory architecture guaranteeing that a process executing 

within a module is confined to accessing only segments related to that module). 
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But the significance of this model is not merely that access rights have been 

defined in terms of semantically appropriate operations. Although this alone rep-

resents a significant step towards building secure systems, it also has some fur-

ther advantages which should not be overlooked. 

First, it binds a specific code module to a specific file. The significance of 

this should not be underestimated. In conventional systems there is no rule about 

which code modules can be used with which files in the file system, and that 

goes a long way towards explaining how hackers can write their own "hacking" 

programs and then use them to access files. 

Second, in one fell swoop an enormous amount of complexity which exists 

in conventional systems has been eliminated. The file system has all but disap-

peared. The complex handling routines for different kinds of software units in 

conventional systems (and the mechanisms for linking between them) have also 

been replaced by a single module structure and a single linking mechanism (i.e. 

the inter-module call mechanism). As was argued in Chapter 1, a good part of 

the security problem is created simply by the existence of multiple mechanisms 

and the complexity which goes with it. 

Third, the issue of structuring the data efficiently for "files" (e.g. indexed 

sequential, B-Trees, etc.) has now been relegated to the compilers. To see how 

this can be done, see the Timor language description [87]
54

. 

Fourth, although we still have to discuss how the persistent virtual memory 

can be efficiently implemented, we have at least in principle eliminated the inef-

ficiencies of conventional memory by providing direct addressability. 

We now turn to the question of organising processes in the virtual memory. 
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  The Timor language description can be downloaded at the Timor website 

(https://www.timor-programming.org/) 



 

  

Chapter 15 

Processes and Protection 

 

The previous chapter emphasised the static aspects of a system, showing 

how information hiding modules can form a basis for designing secure systems. 

But that is only one side of the coin. To be useful the software must be executed 

on a CPU. Here we consider in more detail than previously how this more dy-

namic aspect of a system might be organised in a secure way. 

1 Process Structures 

In Chapter 8 section 9 two ways of decomposing an operating system into pro-

cesses were described. The first and most widely used technique (out-of-

process) involves having a separate process for carrying out each operating sys-

tem activity. Applied to the concepts developed in the previous chapter it would 

mean that a separate process is needed for each major (code, operating system 

and file) module in a system. 

The alternative is the technique implemented in the B6700 (in-process), 

where operating system services are executed in the application's own process. 

This means that the major modules of a system do not each have a process of 

their own but are invoked as routine calls within the application process requir-

ing their services. 

Lauer and Needham [47] concluded that these alternative process models 

are duals of each other. But as was already mentioned in Chapter 8, they have 

some fundamentally different characteristics both with respect to protection and 

security and with respect to their dynamic properties. Before examining the se-

curity aspects we take a more detailed look at some of the more important dy-

namic properties of the two models. 

1.1 Dynamic Process Properties 

With the out-of-process model each module provides a set of services in its own 

process, i.e. out of the application process and on its own stack. When a module 
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(the client module) requires the services of another module (the server module) 

it creates a message indicating which service is required, followed by further 

information relevant to the request. 

The equivalent in-process action is for the client module to call a routine in 

the application process (i.e. on the stack of the application process) where the 

required service corresponds to the destination routine of the service module, 

and provides as parameters on the stack further information relevant to the re-

quest. 

 In the out-of-process case a process stack is associated with each module 

whereas an in-process stack potentially contains information relating to many 

modules. As was explained in Chapter 8, the in-process organisation also poten-

tially leads to greater parallelism. 

But more significantly from the viewpoint of protection, an out-of-process 

module is normally executed as a continuous loop, taking messages from clients 

one after another out of its message buffer (see Figure 8.6), analysing these in 

turn to determine which service is required and then processing them one by 

one. Consequently the individual services are not visible at the architectural lev-

el, but only within the module's request analysis code. However the services cor-

responding to these encoded messages are in fact equivalent to semantic rou-

tines. But since they are not visible at the architectural level they cannot be pro-

tected at the architectural level in the manner described in the last chapter. 

On the other hand, if a module is defined as an information hiding module, 

the semantic routines are visible as interface routines of the module, and can be 

directly invoked individually. This corresponds well with the in-process model, 

because in that also modules are invoked via their individual routines. 

A further significant point is that in its normal implementation the out-of-

process model requires a separate process for each service module. With the in-

troduction of a persistent virtual memory, each file in the system in effect be-

comes a service module for its users. The implication of this is that each file in 

an out-of-process system would also have its own process. Consequently the 

process scheduler (the most important module in the system from the viewpoint 

of efficiency) would either be cluttered up with an extra process for each file in 

the system, or would have to create and delete processes dynamically as users 

open and close files! 

We conclude therefore that the in-process model and the idea of infor-

mation hiding modules are natural partners which both lead to greater efficiency 

(through greater potential parallelism and less process scheduler overheads) and, 

above all, to better protection (through semantic routines). 
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1.2 Further Advantages of the In-Process Technique 

Some further characteristics of processes are affected by the choice of process 

structuring model. For example, in a system where users are charged for the 

CPU time they use or have a limited budget of CPU time at their disposal, the 

process scheduler must keep a record of how much time is consumed by each 

user. In an in-process system the time used by an application process corre-

sponds to the sum of the CPU time spent executing his own program and that 

spent on his behalf in operating system service routines (and, in our model, 

while accessing files), because the process scheduler is not involved in module 

invocations and therefore cannot (but also need not) record these. The effect is 

that the process scheduler records the amount of time each user genuinely costs 

the system. 

But in an out-of-process system the CPU time used by an operating system 

process cannot easily be charged to the user who requests operating system ser-

vices, because an operating system service runs continuously regardless of the 

user for whom the service is being performed, and therefore the amount of CPU 

time consumed by different users is not known to the process scheduler. To pro-

vide a more accurate measure based on individual users would create even fur-

ther inefficiency in the system. While the amount of time spent in operating sys-

tem modules by all applications taken together (which would be what the pro-

cess scheduler can easily calculate in an out-of-process system) may be of inter-

est for statistical purposes, it is useful neither for budgeting nor for charging 

purposes. 

Similarly the priority of a process in an in-process system represents the 

user's priority, regardless whether it is executing in the application program it-

self or in an operating system routine. But in out-of-process systems it is usual 

to give operating system processes a higher priority than user processes. To un-

derstand why the in-process form is the natural choice, consider the (deliberately 

unrealistic) example of a system in which a nuclear power station is being con-

trolled and a payroll application is also active in the same system. It is self-

evident that the nuclear power station application should always take precedence 

over the payroll application, even when the payroll application is using operat-

ing system services. (In fact the arguments are rather more complex than I have 

suggested, but the main point is evident.) 

These points suggest that the dynamic properties of the two process struc-

turing models are not only different, but also that the more efficient and more 

natural model is the in-process one, which forms a natural partner with infor-

mation hiding modules. 
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2 Managing Inter-Module Calls 

The stack structure needed conceptually to support an inter-module call is 

shown on Figure 15.1. 

 

2.1 Linkage 

The linkage segment contains the information which is later needed to enable 

the kernel to complete the corresponding inter-module return instruction. This 

will include at least the following items: 

– the unique identifier of the calling module, 

– the number of the calling module's calling routine, 

– the offset within the calling routine at which execution should be resumed 

on return, 

– sufficient information to allow the calling routine to reload its former regis-

ter values. 

At this stage it is not necessary to determine the exact details of the linkage. For 

example there are a number of possibilities for determining how the former reg-

ister values can be restored. Such details are determined by an actual kernel de-

sign and are discussed for SPEEDOS in chapter 20 in volume 2. 

2.2 Parameters 

The parameter segment contains the parameters which will be made available to 

the called routine of the new module. These can be module capabilities or val-

ues. However, within-container pointers may not be passed as parameters, since 

that would give the called routine access to the internal data of the calling mod-

ule. Not only would that be an infringement of the information hiding principle, 

but it would also lead to a situation in which individual containers could not be 

independently garbage collected. That is an especially significant point in a sys-

tem which supports a world-wide persistent virtual memory. It will be shown in 
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Figure 15.1: Stack Support for an Inter-Module Call 
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later chapters that this apparent restriction is a non-problem. 

As in the case of linkage, the details of how parameters are passed are not 

relevant at this point. For example, the RISC philosophy requires that as far as 

possible these should be passed in registers (which in our case means the normal 

general purpose registers). However it is already clear that just as pointers may 

not be passed as parameters, so also segment registers must be invalidated on an 

inter-module call. It is also clear that module capabilities passed as parameters 

must be passed in a segment on the stack, since there is no provision for special 

registers for these. 

2.3 Local Data of Called Module 

The kernel must set up an appropriate environment in which the semantic rou-

tine of the called module can begin to execute, including where appropriate 

providing access to its persistent data. The organisation and stack structure of 

the local data will be left to the various compilers and will be held as part of the 

module's data, i.e. not on the process stack (see section 4 below). 

3 Persistent Processes 

The rest of this chapter uses a minimal notation, which we call a module stack 

frame, as shown in Figure 15.2, which is all that is necessary to discuss the sig-

nificance of making processes persistent. 

 

A process is defined as a module in a container of the virtual memory 

which holds its stack(s)
55

. Since containers are implemented in the persistent 

virtual memory, an interesting new property emerges. Process modules, like 

other modules, persist over time, i.e. they are persistent processes. (In conven-

tional systems processes cannot be regarded as persistent because they exist only 

in the computational virtual memory, which is not persistent.) Furthermore a 

user (given a capability with the appropriate permission) can have multiple per-

sistent processes in separate process modules. This arrangement introduces some 

new possibilities, including a much better protection against breaking into pro-

                                           
55

  In SPEEDOS a process is defined to consist of one or more threads, each of which has a 

thread stack. 

Figure 15.2: A Module Frame 
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cesses. 

Let us suppose that an initial process is created for a user when he is first 

introduced into a system. This can then continue to be used by him as needed 

throughout the entire time he is authorised to use the system. A variant of this 

idea of persistent processes was already implemented successfully in the MON-

ADS systems [23, 24]. We now consider the interesting effect which it can have 

on logging in and logging out of processes. 

3.1 Logging in and Logging out 

When a conventional operating system detects new activity at a terminal it es-

tablishes the authenticity of a user (usually by requesting him to provide a 

username and password) and then creates a process for the following terminal 

session. Using implicit command files (such as .login and .cshrc in Unix for 

example) and explicit commands (e.g. cd in Unix) the user then establishes the 

working environment which he needs for his process and invokes a further 

command or commands to begin the activity which he wants to carry out. 

The creation of a process and then tailoring it to the required environment 

can involve considerable processing time and file activity, which usually mani-

fests itself to the user as a delay before he can begin his real work. 

Suppose, however, that the user has a persistent process in the persistent 

virtual memory, waiting to be activated. The considerable activity involved in 

process creation can be saved (because the process already exists) and – depend-

ing on the state of the inactive process – the time spent in tailoring it to the re-

quired environment can also be saved in part or in full. To understand this we 

first consider the state of an inactive process before logging in takes place, and 

how it got into that state. In other words we first need to consider what happens 

to a process when a logout command is issued in the previous session. 

3.2 Executing Commands 

Before looking at the logout command we need to understand how a normal 

command is executed. When the user issues a basic command (or its equivalent 

via a graphical interface) he will normally be communicating with a command 

language interpreter (CLI), or in modern systems a graphical form thereof, so 

that the module frame at the top of the stack will be that of the CLI. In order to 

read a command, the CLI will call a device driver to read the command from the 

user's terminal or equivalent device. During the reading of the command the de-

vice driver module will have a stack frame above that of the CLI, but this will be 

deleted when the command has been passed back to the CLI. The stages through 

which the stack progresses during this command-reading process are illustrated 

in Figure 15.3. 
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If the command just read were a command to edit a file the CLI would 

then invoke the edit module on the stack, which would in turn invoke the file 

module for the file to be edited, as shown in Figure 15.4. 

 

3.3 The Logout Command 

Having seen in principle how the stack is used by the CLI to read commands 

and to execute them, we can consider how it implements a logout command. 

From the viewpoint of the CLI this can be implemented in a persistent system 

(in contrast with a conventional system) like any other command, so the module 

frame for the logout module is invoked above the CLI module frame on the 

Figure 15.3: CLI Invoking a Device Driver on a Persistent Stack 
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stack, just as the edit command was. 

What now happens depends on the code of the logout command. After it 

has done some housekeeping activities (such as releasing the terminal) this does 

not return to the CLI like other commands, but instead it calls a special opera-

tion provided by the kernel, which we call its "long suspend" function, as is 

shown in Figure 15.5. 

 

The long suspend function of the kernel advises the process scheduler that 

the process is to be deactivated, and in the normal course of virtual memory 

management the stack's page frames in the main memory will be copied back to 

disc and released for other use. This is the state of a logged out process. 

When at some later time the kernel detects that the user wishes to log in 

again, it advises the process scheduler that the process can now be scheduled in 

the usual way. In a timesharing or transaction processing system it may be nec-

essary to change the command input device to that at which the user now logs 

in. The kernel then exits from the long suspend routine, leaving the user process 

free to execute the next instruction in the logout module. When this exits back to 

the CLI (which is unaware that the process has been logged out) the latter re-

quests the next command in the usual way. 

This scheme is efficient in that it saves the CPU processing time and disc 

accesses involved in creating and deleting a new process for each terminal ses-

sion and in setting up the process to suit the user's particular requirements. 

It is possible to take this idea a step further. The logout module is itself a 

normal module so that it can be called from any other module which has the ap-

Figure 15.5: Logging Out a Persistent Stack 
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propriate permissions, not just from the CLI. This means, for example, that if an 

editor provides its users with a facility to log out in the middle of an edit session, 

then the invocation of the logout module can take place without returning to the 

CLI. This is illustrated in Figure 15.6. It means that even less processing time is 

required to re-establish the user's work, and it provides a very convenient work-

ing environment for the user himself. 

 

3.4 Identification and Authentication 

So far we have completely ignored the important questions of the identification 

and authentication of users when they log into a system. It would of course be 

possible to build into the kernel's long suspend routine some conventional tests 

such as the checking of a password. However, the new framework provided by 

persistent processes offers a much more powerful and at the same more flexible 

possibility for guaranteeing the security of access to processes. 

The basic idea is to separate identification from authentication, leaving the 

kernel to carry out the relatively simple task of identification and giving the user 

the opportunity to define his own authentication protocol. This is very simple to 

achieve in the SPEEDOS environment. When a user wishes to log in, the kernel 

must in any case determine which persistent process is to be activated. This cor-

Figure 15.6: Logging Out a Persistent Stack from an Editor 
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responds to the initial identification of a user by a username in a conventional 

system. Thus the kernel needs to have a mapping between user names and per-

sistent process names or numbers
56

. When a user identifies himself to the system 

the kernel activates the corresponding persistent process, as described in the 

previous section. Thus the long suspend routine exits back to the user logout 

module (in the logout routine) without any authentication checks having been 

carried out. This may appear to be a foolhardy approach. But as we shall now 

see, it can be used to good advantage to improve security, as follows. 

When the logout routine is reactivated this is the point at which to authenti-

cate the user who is attempting to log in. How this is achieved is not dictated by 

the system, as the logout routine is a user module like any other
57

. This means in 

principle that each user can himself determine what authentication tests are to be 

carried out on persons attempting to log into his process. 

In Chapter 4 it was argued that leaving the authentication of users to the 

operating system is a root cause of weak security, because it gives the hacker 

several advantages. First, he knows what he has to do to penetrate the system. 

Second the central repository of authentication information (e.g. the password 

file) implied by a centralized authentication system provides him with an ideal 

target. Both these advantages for the hacker are removed if each user can carry 

out his own authentication in whatever way he sees fit. With arbitrary user au-

thentication procedures in operation the hacker doesn't know whether he has to 

crack a simple password, a dynamic password, a cognitive password and/or 

whether he has to conform to some required actions. The possibilities are end-

less. 

In keeping with the principles of modularity, it is unwise to pack the actual 

authentication procedures into the logout module, which has important system 

housekeeping activities to carry out, such as the de-allocation and re-

establishment of the user terminal as the command source. Instead the logout 

routine simply needs the possibility to invoke a separately programmed user au-

thentication module, which carries out the tests and advises of the result. In this 

way each user can link a different authentication module to the logout module. 

This would lead to the authentication module being invoked above the log-

out module on the process stack (see Figure 15.7). It could be organised that re-

gardless how the authentication module carries out its work, it returns a simple 

binary message to the logout module, where the value true indicates that the au-

                                           
56

  If a user has multiple persistent processes (e.g. for different projects or activities on 

which he is working), then he must identify the process to be activated. 
57

  This does not exclude the possibility that standard logout modules are made available 

by the operating system or can be bought from component suppliers. 
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thentication is successful, while false indicates that it failed. 

 

The very simplest module would be one which always returns the value 

true. In other words no authentication whatsoever takes place. This might be 

useful for cases where a public service is provided by the process (e.g. a process 

for interrogating a library catalogue). More complex modules might use any of 

the authentication techniques discussed in Chapter 4 (or any combination there-

of) or any other way of authenticating users which might in future be devised. 

You might now ask what happens when a user forgets how to authenticate 

himself. In conventional systems this is usually where a superuser has to be 

called in, but that is not necessary if users themselves prepare in advance for this 

situation. A user might for example entrust a friend with a module capability 

which provides access to an entry point of the authentication module that resets 

the protection (e.g. by changing a password or by linking it to another checking 

routine). And if he doesn't completely trust a friend he might involve two 

friends, each of whom has a module capability allowing half a password to be 

changed (just as in bank vaults two keys are often necessary to unlock the vault). 

Alternatively he might have his own further persistent process(es) with a differ-

ent authentication module which can make the necessary changes or allows him 

to be reminded of a password (for example). The possibilities are endless, and a 

privileged superuser is certainly not needed for this purpose. 

4 Implementing a Process as Threads 

When a process is created it is assigned a new persistent container. The process 

Figure 15.7: Authenticating a User at Login 
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can thereafter be identified by the unique number of this container. The process 

itself does not have a separate stack. It can be viewed as a persistent "file" in 

which one or more threads can be created. Each thread has its own stack, which 

is identified by its unique thread number, consisting of the unique container 

number and its thread index, a small integer starting with 0 for the first thread 

created, 1 for the second and so on. 

The primary purpose of a thread stack is to provide the linkage and parame-

ters needed for inter-module routine calls. In contrast with the stack structure 

discussed in Chapter 8 it does not hold the local variables of the routines which 

are invoked from it. The reasons for this are that 

a) different high level languages have different scope roles which can affect 

the stack structure and the organisation and addressing of their on-stack da-

ta, and 

b) as the advocates of the RISC philosophy argued, it is more efficient for 

compilers to have the freedom to organise their stacks internally, rather 

than imposing on them an architecturally enforced structure. 

Hence the main purpose of a thread stack is to provide a framework allowing 

– the interface routines of a module to be invoked, and parameters passed to 

it; and conversely 

– the transition back to the calling routine from an interface routine of a re-

turning module, together with the return parameters. 

Since all the thread stacks of a process are organised in this way, each thread can 

invoke modules (whether operating system modules, file modules or other ap-

plications) independently of each other. However, they will often cooperate with 

each other within the same module. 

While a thread is active within a module it will typically have a "continua-

tion" of its stack in the data container of the module, which has a structure de-

termined by the compiler generated run-time code. Each thread active in the 

module has its own root segment, which is separate from the root segment for 

the persistent data of the module, but nevertheless in the same container. When 

the kernel executes an inter-module call, part of its work is to create a root seg-

ment for the thread. This persists so long as the thread is active in the module 

(even after it has called further modules), and it is deleted by the kernel when 

the thread makes an inter-module return from the module. 

As part of the inter-module call the kernel sets up a segment register which 

allows the module's code to address the persistent data while the thread is active 

and a further register to address thread-related temporary data. Both kinds of 

data are held in a single heap. While executing in the module the thread can cre-
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ate new segments in the heap and can link these into its own temporary data 

and/or the persistent data. Those segments which are only temporary are deleted 

when the thread returns back to its calling module, but any segments which it 

has linked into the persistent data structure continue to exist independently of 

the thread. 

In principle any thread can log out without causing other threads of the 

same process to be suspended. However, sometimes threads will synchronise 

their activities such that they are all deactivated together by a single thread when 

it logs out. This need not be the thread with index 0. 

5 Multiple Processes 

As hinted above, a user is not limited to having a single process module. Hence 

he can carry out independent activities in parallel (e.g. writing a letter or docu-

ment, processing email, using a spreadsheet and carrying out banking transac-

tions). By extending the model to allow a user to have any number of persistent 

processes (each potentially with several threads) he can dedicate each to a sepa-

rate use, leaving each in a different unfinished state when he logs them out. 

6 Conclusion 

A framework for structuring software in a secure system has now been devel-

oped. It involves defining all modules as information hiding modules and im-

plementing all processes as persistent processes in the persistent virtual memory. 

In this way higher level protection can be based on the right to invoke the se-

mantic operations of modules (with the memory architecture guaranteeing that a 

process executing within a module is confined to accessing only the segments of 

that module). 

It has also been shown how persistent stacks can be used to detach authent-

ication checking mechanisms from the operating system, providing the user with 

more flexibility, the hacker with less knowledge and the system with more over-

all security against hackers. 



 

  

Chapter 16 

Architectural Implications 

of the Software Model 

 

Chapters 14 and 15 outline the basic software model used to structure the 

SPEEDOS system. This model does not go into detail, but in the second volume 

a more detailed picture of the kernel and of basic operating system modules will 

emerge and a few extensions will be made, for example to introduce n-ary rou-

tines
58

, to integrate qualifiers (see chapter 13) into the model, to describe syn-

chronisation and to support internal subroutine libraries. To have described such 

features here would have led to a good deal of detail which is best left to volume 

2. However, we have now provided sufficient background information to allow 

us to complete the architectural picture which was started in earlier chapters. 

1 Containers in SPEEDOS 

Containers were introduced at the end of chapter 11 as a paged unit of persistent 

virtual memory into which segments can be placed
59

. Here we assume that mod-

ules and processes are held in segmented and paged containers. Since a contain-

er must potentially be capable of holding very large data structures for file mod-

ules, we provisionally define its maximum length as 2
64

 bytes. In reality most 

containers will be very much smaller than this, so that the paging mechanism 

must be capable of handling both small and large segments. How containers are 

structured internally will be described in Chapter 23. 

2 Worldwide Unique Addresses 

We recall from Chapter 14 that module capabilities hold a unique module identi-

fier (see Figure 16.1, which repeats Figure 14.7). 

                                           
58

  N-ary routines operate on two or more file modules at the same time, e.g. to convert the 

data from one format to another or to compare two files. 
59

  In the literature on the MONADS systems, which first implemented the orthogonal 

model, containers were called address spaces. 
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Mindful both of Bell and Strecker's comment:  

"There is only one mistake that can be made in a computer design that is difficult 

to recover from – not providing enough address bits." [104]. 

and also of the fact that the identifier should be large enough to identify unique-

ly every future SPEEDOS module in the world, we now consider how large the 

unique module identifier should be, and how it can be structured. 

Since it would be totally infeasible to have a single central registry for all 

modules, a module must be locatable from its identifier. The module identifier 

therefore includes the actual number of the container in which the module re-

sides (e.g. in the case of a file module, the container holding the file data.)  

As they appear in capabilities, container identifiers are very large numbers 

which must be unique across all SPEEDOS nodes in the Internet. Because such 

numbers need to be allocated at different individual SPEEDOS nodes, they can 

be structured rather like telephone numbers (see Chapter 2), thus enabling each 

node locally to allocate and manage its own range of numbers. Thus as a first 

approximation a container number can be defined as a pair «unique node #, con-

tainer # in node». 

Similarly node numbers can be kept unique if each company which manu-

facture SPEEDOS systems has a unique "manufacturer number" which is pre-

fixed to a unique "node number within manufacturer" for each new node. 

Containers are not simply associated with nodes, but reside on particular 

discs at a node. Hence in order to help locate a container it is helpful for the 

"container # in node" part of a container identifier to be decomposed further into 

a disc number part and a container number within disc. This leads to the struc-

ture for a container identifier illustrated in Figure 16.2. 

 

Allocating numbers for discs locally at a node can be organised simply by 

adding one to the last disc number allocated. Here the oversimplifying assump-

tion is made that a disc has a fixed association with a particular node and that it 

is never used on different nodes. While this assumption often corresponds to 
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SPEEDOS Node Number Disc # in Node Container # in Disc 

Figure 16.2: A SPEEDOS Container Identifier 
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practice, it is not always true; we consider this issue in volume 2, chapter 27
60

. 

Allocating numbers for the containers on a disc can be undertaken by in-

crementing the last container number used on the relevant disc, in this case by 

the Disc Directory Manager for the disc in question. 

It is important to avoid the ambiguities which can arise in a telephone sys-

tem, where numbers are reallocated as users no longer need their telephone, etc. 

SPEEDOS avoids this problem by making all three parts of the identifier suffi-

ciently large that it will not be necessary to re-use them. We here assume that 

each part is 64 bits long. In volume 2, chapter 23 the actual details are discussed. 

3 Translating Virtual Addresses 

Logically a SPEEDOS container identifier can be considered to be the first part 

of a worldwide unique SPEEDOS virtual address, which consists of the pair 

«container identifier, offset in container». From the viewpoint of page manage-

ment in the main memory the "offset in container" part of a virtual address itself 

decomposes into the pair «page # in container, offset in page», see Figure 16.3. 

 

Assuming that a virtual address is as described above then a virtual page 

number has the structure shown in Figure 16.4. In principle the task of an ad-

dress translation unit (ATU) for SPEEDOS is to map very large virtual page 

numbers onto main memory page frames. 

 

In the MONADS systems the ATU actually achieved the equivalent of this. 

Each virtual address in the MONADS local area network was unique, and David 

Abramson designed an ATU, based on a hash table implemented in hardware, 

which could translate any virtual page number in the network to a page frame 

number (or cause a page fault interrupt) [95]. 

That was in the late 1970s/early 1980s. Since then the size of main memo-

ries has increased enormously, making such an implementation economically 

infeasible. But not only that; MONADS had only 60 bit virtual addresses (in-

                                           
60

  In chapter 6 of his thesis [130] Frans Henskens addresses this issue in detail from the 

perspective of a future MONADS system. 

Node Number Disc # in Node Container # in Disc Page# in Container Offset in Page 

Figure 16.3: A SPEEDOS Full Virtual Address 

Container Identifier Page # in Container 

Figure 16.4: A SPEEDOS Virtual Page Number 
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cluding two bits to indicate on which of the four nodes in the network the con-

tainer resides), whereas in SPEEDOS we are discussing very much larger unique 

virtual addresses. 

These parameters create two sets of problems for a SPEEDOS implementa-

tion based on the MONADS ATU technique. First, the increased size of main 

memories means that the number of entries in an ATU would increase very con-

siderably. Second, because the width of SPEEDOS virtual addresses is vastly 

greater than that of MONADS virtual addresses, the width of entries in an ATU 

would also be significantly greater. 

The first problem alone makes a MONADS style implementation infeasi-

ble, but the second problem creates substantially greater problems. Hence a dif-

ferent approach is adopted in order to translate SPEEDOS virtual page numbers 

into main memory page frame numbers. In the next two subsections we consider 

these two problems in turn. The aim is to achieve the translation of SPEEDOS 

virtual addresses in about the same time as the simpler addresses of current sys-

tems are translated. 

3.1 Managing the Number of Entries in the Main Memory Page Table 

At the time the RISC idea was becoming popular (in the early 1980s) the prob-

lem of increasing main memory sizes had already begun to emerge. In Chapter 

11 it was illustrated how RISC designers began to cope with the problem by de-

signing systems in which the entire address translation hardware consists simply 

of a translation lookaside buffer (TLB), which did not have enough entries to 

translate all virtual page numbers in the main memory. Figure 11.7, which for 

convenience is repeated here as Figure 16.5, indicates the task of the software in 

this RISC scenario. 

Translated into SPEEDOS terms the core kernel software is responsible for 

the mechanism aspects of the software code functionality shown in blue in the 

diagram. Because the TLB is too small to provide a mapping for each page 

frame in the entire main memory, a complete mapping from page frames to vir-

tual pages (i.e. an inverted page table
61

, in SPEEDOS terminology the Main 

Memory Page Table, MMPT) must also be maintained in software. 

                                           
61

  In this context the use of the name inverted page table is not intended to imply a specif-

ic implementation, merely the principle that the actual data structure implemented can 

rapidly translate a virtual page number into a main memory page frame number, without 

holding information about virtual pages not currently in the main memory. This might 

for example be a software implemented hash table which has the same functionality as 

the MONADS ATU mentioned above. 
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When a TLB miss occurs the hardware interrupts into the core kernel code. 

This first examines the inverted page table to establish whether the miss oc-

curred simply because the TLB is not large enough to hold an entry for each 

page. If that is the case, it updates the TLB using the information in the inverted 

page table and loads the appropriate information into the TLB, allowing the pro-

cess/thread to continue execution without being suspended. 

If on the other hand the TLB miss arises because a genuine page fault has 

occurred, the kernel must undertake steps to resolve the fault. This activity can-

not take place synchronously, because the effect would be that all other process-

es would be held inactive until the page fault is resolved. The details will be 

clarified in more detail in volume 2 chapter 23, in the more detailed discussion 

of virtual memory organisation. 

3.2 Managing the Width of TLB Entries 

The second ATU problem for SPEEDOS systems is the width of entries, which 

arises primarily because a unique logical SPEEDOS address would require very 

wide TLB entries. This follows from the decision to support unique internet-

wide container numbers. Providing an implementation of this in the TLB would 

be especially costly because for each TLB entry a separate comparator is needed 

in hardware for each bit in the virtual page number. Hence an alternative solu-

tion must be found. 

In practice TLBs can be implemented in different ways. In some conven-

tional systems an address space identifier (ASID) can be associated with virtual 

Virtual Page Number Offset in page Virtual Address 

Figure 16.5: The TLB as the entire ATU 
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page numbers in each TLB entry, thus making addresses belonging to different 

programs unique (within the TLB), with each currently active process using a 

different address space identifier. On other systems the TLB restricts access to a 

single address space, so that the TLB has to be flushed on each context/process 

switch. 

This is not the place to provide a definitive solution for this problem, since 

an actual solution must depend on what actual TLB hardware is available. For 

illustration purposes we now describe the more difficult case: how SPEEDOS 

can effectively use a TLB which supports only a single address space. 

3.3 TLBs Supporting Only a Single Address Space 

If the TLB hardware assumes that only one address space is mapped into the 

TLB at a time and that on a context switch the TLB is flushed, then this raises a 

special problem for SPEEDOS, because a SPEEDOS container is never active 

alone. However, thanks to the rigid enforcement of the information-hiding prin-

ciple, normally there are three active containers at any point in time: a pro-

cess/thread container, a code container and a persistent data container. Under 

some circumstances, there may be more concurrently active containers. 

– A module may need access to one or more library code containers. 

– A need for more data containers can arise if a module provides n-ary func-

tionality (e.g. to allow two sets of file data to be merged into a third, or to 

compare two sets of file data). 

It therefore makes sense to support up to, say, eight containers concurrently 

in a TLB which is flushed on each context switch. To achieve this, a kernel de-

signer could use the three top bits of a virtual address to act as a short container 

identifier (SCID). Figure 16.6 shows how eight containers can be addressed 

simultaneously in what the TLB views as a single address space. 

 

The actual mapping of the 3 bits might by kernel convention be defined as 

is shown in Figure 16.7. Of course the state of a thread must include not only 

this mapping but also a set of pseudo-registers (which we call Container Regis-

ters) that contain the full meanings of the SCIDs. These must be saved and re-

stored by the kernel on context switches. 

 
within container address SCID 

Figure 16.6 Prefixing an Address with a Short Container Identifier 
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This approach might appear to be rather similar to the Multics mapping of 

architectural segments onto an address space. But there are some very signifi-

cant differences. 

(a) In contrast with Multics, which used 18 bits of a virtual address as a seg-

ment number, only three bits are needed in SPEEDOS for the equivalent 

mapping, thanks to the orderly (information hiding) use of containers to 

implement SPEEDOS modules. This leaves far more bits for use as within 

container addresses, which in any case are likely to be significantly larger 

as a result of 64 bit addressing. 

(b) Whereas the attempt to map files onto architectural segments led to severe 

complications in the management of addressing in Multics, the mapping of 

containers to actual container numbers in SPEEDOS is a trivial activity 

which the kernel can organise as part of inter-module calls and returns, 

thread switches and in association with the loading of segment registers. 

(c) On an inter-module call and also on a thread switch between two threads of 

the same process, the stack address space does not need to be flushed. 

(d) It would be a straightforward matter to improve efficiency by implementing 

separate TLBs for stack, data and code addressing. 

In contrast with MONADS, it is necessary on each process switch and on each 

inter-module call to flush the TLB and caches, just as occurs in conventional 

systems when process switches and operating system calls occur
62

. 

4 Segment Management 

Since S-RISC addressing is based on the use of protected segment registers (see 

Chapter 11), the SPEEDOS kernel is free to organise segments into three parti-

tions: for data, pointers and module capabilities (cf. Figure 16.8). The pointer 

and module capability partitions are protected by the kernel in that the latter 

never makes these partitions addressable to normal users, i.e. it never loads a 

segment register to allow such access, but only loads segment registers to pro-

                                           
62

  On an inter-module call/return, TLB and cache entries for the stack address space need 

not be flushed. It would also be possible for hardware designers to optimise the address 

translation process (e.g. by using different TLBs and caches not only for code and data 

but also for stacks). However such optimisations are not further considered here, as it is 

not our intention at this point to provide a detailed hardware design for SPEEDOS. 

000 identifies the process address space of the currently active thread. 

001 to 011 identify the currently active code address spaces, i.e. for the  

 main code address space and up to two active code libraries. 

100 to 111 identify up to four data address spaces. 

Figure 16.7 A Possible Allocation of Short Container Identifiers 
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vide processes with access to data partitions. It also checks that the pointer parti-

tion is empty for parameter segments on inter-module calls and returns
63

. 

 

 

 

There are separate kernel calls for accessing pointers and for accessing 

module capabilities. In each case the user must provide 

– the number of a segment register which already addresses the segment in 

question; and a 

– a non-negative integer which selects the pointer or module capability. 

The kernel calls provide a range of protected functions such as following point-

ers, making inter-module calls and returns, reducing the access rights in module 

capabilities, etc. 

5 Conclusion 

In this chapter we have built on the descriptions of the basic hardware features 

described in Chapters 11 and 12, presenting an overview of the hardware and 

complementary software needed to support a SPEEDOS system and have shown 

that efficient implementations of the hardware are possible. 

                                           
63

  This helps to enforce the information-hiding principle and at the same time avoids a 

worldwide garbage collection problem! 

Figure 16.8: SPEEDOS Partitioned Segments with Module Capabilities 
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